WorldWideScience

Sample records for condensed matter enhanced

  1. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  2. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  3. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  4. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  5. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  6. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  7. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  8. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  9. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  10. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  11. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  12. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  13. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  14. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  15. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  16. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  17. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  18. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  19. Quasiparticles in condensed matter systems

    Science.gov (United States)

    Wölfle, Peter

    2018-03-01

    Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

  20. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  1. Collision of Bose Condensate Dark Matter structures

    International Nuclear Information System (INIS)

    Guzman, F. S.

    2008-01-01

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  2. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  3. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  4. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  5. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  6. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  7. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  8. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  9. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  10. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  11. Condensed Matter Theories: Volume 25

    Science.gov (United States)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular

  12. Quark Condensate in the Strange Matter

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Fang; LU" Xiao-Fu

    2003-01-01

    In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.

  13. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  14. Condensed matter studies by nuclear methods

    International Nuclear Information System (INIS)

    Krolas, K.; Tomala, K.

    1988-01-01

    The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)

  15. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  16. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  17. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  18. Open problems in condensed matter physics, 1987

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs

  19. Condensation of galactic cold dark matter

    International Nuclear Information System (INIS)

    Visinelli, Luca

    2016-01-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  20. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  1. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  2. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  3. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  4. STRANGE BARYONIC MATTER AND KAON CONDENSATION

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří

    2011-01-01

    Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  5. Holographic techniques for condensed matter systems

    International Nuclear Information System (INIS)

    Herzog, Chistopher

    2009-01-01

    Full text. Gauge/gravity duality, a concept which emerged from string theory, holds promise for revealing the secrets of certain strongly interacting real world condensed matter systems. Historically, string theorists presented their subject as a promising framework for a quantum theory of gravity. More recently, the AdS/CFT correspondence and gauge/gravity dualities have emerged as powerful tools for using what we already know about gravity to investigate the properties of strongly interacting field theories. In this colloquium, I will survey recent developments where black holes are used to calculate the thermodynamic and transport properties of quantum critical systems, superconductors, superfluids, and fermions at unitarity. (author)

  6. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  7. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  8. Equation of state of warm condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W., III; Young, D.A.; Rogers, F.J.

    1998-03-01

    Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.

  9. Condensed matter physics aspects of electrochemistry

    International Nuclear Information System (INIS)

    Tosi, M.P.; Kornyshev, A.A.

    1991-01-01

    This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs

  10. Novel Quantum Condensates in Excitonic Matter

    International Nuclear Information System (INIS)

    Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymanska, M. H.

    2009-01-01

    These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state - generically called a Bose-Einstein condensate (BEC) - and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari. A recent theoretically focussed review of polariton systems covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.

  11. The Solar Photosphere: Evidence for Condensed Matter

    Directory of Open Access Journals (Sweden)

    Robitaille P. M.

    2006-04-01

    Full Text Available The stellar equations of state treat the Sun much like an ideal gas, wherein the photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the solar interior give some credence to these models, especially since it is counterintuitive that an object with internal temperatures in excess of 1 MK could be existing in the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient evidence for the states of matter. The presence of magnetic fields and gravity also impact the expected phase. In the end, it is the physical expression of a state that is required in establishing the proper phase of an object. The photosphere does not lend itself easily to treatment as a gaseous plasma. The physical evidence can be more simply reconciled with a solar body and a photosphere in the condensed state. A discussion of each physical feature follows: (1 the thermal spectrum, (2 limb darkening, (3 solar collapse, (4 the solar density, (5 seismic activity, (6 mass displacement, (7 the chromosphere and critical opalescence, (8 shape, (9 surface activity, (10 photospheric/coronal flows, (11 photospheric imaging, (12 the solar dynamo, and (13 the presence of Sun spots. The explanation of these findings by the gaseous models often requires an improbable combination of events, such as found in the stellar opacity problem. In sharp contrast, each can be explained with simplicity by the condensed state. This work is an invitation to reconsider the phase of the Sun.

  12. Statistical mechanics and applications in condensed matter

    CERN Document Server

    Di Castro, Carlo

    2015-01-01

    This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...

  13. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  14. A duality web in condensed matter systems

    Science.gov (United States)

    Ma, Chen-Te

    2018-03-01

    We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.

  15. Frustration in Condensed Matter and Protein Folding

    Science.gov (United States)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  16. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  17. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  18. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  19. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  20. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  1. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  2. Diffusive instability of a kaon condensate in neutron star matter

    International Nuclear Information System (INIS)

    Kubis, Sebastian

    2004-01-01

    The beta equilibrated dense matter with kaon condensate is analyzed with respect to extended stability conditions, including charge fluctuations. This kind of the diffusive instability appeared to be common property in the kaon condensation case. Results for three different nuclear models are presented

  3. Resource Letter HCMP-1: History of Condensed Matter Physics

    Science.gov (United States)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  4. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  5. Applications of holography to condensed matter physics

    Science.gov (United States)

    Ross, Simon F.

    2012-10-01

    Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity

  6. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  7. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  8. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...

  9. Proceedings of the 9. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1986-01-01

    The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt

  10. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  11. Interplay between kaon condensation and hyperons in highly dense matter

    International Nuclear Information System (INIS)

    Muto, Takumi

    2008-01-01

    The possible coexistence and/or competition of kaon condensation with hyperons are investigated in hyperonic matter, where hyperons are mixed in the ground state of neutron-star matter. The formulation is based on the effective chiral Lagrangian for the kaon-baryon interaction and the nonrelativistic baryon-baryon interaction model. First, the onset condition of the s-wave kaon condensation realized from hyperonic matter is reexamined. It is shown that the usual assumption of the continuous phase transition is not always kept valid in the presence of the negatively charged hyperons (Σ - ). Second, the equation of state (EOS) of the kaon-condensed phase in hyperonic matter is discussed. In the case of the stronger kaon-baryon attractive interaction, it is shown that a local energy minimum with respect to the baryon number density appears as a result of considerable softening of the EOS due to both kaon condensation and hyperon mixing and recovering of the stiffness of the EOS at very high densities. This result implies a possible existence of self-bound objects with kaon condensates on any scale from an atomic nucleus to a neutron star

  12. Long range correlations in condensed matter

    International Nuclear Information System (INIS)

    Bochicchio, R.C.

    1990-01-01

    Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs

  13. Diagrammatics lectures on selected problems in condensed matter theory

    CERN Document Server

    Sadovskii, Michael V

    2006-01-01

    The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection

  14. Neutrino emission in inhomogeneous pion condensed quark matter

    International Nuclear Information System (INIS)

    Huang, Xuguang; Wang, Qun; Zhuang, Pengfei

    2008-01-01

    It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)

  15. Proton mixing in -condensed phase of neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Takatsuka, Tatsuyuki

    1984-08-01

    The mixing of protons in neutron star matter under the occurrence of condensation is studied in the framework of the ALS (Alternating Layer Spin) model and with the effective interaction approach. It is found that protons are likely to mix under the situation and cause a remarkable energy gain from neutron matter as the density increases. The extent of proton mixing becomes larger by about a factor (1.5-2.5) according to the density rho asymptotically equals (2-5)rho0, rho0 being the nuclear density, as compared with that for the case without pion condensation. The reason can be attributed to the two-dimensional nature of the Fermi gas state characteristic of the nucleon system under condensation.

  16. Soft condensed matter: Polymers, complex fluids, and biomaterials

    International Nuclear Information System (INIS)

    Schaefer, D.

    1995-01-01

    Historians often characterize epochs through their dominant materials, clay, bronze, iron, and steel. From this perspective, the modern era is certainly the age of plastics. The progression from hard to soft materials suggests that the emerging era will be the age of open-quotes soft condensed matter.close quotes

  17. Physics in Brazil in the next decade: condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)

  18. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  19. The coupling of condensed matter excitations to electron probes

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs

  20. Proceedings of the 12. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt

  1. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  2. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  3. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  4. Walter Kohn and the Rise of Condensed Matter Physics T V ...

    Indian Academy of Sciences (India)

    Ramakrishnan T V

    Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).

  5. Diquark Bose Condensates in High Density Matter and Instantons

    International Nuclear Information System (INIS)

    Rapp, R.; Shuryak, E.; Schaefer, T.; Velkovsky, M.

    1998-01-01

    Instantons lead to strong correlations between up and down quarks with spin zero and antisymmetric color wave functions. In cold and dense matter, n b >n c ≅1 fm -3 and T c ∼50 thinspthinspMeV, these pairs Bose condense, replacing the usual left-angle bar qq right-angle condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-antiparticle symmetry which relates left-angle bar qq right-angle and left-angle qq right-angle condensates. copyright 1998 The American Physical Society

  6. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  7. Springer Handbook of Condensed Matter and Materials Data

    CERN Document Server

    Martienssen, Werner

    2005-01-01

    Condensed Matter and Materials Science are two of the most active fields of applied physics, with a stream of discoveries in areas from superconductivity and magnetism to the optical, electronic and mechanical properties of materials. While a huge amount of data has been compiled and spread over numerous reference works, no single volume compiles the most used information. Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200-page volume. The data, encapsulated in over 750 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the editors of this Springer Handbook. Key Topics Fundamental Constants The International S...

  8. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  9. 10th International Workshop on Condensed Matter Theories

    CERN Document Server

    Kalia, Rajiv; Bishop, R

    1987-01-01

    The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...

  10. Condensed matter research using pulsed neutron sources: a bibliography

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Stirling, G.C.

    1976-05-01

    This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)

  11. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  12. Lectures on holographic methods for condensed matter physics

    International Nuclear Information System (INIS)

    Hartnoll, Sean A

    2009-01-01

    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

  13. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  14. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  15. Proceedings 17. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Pudis, D.; Kubicova, I.; Bury, P.

    2011-01-01

    The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.

  16. Pion condensation and density isomerism in nuclear matter

    International Nuclear Information System (INIS)

    Hecking, P.; Weise, W.

    1979-01-01

    The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely

  17. Proceedings 20. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2014-01-01

    The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  18. Dark matter seen as a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Manzoni, Andre; Pires, Marcelo

    2011-01-01

    Full text: Astronomical observations of the stellar angular velocity in galaxies shows the general relativity theory, which considers that the usual matter changes the space-time, unable to describe the angular velocity to the peripheral stars. There are two possibilities to solve this problem, or the general relativity theory is not adequate to the phenomena or another type of matter must be considered in the composition of the galaxies. Many astrophysicists are in agreement considering another type of matter. This matter, called dark matter (DM), must interact very weakly with the barionic matter and, therefore, is invisible to direct observation. Some of them consider this dark matter made up of weakly interacting massive particles (WIMPs), which were not detected yet due to their very thin cross-section. A cloud of these particles is distributed around the galaxy under a low temperature and density. If we consider the cloud as a quantum gas, with the energies and the densities low enough to have binary interactions between particles, the gas can reach temperature condition to take a phase transition to the Bose-Einstein condensate where there are a constructive interference partner of these WIMPs. We performed an investigation about the dark matter being a Bose-Einstein condensate of WIMPs confined in itself gravitational potential. Taking the Thomas-Fermi approximation where the number of WIMPs is big enough to neglect the kinetic contribution in the total energy, we got the state equation of barotropic gas. Fitting this state equation with the data of rotational curves and density profiles taken from astronomical observations of galaxies, we estimated the mass and the scattering length of these WIMPs. (author)

  19. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  20. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  1. Bose-Einstein condensate & degenerate Fermi cored dark matter halos

    Science.gov (United States)

    Chung, W.-J.; Nelson, L. A.

    2018-06-01

    There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.

  2. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  3. Is a condensed state of nuclear matter possible?

    International Nuclear Information System (INIS)

    D'yakonov, D.I.; Mirlin, A.D.

    1988-01-01

    Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable

  4. New state of matter: Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several

  5. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  6. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  7. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  8. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  9. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  10. Use of ultracold neutrons for condensed-matter studies

    International Nuclear Information System (INIS)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples

  11. International Symposium on Dynamics of Ordering Processes in Condensed Matter

    CERN Document Server

    Furukawa, H

    1988-01-01

    The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci­ ety of Japan. The symposium was financially supported by the four orga­ nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un­ stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...

  12. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  13. Condensed Matter Physics in Colombia is in its forties

    Science.gov (United States)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  14. International Workshop on Current Problems in Condensed Matter

    CERN Document Server

    Current Problems in Condensed Matter

    1998-01-01

    This volume contains the papers presented at the International Workshop on the Cur­ rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More­ los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...

  15. 24th Condensed Matter Days National Conference (CMDAYS2016)

    International Nuclear Information System (INIS)

    2016-01-01

    The 24 th edition of Condensed Matter Days (CMDAYS) 2016, a National Conference had been decided to be held at Physics Department, Mizoram University, Aizwal, Mizoram, India during 29-31 August 2016. This decision was taken by the General Body meeting of the CMDAYS on 28 August 2015 at Viswa Bharati, Shanti Niketan, West Bengal, India and Prof. R.K. Thapa was proposed as the Convener of CMDAYS-2016. Initiated by the Institute of Physics, Bhubaneswar, Odisa. The CMDAYS conference is held annually in the last week of August. The main objective of the conference was to bring all the researchers/scientists working in the field of Condensed Matter Physics, or related topics, together on a single platform. In this way, they can present, share and discuss their research findings and further plan collaborative works in future. The conference topics were on the theory and experimental research works done on Strongly correlated systems, Soft condensed matter, Magnetism and Magnetic materials, Disordered systems, Phase transition, Materials for energy harvesting, Nanomaterials and applications, Dielectrics and Ferroelectrics, Optoelectronics and devices, Semiconductors and devices, Biophysics, Biomaterials and composites, Superconductivity, Thin films and devices. It was open to all researchers from the research institutes, universities and colleges. Until the last date 1 st June 2016, we have received 1 plenary lecture, 3 Keynote lectures, 8 invited talks and 55 oral contributed papers. In total, there were 10 technical sessions to complete all the contributed papers along with the invited talks. Sessions were very interesting with the young participants interacting extensively with the senior scientists and everybody enjoyed the conference period with two cultural programmes. On the last day after the closing function, a local tour programme was arranged for all the outside participants. We are grateful to Prof. R. Lalthantluanga, Vice Cahncellor, Mizoram University, Aizawl

  16. 11th International Workshop on Condensed Matter Theories

    CERN Document Server

    Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3

    1988-01-01

    This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...

  17. Indus-I beamlines for condensed matter physics

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2001-01-01

    Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed

  18. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  19. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  20. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  1. 19th International School on Condensed Matter Physics (ISCMP): Advances in Nanostructured Condensed Matter: Research and Innovations

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)

  2. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.

    1999-09-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.

  3. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia

    1999-01-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report

  4. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    International Nuclear Information System (INIS)

    Atazadeh, K.; Mousavi, M.; Darabi, F.

    2016-01-01

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  5. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  6. Finite temperature effects in Bose-Einstein condensed dark matter halos

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Madarassy, Enikö J.M.

    2012-01-01

    Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates

  7. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  8. Universal properties of relaxation and diffusion in condensed matter

    International Nuclear Information System (INIS)

    Ngai K L

    2017-01-01

    By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)

  9. Condensed matter applications of AdS/CFT (I)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    These lectures will discuss the application of ads/cft techniques to condensed matter systems. After motivating this endeavor, I will review the basic features of the ads/cft correspondence that will be used. I will review the physics of spectral functions and how they can be computed via AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog,  Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy,  Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...

  10. Theory of condensed matter. Lectures presented at an international course

    International Nuclear Information System (INIS)

    1968-01-01

    The International Centre for Theoretical Physics, since its inception, has striven to maintain an interdisciplinary character in its research and training programme as far as different branches of theoretical physics are concerned. in pursuance of this aim the Centre has followed a policy of organizing extended research seminars with a comprehensive and synoptic coverage on varying disciplines. The first of these — lasting over a month — was held in 1964 on fluids of ionized particles and plasma physics; the second, lasting for two months, was concerned with physics of elementary particles and high-energy physics; the third, of three months’ duration, October — December 1966, covered nuclear theory; the fourth, bringing the series through a complete cycle, was a course on condensed matter held from 3 October to 16 December 1967. The present volume records the proceedings of this research seminar. The publication is divided into four parts containing 29 papers. Part I — General Courses, Part II - Dynamical lattice properties; Part III — Liquids and molecules; Part IV — Electronic properties

  11. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  12. 13th International Workshop on Condensed Matter Theories

    CERN Document Server

    1990-01-01

    This volume gathers the invited talks of the XIII International Work­ shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera­ ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...

  13. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  14. Dissociative electron attachment and charge transfer in condensed matter

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    Experiments using energy-selected beams of electrons incident from vacuum upon thin vapour deposited solids show that, as in the gas-phase, scattering cross sections at low energies are dominated by the formation of temporary negative ions (or resonances) and that molecular damage may be effected via dissociative electron attachment (DEA). Recent results also show that charge transfer between anionic states of target molecules and their environment is often crucial in determining cross sections for electron driven processes. Here, we review recent work from our laboratory, in which charge transfer is observed. For rare gas solids, electron exchange between the electron-exciton complex and either a metal substrate or co-adsorbed molecule enhances the desorption of metastable atoms and/or molecular dissociation. We discuss how transient electron capture by surface electron states of a substrate and subsequent electron transfer to a molecular adsorbate enhances the effective cross sections for DEA. We also consider the case of DEA to CF 2 Cl 2 condensed on water and ammonia ices, where electron exchange between pre-solvated electron states of ice and transient molecular anions can also increase DEA cross sections. Electron transfer from molecular resonances into pre-solvated electron states of ice is also discussed

  15. Stabilization of matter wave solitons in weakly coupled atomic condensates

    International Nuclear Information System (INIS)

    Radha, R.; Vinayagam, P.S.

    2012-01-01

    We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.

  16. In-stack condensible particulate matter measurement and permitting issues

    International Nuclear Information System (INIS)

    Corio, L.A.; Sherwell, J.

    1997-01-01

    Based on the results of recent epidemiological studies and assessments of the causes of visibility degradation, EPA is proposing to regulate PM2.5 emissions. PM can be classified as either filterable or condensible PM. Condensible PM includes sulfates, such as sulfuric acid. Sulfates typically account for at least half of the total dry fine PM mass in the atmosphere. Power plant SO x -based emissions make a significant contribution to ambient fine PM levels in the eastern US. Although much of this mass is derived from secondary chemical reactions in the atmosphere, a portion of this sulfate is emitted directly from stacks as condensible PM. The potential condensible PM fraction associated with coal-burning boiler emissions is somewhat uncertain. The characterization of PM emissions from these sources has been, until recently, based on in-stack filterable PM measurements only. To determine the relative magnitude of condensible PM emissions and better understand condensible PM measurement issues, a review and analysis of actual EPA Method 202 results and state-developed hybrid condensible PM methods were conducted. A review of available Method 202 results for several coal-burning boilers showed that the condensible PM, on average, comprises 60% of the total PM10. A review of recent results for state-developed measurement methods for condensible PM for numerous coal-burning boilers indicated that condensible PM accounted for, on average, approximately 49% of total PM. Caution should be exercised in the use of these results because of the seemingly unresolved issue of artifact formation, which may bias the Method 202 and state-developed methods results on the high side. Condensible PM10 measurement results and issues, and potential ramifications of including condensible PM10 emissions in the PSD permit review process are discussed. Selected power plants in Maryland are discussed as examples

  17. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    International Nuclear Information System (INIS)

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano

    2014-01-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales

  18. Nuclear and Condensed Matter Physics: VI Regional CRRNSM Conference. AIP Conference Proceedings, No. 513 [APCPCS

    International Nuclear Information System (INIS)

    Messina, A.

    2000-01-01

    This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina

  19. Pion condensation in a theory consistent with bulk properties of nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1980-01-01

    A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures

  20. The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body

    OpenAIRE

    Kukuruznyak , Dmitry ,

    2017-01-01

    Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...

  1. Effects of delta degrees of freedom on quark condensate in hot and dense matter

    International Nuclear Information System (INIS)

    Li Lei; Ning Pingzhi

    1996-01-01

    The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate

  2. Phase transition in dense nuclear matter with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ellis, J.; Kapusta, J.I.; Olive, K.A.

    1991-01-01

    Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)

  3. Simulation of condensed matter dynamics in strong femtosecond laser pulses

    International Nuclear Information System (INIS)

    Wachter, G.

    2014-01-01

    Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the

  4. Proceedings of the international symposium on atomic, molecular, and condensed matter theory and computational methods

    International Nuclear Information System (INIS)

    Loewdin, Per-Olov; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.

    1993-01-01

    After an introduction and a personal (World War II and postwar) retrospective by C.C.J. Roothaan, 69 papers are presented in fields of quantum biology, quantum chemistry, and condensed matter physics; topics covered include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems. An author index is included

  5. Soft condensed matter approach to cooking of meat

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2007-01-01

    We have viewed cooking meat from the perspective of soft condensed physics and posed that the moisture transport during cooking can be described by Flory-Rehner theory of swelling/shrinking polymer gels. This theory contains the essential physics to describe the transport of liquid moisture due to

  6. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  7. One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases

    OpenAIRE

    Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.

    2011-01-01

    The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...

  8. On the existence of combined condensation of neutral and charged pions in neutron matter

    International Nuclear Information System (INIS)

    Muto, Takumi; Tatsumi, Toshitaka

    1987-01-01

    Combined condensation of neutral and charged pions at high-density neutron matter is studied in an approach based on the chiral symmetry. Energy density in the combined π 0 -π c condensed phase to be considered as most energetically favored is derived in a realistic calculation, where we take into account the isobar Δ (1232) degrees of freedom, baryon-baryon short-range correlations described in terms of the Landau-Migdal parameter g', and form factors in the π-baryon vertex. Characteristic features of this phase are discussed in comparison with those of the pure π 0 or the pure π c condensation. The combined π 0 -π c condensed phase sets in at baryon density (3 ∼ 5) times the nuclear density ρ 0 depending on g' after the appearance of the pure π c condensed phase. (author)

  9. Bright matter wave solitons and their collision in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radha, R.; Ramesh Kumar, V.

    2007-01-01

    We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates

  10. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  11. Eighteenth Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    CERN Document Server

    Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII

    2006-01-01

    This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.

  12. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  13. Noise study in condensed matter physics-Towards extension to surrounding fields

    International Nuclear Information System (INIS)

    Maeda, Atsutaka

    2006-01-01

    I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe

  14. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  15. Quantum condensates and topological bosons in coupled light-matter excitations

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander

    2016-02-29

    Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.

  16. Radial oscillations of strange quark stars admixed with condensed dark matter

    Science.gov (United States)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  17. ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists

    CERN Document Server

    Morandi, G; Lu, Y

    1995-01-01

    This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.

  18. Fundamental problems and perspectives of positron diagnostics of structural imperfections in condensed matter

    International Nuclear Information System (INIS)

    Mukashev, K.M.; Sarsenbinov, Sh. Sh.

    2000-01-01

    Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)

  19. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  20. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...

  1. Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting

    International Nuclear Information System (INIS)

    Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.

    1994-01-01

    The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately

  2. Elements of a dialogue between nonlinear models in condensed matter and biophysics

    International Nuclear Information System (INIS)

    Bishop, A.R.; Lomdahl, P.S.; Kerr, W.C.

    1985-01-01

    We indicate some of the emerging thematic connections between strongly nonlinear effects in condensed matter and biological materials. These are illustrated with model studies of: (1) structural phase transitions in anisotropic lattices; and (2) finite temperature effects on self-trapped states in vibron-phonon models of α-helix proteins. 13 refs., 8 figs

  3. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...

  4. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

    NARCIS (Netherlands)

    Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim

    2008-01-01

    The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based

  5. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  6. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  7. Quantum electrodynamics of resonant energy transfer in condensed matter

    International Nuclear Information System (INIS)

    Juzeliunas, G.; Andrews, D.L.

    1994-01-01

    A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer

  8. Graphene a new paradigm in condensed matter and device physics

    CERN Document Server

    Wolf, E L

    2014-01-01

    The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...

  9. Applications of Density Functional Theory in Soft Condensed Matter

    Science.gov (United States)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  10. Collective emission of matter-wave jets from driven Bose-Einstein condensates.

    Science.gov (United States)

    Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng

    2017-11-16

    Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

  11. Gauge/gravity duality applied to condensed matter systems

    International Nuclear Information System (INIS)

    Ammon, Martin Matthias

    2010-01-01

    developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.

  12. Gauge/gravity duality applied to condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin Matthias

    2010-07-07

    developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.

  13. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=enhanced by a factor up to 3.2 times for applied voltage of 8kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube. (author)

  14. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  15. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  16. Use of ORELA to produce neutrons for scattering studies on condensed matter

    International Nuclear Information System (INIS)

    Peelle, R.W.; Lewis, T.A.; Mihalczo, J.T.; Mook, H.A.; Moon, R.M.

    1975-09-01

    The Oak Ridge Electron Linear Accelerator (ORELA) is evaluated as a source of neutrons for condensed matter research. Two options are assessed: (1) use of the present target arrangement with minor modifications; and (2) the construction of a new target and experiment facility designed for condensed matter research and equipped with a subcritical fission booster. The expected source strength and time behavior are discussed, including the fundamentals of moderator design. The effect on the programs presently using the linac are considered. It is concluded that a special-purpose neutron source facility using pulsed electrons from ORELA and containing a subcritical booster could be built to make a cost-effective neutron scattering facility of great power and utility. (auth)

  17. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    Science.gov (United States)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  18. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    Bisanti, Paola; Lovesey, S.W.

    1987-05-01

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  19. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  20. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  2. Proceedings of the 19th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2013-01-01

    The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  3. Linking the gaseous and the condensed phases of matter: The slow electron and its interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1993-01-01

    The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized

  4. Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yong Wenmei; Xue Jukui

    2008-01-01

    The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained

  5. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  6. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  7. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela

    2015-01-01

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm

  8. Slow electron motion in condensed matter: Final progress report for period January 1, 1984-December 31, 1986

    International Nuclear Information System (INIS)

    Fano, U.

    1987-02-01

    A summary is given for theoretical procedures that describe and evaluate the penetration, degradation and diffusion of slow electrons in condensed matter with characteristics relevant to biological systems. 5 refs

  9. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  10. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  11. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  12. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  13. Proceedings of the 18th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2012-01-01

    The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  15. 29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    International Nuclear Information System (INIS)

    2016-01-01

    Thirty years ago, because of the dramatic increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the application of simulations in research and teaching: The Center for Simulational Physics. Then, as the international simulations community expanded further, we sensed the need for a meeting place for both experienced simulators and newcomers to discuss inventive algorithms and recent results in an environment that promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop series on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's highly interactive workshop was the 29th in the series marking our efforts to promote high quality research in simulational physics. The continued interest shown by the scientific community amply demonstrates the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia from February 22-26, 2016. It served to mark the 30 th Anniversary of the founding of the Center for Simulational Physics. In addition, during this Workshop we celebrated the 60 th birthday of our esteemed colleague Prof. H.-Bernd Schuttler. Bernd has not only contributed to the understanding of strongly correlated electron system, but has made seminal contributions to systems biology through the introduction of modern methods of computational physics. These Proceedings provide a “status report” on a number of important topics. This on-line “volume” is published with the goal of timely dissemination of the material to a wider audience. This program was supported in part by the President's Venture Fund through the generous gifts of the University of Georgia Partners and other donors. We also wish to offer thanks to the Office of the Vice-President for Research, the Franklin College of Arts and Sciences, and the IBM Corporation for partial

  16. Salamfestschrift. A collection of talks from the conference on highlights of particle and condensed matter physics

    International Nuclear Information System (INIS)

    Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)

    1994-01-01

    The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  17. Physics in the Andean Countries: A Perspective from Condensed Matter, Novel Materials and Nanotechnology

    Science.gov (United States)

    Prieto, P.

    2009-05-01

    We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This

  18. Neutron beams for the study of condensed matter: a view of the first half-century

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1982-01-01

    Neutron diffraction was first demonstrated in 1936 but awaited the development of the nuclear reactor before becoming a practical technique for the study of condensed matter. Neutrons have unique advantages for the location of hydrogen atoms, the recognition of magnetic architecture and the study of crystal vibrations and atomic and molecular motions. The techniques available exploit the optical properties of neutrons over a wavelength range from 0.5 to 500 A. Progress has gone hand in hand with a steady increase of reactor flux over 50 years but future improvements may depend on pulsed linear accelerators as the source of neutrons. (author)

  19. Coating strategy for enhancing illumination uniformity in a lithographic condenser

    International Nuclear Information System (INIS)

    Gaines, D.P.; Vernon, S.P.; Sommargren, G.E.; Kania, D.R.

    1995-01-01

    A three-element Koehler condenser system has been fabricated, characterized, and integrated into an EUV lithographic system. The multilayer coatings deposited on the optics were designed to provide optimal radiation transport efficiency and illumination uniformity. Extensive EUV characterization measurements performed on the individual optics and follow-on system measurements indicated that the condenser was operating close to design goals. Multilayer d-spacings were within 0.05 nm of specifications, and reflectances were approximately 60%. Illumination uniformity was better than ±10%. The broadband transport efficiency was 11%

  20. Mixtures of Charged Bosons Confined in Harmonic Traps and Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reactions and Transmutation Processes in Condensed Matters

    Science.gov (United States)

    Kim, Yeong E.; Zubarev, Alexander L.

    2006-02-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.

  1. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Zubarev, Alexander L. [Purdue Nuclear and Many-Body Theory Group (PNMBTG) Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + {sup 6}Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)

  2. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Zubarev, Alexander L.

    2006-01-01

    A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + 6 Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)

  3. Enhanced factoring with a bose-einstein condensate.

    Science.gov (United States)

    Sadgrove, Mark; Kumar, Sanjay; Nakagawa, Ken'ichi

    2008-10-31

    We present a novel method to realize analog sum computation with a Bose-Einstein condensate in an optical lattice potential subject to controlled phase jumps. We use the method to implement the Gauss sum algorithm for factoring numbers. By exploiting higher order quantum momentum states, we are able to improve the algorithm's accuracy beyond the limits of the usual classical implementation.

  4. Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers

    International Nuclear Information System (INIS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd

    2014-01-01

    We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.

  5. Analysis of the characteristics of heat transfer enhancement in steam condensers

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    The influence of main factors on overall heat transfer was analyzed, and the effects of fouling factors on heat transfer characteristics in steam condenser were clarified. It was proposed that the tube outside enhancement is the most important attribute, when outside heat transfer coefficient increased there will be a big increase in condenser efficiency. The characteristics of heat transfer enhancement by spirally indented tube were investigated. It was proposed that condenser heat transfer efficiency will be raised when the low fin tube or the spirally indented tube with special treated surface were used

  6. Investigation of enhanced condensation heat transfer outside vertical titanium circularly-grooved tube

    International Nuclear Information System (INIS)

    Zhaorigetu; Huang Weitang; Lv Xiangbo; Liu Feng

    2005-01-01

    The investigation of enhanced condensation heat transfer had been conducted on the outside vertical Titanium circularly-grooved tube. The experimental result indicates that the Titanium circularly-grooved tube is fairly efficient in enhancing the heat transfer. Within the experimental scope, the total heat transfer coefficient of the optimum circularly-grooved tube is 1.12 to 1.36 times of that of the Titanium smooth tube. Through regression analysis on the experimental data, the experimental correlations for the inside heat transfer coefficient, the condensation heat transfer coefficient on film condensation and the friction coefficient were achieved. (authors)

  7. History of the APS Topical Group on Shock Compression of Condensed Matter

    International Nuclear Information System (INIS)

    Forbes, J W

    2001-01-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years

  8. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  9. Condensation for non-relativistic matter in Hořava–Lifshitz gravity

    Directory of Open Access Journals (Sweden)

    Jiliang Jing

    2015-10-01

    Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.

  10. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  11. International Conference on Polarised Neutrons for Condensed Matter Investigations (PNCMI 2016)

    International Nuclear Information System (INIS)

    2017-01-01

    The present volume of the Journal of Physics: Conference Series represents Proceedings of the 11th International Conference on Polarised Neutrons for Condensed Matter Investigation (PNCMI) held in Freising, Germany from July 4–7, 2016. The conference attended by more than 120 scientists from various academic, government, and industrial institutions in Europe, Asia and the Americas was organized by the Jülich Centre for Neutron Science of the Forschungszentrum Jülich. The PNCMI-2016 continuoued the successful previous conferences in this series covering the latest condensed matter investigations using polarised neutrons and state-of-the-art methodologies, from effective polarization of neutron beams to wide-angle polarization analysis, as well as applications for novel instrumentation and experiments, with emphasis on prospects for new science and new instrument concepts. The conference program included invited and contributed oral presentations and posters which demonstrated the activities using polarized neutrons all over the world and showed the deep interest in developing the topic. The presentations tackled all area of science including multiferroic and chirality, strongly correlated electron systems, superconductors, frustrated and disordered systems, magnetic nanomaterials, thin films and multilayers, soft matter and biology, imaging, as well as further developments in polarized neutron techniques and methods, including nuclear polarisation, Larmor techniques and depolarisation methods.. We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to gratefully acknowledge the financial support by J-PARC and AIRBUS DS as Premium Sponsors and Swiss Neutronics, ISIS, LLB, PSI and Mirrotron as Standard Sponsors of this conference. The next PNCMI will take place in Great Britain in 2018 and will be organized by ISIS. Alexander Ioffe (Conference Chair) Thomas Gutberlet (Conference Secretary) (paper)

  12. Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model

    Directory of Open Access Journals (Sweden)

    Jae-Weon Lee

    2016-05-01

    Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.

  13. Pion Condensation and Alternating Layer Spin Model in Symmetric Nuclear Matter : Use of Extended Effective Nuclear Forces : Nuclear Physics

    OpenAIRE

    Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University

    1985-01-01

    Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...

  14. Neutron research on condensed matter: a study of the facilities and scientific opportunities in the United States

    International Nuclear Information System (INIS)

    1977-01-01

    An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included

  15. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov

    2007-10-11

    Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.

  16. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications

    Directory of Open Access Journals (Sweden)

    Mark Melnykowycz

    2016-03-01

    Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.

  17. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  18. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  19. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  20. 3-sphere fibrations: a tool for analyzing twisted materials in condensed matter

    International Nuclear Information System (INIS)

    Sadoc, J F; Charvolin, J

    2009-01-01

    Chiral molecules, when densely packed in soft condensed matter or biological materials, build organizations which are most often spontaneously twisted. The crystals of 'blue' phases formed by small mesogenic molecules demonstrate the structural importance of such a twist or torsion, and its presence was also recently observed in finite toroidal aggregates formed by long DNA molecules. The formation of these organizations is driven by the fact that compactness, which tends to align the molecules, enters into conflict with torsion, which tends to disrupt this alignment. This conflict of topological nature, or frustration, arises because of the flatness of the Euclidean space, but does not exist in the curved space of the 3-sphere where particular lines, its fibres, can be drawn which are parallel and nevertheless twisted. As these fibrations conciliate compactness and torsion, they can be used as geometrical templates for the analysis of organizations in the Euclidean space. We describe these fibrations, with a particular emphasis on their torsion.

  1. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Science.gov (United States)

    Roy, S. B.; Myneni, G. R.

    2015-12-01

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  2. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  3. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  4. Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter

    Directory of Open Access Journals (Sweden)

    P.S. Bhupal Dev

    2017-10-01

    Full Text Available There exists a class of ultralight Dark Matter (DM models which could give rise to a Bose–Einstein condensate (BEC in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.

  5. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    International Nuclear Information System (INIS)

    Roy, S. B.; Myneni, G. R.

    2015-01-01

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values

  6. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  7. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  8. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  9. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-06-01

    This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12

  10. Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography

    Science.gov (United States)

    Gruwel, Marco L. H.; Latta, Peter; Matwiy, Brendon; Sboto-Frankenstein, Uta; Gervai, Patricia; Tomanek, Boguslaw

    2010-01-01

    Magnetic resonance elastography (MRE) is a phase contrast technique that provides a non-invasive means of evaluating the viscoelastic properties of soft condensed matter. This has a profound bio-medical significance as it allows for the virtual palpation of areas of the body usually not accessible to the hands of a medical practitioner, such as the brain. Applications of MRE are not restricted to bio-medical applications, however, the viscoelastic properties of prepackaged food products can also non-invasively be determined. Here we describe the design and use of a modular MRE acoustic actuator that can be used for experiments ranging from the human brain to pre-packaged food products. The unique feature of the used actuator design is its simplicity and flexibility, which allows easy reconfiguration.

  11. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  12. Neutron and synchrotron radiation for condensed matter studies. Volume 1: theory, instruments and methods

    International Nuclear Information System (INIS)

    Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.

    1993-01-01

    This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties

  13. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff

    Energy Technology Data Exchange (ETDEWEB)

    Nicolis, Alberto; Penco, Riccardo [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Piazza, Federico [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Paris Center for Cosmological Physics and Laboratoire APC,Université Paris 7, 75205 Paris (France); CPT, Aix Marseille Université,UMR 7332, 13288 Marseille (France); Rattazzi, Riccardo [Institut de Théorie des Phénomènes Physiques,EPFL Lausanne (Switzerland)

    2015-06-23

    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the “galileids”, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E{sup 2}, E{sup 4}, and E{sup 6}. Similarly the energy momentum tensor in the ground state is “trivial' for framids (ρ+p=0), normal for solids (ρ+p>0) and even inhomogenous for galileids.

  15. Confinement of quasi-particles in a condensed matter system: an inelastic neutron scattering study

    International Nuclear Information System (INIS)

    Bera, A.K.

    2016-01-01

    The confinement of quasi particles, a well-known phenomenon in particle physics, can also be realized in a condensed matter system. In particle physics, baryons and mesons are produced by the confinement of quarks, where quarks are bound together by a strong interaction (gauge field) that grows stronger with increasing distance and, therefore, the quarks never exist as individual particles. The condensed matter analogue, confinement of magnetic quasiparticles (spinons) can be illustrated in quasi-one-dimensional spin-1/2 chains. We demonstrate experimentally such spinon confinement in the weakly coupled spin-1/2 XXZ antiferromagnetic chain compound SrCo_2V_2O_8 by single crystal inelastic neutron scattering. The compound SrCo_2V_2O_8 belongs to the general family SrM_2V_2O_8 (M = Ni, Co and Mn), having four-fold screw chains of edge sharing MO_6 octahedra along the crystallographic c axis. In the pure 1D magnetic state of SrCo_2V_2O_8 (above the 3D magnetic ordering temperature T_N =5 K) two spinons (excitations of individual chains) are created by a spin flip, and those spinons propagate independently by subsequent spin flips without any cost of energy. However, below the T_N, two spinons are bound together by weak interchain interactions since the separation between them frustrates the interchain interactions. The interchain interactions play the role of an attractive potential (equivalent to the gauge field), proportional to the distance between spinons, and result in confinement of spinons into bound pairs. (author)

  16. [Winter workshop on universalities in condensed matter physics, Les Houches, France, March 15-24, 1988]: [Foreign trip report

    International Nuclear Information System (INIS)

    Hu, Bambi.

    1988-01-01

    This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report

  17. Research in the theory of condensed matter and elementary particles: Final report, September 1, 1984-November 30, 1987

    International Nuclear Information System (INIS)

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry

  18. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2001-07-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.

  19. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves

    Directory of Open Access Journals (Sweden)

    M. Dwornik

    2017-01-01

    Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.

  20. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2001-01-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10 14 n cm -2 s 1 which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided

  1. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  2. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  3. Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids

    International Nuclear Information System (INIS)

    Gonzalez, J. A; Guzman, F. S.

    2011-01-01

    In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.

  4. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  5. Proceedings 21. International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2015-01-01

    The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.

  6. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Omara, Z.M.; Essa, F.A.

    2014-01-01

    Highlights: • The effect of using nanofluids on the solar still performance is investigated. • The solar still with external condenser increases the productivity by about 53.2%. • Using nanofluids improves the solar still water productivity by about 116%. - Abstract: The distilled water productivity of the single basin solar still is very limited. In this context, the design modification of a single basin solar still has been investigated to improve the solar still performance through increasing the productivity of distilled water. The experimental attempts are made to enhance the solar still productivity by using nanofluids and also by integrating the still basin with external condenser. The used nanofluid is the suspended nanosized solid particles of aluminum-oxide in water. Nanofluids change the transport properties, heat transfer characteristics and evaporative properties of the water. Nanofluids are expected to exhibit superior evaporation rate compared with conventional water. The effect of adding external condenser to the still basin is to decrease the heat loss by convection from water to glass as the condenser acts as an additional and effective heat and mass sink. So, the effect of drawn vapor at different speeds was investigated. The results show that integrating the solar still with external condenser increases the distillate water yield by about 53.2%. And using nanofluids improves the solar still water productivity by about 116%, when the still integrated with the external condenser

  7. Flow patterns during refrigerant condensation in smooth and enhanced tubes

    OpenAIRE

    2009-01-01

    M.Ing. The Montreal Protocol led to the phasing-out of ozone layer depleting refrigerants and replacing them with more environmentally friendly refrigerants, which in many cases caused heat transfer degradation in heat exchanger equipment. To make up for the heat transfer degradation, there was a need for the application of heat transfer enhancement techniques. One such technique is the use of micro-fin tubes as opposed to traditional smooth tubes. The purpose of this study is to develop a...

  8. Many-Body Quantum Theory in Condensed Matter Physics-An Introduction

    International Nuclear Information System (INIS)

    Logan, D E

    2005-01-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  9. BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction

    Science.gov (United States)

    Logan, D. E.

    2005-02-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  10. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    Science.gov (United States)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation

  11. The Art of the Motorcycle and the History of Art (and Condensed Matter Physics)

    Science.gov (United States)

    Falco, Charles

    Many topics in physics are such that they are difficult to present in ways that the general public finds engaging. In this talk I will discuss two topics I have worked on, directly related to my research in optical and condensed matter physics, that continue to have widespread appeal. In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle and thus produced the world's first motorcycle. The 145 years since the Michaux-Perreaux have resulted in standard production motorcycles incorporating such materials as carbon-fiber composites, maraging steels, and ''exotic'' alloys of magnesium, titanium and aluminum that can exceed 190 mph straight from the show room floor. As a result of 'The Art of the Motorcycle' exhibition I co-curated at the Solomon R. Guggenheim Museum the public has learned the evolution of motorcycles is interwoven with developments in materials physics. In a second topic, discoveries I made with the renowned artist David Hockney convincingly demonstrated optical instruments were in use - by artists, not scientists - nearly 200 years earlier than commonly thought possible, and for the first time account for the remarkable transformation in the reality of portraits that occurred early in the 15th century. By learning a few principles of geometrical optics the public gains insight into the working process of artists such as van Eyck, Bellini and Caravaggio. Acknowledgement: Portions of this work done in collaboration with David Hockney.

  12. First-principles Theory of Magnetic Multipoles in Condensed Matter Systems

    Science.gov (United States)

    Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.

    2018-04-01

    The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.

  13. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2000-07-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.

  14. Antwerp Advanced Study Institute on Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter

    CERN Document Server

    Camp, Piet

    1985-01-01

    The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...

  15. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    International Nuclear Information System (INIS)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit

    2000-01-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided

  16. Watching ultrafast responses of structure and magnetism in condensed matter with momentum-resolved probes

    Directory of Open Access Journals (Sweden)

    S. L. Johnson

    2017-11-01

    Full Text Available We present a non-comprehensive review of some representative experimental studies in crystalline condensed matter systems where the effects of intense ultrashort light pulses are probed using x-ray diffraction and photoelectron spectroscopy. On an ultrafast (sub-picosecond time scale, conventional concepts derived from the assumption of thermodynamic equilibrium must often be modified in order to adequately describe the time-dependent changes in material properties. There are several commonly adopted approaches to this modification, appropriate in different experimental circumstances. One approach is to treat the material as a collection of quasi-thermal subsystems in thermal contact with each other in the so-called “N-temperature” models. On the other extreme, one can also treat the time-dependent changes as fully coherent dynamics of a sometimes complex network of excitations. Here, we present examples of experiments that fall into each of these categories, as well as experiments that partake of both models. We conclude with a discussion of the limitations and future potential of these concepts.

  17. Realization of Massive Relativistic Spin- 3 / 2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems

    Science.gov (United States)

    Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang

    Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

  18. Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2004-01-01

    Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate

  19. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  20. Engineering Surfaces for Enhanced Nucleation and Droplet Removal During Dropwise Condensation

    Science.gov (United States)

    Dutta, Sanmitra; Khan, Sameera; Anand, Sushant

    2017-11-01

    Condensation plays critical role in numerous industrial applications, such as condensers, HVAC,etc In the most applications, fast formation (i.e. high nucleation) and subsequent removal of water droplets is critical for enhancing the efficiencies of their associated systems. Significant focus has been placed on the aspect of droplet removal from surfaces. This has led to, development of superhydrophobic surfaces with special textures on which droplets are self-removed after coalescence. However,because of their inherent low surface energy, nucleation energy barriers are also high on such surfaces. In contrast to conventional superhydrophobic surfaces, here we show that surfaces can be engineered such that the simultaneous benefits of high nucleation rates and fast droplet removal can be obtained during the condensation process.These benefits are obtained by impregnating a superhydrophobic surface with an oil that despite its defect-free interface provides low nucleation energy barrier during condensation. At the same time, the oil facilitates high droplet shedding rates by providing a lubricating layer below the droplets due to which droplets have negligible contact angle hysteresis. We provide a guide to choose oils that lead to enhanced nucleation, and provide experimental evidence supporting the proposed guide. We discuss the importance of different oil properties in affecting the droplet growth and subsequent removal of water droplets.

  1. Affleck-Dine baryogenesis, condensate fragmentation and gravitino dark matter in gauge-mediation with a large messenger mass

    International Nuclear Information System (INIS)

    Doddato, Francesca; McDonald, John

    2011-01-01

    We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Φ when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m 3/2 ≈ 2GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Φ dependence of the SUSY breaking terms, we numerically solve for the evolution of Φ and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of gravitino dark matter

  2. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  3. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    Science.gov (United States)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  4. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  5. Biomimicry using Nano-Engineered Enhanced Condensing Surfaces for Sustainable Fresh Water Technology

    OpenAIRE

    Al-Beaini, Sara

    2012-01-01

    Biomimicry offers innovative sustainable solutions for many dire resource-based challenges. The Namib Desert beetle (sp. Stenocara) invites us to explore how we can collect fresh water more energy-efficiently. The beetle's unique back features with alternating hydrophobic-hydrophilic regions, aid its survival in a water scarce desert environment. We investigated the feasibility for enhanced condensation by patterning a zinc oxide (ZnO) surface to mimic the beetle's back. ZnO was selected as t...

  6. Proceedings of the thirty first convention of Orissa Physical Society and national seminar on recent trends in condensed matter physics: souvenir

    International Nuclear Information System (INIS)

    2014-01-01

    This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately

  7. Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kolomeitsev, E.E. [Matej Bel University, Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-12-15

    The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f{sub 0} in the particle-hole channel. For f{sub 0} > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 < f{sub 0} < 0 there are only damped excitations, and for f{sub 0} < -1 the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f{sub 0}(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f{sub 0} > -1. (orig.)

  8. Investigation of static and dynamic properties of condensed matter by using neutron scattering

    International Nuclear Information System (INIS)

    Davidovic, M.

    1997-01-01

    Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)

  9. Theses of reports of International Conference 'Physics of the condensed matter state at low temperatures'

    International Nuclear Information System (INIS)

    Neklyudov, I.M.

    2006-01-01

    The main topics of this conference deal with: fundamental base of superconductivity; superconductors with high critical parameters and applied superconductivity; quantum phenomena in condensed media; physics of strength and plasticity; electronic and magnetic properties of metals

  10. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    OpenAIRE

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-01-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout...

  11. New analytic and computational techniques for finite temperature condensed matter systems

    International Nuclear Information System (INIS)

    Arias, T.A.

    1992-01-01

    By employing a special summation technique we find that the breakdown of the Meissner-Ochsenfeld effect in the three dimensional Bose gas as the applied field passes;through its critical value is an entropy driven weakly first order transition, rather than the second order transition usually ascribed to the system. The transition is second order at the usual Bose condensation temperature T c as well as at T = O, with a line o first order transition connecting these critical points. The first order transitions make the Bose gas resemble familiar superconductors, and a Landau-Ginzburg analysis indicates that the Bose gas is always a type I superconductor. We employ the recently introduce conjugate-gradient methods for minimization of the electronic energy functional to perform an extensive ab initio study of the Σ = 5 tilt [310] grain boundary in germanium. We find that the boundary reliably reconstructs to the tetrahedrally bonded network observed in HREM experiments without the proliferation of false local minima observed in similar twist boundaries. The reduced density of bonds crossing the grain boundary plan leads us to conjecture that the boundary may be a preferred fracture interface. We then combine these conjugate-gradient methods with a new technique for generating trail wavefunctions to produce an efficient ab initio molecular dynamics scheme that is that is at least two orders of magnitude more accurate than previous schemes and thus allows accurate calculation of dynamic correlation functions while maintaining tolerable energy conservation for microcanonical averages of those correlation function over picosecond time scales. We present two advances which greatly enhance the efficiency of our new ab initio molecular dynamics technique. We introduce a class of generalizations of traditional Fermionic energy functionals which allow us to lift the orthonormality constraints on the single particle orbitals and thus speed convergence

  12. Experimental and numerical study on a new multi-effect solar still with enhanced condensation surface

    International Nuclear Information System (INIS)

    Xiong, Jianyin; Xie, Guo; Zheng, Hongfei

    2013-01-01

    Highlights: • A novel multi-effect solar still with enhanced condensation surface is designed. • The overall desalination efficiency and performance ratio can reach 0.91 and 1.86. • A numerical model characterizing the heat and mass transfer process is developed. - Abstract: A novel multi-effect solar desalination system with enhanced condensation surface is designed. Compared to traditional solar still, it has two main merits: (1) the application of corrugated shape stacked trays decreases the condensation resistance, thus improves the desalination performance and (2) the simultaneous heating both from the collector in the bottom and coating in the top efficiently uses the solar energy, which increases the freshwater yield. Field test is then carried out to study the temperature and freshwater yield characteristics. It is observed that the solar still can generate freshwater not only in the daytime but also in the night, with the latter taking up about 40% of the total freshwater yield. When the starting temperature is relatively high, the overall desalination efficiency and performance ratio of the equipment can reach 0.91 and 1.86, respectively. Furthermore, a numerical model characterizing the heat and mass transfer process in the solar still is developed. The good agreement between the model prediction and experimental data demonstrates the effectiveness of the proposed model. For the present solar still, a phenomenon of reverse temperature difference in the second stacked tray is emerged due to the special simultaneous heating pattern, which is also validated by the numerical model

  13. Engineering bright solitons to enhance the stability of two-component Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Radha, R.; Vinayagam, P.S.; Sudharsan, J.B.; Liu, Wu-Ming; Malomed, Boris A.

    2015-01-01

    We consider a system of coupled Gross–Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose–Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons. - Highlights: • We formulate a versatile mechanism to enhance the lifetime of vectorial condensates employing Feshbach Resonance. • Vectorial condensates in a transient harmonic trap are more long lived compared to their counterpart in a time independent harmonic trap. • Corroborate the exact analytical results with numerical simulations. • Addition of random noise does not impact the stability of vector BECs.

  14. Engineering bright solitons to enhance the stability of two-component Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Radha, R., E-mail: radha_ramaswamy@yahoo.com [Centre for Nonlinear Science, PG and Research Dept. of Physics, Govt. College for Women (Autonomous), Kumbakonam 612001 (India); Vinayagam, P.S.; Sudharsan, J.B. [Centre for Nonlinear Science, PG and Research Dept. of Physics, Govt. College for Women (Autonomous), Kumbakonam 612001 (India); Liu, Wu-Ming, E-mail: wmliu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing-100190 (China); Malomed, Boris A., E-mail: malomed@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-12-04

    We consider a system of coupled Gross–Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose–Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons. - Highlights: • We formulate a versatile mechanism to enhance the lifetime of vectorial condensates employing Feshbach Resonance. • Vectorial condensates in a transient harmonic trap are more long lived compared to their counterpart in a time independent harmonic trap. • Corroborate the exact analytical results with numerical simulations. • Addition of random noise does not impact the stability of vector BECs.

  15. Comparison of tubeside condensation and evaporation characteristics of smooth and enhanced heat transfer 1EHT tubes

    International Nuclear Information System (INIS)

    Kukulka, David J.; Smith, Rick; Li, Wei

    2015-01-01

    Results are presented here from an experimental investigation that was performed to evaluate the inside condensation and evaporation heat transfer of R410A, R22 and R32 that took place in a 12.7 mm (0.5 in) O.D. horizontal copper tube at low mass fluxes. Tubes considered in this evaluation consisted of a smooth tube (inner diameter 11.43 mm) and a newly developed enhanced surface Vipertex™ 1EHT tube. Heat transfer enhancement is an important factor in obtaining energy efficiency improvements in a variety of heat transfer applications. Utilization of enhanced heat transfer tubes is often utilized in the development of high performance air conditioning and refrigeration systems. Vipertex™ has designed and produced these surfaces through three dimensional material surface modifications which produces flow optimized, enhanced heat transfer tubes that increase heat transfer. Heat transfer enhancement plays an important role in improving energy efficiencies and developing high performance thermal systems. This study details the evaluation of the in-tube evaporation and condensation that takes place in these tubes over a wide range of conditions. The test apparatus utilized included a straight horizontal test section with an active length heated by water circulated in the surrounding annulus. Constant heat flux was maintained and refrigerant quality varied. In-tube evaporation measurements of R22, R32 and R410A are reported for evaporation at 10 °C with mass flow rates in the range of 15–40 kg h"−"1. Single phase measurements are reported for mass flow rates from 15 kg h"−"1 to 80 kg h"−"1. Condensation tests were conducted at a saturation temperature of 47 °C, with an inlet quality of 0.8 and an outlet quality of 0.1. In a comparison to smooth tubes, the average heat transfer coefficients for the Vipertex 1EHT tube exceeded those of a smooth tube. Average evaporation and condensation heat transfer coefficients for R22, R32 and R410A in the 1EHT

  16. PREFACE: Topics in the application of scattering methods to investigate the structure and dynamics of soft condensed matter

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2006-09-01

    This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of

  17. The application of SANS to ''soft condensed matter'': the structure of polymer-like lecithin reverse micelles

    International Nuclear Information System (INIS)

    Schurtenberger, P.; Cavaco, C.

    1992-01-01

    ''Complex fluids'' or ''soft condensed matter'' have recently attracted considerable attention both experimentally as well as theoretically. The hypothesis of a water-induced formation of flexible cylindrical micelles and the existence of entanglement networks was largely based on ''low-resolution'' light scattering and rheological measurements and analogies to classical polymer theory. In order to directly confirm this picture and verify the postulated analogy between the structural properties of polymer chains and lecithin reverse micelles we now used a combination of static light scattering and small angle neutron scattering. (author) 2 figs., 3 refs

  18. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  19. Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

    International Nuclear Information System (INIS)

    Khonik, V A

    2017-01-01

    A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)

  20. Enhanced water collection through a periodic array of tiny holes in dropwise condensation

    Science.gov (United States)

    Song, Kyungjun; Kim, Gyeonghee; Oh, Sunjong; Lim, Hyuneui

    2018-02-01

    This paper introduces a simple method of water collection by increasing the coalescence effects in dropwise condensation with the use of microscale holes. The tiny holes modified the surface free energy states of the droplets on the plate, yielding a surface free energy barrier between the flat solid surface and the holes. The spatial difference in the surface free energy of the droplets enabled the droplets to move toward the adjacent droplets, thus increasing the possibility of coalescence. The water collection experiments were performed using a Peltier-based cooling system at 2 °C inside a chamber at 30 °C and 70% humidity. The results demonstrated that the perforated plates without any additional treatment provided the water collection rate of up to 22.64 L/m2 day, which shows an increase of 30% compared to that demonstrated by the bare plate. By comparing the experimental results for the surface of filmwise condensation, it was proved that the dominant water collecting improvement results from the increased coalescence effects. This simple technique can enhance the performance of systems exposed to water condensation, including water collection, heat-transfer, and dehumidifying systems.

  1. Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2005-01-01

    In this study, external condensation Heat Transfer Coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 .deg. C on a 1023 fpm low fin and turbo-C tubes. All data were taken under the heat flux of 32∼116 and 42∼142 kW/m 2 for the low fin and turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate

  2. Enhancement of Light-Matter Interaction in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Stobbe, Søren

    This thesis reports research on enhancement of light-matter interaction in semi- conductor quantum nanostructures by means of nanostructure fabrication, optical measurements, and theoretical modeling. Photonic crystal membranes of very high quality and samples for studies of quantum dots in proxi......-matter interaction is investigated. For the rst time the vacuum Rabi splitting is observed in an electrically tunable device....

  3. Creation of matter wave Bessel beams and observation of quantized circulation in a Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Ryu, C; Henderson, K C; Boshier, M G

    2014-01-01

    Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)

  4. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    Ne, F.; Zemb, T.

    1998-01-01

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  5. Proceedings of the specialists' meeting on 'nuclear spectroscopy and condensed matter physics using short-lived nuclei'

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka

    2016-02-01

    The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)

  6. Study of the Condensed Matter Dynamics by the Deep Inelastic Neutron Technique

    International Nuclear Information System (INIS)

    Blostein, Juan Jeronimo

    2004-01-01

    physical phenomena.For the special case of light water/ heavy water mixtures we present calculations that reproduce the behavior of the reported anomalies on the hydrogen-deuterium neutron cross section rate.We present total cross section measurements of such liquid mixtures, in total agreement with the expected values, whereby we conclude that the purported anomalous cross sections (reported after employing the convolution approximation in the eVS data treatment) do not exist.The absence of anomalies in the total cross sections of those liquid mixtures provides a clear evidence of the invalidity of the convolution formalism usually employed in the eVS data treatment. In view of the main motivation that originated the eVS technique, and the clear invalidity of the convolution formalism, we present for the first time the exact formalism to obtain the nuclear impulse distributions in condensed matter systems, starting form the experimentally observed intensity profiles.Such formalism, valid for an arbitrary impulse distribution, does not require the harmonic potential hypothesis, and involves an integration kernel that depends analytically only on the instrumental characteristics, and is independent of the sample characteristics. Our work, besides assessing the magnitude of the inaccuracy of the convolution formalism, establishes the basis for a correct treatment of the experimental data obtained with this technique.On the experimental side, we implemented successfully the eVS technique in the linear accelerator pulsed neutron facility at the Bariloche Atomic Center, thus being the second laboratory in the world to employ it regularly.Monte Carlo simulation presented in this thesis, show the importance to adequately select the sample thickness, and to correct by multiple scattering, attenuation and detector efficiency effects, and also to employ the exact formalism.To this end it is necessary to characterize in detail the different elements that compose the experimental

  7. Substructure boosts to dark matter annihilation from Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Bovy, Jo

    2009-01-01

    The recently introduced Sommerfeld enhancement of the dark matter annihilation cross section has important implications for the detection of dark matter annihilation in subhalos in the Galactic halo. In addition to the boost to the dark matter annihilation cross section from the high densities of these subhalos with respect to the main halo, an additional boost caused by the Sommerfeld enhancement results from the fact that they are kinematically colder than the Galactic halo. If we further believe the generic prediction of the cold dark matter paradigm that in each subhalo there is an abundance of substructure which is approximately self-similar to that of the Galactic halo, then I show that additional boosts coming from the density enhancements of these small substructures and their small velocity dispersions enhance the dark matter annihilation cross section even further. I find that very large boost factors (10 5 to 10 9 ) are obtained in a large class of models. The implications of these boost factors for the detection of dark matter annihilation from dwarf spheroidal galaxies in the Galactic halo are such that, generically, they outshine the background gamma-ray flux and are detectable by the Fermi Gamma-ray Space Telescope.

  8. Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates

    International Nuclear Information System (INIS)

    He, Y J; Wang, H Z; Malomed, Boris A; Mihalache, Dumitru

    2008-01-01

    We demonstrate that by spatially modulating the Bessel optical lattice where a Bose-Einstein condensate is loaded, we get tunable rotary orbits of nonlinear lattice modes. We show that the radially expanding or shrinking Bessel lattice can drag the nonlinear localized modes to orbits of either larger or smaller radii and the rotary velocity of nonlinear modes can be changed accordingly. The localized modes can even be transferred to the Bessel lattice core when the localized modes' rotations are stopped. Effects beyond the quasi-particle approximation such as destruction of the nonlinear modes by nonadiabatic dragging are also explored

  9. Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ronggui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wen, Rongfu [University of Colorado; Xu, Shanshan [University of Colorado; Ma, Xuehu [Dalian University of Technology; Lee, Yung-Cheng [University of Colorado

    2017-12-18

    Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, we experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.

  10. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  11. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  12. Defect evolution in cosmology and condensed matter quantitative analysis with the velocity-dependent one-scale model

    CERN Document Server

    Martins, C J A P

    2016-01-01

    This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

  13. Matter rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose-Einstein condensates.

    Science.gov (United States)

    Sun, Wen-Rong; Wang, Lei

    2018-01-01

    To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.

  14. Engineering bright solitons to enhance the stability of two-component Bose-Einstein condensates

    Science.gov (United States)

    Radha, R.; Vinayagam, P. S.; Sudharsan, J. B.; Liu, Wu-Ming; Malomed, Boris A.

    2015-12-01

    We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.

  15. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  16. Higgs enhancement for the dark matter relic density

    Science.gov (United States)

    Harz, Julia; Petraki, Kalliopi

    2018-04-01

    We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.

  17. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  18. Stopping powers of energetic electrons penetrating condensed matter-theory and application

    International Nuclear Information System (INIS)

    Tan Zhenyu; Xia Yueyuan

    2004-01-01

    In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)

  19. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2012-01-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section

  20. Condensed tannins in the diets of primates: a matter of methods?

    Science.gov (United States)

    Rothman, Jessica M; Dusinberre, Kathy; Pell, Alice N

    2009-01-01

    To understand the ways in which condensed tannins (CT) affect primate diet selection and nutritional status, correct measurements are essential. In the majority of studies of the CT contents of primate foods, a tannin source such as "quebracho" is used to standardize CT assays, but the CT in quebracho tannin may not be similar to those in the plants of interest. We investigated how the choice of standard to calibrate CT assays affects the estimation of CT in the diets of mountain gorillas (Gorilla beringei). We purified the CT from gorilla foods and compared the actual amounts of CT in the foods with estimates produced by using the quebracho tannin. When quebracho was used, the estimates of CT contents of gorilla foods were, on average, 3.6 times the actual content of CT so that the amounts in frequently eaten gorilla foods were substantially overestimated. The overestimation for a given plant could not be predicted reliably and the ranking of plants by tannin content differed according to the standard used. Our results demonstrate that accurate measurements of CT necessitate the use of tannins purified from the plant species of interest. A reevaluation of primatology studies using interspecific comparisons of tannin content will provide new insights into primate food selection and nutritional ecology. (c) 2008 Wiley-Liss, Inc.

  1. The Sommerfeld enhancement for dark matter with an excited state

    International Nuclear Information System (INIS)

    Slatyer, Tracy R.

    2010-01-01

    We present an analysis of the Sommerfeld enhancement to dark matter annihilation in the presence of an excited state, where the interaction inducing the enhancement is purely off-diagonal, such as in models of exciting or inelastic dark matter. We derive a simple and accurate semi-analytic approximation for the s-wave enhancement, which is valid provided the mass splitting between the ground and excited states is not too large, and discuss the cutoff of the enhancement for large mass splittings. We reproduce previously derived results in the appropriate limits, and demonstrate excellent agreement with numerical calculations of the enhancement. We show that the presence of an excited state leads to generically larger values of the Sommerfeld enhancement, larger resonances, and shifting of the resonances to lower mediator masses. Furthermore, in the presence of a mass splitting the enhancement is no longer a monotonic function of velocity: the enhancement where the kinetic energy is close to that required to excite the higher state can be up to twice as large as the enhancement at zero velocity

  2. Natural organic matter to enhance electrokinetic transport of PAH

    Energy Technology Data Exchange (ETDEWEB)

    Suer, P.; Joensson, S.; Allard, B. [Man-Technology-Environment Research Centre, Oerebro Univ. (Sweden)

    2001-07-01

    The remediation of contaminated soil can be enhanced with natural organic matter (NOM) as a complexing agent for pollutants. NOM has both hydrophobic and acidic properties, so that it is charged and thus subject to electroremediation. At the same time many contaminants have a high affinity for organic matter. Organic matter was produced in situ in an electric field or added in solute form. The resulting dissolved organic matter was transported towards the cathode, probably by cationic colloids. Produced dissolved organic matter included high molecular weight molecules near the cathode, at the site of pH buffering. Pyrene and phenanthrene were likewise transported towards the cathode. Movement was small but distinctive in 2-day experiments. Clay influence the soil/water distribution of the PAH but no effect on the total transport could be discerned. The presence of solid organic matter in the soil removed all PAH from the water phase, even though the concentration of organic matter in the water phase was high as well. (orig.)

  3. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    Science.gov (United States)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  4. The generation of high-power charge particle micro beams and its interaction with condensed matter

    International Nuclear Information System (INIS)

    Vogel, N.; Skvortsov, V.A.

    1996-01-01

    As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs

  5. Acetone Enhances the Direct Analysis of Total Condensed Tannins in Forage Legumes by the Butanol-HCl Assay

    Science.gov (United States)

    Depending on concentration, condensed tannins (CT) in forages have no effect, enhance, or impede protein utilization and performance of ruminants. Defining optimal forage CT levels has been elusive, partly because current methods for estimating total soluble plus insoluble CT are laborious or inaccu...

  6. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  7. Impact of condensed matter theories on material studies at high pressures

    International Nuclear Information System (INIS)

    Godwal, B.K.; Rao, R.S.; Sikka, S.K.; Chidambaram, R.

    1997-01-01

    We are vigorously pursuing a program to study the behaviour of materials under pressure for the last three decades. Theoretical component has been an important part of our activity. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperature and matter density. With the advent of diamond anvil cell device and improvements of the diagnostic technique in dynamic methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Many times these have led to intense experimental studies and sometimes helped in resolving the controversies. The introduction of linear methods in electron band theory and availability of supercomputers and parallel processors have given boost to the computational physics, and the efforts are now being extended more and more to the ab-initio molecular dynamics simulations. These simulations have a promise to avoid the tedious search for structural stability by trail and error in phase transition studies under pressure or temperature. The current status of our efforts in this direction will be listed with an illustration on liquid sulphur. Our past work on electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on other compounds (AuIn 2 , YNi 2 B 2 C), which have also been found to display electronic topological transition under pressure, will be discussed. (author)

  8. High energy synchrotron radiation. A new probe for condensed matter research

    International Nuclear Information System (INIS)

    Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von

    1994-01-01

    The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)

  9. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  10. Destroying lignocellulosic matters for enhancing methane production from excess sludge.

    Science.gov (United States)

    Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi

    2016-01-01

    A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30  min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).

  11. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  12. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    Science.gov (United States)

    Kivisalu, Michael Toomas

    Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies

  13. Evaluation of Enhanced Condensational Growth (ECG) for Controlled Respiratory Drug Delivery in a Mouth-Throat and Upper Tracheobronchial Model

    Science.gov (United States)

    Hindle, Michael; Longest, P. Worth

    2010-01-01

    Purpose The objective of this study is to evaluate the effects of enhanced condensational growth (ECG), as a novel inhalation drug delivery method, on nano-aerosol deposition in a mouth-throat (MT) and upper tracheobronchial (TB) model using in vitro experiments and computational fluid dynamics (CFD) simulations. Methods Separate streams of nebulized nano-aerosols and saturated humidified air (39°C—ECG; 25°C—control) were combined as they were introduced into a realistic MT-TB geometry. Aerosol deposition was determined in the MT, generations G0–G2 (trachea—lobar bronchi) and G3–G5 and compared to CFD simulations. Results Using ECG conditions, deposition of 560 and 900 nm aerosols was low in the MT region of the MT-TB model. Aerosol drug deposition in the G0–G2 and G3–G5 regions increased due to enhanced condensational growth compared to control. CFD-predicted depositions were generally in good agreement with the experimental values. Conclusions The ECG platform appears to offer an effective method of delivering nano-aerosols through the extrathoracic region, with minimal deposition, to the tracheobronchial airways and beyond. Aerosol deposition is then facilitated as enhanced condensational growth increases particle size. Future studies will investigate the effects of physio-chemical drug properties and realistic inhalation profiles on ECG growth characteristics. PMID:20454837

  14. Skyrmions in condensed matter

    CERN Document Server

    Han, Jung Hoon

    2017-01-01

    This book summarizes some of the most exciting theoretical developments in the topological phenomena of skyrmions in noncentrosymmetric magnetic systems over recent decades. After presenting pedagogical backgrounds to the Berry phase and homotopy theory, the author systematically discusses skyrmions in the order of their development, from the Ginzburg-Landau theory, CP1 theory, Landau-Lifshitz-Gilbert theory, and Monte Carlo numerical approaches. Modern topics, such as the skyrmion-electron interaction, skyrmion-magnon interaction, and various generation mechanisms of the skyrmion are examined with a focus on their general theoretical aspects. The book concludes with a chapter on the skyrmion phenomena in the cold atom context. The topics are presented at a level accessible to beginning graduate students without a substantial background in field theory. The book can also be used as a text for those who wish to engage in the physics of skyrmions in magnetic systems, or as an introduction to the various theoret...

  15. Electrons in Condensed Matter

    Indian Academy of Sciences (India)

    three freely moving electrons. The value at room temperature is 3.1 k B; the electronic specific heat is missing! The next stage in the electronic theory of solids clears up ..... a big dog? We do not know the reasons yet. As it turns out for many fundamentally interesting phenomena, colossal magneto- resistance may also find ...

  16. Computational condensed matter physics

    Indian Academy of Sciences (India)

    However, the electronic structure based investigations of structural stabilities at high pressures involve tedious trial and error effort, which is avoided in the ab initio molecular dynamics simulations. ... Thus in some sense, it mimics the phenomena taking place during the cohesion of solids. Therefore significant changes are ...

  17. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  18. Chromosome condensation may enhance X-ray-related cell lethality in a temperature-sensitive mutant (tsBN2) of baby hamster kidney cells (BHK21)

    International Nuclear Information System (INIS)

    Sasaki, H.; Nishimoto, T.

    1987-01-01

    In the tsBN2 cell line, which has a temperature-sensitive defect in the regulatory mechanism for chromosome condensation, the lethal effect of X rays was enhanced by incubating the cells at a nonpermissive temperature (40 degrees C) following X irradiation. This enhancement was suppressed in the presence of cycloheximide, which inhibits induction of premature chromosome condensation. The findings obtained in the case of delayed incubation at 40 degrees C and in synchronized cells indicate that X-ray-related potentially lethal damage, which can be expressed by chromosome condensation, is produced in the cells at any stage of the cell cycle, but it is repairable for all cells except those at around the late G2-M phase, where chromosome condensation occurs at a permissive temperature (33.5 degrees C). These observations suggest that the high sensitivity of late G2-M cells to X rays is caused by the events associated with chromosome condensation

  19. Microwave—enhanced Mannich Condensation of Terminal Alkynes,Primary Amines with Paraformaldehyde on cuprous Iodide Doped Alumina under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A microwave-enhanced,solventless Mannich condensation of terminal alkynes,primary amines with paraformaldehyde on cuprous iodide doped alumina has been investigated.The structures of products depend on the ratio of alkyne to amine and paraformaldehyde.

  20. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng Zhengming; Zhang Jie; Osman, F.; Zhang Weiyan; Tuhe Xia

    2009-01-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B 11 with proton clusters imbedded. This then makes p-B 11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B 11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants

  1. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    Science.gov (United States)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia

    2009-03-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p

  2. Plan for the future of neutron research on condensed matter: an Argonne National Laboratory report prepared in response to the Report of the Review Panel on Neutron Scattering

    International Nuclear Information System (INIS)

    1981-01-01

    The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables

  3. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  4. Bose-condensation through resonance decay

    International Nuclear Information System (INIS)

    Ornik, U.; Pluemer, M.; Strottman, D.

    1993-04-01

    We show that a system described by an equation of state which contains a high number of degrees of freedom (resonances) can create a considerable amount of superfluid (condensed) pions through the decay of short-lived resonances, if baryon number and entropy are large and the dense matter decouples from chemical equilibrium earlier than from thermal equilibrium. The system cools down faster in the presence of a condensate, an effect that may partially compensate the enhancement of the lifetime expected in the case of quark-gluon-plasma formation. (orig.). 3 figs

  5. A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter

    International Nuclear Information System (INIS)

    Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.

    2006-01-01

    In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)

  6. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    Science.gov (United States)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  7. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  8. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  9. Enhancement of skin tumorigenesis by cigarette smoke condensate following beta-irradiation in rats

    International Nuclear Information System (INIS)

    McGregor, J.F.

    1982-01-01

    The tumor-promoting ability of cigarette-smoke condensate (CSC) has been demonstrated in rat skin after beta-irradiation. Skin tumors from male albino Charles River CD rats (outbred Sprague-Dawley descended) were classified into 2 groups: carcinomas and other noncarcinoma tumors. A statistically significant increase (P less than 0.01) in tumor yield occurred after CSC treatment that began 2 months after irradiation. This finding confirmed our previously published pilot observation. Extension of the pilot experiment to obtain data on carcinoma yield and an experiment to observe the effects of CSC treatment beginning immediately after irradiation were performed. When CSC treatment began immediately after irradiation, the yield of noncarcinoma tumors was significantly reduced (P less than 0.01), whereas the carcinoma yield increased but statistically not significantly (P . 0.12). The increased yield of noncarcinoma tumors is attributed to a significant increase (P less than 0.01) of acute ulceration caused by CSC on recently irradiated skin. The increase in carcinoma yield resulted from an increase in the rate of conversion of noncarcinoma tumors to cancer. Carcinoma yield was also increased by CSC treatment beginning 2 months after irradiation, but the increase was not significant (P . 0.08). The lack of statistical significance for the carcinoma yields in both experiments may be ascribed to the insufficient number of cancers produced by the treatments. The relative ratios of cancer yields (1.7 and 2.5) did not differ greatly from the 2.2 ratio for the increase of noncarcinoma tumors. The possible relevance of the findings to human carcinogenesis is discussed

  10. Significant Enhancement of Neutralino Dark Matter Annihilation from Electroweak Bremsstrahlung

    NARCIS (Netherlands)

    Bringmann, T.; Calore, F.

    2014-01-01

    ndirect searches for the cosmological dark matter have become ever more competitive during the past years. Here, we report the first full calculation of leading electroweak corrections to the annihilation rate of supersymmetric neutralino dark matter. We find that these corrections can be huge,

  11. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  12. Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics

    International Nuclear Information System (INIS)

    Liu, Rong-Xiang; Tian, Bo; Liu, Li-Cai; Qin, Bo; Lü, Xing

    2013-01-01

    In this paper we investigate a fourth-order dispersive nonlinear Schrödinger equation, which governs the dynamics of a one-dimensional anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction in condensed-matter physics as well as the alpha helical proteins with higher-order excitations and interactions in biophysics. Beyond the existing constraint, upon the introduction of an auxiliary function, bilinear forms and N-soliton solutions are constructed with the Hirota method. Asymptotic analysis on the two-soliton solutions indicates that the soliton interactions are elastic. Soliton velocity varies linearly with the coefficient of discreteness and higher-order magnetic interactions. Bound-state solitons can also exist under certain conditions. Period of a bound-state soliton is inversely correlated to the coefficient of discreteness and higher-order magnetic interactions. Interactions among the three solitons are all pairwise elastic

  13. International Conference on Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96

    CERN Document Server

    Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96

    1996-01-01

    The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...

  14. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  15. 12th general conference of the condensed matter division of the E.P.S. V.16A

    International Nuclear Information System (INIS)

    Velicky, B.; Vorlicek, V.; Zaveta, K.

    1992-01-01

    The proceedings contain 630 abstracts of contributions and posters presented at the conference, out of which 35 have been inputted in INIS. They deal with the application of the dispersion and diffraction of X-rays and neutrons to the investigation of the structure of matter, crystals in particular; with spin-lattice relaxation and superlattices; and with electron spin resonance, nuclear magnetic resonance and Moessbauer spectroscopy. (M.D.)

  16. Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology NATO Advanced Study Institute, Geilo, Norway, 24 March - 3 April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, G. ed.

    2003-05-01

    The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.

  17. Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal

    2005-09-01

    This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of

  18. Compost amendment, enhanced nutrient uptake and dry matter ...

    African Journals Online (AJOL)

    Field trial was conducted to assess the influence of Compost and inorganic fertilizer as well as plant growth stage on growth, nutrient uptake, dry matter accumulation and partitioning in maize crop grown on the battery waste contaminated site. Two types of compost (Mexican Sunflower (MSC) and Cassava peels (CPC) ...

  19. Strangeness condensation and ''clearing'' of the vacuum

    International Nuclear Information System (INIS)

    Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook

    1987-01-01

    We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)

  20. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser

    Science.gov (United States)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed

    2017-03-01

    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  1. Enhancement of multiple cranial and spinal nerves in vanishing white matter: expanding the differential diagnosis.

    Science.gov (United States)

    Eluvathingal Muttikkal, Thomas Jose; Montealegre, Denia Ramirez; Matsumoto, Julie Ann

    2018-03-01

    Abnormal cranial or spinal nerve contrast enhancement on MRI in cases of suspected pediatric leukodystrophy is recognized as an important clue to the diagnosis of either metachromatic leukodystrophy or globoid cell leukodystrophy (Krabbe disease). We report a case of genetically confirmed childhood vanishing white matter with enhancement of multiple cranial and spinal nerves in addition to the more typical intracranial findings. This case expands the limited differential diagnosis of cranial nerve or spinal nerve enhancement in cases of suspected leukodystrophy and may aid in more efficient work-up and earlier diagnosis of vanishing white matter.

  2. Improving the Lung Delivery of Nasally Administered Aerosols During Noninvasive Ventilation—An Application of Enhanced Condensational Growth (ECG)

    Science.gov (United States)

    Tian, Geng; Hindle, Michael

    2011-01-01

    Abstract Background Aerosol drug delivery during noninvasive ventilation (NIV) is known to be inefficient due to high depositional losses. To improve drug delivery efficiency, the concept of enhanced condensational growth (ECG) was recently proposed in which a submicrometer or nanoaerosol reduces extrathoracic deposition and subsequent droplet size increase promotes lung retention. The objective of this study was to provide proof-of-concept that the ECG approach could improve lung delivery of nasally administered aerosols under conditions consistent with NIV. Methods Aerosol deposition and size increase were evaluated in an adult nose–mouth–throat (NMT) replica geometry using both in vitro experiments and CFD simulations. For the ECG delivery approach, separate streams of a submicrometer aerosol and warm (39°C) saturated air were generated and delivered to the right and left nostril inlets, respectively. A control case was also considered in which an aerosol with a mass median aerodynamic diameter (MMAD) of 4.67 μm was delivered to the model. Results In vitro experiments showed that the ECG approach significantly reduced the drug deposition fraction in the NMT geometry compared with the control case [14.8 (1.83)%—ECG vs. 72.6 (3.7)%—control]. Aerosol size increased from an initial MMAD of 900 nm to a size of approximately 2 μm at the exit of the NMT geometry. Results of the CFD model were generally in good agreement with the experimental findings. Based on CFD predictions, increasing the delivery temperature of the aerosol stream from 21 to 35°C under ECG conditions further reduced the total NMT drug deposition to 5% and maintained aerosol growth by ECG to approximately 2 μm. Conclusions Application of the ECG approach may significantly improve the delivery of pharmaceutical aerosols during NIV and may open the door for using the nasal route to routinely deliver pulmonary medications. PMID:21410327

  3. Characterization of respiratory drug delivery with enhanced condensational growth using an individual path model of the entire tracheobronchial airways.

    Science.gov (United States)

    Tian, Geng; Longest, Philip Worth; Su, Guoguang; Hindle, Michael

    2011-03-01

    The objective of this study was to evaluate the delivery of inhaled pharmaceutical aerosols using an enhanced condensational growth (ECG) approach in an airway model extending from the oral cavity to the end of the tracheobronchial (TB) region. The geometry consisted of an elliptical mouth-throat (MT) model, the upper TB airways extending to bifurcation B3, and a subsequent individual path model entering the right lower lobe of the lung. Submicrometer monodisperse aerosols with diameters of 560 and 900 nm were delivered to the mouth inlet under control (25 °C with subsaturated air) or ECG (39 or 42 °C with saturated air) conditions. Flow fields and droplet characteristics were simulated using a computational fluid dynamics model that was previously demonstrated to accurately predict aerosol size growth and deposition. Results indicated that both the control and ECG delivery cases produced very little deposition in the MT and upper TB model (approximately 1%). Under ECG delivery conditions, large size increases of the aerosol droplets were observed resulting in mass median aerodynamic diameters of 2.4-3.3 μm exiting B5. This increase in aerosol size produced an order of magnitude increase in aerosol deposition within the TB airways compared with the controls, with TB deposition efficiencies of approximately 32-46% for ECG conditions. Estimates of downstream pulmonary deposition indicted near full lung retention of the aerosol during ECG delivery. Furthermore, targeting the region of TB deposition by controlling the inlet temperature conditions and initial aerosol size also appeared possible.

  4. An overview of Experimental Condensed Matter Physics in Argentina by 2014, and Oxides for Non Volatile Memory Devices: The MeMOSat Project

    Science.gov (United States)

    Levy, Pablo

    2015-03-01

    In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.

  5. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  6. Impact of Sommerfeld enhancement on helium reionization via WIMP dark matter

    Science.gov (United States)

    Bandyopadhyay, Bidisha; Schleicher, Dominik R. G.

    2018-03-01

    Dark matter annihilation can have a strong impact on many astrophysical processes in the Universe. In the case of Sommerfeld-enhanced annihilation cross sections, the annihilation rates are enhanced at late times, thus enhancing the potential annihilation signatures. We here calculate the Sommerfeld-enhanced annihilation signatures during the epoch of helium reionization, the epoch where helium becomes fully ionized due to energetic photons. When considering the upper limits on the energy injection from the CMB, we find that the resulting abundance of He++ becomes independent of the dark matter particle mass. The resulting enhancement compared to a standard scenario is thus 1-2 orders of magnitude higher. For realistic scenarios compatible with CMB constraints, there is no significant shift in the epoch of helium reionization, which is completed between redshifts 3 and 4. While it is thus difficult to disentangle dark matter annihilation from astrophysical contributions (active galactic nuclei), a potential detection of dark matter particles and its interactions using the Large Hadron Collider (LHC) would allow one to quantify the dark matter contribution.

  7. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    Science.gov (United States)

    Yang, Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  8. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    International Nuclear Information System (INIS)

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-01-01

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  9. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  10. Public Attitudes Towards Moral Enhancement. Evidence that Means Matter Morally

    NARCIS (Netherlands)

    J. Specker (Jona); M.H.N. Schermer (Maartje); P.B. Reiner (Peter)

    2017-01-01

    textabstractTo gain insight into the reasons that the public may have for endorsing or eschewing pharmacological moral enhancement for themselves or for others, we used empirical tools to explore public attitudes towards these issues. Participants (N = 293) from the United States were recruited via

  11. Hand Matters: Left-Hand Gestures Enhance Metaphor Explanation

    Science.gov (United States)

    Argyriou, Paraskevi; Mohr, Christine; Kita, Sotaro

    2017-01-01

    Research suggests that speech-accompanying gestures influence cognitive processes, but it is not clear whether the gestural benefit is specific to the gesturing hand. Two experiments tested the "(right/left) hand-specificity" hypothesis for self-oriented functions of gestures: gestures with a particular hand enhance cognitive processes…

  12. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  13. Acetone enhances the direct analysis of total condensed tannins in plant tissues by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used to quantify extractable and insoluble forms of condensed tannin (CT, syn. proanthocyanidin) in foods, feeds, and foliage of herbaceous and woody plants. However, this method underestimates total CT content when applied directly to plant materia...

  14. Enhanced Light–Matter Interactions in Graphene-Covered Gold Nanovoid Arrays

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Shi, Lei; Schmidt, Michael Stenbæk

    2013-01-01

    The combination of graphene with noble-metal nanostructures is currently being explored for strong light–graphene interactions enhanced by plasmons. We introduce a novel hybrid graphene–metal system for studying light–matter interactions with gold-void nanostructures exhibiting resonances...... in the visible range. Enhanced coupling of graphene to the plasmon modes of the nanovoid arrays results in significant frequency shifts of the underlying plasmon resonances, enabling 30% enhanced absolute light absorption by adding a monolayer graphene and up to 700-fold enhancement of the Raman response...

  15. Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Shouzhen; Chen, Ben; Shu, Peng; Luo, Maji; Xie, Changjun; Quan, Shuhai; Tu, Zhengkai; Yu, Yi

    2017-01-01

    Highlights: • Anode Moisture condensing is introduced into a PEMFC stack. • Performance improves at high current density and high stack temperature after AMC. • MEA is dehydrated and poor performance occurs at low current density during AMC. - Abstract: Water management is an important issue for proton exchange membrane fuel cells. Back-diffusion of water from cathode to anode often occurs due to the differences in concentration and pressure during operation of fuel cell, resulting in the flooding and severe carbon corrosion in the cathode. Herein, we report a novel method of anode moisture condensing (AMC) in which a condenser is set at the outlet of the anode to cool down the anode moisture. With the help of AMC, liquid water is condensed from the moisture due to the variation of the saturated pressure of water vapor, which can accelerate the evaporating of the liquid water inside the anode and mitigate the probability of water flooding. A ten-cell stack with a condenser at the outlet of the anode is fabricated to systematically investigate the effects of the stack temperature and flow rate on the stack performance. The result shows that the PEMFC performance can be greatly improved at high current density and high operation temperature under the condition of AMC. The stack exhibits very similar performance before and after application of AMC below 500 mA cm"−"2, whereas the output power increases from 405 W to 436 W at 600 mA cm"−"2 at 65 °C. With further increase in operation temperature to 80 °C, the average voltage increases from 0.598 V to 0.641 V even at 500 mA cm"−"2. Moreover, the application of AMC can speed up the water evaporation, leading to the dehydration of the membrane and thus poor performance of PEMFC at low current density.

  16. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  17. Condensed Matter division: GCDMD-14

    International Nuclear Information System (INIS)

    Segovia, J.L. de; Flores, F.; Garcia-Molines, F.

    1994-01-01

    The present book contains the abstracts of the plenary lectures, invited talks and communications either as oral or poster presentation. The 692 papers have been distributed according to their scheduled presentation of the corresponding session of the Conference: A. Semiconductors and Insulators B. Surfaces and Interfaces C. Liquid and Statistical Mechanics D. Magnetism and Metals E. Macromolecules and Chemical Physics

  18. Frontiers in condensed matter theory

    International Nuclear Information System (INIS)

    Lax, M.; Gor'kov, L.P.; Birman, J.L.

    1990-01-01

    This report contains papers on the following topics: superconductivity; transport, quantum hall effect, localization, and scattering in random systems; high-tc superconductivity; antiferromagnetism and superconductivity; nonradiative transport and energy transport; self-similarity and chaos; superfluids; dielectrics and semiconductors; two dimensional transport and the quantum hall effect; and localization effects

  19. Investigation of condensed matter fusion

    International Nuclear Information System (INIS)

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations

  20. Analytic treatments of matter-enhanced solar-neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    Mikheyev and Smirnov have pointed out that flavor oscillations of solar neutrinos could be greatly enhanced. The Mikheyev-Smirnov-Wolfenstein mechanism depends on the effective electron neutrino mass that arises from charged-current scattering off solar electrons, a phenomenon first discussed by Wolfenstein. Two analytic treatments, the adiabatic approximation and Landau-Zener (LZ) approximation, have been used in studies of this mechanism. I discuss a simple extension of the LZ approximation that merges naturally with the adiabatic approximation and is free of certain troublesome pathologies that arise in the conventional treatment. In this extension the solar density is approximated as in the conventional treatment, except that the starting and ending densities are the physical ones. Results of this finite LZ approximation are compared to those from the standard LZ approximation, the adiabatic approximation, and ''exact'' numerical integrations. The new approximation is virtually exact regardless of the point of origin of the neutrino in the solar core. This approximation is used to efficiently calculate the solar-neutrino capture rates for /sup 37/Cl, /sup 71/Ga, and /sup 98/Mo. The spatial extent of the solar core, the contributions of minor neutrino species, and the effects of 8 B neutrino capture to excited nuclear states are treated with care. Limits imposed on δm 2 and sin 2 2theta/sub v/ by the nonzero /sup 37/Cl capture rate are derived by considering the expected uncertainties in standard-solar-model flux estimates. Those oscillation parameters are determined that could account for the /sup 37/Cl puzzle and yet lead to a /sup 71/Ga counting rate above the minimum astronomical value

  1. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Fudan University, Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Shanghai (China); Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin [Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Xu, Xiaofei [Erasmus University Rotterdam, Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Zhao, Lianxin [Shandong University, Department of Radiology, Qilu Hospital, Jinan, Shandong (China); Chen, Weibo; Chan, Queenie [Philips Healthcare, Shanghai (China)

    2015-04-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  2. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    International Nuclear Information System (INIS)

    Yang, Li; Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin; Xu, Xiaofei; Zhao, Lianxin; Chen, Weibo; Chan, Queenie

    2015-01-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  3. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  4. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...

  5. L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m.

    Science.gov (United States)

    Mansoor, Jim K; Morrissey, Brian M; Walby, William F; Yoneda, Ken Y; Juarez, Maya; Kajekar, Radhika; Severinghaus, John W; Eldridge, Marlowe W; Schelegle, Edward S

    2005-01-01

    We examined the effect of dietary supplementation with L-arginine on breath condensate VEGF, exhaled nitric oxide (NO), plasma erythropoietin, symptoms of acute mountain sickness, and respiratory related sensations at 4,342 m through the course of 24 h in seven healthy male subjects. Serum L-arginine levels increased in treated subjects at time 0, 8, and 24 h compared with placebo, indicating the effectiveness of our treatment. L-arginine had no significant effect on overall Lake Louise scores compared with placebo. However, there was a significant increase in headache within the L-arginine treatment group at 12 h compared with time 0, a change not seen in the placebo condition between these two time points. There was a trend (p = 0.087) toward greater exhaled NO and significant increases in breath condensate VEGF with L-arginine treatment, but no L-arginine effect on serum EPO. These results suggest that L-arginine supplementation increases HIF-1 stabilization in the lung, possibly through a NO-dependent pathway. In total, our observations indicate that L-arginine supplementation is not beneficial in the prophylactic treatment of AMS.

  6. Investigation of matter enhanced neutrino oscillations relevant to the solar neutrino problem

    International Nuclear Information System (INIS)

    Losecco, J.M.; Bionta, R.M.; Casper, D.; Claus, R.; Errede, S.; Foster, G.; Park, H.S.; Seidel, S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.; Van der Velde, J.C.; Blewitt, G.; Cortez, B.; Lehmann, E.; Bratton, C.B.; Gajewski, W.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Reines, F.; Schultz, J.; Sobel, H.W.; Wuest, C.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Learned, J.G.; Svoboda, R.

    1987-01-01

    We study the effect of matter enhanced neutrino oscillations on atmospheric neutrinos. A recently proposed solution to the solar neutrino problem with Δm 2 =1.1x10 -4 eV 2 suggests enhanced effects in the range 200 MeV-500 MeV. We find no evidence of this effect for ν μ ??ν e mixing. Limits are set on the magnitude of the mixing angle. Our limit is sin θ V <0.14 at 90% confidence level. The limit is dominated by statistical errors and may be improved. (orig.)

  7. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  8. A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part 1, Heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S J; Tesene, B A

    1999-07-01

    Local and average heat transfer coefficients during condensation are reported for R-22, R-134a, R-410a, and R-407c in one smooth tube and three enhanced surface tubes. The test tubes included a 3/8 inch outer diameter smooth tube, a 3/8 inch outer diameter microfin tube, a 5/16 inch outer diameter microfin tube, and a 5/8 inch outer diameter microfin tube. The local and average heat transfer coefficients were measured over a mass flux range of 92,100 lb/ft{sup 2}{center_dot}h to 442,200 lb/ft{sup 2}{center_dot}h and at saturation temperatures of 104 F and 122 F. A comparison of the performance of the different refrigerants reveals that R-134a has the highest heat transfer performance followed by R-22 and R-410a, which have similar performances. In general, R-407c had the lowest performance of the refrigerants tested. The microfin tube more than doubles the heat transfer coefficient compared to the smooth tube for all refrigerants at the low mass fluxes, but only increases the heat transfer coefficients by 50% at the highest mass flux tested. The measured heat transfer coefficients are also compared with a number of correlations for condensation.

  9. The color class condensate RHIC and HERA

    CERN Document Server

    McLerran, L

    2002-01-01

    In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).

  10. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  11. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  12. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Zavala, Jesus; White, Simon D. M.; Vogelsberger, Mark

    2010-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0x10 -5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  13. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Gleb Makshakov

    2017-01-01

    Full Text Available Leptomeningeal contrast enhancement (LMCE on magnetic resonance imaging (MRI is a newly recognized possible biomarker in multiple sclerosis (MS, associated with MS progression and cortical atrophy. In this study, we aimed to assess the prevalence of LMCE foci and their impact on neurodegeneration and disability. Materials. 54 patients with MS were included in the study. LMCE were detected with a 3 Tesla scanner on postcontrast fluid-attenuated inversion-recovery (FLAIR sequence. Expanded Disability Status Scale (EDSS score, number of relapses during 5 years from MS onset, and number of contrast-enhancing lesions on T1 weighted MRI were counted. Results. LMCE was detected in 41% (22/54 of patients. LMCE-positive patients had longer disease duration (p=0,0098 and higher EDSS score (p=0,039, but not a higher relapse rate (p=0,091. No association of LMCE with higher frequency of contrast-enhancing lesions on T1-weighted images was detected (p=0,3842. Analysis of covariates, adjusted for age, sex, and disease duration, revealed a significant effect of LMCE on the cortex volume (p=0.043, F=2.529, the total grey matter volume (p=0.043, F=2.54, and total ventricular volume (p=0.039, F=2.605. Conclusions. LMCE was shown to be an independent and significant biomarker of grey matter atrophy and disability in MS.

  14. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Lundeen, Rachel A; Remucal, Christina K; Sander, Michael; McNeill, Kristopher

    2015-05-05

    Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.

  15. Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking

    Science.gov (United States)

    Liebchen, Benno; Levis, Demian

    2017-08-01

    We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.

  16. Quality factors to consider in condensate selection

    Energy Technology Data Exchange (ETDEWEB)

    Lywood, B. [Crude Quality Inc., Edmonton, AB (Canada)

    2009-07-01

    Many factors must be considered when assessing the feasibility of using condensates as a diluent for bitumen or heavy crude production blending. In addition to commercial issues, the effect of condensate quality is a key consideration. In general, condensate quality refers to density and viscosity. However, valuation decisions could be enhanced through the expansion of quality definitions and understanding. This presentation focused on the parameters that are important in choosing a diluent grade product. It also reviewed pipeline and industry specifications and provided additional information regarding general properties for bitumen and condensate compatibility; sampling and quality testing needs; and existing sources of information regarding condensate quality. tabs., figs.

  17. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pCDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pCDOM samples further suggested their probable autochthonous origin. Our results have implications for the understanding of CDOM cycling in shallow aquatic ecosystems influenced by wind-induced waves, in which the enhanced turbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    International Nuclear Information System (INIS)

    Aarssen, Laura Gusta van den

    2013-04-01

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of ΛCDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity profiles of

  19. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aarssen, Laura Gusta van den

    2013-04-15

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of {Lambda}CDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity

  20. Interference of an array of independent Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean

    2004-01-01

    We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates

  1. A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part 2, Pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Eckels, S J; Tesene, B A

    1999-07-01

    This paper reports pressure drops during condensation for R-22, R-134a, R-410a, and R-407c in three enhanced tubes and one smooth tube. The test tubes were a 3/8 inch outer diameter smooth tube, a 3/8 inch outer diameter microfin tube, a 5/16 inch outer diameter microfin tube, and a 5/8 inch outer diameter microfin tube. Pressure drops are reported at four mass fluxes, at two saturation temperatures, and over a range of average qualities in the test tubes. The pressure drops for R-410a were approximately 40% lower than those of R-22 in both tubes. R-407c had 10% to 20% lower pressure drops than R-22, while 134-a had slightly larger pressure drops than R-22. The microfin tube pressure drops were, on average, 40% to 80% higher than those for the smooth tube for all refrigerants. The pressure drop penalty of the microfin tube was shown to decrease with increased quality.

  2. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  3. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    Science.gov (United States)

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  5. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  6. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  7. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  8. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  9. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancement of condensation heat transfer using electric field. Effects of wire-electrode coating; Denba ni yoru gyoshuku netsu dentatsu no sokushin ni kansuru kenkyu. Wire denkyoku no hifuku koka

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R. [Gifu University, Gifu (Japan). Faculty of Enginering; Nishio, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Tanasawa, I. [Nihon University, Fukushima (Japan). College of Engineering

    2000-08-25

    In the present paper, an attempt is made to develop an effective EHD enhancement technique for condensation heat transfer of steam around a horizontal finned tube. The main idea in the present study is to reduce the power consumption by using a partially coated electrode, and the experimental data of heat transfer coefficients and flooding angles are presented. The result indicates that, by using such an electrode, the enhancement ratio keeps almost the same level with that of a bare electrode but the power consumption can be markedly decreased. Within the present experimental range, the condensation heat transfer coefficient on the finned tube with the partially coated electrode reaches a value about 3 times larger than that without electrode. In addition, a model in presented for the EHD effect on the flooding angle and it is confirmed that the prediction from the model is in good agreement with the experimental data. (author)

  11. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  12. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [DESY, Notkestraße 85, Hamburg, D-22607 Germany (Germany); Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS and UPMC, 4 Place Jussieu, Paris, F-75252 France (France)

    2017-09-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  13. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-03-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  14. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petraki, Kalliopi [Nationaal Instuut voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); UMR 7589 CNRS et UPMC, Paris (France). Laboratoire de Physique Theorique et Hautes Energies (LPTHE)

    2017-03-15

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  15. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-01-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  16. Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: New cosmological constraints and its detectability by LIGO

    Science.gov (United States)

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-09-01

    We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that

  17. Responding to Changes in HIV Policy: Updating and Enhancing the Families Matter! Curriculum.

    Science.gov (United States)

    Miller, Kim S; Winskell, Kate; Berrier, Faith L

    2016-06-01

    The past decade has seen changes in US HIV policy in sub-Saharan Africa in response to a new Administration and far-reaching technical, scientific and programmatic developments. These include: dramatically increased access to life-saving ART and related services; the roll-out of voluntary medical male circumcision; and growing sensitivity to gender-based violence, including child sexual abuse, and to its role in increasing vulnerability to HIV. The Families Matter! Program (FMP) is an intervention for parents and caregivers of 9-12 year-olds that promotes effective parent-child communication about sexuality and sexual risk reduction. FMP was adapted from a US evidence-based intervention in 2003-4 and is now implemented in eight African countries. In 2012-13, the FMP curriculum was updated and enhanced to respond to new US Government priorities. Enhancements to the curriculum drew on the results of Violence Against Children surveys, on a review of existing literature, on feedback from the field on the existing curriculum, and on stories written by young people across Africa for scriptwriting competitions. We updated FMP with scientific content and stronger linkages to services. We also intensified our focus on structural determinants of risk. This contextualisation of sexual risk-taking within structural constraints led us to place greater emphasis on gendered vulnerability and the diverse pressures children face, and to intensify our situation-based pedagogical approach, drawing on the authentic youth-authored narratives. We describe these changes as an illustration of and source of insight into much-needed programmatic adaptation in response to evolving HIV policy.

  18. Landau-Migdal parameters and pion condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)

    1999-08-01

    The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)

  19. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  20. Antiproton and positron signal enhancement in dark matter mini-spikes scenarios

    International Nuclear Information System (INIS)

    Brun, Pierre; Bertone, Gianfranco; Lavalle, Julien; Salati, Pierre; Taillet, Richard

    2007-04-01

    The annihilation of dark matter (DM) in the Galaxy could produce specific imprints on the spectra of antimatter species in Galactic cosmic rays, which could be detected by upcoming experiments such as PAMELA and AMS02. Recent studies show that the presence of substructures can enhance the annihilation signal by a 'boost factor' that not only depends on energy, but that is intrinsically a statistical property of the distribution of DM substructures inside the Milky Way. We investigate a scenario in which substructures consist of ∼100 'mini-spikes' around intermediate-mass black holes. Focusing on primary positrons and antiprotons, we find large boost factors, up to a few thousand, that exhibit a large variance at high energy in the case of positrons and at low energy in the case of antiprotons. As a consequence, an estimate of the DM particle mass based on the observed cut-off in the positron spectrum could lead to a substantial underestimate of its actual value. (authors)

  1. Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points

    Science.gov (United States)

    Schechter, Paul L.; Wambsganss, Joachim

    2002-12-01

    Contrary to naive expectation, diluting the stellar component of the lensing galaxy in a highly magnified system with smoothly distributed ``dark'' matter increases rather than decreases the microlensing fluctuations caused by the remaining stars. For a bright pair of images straddling a critical curve, the saddle point (of the arrival time surface) is much more strongly affected than the associated minimum. With a mass ratio of smooth matter to microlensing matter of 4:1, a saddle point with a macromagnification of μ=9.5 will spend half of its time more than a magnitude fainter than predicted. The anomalous flux ratio observed for the close pair of images in MG 0414+0534 is a factor of 5 more likely than computed by Witt, Mao, & Schechter, if the smooth matter fraction is as high as 93%. The magnification probability histograms for macroimages exhibit a distinctly different structure that varies with the smooth matter content, providing a handle on the smooth matter fraction. Enhanced fluctuations can manifest themselves either in the temporal variations of a light curve or as flux ratio anomalies in a single epoch snapshot of a multiply imaged system. While the millilensing simulations of Metcalf & Madau also give larger anomalies for saddle points than for minima, the effect appears to be less dramatic for extended subhalos than for point masses. Moreover, microlensing is distinguishable from millilensing because it will produce noticeable changes in the magnification on a timescale of a decade or less.

  2. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  3. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  4. Bose-Einstein Condensation

    International Nuclear Information System (INIS)

    Jaksch, D

    2003-01-01

    The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is

  5. The Color Glass Condensate and the Glasma: Two Lectures.

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2007-08-29

    These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wave function important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after a collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction, where the Glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.

  6. Acetone enhances the direct analysis of Procyanidin- and Prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To imp...

  7. Neutron stars with kaon condensation in relativistic effective model

    International Nuclear Information System (INIS)

    Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng

    2013-01-01

    Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)

  8. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  9. Thickening and enhancement of multiple cranial nerves in conjunction with cystic white matter lesions in early infantile Krabbe disease

    Energy Technology Data Exchange (ETDEWEB)

    Beslow, Lauren A.; Boennemann, Carsten G. [Children' s Hospital of Philadelphia, Division of Neurology, Philadelphia, PA (United States); Schwartz, Erin S. [Children' s Hospital of Philadelphia, Division of Neuroradiology, Philadelphia, PA (United States)

    2008-06-15

    We present serial MR findings in a child ultimately diagnosed with the early infantile form of Krabbe disease. MR showed typical features of Krabbe disease including cerebellar and brainstem hyperintensity, periventricular and deep white matter hyperintensity, and cerebral atrophy. In addition, the combination of both enlargement and enhancement of multiple cranial nerves in conjunction with unusual cystic lesions adjacent to the frontal horns of the lateral ventricles was previously unreported and expands the spectrum of imaging findings in early Krabbe disease. (orig.)

  10. Enhancement of the white matter following prophylactic therapy of the central nervous system for leukemia: radiation effects and methotrexate leukoencephalopathy

    International Nuclear Information System (INIS)

    Shalen, P.R.; Ostrow, P.T.; Glass, P.J.

    1981-01-01

    The authors report a case of fatal necrotizing leukoencephalopathy following prophylactic therapy of the central nervous system for acute lymphoblastic leukemia. The clinical, CT, and neuropathological findings are described. The CT scan demonstrated symmetrical white-matter enhancement. Histological analysis was consistent with the effects of irradiation and methotrexate. The differential diagnosis of the clinical and CT findings is discussed. Brain biopsy is the diagnostic procedure of choice

  11. The Color Glass Condensate: An Intuitive Physical Description

    International Nuclear Information System (INIS)

    McLerran, Larry

    2006-01-01

    I argue that the scattering of very high energy strongly interacting particles is controlled by a new, universal form of matter, the Color Glass Condensate. This matter is predicted by QCD and explains the saturation of gluon densites at small x. I motivate the existence of this matter and describe some of its properties

  12. Bose-Einstein condensation in microgravity.

    Science.gov (United States)

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  13. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  14. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  15. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  16. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    OpenAIRE

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  17. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  18. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  19. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  20. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  1. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  2. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  3. The butane condensed matter conformational problem

    NARCIS (Netherlands)

    Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.

    2010-01-01

    From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of

  4. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  5. XX International Workshop on Condensed Matter Theories

    Science.gov (United States)

    1998-01-01

    Rojo5, M.A. Solis6 and A.A. Valladares4 1 Institute de Fisica Teorica-UNESP, 01405 Säo Paulo, BRAZIL and Departamento de Fisica , Universidade...Estadual de Londrina Londrina, PR, BRAZIL 2Departament de Fisica , Universität de les Hies Balears 07071 Palma de Mallorca, SPAIN department of Physics...SUNY, Buffalo, NY 14260-1500, USA 4Instituto de Investigaciones en Materiales, UN AM 04510 Mexico DF, MEXICO 5PESTIC, Secretaria Academica, IPN

  6. Surface and bulk excitations in condensed matter

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs

  7. Chirality: from QCD to condensed matter

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2015-01-01

    This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)

  8. Statistical physics including applications to condensed matter

    CERN Document Server

    Hermann, Claudine

    2005-01-01

    Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.

  9. Positron annihilation spectroscopy in condensed matter

    International Nuclear Information System (INIS)

    Brauer, G.

    1982-09-01

    The topic of positron annihilation spectroscopy (PAS) is the investigation of all aspects connected with the annihilation of slow positrons. This work deals with the application of PAS to different problems of materials science. The first chapter is an introduction to fundamental aspects of positron annihilation, as far as they are important to the different experimental techniques of PAS. Chapter 2 is concerned with the information obtainable by PAS. The three main experimental techniques of PAS (2γ-angular correlation, positron lifetime and Doppler broadening) are explained and problems in the application of these methods are discussed. Chapter 3 contains experimental results. According to the different fields of application it was subgrouped into: 1. Investigations of crystalline solids. Detection of structural defects in Cu, estimation of defect concentrations, study of the sintering of Cu powders as well as lattice defects in V 3 Si. 2. Chemical investigations. Structure of mixed solvents, selective solvation of mixed solvents by electrolytes as well as the micellization of sodium dodecylsulphate in aqueous solutions. 3. Investigations of glasses. Influence of heat treatment and production technology on the preorder of X-amorphous silica glass as well as preliminary measurements of pyrocerams. 4. Investigations of metallic glasses. Demonstration of the influence of production technology on parameters measurable by PAS. Chapter 4 contains a summary as well as an outlook of further applications of PAS to surface physics, medicine, biology and astrophysics. (author)

  10. Statistical Mechanics and Applications in Condensed Matter

    Science.gov (United States)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  11. Latest trends in condensed matter physics

    CERN Document Server

    Singhal, R K

    2011-01-01

    This special issue of ""Solid State Phenomena"" documents some novel experimental and theoretical approaches applied to fascinating materials. Motivated by the increasing need to synthesize and understand the properties of technologically important materials, this issue represents an important step forward in improving our understanding of how modern materials can be optimised for technology and industry. The issue comprises 9 original review papers covering experimental approaches and theoretical modeling. The contributions will be very useful to researchers working in various areas of CMP an

  12. Quantum Computing in Condensed Matter Systems

    National Research Council Canada - National Science Library

    Privman, V

    1997-01-01

    Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...

  13. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  14. Condensed matter optical spectroscopy an illustrated introduction

    CERN Document Server

    Ionita, Iulian

    2014-01-01

    Molecular Symmetry and the Symmetry GroupsSymmetry Elements and Symmetry OperationsPoint Groups and Molecular SymmetrySymmetry Classification of MoleculesMatrix Representation of Symmetry TransformationGroup RepresentationsProperties of Irreducible RepresentationsTables of CharactersSymmetry of Crystals and Space GroupsRotation Groups and OperatorsExamples of SymmetryStudy QuestionsReferencesCrystal Field TheoryStates and Energies of Free Atoms and IonsOptical Spectra of Ionic CrystalsImpurities in Crystal Lattice: Splitting of Levels and Terms in Lattice SymmetryWeak Crystalline Field of Octahedral SymmetryEffect of a Weak Crystalline Field of Lower SymmetriesSplitting of Multielectron dn Configurations in the Crystalline FieldJahn-Teller EffectConstruction of Energy-Level DiagramsTanabe-Sugano DiagramsExample of the Co IonLimitations of the Crystal Field TheoryStudy QuestionsReferencesSymmetry and Molecular Orbitals TheoryMolecular OrbitalsHybridization Scheme for σ OrbitalsHybridization Scheme for π Orbi...

  15. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  16. Purification method for condensate

    International Nuclear Information System (INIS)

    Shimoda, Akiyoshi.

    1996-01-01

    Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)

  17. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  18. TAILORING ACTIVATED CARBONS FOR ENHANCED REMOVAL OF NATURAL ORGANIC MATTER FROM NATURAL WATERS. (R828157)

    Science.gov (United States)

    Several pathways have been employed to systematically modify two granular activated carbons (GACs), F400 (coal-based) and Macro (wood-based), for examining adsorption of dissolved natural organic matter (DOM) from natural waters. A total of 24 activated carbons with different ...

  19. Bose condensates make quantum leaps and bounds

    International Nuclear Information System (INIS)

    Castin, Y.; Dum, R.; Sinatra, A.

    1999-01-01

    Since the first observation in 1995 of Bose-Einstein condensation in dilute atomic gases, atomic physicists have made extraordinary progress in understanding this unusual quantum state of matter. BOSE-EINSTEIN condensation is a macroscopic quantum phenomenon that was first predicted by Albert Einstein in the 1920s, at a time when quantum theory was still developing and was being applied to microscopic systems, such as individual particles and atoms. Einstein applied the new concept of Bose statistics to an ideal gas of identical atoms that were at thermal equilibrium and trapped in a box. He predicted that at sufficiently low temperatures the particles would accumulate in the lowest quantum state in the box, giving rise to a new state of matter with many unusual properties. The crucial point of Einstein's model is the absence of interactions between the particles in the box. However, this makes his prediction difficult to test in practice. In most real systems the complicating effect of particle interactions causes the gas to solidify well before the temperature for Bose-Einstein condensation is reached. But techniques developed in the past four years have allowed physicists to form Bose-Einstein condensates for a wide range of elements. In this article the authors describe the latest advances in Bose-Einstein condensation. (UK)

  20. Contrast-enhanced ultrasound of focal nodular hyperplasia: a matter of size

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, Caroline [Hopital Beaujon APHP, Radiology Department, Clichy (France); Egels, Sophie; Huynh-Charlier, Isabelle [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Wagner, Mathilde [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Universite Paris Diderot, INSERM, UMR 1149, Laboratoire IPMA, Centre de Recherche sur l' Inflammation, Faculte de Medecine X Bichat, Paris (France); Vilgrain, Valerie [Hopital Beaujon APHP, Radiology Department, Clichy (France); Universite Paris Diderot, INSERM, UMR 1149, Laboratoire IPMA, Centre de Recherche sur l' Inflammation, Faculte de Medecine X Bichat, Paris (France); Lucidarme, Olivier [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Sorbonne Universites, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMRS 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); Groupe Hospitalier Pitie-Salpetriere - Charles Foix, Service de Radiologie Polyvalente et Oncologique, Paris (France)

    2014-10-15

    To assess the contrast-enhanced ultrasound (CEUS) frequencies of centrifugal enhancement, spoke-wheel sign and central scar in focal nodular hyperplasia (FNH) as a function of lesion size. Ninety-four FNHs were retrospectively reviewed to assess their largest diameter and enhancement pattern, including centrifugal enhancement from one central artery, spoke-wheel sign, diffuse or centripetal enhancement, central scar and late-phase washout. Mean FNH-lesion size was 3.7 ± 2.1 cm. Only 43.6 % of FNHs had centrifugal enhancement, with a spoke-wheel pattern (23.4 %) or without (20.2 %), while 56.4 % showed diffuse or centripetal enhancement. Centrifugal enhancement was observed in 73.9 % of FNHs ≤3.1 cm and 14.6 % of FNHs >3.1 cm (P < 10{sup -4}). Size and frequency of centrifugal enhancement were negatively correlated (r = -0.57, P < 10{sup -4}). The spoke-wheel pattern was also seen more frequently in smaller (37 %) than in larger FNHs (10.4 %) (P < 10{sup -3}). Late-phase washout was described in 5.3 % of FNHs and was not size-dependent. Lesions with a central scar were larger than those without, respectively, 5.7 ± 1.7 and 3.6 ± 2.0 cm (P = 0.012). Typical centrifugal enhancement yielding a confident FNH diagnosis is seen significantly more frequently when the lesion is ≤3.1 cm. (orig.)

  1. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  2. Colored condensates deep inside neutron stars

    Directory of Open Access Journals (Sweden)

    Blaschke David

    2014-01-01

    Full Text Available It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  3. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  4. Condensation in complex geometries

    International Nuclear Information System (INIS)

    Lauro, F.

    1975-01-01

    A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr

  5. Bogoliubov theory of the Hawking effect in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Leonhardt, U; Kiss, T; Oehberg, P

    2003-01-01

    Artificial black holes may demonstrate some of the elusive quantum properties of the event horizon, in particular Hawking radiation. One promising candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation emerges from the condensate and how this condensed-matter analogue reflects some of the intriguing aspects of quantum black holes

  6. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    OpenAIRE

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the...

  7. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  8. Future directions in electron momentum spectroscopy of matter

    International Nuclear Information System (INIS)

    Weigold, E.

    1998-01-01

    The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia

  9. ENHANCING TRUST OR REDUCING PERCEIVED RISK, WHAT MATTERS MORE WHEN LAUNCHING A NEW PRODUCT?

    OpenAIRE

    ANN-MARIE NIENABER; GERHARD SCHEWE

    2014-01-01

    Using a collection of data among 490 participants from different companies in the field of medical engineering market, we contribute to the role of contact intensity by a business partner when launching new products by introducing trust as a mediator to the concept of perceived risk reduction to enhance the relationship commitment. The findings show that the common concept of risk reduction to enhance the relationship commitment is overrated. In detail, the results show first, that the influe...

  10. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  11. Cross-modal enhancement of speech detection in young and older adults: does signal content matter?

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Myerson, Joel; Sommers, Mitchell S; Hale, Sandra

    2011-01-01

    The purpose of the present study was to examine the effects of age and visual content on cross-modal enhancement of auditory speech detection. Visual content consisted of three clearly distinct types of visual information: an unaltered video clip of a talker's face, a low-contrast version of the same clip, and a mouth-like Lissajous figure. It was hypothesized that both young and older adults would exhibit reduced enhancement as visual content diverged from the original clip of the talker's face, but that the decrease would be greater for older participants. Nineteen young adults and 19 older adults were asked to detect a single spoken syllable (/ba/) in speech-shaped noise, and the level of the signal was adaptively varied to establish the signal-to-noise ratio (SNR) at threshold. There was an auditory-only baseline condition and three audiovisual conditions in which the syllable was accompanied by one of the three visual signals (the unaltered clip of the talker's face, the low-contrast version of that clip, or the Lissajous figure). For each audiovisual condition, the SNR at threshold was compared with the SNR at threshold for the auditory-only condition to measure the amount of cross-modal enhancement. Young adults exhibited significant cross-modal enhancement with all three types of visual stimuli, with the greatest amount of enhancement observed for the unaltered clip of the talker's face. Older adults, in contrast, exhibited significant cross-modal enhancement only with the unaltered face. Results of this study suggest that visual signal content affects cross-modal enhancement of speech detection in both young and older adults. They also support a hypothesized age-related deficit in processing low-contrast visual speech stimuli, even in older adults with normal contrast sensitivity.

  12. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  13. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  14. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  15. Normal matter storage of antiprotons

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs

  16. Combination Of Organic Matter And Inorganic N Fertilizer For Enhancing Productivity And N Uptake Of Upland Rice

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2002-01-01

    reported in this paper is the percentage of N derived from fertilizer (%N-dff) which is adopted to assess N fertilizer utilization in field experiment. Important information came of the experiments were that correct combination of organic matter and N fertilizer enhanced rice production and N uptake by rice. N immobilization in the use of organic matter having high C/N ratio, in this case rice straw, was very helpfully to regulate N dynamic in soil. Treatment of JN-I gave highest rice production. The pruning of Gliricidia was not only as N source, but also had the best effect on fertilizer N dynamic in soil giving high rice production and highest N fertilizer efficiency. N fertilization without organic matter addition (treatment N as Control 2) gave rice production not as high as IN-I or GN-I and low N fertilizer efficiency, informing that there were high N fertilizer loss and high utilization of soil N

  17. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  18. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  19. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  20. Retrieval Attempts Enhance Learning, but Retrieval Success (versus Failure) Does Not Matter

    Science.gov (United States)

    Kornell, Nate; Klein, Patricia Jacobs; Rawson, Katherine A.

    2015-01-01

    Retrieving information from memory enhances learning. We propose a 2-stage framework to explain the benefits of retrieval. Stage 1 takes place as one attempts to retrieve an answer, which activates knowledge related to the retrieval cue. Stage 2 begins when the answer becomes available, at which point appropriate connections are strengthened and…

  1. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  2. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  3. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.

    Science.gov (United States)

    Gabr, Refaat E; Pednekar, Amol S; Govindarajan, Koushik A; Sun, Xiaojun; Riascos, Roy F; Ramírez, María G; Hasan, Khader M; Lincoln, John A; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2017-08-01

    To improve the conspicuity of white matter lesions (WMLs) in multiple sclerosis (MS) using patient-specific optimization of single-slab 3D fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Sixteen MS patients were enrolled in a prospective 3.0T MRI study. FLAIR inversion time and echo time were automatically optimized for each patient during the same scan session based on measurements of the relative proton density and relaxation times of the brain tissues. The optimization criterion was to maximize the contrast between gray matter (GM) and white matter (WM), while suppressing cerebrospinal fluid. This criterion also helps increase the contrast between WMLs and WM. The performance of the patient-specific 3D FLAIR protocol relative to the fixed-parameter protocol was assessed both qualitatively and quantitatively. Patient-specific optimization achieved a statistically significant 41% increase in the GM-WM contrast ratio (P < 0.05) and 32% increase in the WML-WM contrast ratio (P < 0.01) compared with fixed-parameter FLAIR. The increase in WML-WM contrast ratio correlated strongly with echo time (P < 10 -11 ). Two experienced neuroradiologists indicated substantially higher lesion conspicuity on the patient-specific FLAIR images over conventional FLAIR in 3-4 cases (intrarater correlation coefficient ICC = 0.72). In no case was the image quality of patient-specific FLAIR considered inferior to conventional FLAIR by any of the raters (ICC = 0.32). Changes in proton density and relaxation times render fixed-parameter FLAIR suboptimal in terms of lesion contrast. Patient-specific optimization of 3D FLAIR increases lesion conspicuity without scan time penalty, and has potential to enhance the detection of subtle and small lesions in MS. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:557-564. © 2016 International Society for Magnetic Resonance in Medicine.

  4. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  5. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    International Nuclear Information System (INIS)

    Iancu, E.; Leonidov, A.; McLerran, L.

    2001-01-01

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory

  6. PERVAPORATION SEPARATION IMPROVEMENTS VIA FRACTIONAL CONDENSATION (DEPHLEGMATION): IMPACT OF DEPHLEGMATOR DESIGN ON PERFORMANCE

    Science.gov (United States)

    Traditionally, pervaporation systems have been operated using a total condenser to deliver the final permeate liquid product. Over the past two years, we have investigated the use of a condensation process called "dephlegmation" to enhance the separation performance of pervapora...

  7. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces

    Science.gov (United States)

    Stoltzfus, Jon R.; Libarkin, Julie

    2016-01-01

    SCALE-UP–type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well documented, both in traditional lecture halls and SCALE-UP–type classrooms. However, few studies have carefully analyzed student outcomes when comparable active learning–based instruction takes place in a traditional lecture hall and a SCALE-UP–type classroom. Using a quasi-experimental design, we compared student perceptions and performance between sections of a nonmajors biology course, one taught in a traditional lecture hall and one taught in a SCALE-UP–type classroom. Instruction in both sections followed a flipped model that relied heavily on cooperative learning and was as identical as possible given the infrastructure differences between classrooms. Results showed that students in both sections thought that SCALE-UP infrastructure would enhance performance. However, measures of actual student performance showed no difference between the two sections. We conclude that, while SCALE-UP–type classrooms may facilitate implementation of active learning, it is the active learning and not the SCALE-UP infrastructure that enhances student performance. As a consequence, we suggest that institutions can modify existing classrooms to enhance student engagement without incorporating expensive technology. PMID:27909018

  8. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

    Science.gov (United States)

    Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco

    2018-03-01

    We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

  9. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  10. Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first episode and chronic schizophrenia

    Directory of Open Access Journals (Sweden)

    Rachael G. Grazioplene

    microstructural group differences. These results underline the need to move beyond tensor-based models in favor of acquisition and analysis techniques that can help disambiguate different sources of white matter disruptions associated with schizophrenia. Keywords: Schizophrenia, Diffusion imaging, DWI, DTI, First episode, Chronic, White matter, Fiber density, Fiber organization

  11. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  12. Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation

    DEFF Research Database (Denmark)

    Shutova, Yulia; Karna, Barun Lal; Hambly, Adam C.

    2016-01-01

    on the sample, respectively. The optimal normalised coagulant dose (Fe3+ to DOC ratio) was observed to be 0.5-4 at pH5.5 increasing to 4-12 at pH7.5. At pH5.5, the optimum coagulant dose increased with increasing humic character of the feed water. Overall, the OM removal efficiency by DAF observed in this study......Membrane fouling in reverse osmosis (RO) systems caused by organic matter (OM) remains a significant operational issue during desalination. Dissolved air flotation (DAF) has recently received attention as a pre-treatment option for seawater OM removal; however, only a limited number of studies have...... been undertaken. This may be because it is difficult to characterise OM in seawater due to the high salt content and low carbon concentration. In this study, DAF pre-treatment experiments were conducted using a model seawater solution, and real seawater and brackish water samples. DAF performance...

  13. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil; Proposition pour une ligne dediee a la matiere molle, aux materiaux de grande diffusion et aux materiaux non-cristallises sur soleil

    Energy Technology Data Exchange (ETDEWEB)

    Ne, F.; Zemb, T. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules; Diat, O. [ESRF, 38 - Grenoble (France)

    1998-12-31

    This project is a part of the `SOLEIL` synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of `Instamatic` of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  14. Avalanches in a Bose-Einstein condensate

    NARCIS (Netherlands)

    Schuster, J.; Marte, A.; Amtage, S.; Sang, B.; Rempe, G.; Beijerinck, H.C.W.

    2001-01-01

    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87Rb condensate. We show that the collisional opacity of an ultracold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under

  15. Water condensation on ultrahydrophobic flexible micro pillar surface

    Science.gov (United States)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.

  16. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell.

    Science.gov (United States)

    Ghosh Ray, S; Ghangrekar, M M

    2015-01-01

    For enhancing organic matter removal from cereal-based distillery stillage two-stage treatment consisting of fermentation by Aspergillus awamori followed by microbial fuel cell (MFC) is proposed. Considerable reduction in total and soluble chemical oxygen demand (COD) up to 70% and 40%, respectively, along with 98% reduction of suspended solids (SS) has been achieved during fungal pretreatment. The process generated chitosan, a useful fermentation byproduct from fungal mycelia, as 0.6-0.7g/l of settled sludge with mycelium (3.8% solids). Prior treatment of wastewater with fungal strain enhanced the power generation in MFC by 2.9 times at an organic loading rate of 1.5kgCOD/m(3)day, demonstrating soluble COD reduction of 92% in MFC. While treating distillery wastewater, this two-stage integrated biological process demonstrated overall 99% COD removal and almost complete removal of SS, delivering ample scope for scale-up and industrial application to offer effective solution for distillery wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pion condensation and instabilities: current theory and experiment

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-05-01

    Current calculations of pion condensation phenomena in symmetric nuclear matter are reviewed. The RPA and MFA methods are compared. Latest results [LBL-10572] with a relativistic MFA theory constrained by bulk nuclear properties are presented. The differences between equilibrium (condensation) and nonequilibrium (dynamic) instabilities are discussed. Finally, two-proton correlation experiments aimed at looking for critical scattering phenomena and two-pion correlation experiments aimed at looking for pion field coherence are analyzed. 10 figures, 2 tables

  18. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  19. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  20. Resonances for coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Haroutyunyan, H.L.; Nienhuis, G.

    2004-01-01

    The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice

  1. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie

    2011-05-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  2. A matter of attention: Crossmodal congruence enhances and impairs performance in a novel trimodal matching paradigm.

    Science.gov (United States)

    Misselhorn, Jonas; Daume, Jonathan; Engel, Andreas K; Friese, Uwe

    2016-07-29

    A novel crossmodal matching paradigm including vision, audition, and somatosensation was developed in order to investigate the interaction between attention and crossmodal congruence in multisensory integration. To that end, all three modalities were stimulated concurrently while a bimodal focus was defined blockwise. Congruence between stimulus intensity changes in the attended modalities had to be evaluated. We found that crossmodal congruence improved performance if both, the attended modalities and the task-irrelevant distractor were congruent. If the attended modalities were incongruent, the distractor impaired performance due to its congruence relation to one of the attended modalities. Between attentional conditions, magnitudes of crossmodal enhancement or impairment differed. Largest crossmodal effects were seen in visual-tactile matching, intermediate effects for audio-visual and smallest effects for audio-tactile matching. We conclude that differences in crossmodal matching likely reflect characteristics of multisensory neural network architecture. We discuss our results with respect to the timing of perceptual processing and state hypotheses for future physiological studies. Finally, etiological questions are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie; Mazellier, Patrick; Croue, Jean-Philippe

    2011-01-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  4. Male circumcision and penis enhancement in Southeast Asia: matters of pain and pleasure.

    Science.gov (United States)

    Hull, T H; Budiharsana, M

    2001-11-01

    This paper reviews some uniquely male sexual health concerns in Southeast Asia, with particular attention to Indonesia. These include various forms of male circumcision, different types of 'penis enhancement' carried out across the region and the use of dry sex by women. These practices appear to be motivated by specific notions of sexual pleasure, based on indigenous gender constructs. Although they may or may not pose a serious public health problem, as markers of misguided or exploitative gender relations they do reveal important aspects of social psychology related to sexuality and sexual health. Male circumcision provides an ideal opportunity to consider male reproductive health needs and risks in Indonesia, Malaysia and the Philippines. Practices that involve cutting the male genitals need to be addressed in ways that stress the importance of sexual relationships based on mutual respect and open communication. Penis implants and inserts and other penis augmentation devices, as well as dry sex practices, are potentially dangerous to both men and women, and of questionable value in bringing pleasure to either, and should be discouraged.

  5. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  6. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  7. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  8. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  9. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  10. Arrangement to reduce the failure frequency of heat condensate pipes

    International Nuclear Information System (INIS)

    Liskow, E.; Apelt, W.; Krause, W.; Meisel, L.

    1988-01-01

    The arrangement of throttling devices in heat condensate pipes of NPP with WWER-440 type reactors aims at reducing their failure frequency, ensuring an energetically favourable operation, and enhancing the availability and safety of NPP units

  11. Experimental Investigation of Flow Condensation in Microgravity

    Science.gov (United States)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  12. Condensed images for evaluating gastric motility patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K.; Schroettle, W.; Kirsch, C.-M. (Munich Univ. (Germany, F.R.). Dept. of Radiology)

    1991-04-01

    A condensed imaging technique was applied to gastric emptying studies to investigate (a) whether different types of motility disorders may be distinguished by characteristic image patterns and (b) whether the findings obtained provide additional information compared to standard quantitative measurements. Condensed images and quantitative data of gastric emptying were evaluated in 75 consecutive patients with normal function and various disorders such as peptic ulcer, postvagotomy, pyloric obstruction, dumping syndrome, gastoparesis etc. Condensed images were generated from a gastric region of interest. They display the distribution and behaviour of a radioactive test meal in a space-time matrix, whose horizontal and vertical dimensions are temporal and spatial, respectively. As shown in a series of representative examples condensed images disclose a variety of well-defined image patterns reflecting different pathophysiological mechanisms. This qualitative characterization of gastric emptying patterns provided in 34 of the 75 patients (45%) important new information compared to quantitative data. The application of condensed imaging techniques to gastric emptying studies (complementary to quantitative measurements) may, therefore, enhance the diagnostic value of scintigraphic techniques. (author).

  13. Condensate bright solitons under transverse confinement

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2002-01-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula

  14. Bose Condensate in He II

    International Nuclear Information System (INIS)

    Svensson, E.C.

    1984-01-01

    The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described

  15. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  16. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  17. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  18. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  19. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  20. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.