Indian Academy of Sciences (India)
three freely moving electrons. The value at room temperature is 3.1 k B; the electronic specific heat is missing! The next stage in the electronic theory of solids clears up ..... a big dog? We do not know the reasons yet. As it turns out for many fundamentally interesting phenomena, colossal magneto- resistance may also find ...
The coupling of condensed matter excitations to electron probes
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs
Dissociative electron attachment and charge transfer in condensed matter
International Nuclear Information System (INIS)
Bass, A.D.; Sanche, L.
2003-01-01
Experiments using energy-selected beams of electrons incident from vacuum upon thin vapour deposited solids show that, as in the gas-phase, scattering cross sections at low energies are dominated by the formation of temporary negative ions (or resonances) and that molecular damage may be effected via dissociative electron attachment (DEA). Recent results also show that charge transfer between anionic states of target molecules and their environment is often crucial in determining cross sections for electron driven processes. Here, we review recent work from our laboratory, in which charge transfer is observed. For rare gas solids, electron exchange between the electron-exciton complex and either a metal substrate or co-adsorbed molecule enhances the desorption of metastable atoms and/or molecular dissociation. We discuss how transient electron capture by surface electron states of a substrate and subsequent electron transfer to a molecular adsorbate enhances the effective cross sections for DEA. We also consider the case of DEA to CF 2 Cl 2 condensed on water and ammonia ices, where electron exchange between pre-solvated electron states of ice and transient molecular anions can also increase DEA cross sections. Electron transfer from molecular resonances into pre-solvated electron states of ice is also discussed
Isihara, A
2007-01-01
More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional
Marder, Michael P
2010-01-01
This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.
Linking the gaseous and the condensed phases of matter: The slow electron and its interactions
International Nuclear Information System (INIS)
Christophorou, L.G.
1993-01-01
The interfacing of the gaseous and the condensed phases of matter as effected by interphase and cluster studies on the behavior of key reactions involving slow electrons either as reacting initial particles or as products of the reactions themselves is discussed. Emphasis is placed on the measurement of both the cross sections and the energetics involved, although most of the available information to date is on the latter. The discussion is selectively focussed on electron scattering (especially the role of negative ion states in gases, clusters, and dense matter), ionization, electron attachment and photodetachment. The dominant role of the electric polarization of the medium is emphasized
Electron spectroscopy for atoms, molecules and condensed matter
International Nuclear Information System (INIS)
Siegbahn, K.
1981-12-01
A review is given of the research performed at the Institute of Physics, Uppsala under the direction of Prof. Siegbahn. in the field of electron spectroscopy applied to solids, liquids and gases. The developemnt of the spectroscopic methods is the central theme of the review. (L.E.)
Electronic and ionic ordering in condensed matter plasmas
International Nuclear Information System (INIS)
March, N.H.
1981-01-01
Recent progress in treating phase transitions induced by Coulomb interactions is reviewed. This is done by appealing to simple models, and in particular to the one-component plasma, with its quantum-mechanical counterpart jellium. The relevance of the phase transition, to a body-centred-cubic crystal in the classical one-component plasma, to the freezing of liquid metals Na and K is stressed. By generalizing these arguments to a two-component system, regularities in the freezing of the molten alkali halides are understandable. Sublattice disorder in superionics, driven by Coulomb forces, is then discussed. Finally, the ordering of electrons in jellium, in the limit of complete degeneracy, is considered: evidence being presented for the existence of electron liquids in molten Na and K. (author)
International Nuclear Information System (INIS)
Sapoval, B.
1988-01-01
The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr
International Nuclear Information System (INIS)
Fano, U.
1987-02-01
A summary is given for theoretical procedures that describe and evaluate the penetration, degradation and diffusion of slow electrons in condensed matter with characteristics relevant to biological systems. 5 refs
Misra, Prasanta K
2012-01-01
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be
Condensed elementary particle matter
International Nuclear Information System (INIS)
Kajantie, K.
1996-01-01
Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)
Condensed Matter Nuclear Science
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
International Nuclear Information System (INIS)
Anon.
1985-01-01
The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)
International Nuclear Information System (INIS)
1990-01-01
This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)
Asymmetric condensed dark matter
Energy Technology Data Exchange (ETDEWEB)
Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)
2016-04-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.
Fundamentals of condensed matter physics
Cohen, Marvin L
2016-01-01
Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...
Camp, Piet
1985-01-01
The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...
Monastyrsky, M I
2006-01-01
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Accelerators for condensed matter research
International Nuclear Information System (INIS)
Williams, P.R.
1990-01-01
The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)
Condensed matter physics in electrochemistry
International Nuclear Information System (INIS)
Kornyshev, A.A.
1991-01-01
Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the
Stopping powers of energetic electrons penetrating condensed matter-theory and application
International Nuclear Information System (INIS)
Tan Zhenyu; Xia Yueyuan
2004-01-01
In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)
Muonic Chemistry in Condensed Matter
2002-01-01
When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...
Introduction. Cosmology meets condensed matter.
Kibble, T W B; Pickett, G R
2008-08-28
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
Statistical physics and condensed matter
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding
Statistical physics and condensed matter
International Nuclear Information System (INIS)
2003-01-01
This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has
Computational condensed matter physics
Indian Academy of Sciences (India)
However, the electronic structure based investigations of structural stabilities at high pressures involve tedious trial and error effort, which is avoided in the ab initio molecular dynamics simulations. ... Thus in some sense, it mimics the phenomena taking place during the cohesion of solids. Therefore significant changes are ...
Coherence and chaos in condensed matter
International Nuclear Information System (INIS)
Bishop, A.R.
1989-01-01
This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs
Han, Jung Hoon
2017-01-01
This book summarizes some of the most exciting theoretical developments in the topological phenomena of skyrmions in noncentrosymmetric magnetic systems over recent decades. After presenting pedagogical backgrounds to the Berry phase and homotopy theory, the author systematically discusses skyrmions in the order of their development, from the Ginzburg-Landau theory, CP1 theory, Landau-Lifshitz-Gilbert theory, and Monte Carlo numerical approaches. Modern topics, such as the skyrmion-electron interaction, skyrmion-magnon interaction, and various generation mechanisms of the skyrmion are examined with a focus on their general theoretical aspects. The book concludes with a chapter on the skyrmion phenomena in the cold atom context. The topics are presented at a level accessible to beginning graduate students without a substantial background in field theory. The book can also be used as a text for those who wish to engage in the physics of skyrmions in magnetic systems, or as an introduction to the various theoret...
Advances in condensed matter optics
Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin
2015-01-01
This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
A condensed matter electron momentum spectrometer with parallel detection in energy and momentum
Energy Technology Data Exchange (ETDEWEB)
Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E
1994-03-01
An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.
A condensed matter electron momentum spectrometer with parallel detection in energy and momentum
International Nuclear Information System (INIS)
Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.
1994-03-01
An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs
Condensed Matter Theories: Volume 25
Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter
2011-03-01
pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular
Quasiparticles in condensed matter systems
Wölfle, Peter
2018-03-01
Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.
Walter Kohn and the Rise of Condensed Matter Physics T V ...
Indian Academy of Sciences (India)
Ramakrishnan T V
Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).
A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter
International Nuclear Information System (INIS)
Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.
2006-01-01
In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)
Collision of Bose Condensate Dark Matter structures
International Nuclear Information System (INIS)
Guzman, F. S.
2008-01-01
The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.
Physics through the 1990s: condensed-matter physics
International Nuclear Information System (INIS)
1986-01-01
The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations
Condensed matter view of giant resonance phenomena
International Nuclear Information System (INIS)
Zangwill, A.
1987-01-01
The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures
Topology and condensed matter physics
Mj, Mahan; Bandyopadhyay, Abhijit
2017-01-01
This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field. The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...
Holography, Gravity and Condensed Matter
Energy Technology Data Exchange (ETDEWEB)
Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics
2017-12-20
Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum
Vortices in a rotating dark matter condensate
International Nuclear Information System (INIS)
Yu, Rotha P; Morgan, Michael J
2002-01-01
We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that
Equation of state of warm condensed matter
Energy Technology Data Exchange (ETDEWEB)
Barbee, T.W., III; Young, D.A.; Rogers, F.J.
1998-03-01
Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
Quark Condensate in the Strange Matter
Institute of Scientific and Technical Information of China (English)
LU Chang-Fang; LU" Xiao-Fu
2003-01-01
In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.
Condensed matter physics with radioactive ion beams
International Nuclear Information System (INIS)
Haas, H.
1996-01-01
An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)
Excitonic condensation in systems of strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan
2015-01-01
Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015
Implanted muon studies in condensed matter science
International Nuclear Information System (INIS)
Cox, S.F.J.
1986-12-01
The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)
Condensed matter studies by nuclear methods
International Nuclear Information System (INIS)
Krolas, K.; Tomala, K.
1988-01-01
The separate abstract was prepared for 1 of the papers in this volume. The remaining 13 papers dealing with the use but not with advances in the use of nuclear methods in studies of condensed matter, were considered outside the subject scope of INIS. (M.F.W.)
International Nuclear Information System (INIS)
Daillant, J.
1997-01-01
After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques
String Theory Methods for Condensed Matter Physics
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.
1991-01-01
We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)
Field theories in condensed matter physics
Concha, Andres
In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.
Condensate cosmology: Dark energy from dark matter
International Nuclear Information System (INIS)
Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo
2003-01-01
Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models
Open problems in condensed matter physics, 1987
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs
Condensation of galactic cold dark matter
International Nuclear Information System (INIS)
Visinelli, Luca
2016-01-01
We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.
International Nuclear Information System (INIS)
2005-01-01
3D momentum density and the Fermi surface of disordered Cu 0.86 Al 0.16 alloy were reconstructed from high-resolution Compton profiles. The effect known as ''nesting'' of the Fermi surface was revealed (cooperation with KEK, Tsukuba, Japan). This feature of the Fermi surface, when present, is believed to lead to local ordering phenomena in disordered systems. Our electron diffraction studies showed that a short-range order was indeed present in the alloy. Moreover, the character of the diffuse scattering (the four-fold splitting of the diffuse spots) pointed to the ''nesting'' of the Fermi surface as the origin of this ordering. The results lend support to the notion that the formation of the short-range order in nondiluted, disordered alloys can be driven by their electronic properties like the shape of the Fermi surface
Advanced spallation neutron sources for condensed matter research
International Nuclear Information System (INIS)
Lovesey, S.W.; Stirling, G.C.
1984-03-01
Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
Hidden Scale Invariance in Condensed Matter
DEFF Research Database (Denmark)
Dyre, J. C.
2014-01-01
. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...
STRANGE BARYONIC MATTER AND KAON CONDENSATION
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Friedman, E.; Gal, A.; Mareš, Jiří
2011-01-01
Roč. 26, 3-4 (2011), s. 567-569 ISSN 0217-751X. [11th International Workshop on Meson Production, Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : (K)over-bar-nuclear bound states * strange baryonic matter * kaon condensation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011
Holographic techniques for condensed matter systems
International Nuclear Information System (INIS)
Herzog, Chistopher
2009-01-01
Full text. Gauge/gravity duality, a concept which emerged from string theory, holds promise for revealing the secrets of certain strongly interacting real world condensed matter systems. Historically, string theorists presented their subject as a promising framework for a quantum theory of gravity. More recently, the AdS/CFT correspondence and gauge/gravity dualities have emerged as powerful tools for using what we already know about gravity to investigate the properties of strongly interacting field theories. In this colloquium, I will survey recent developments where black holes are used to calculate the thermodynamic and transport properties of quantum critical systems, superconductors, superfluids, and fermions at unitarity. (author)
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Springer Handbook of Condensed Matter and Materials Data
Martienssen, Werner
2005-01-01
Condensed Matter and Materials Science are two of the most active fields of applied physics, with a stream of discoveries in areas from superconductivity and magnetism to the optical, electronic and mechanical properties of materials. While a huge amount of data has been compiled and spread over numerous reference works, no single volume compiles the most used information. Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200-page volume. The data, encapsulated in over 750 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the editors of this Springer Handbook. Key Topics Fundamental Constants The International S...
Fundamentals of charged particle transport in gases and condensed matter
Robson, Robert E; Hildebrandt, Malte
2018-01-01
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.
Collaboration in Australian condensed matter physics research
International Nuclear Information System (INIS)
Cushion, J.D.
1998-01-01
Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable
Condensed matter physics aspects of electrochemistry
International Nuclear Information System (INIS)
Tosi, M.P.; Kornyshev, A.A.
1991-01-01
This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs
Novel Quantum Condensates in Excitonic Matter
International Nuclear Information System (INIS)
Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymanska, M. H.
2009-01-01
These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state - generically called a Bose-Einstein condensate (BEC) - and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari. A recent theoretically focussed review of polariton systems covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.
International Nuclear Information System (INIS)
Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.
1997-01-01
The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately
Long range correlations in condensed matter
International Nuclear Information System (INIS)
Bochicchio, R.C.
1990-01-01
Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs
The Solar Photosphere: Evidence for Condensed Matter
Directory of Open Access Journals (Sweden)
Robitaille P. M.
2006-04-01
Full Text Available The stellar equations of state treat the Sun much like an ideal gas, wherein the photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the solar interior give some credence to these models, especially since it is counterintuitive that an object with internal temperatures in excess of 1 MK could be existing in the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient evidence for the states of matter. The presence of magnetic fields and gravity also impact the expected phase. In the end, it is the physical expression of a state that is required in establishing the proper phase of an object. The photosphere does not lend itself easily to treatment as a gaseous plasma. The physical evidence can be more simply reconciled with a solar body and a photosphere in the condensed state. A discussion of each physical feature follows: (1 the thermal spectrum, (2 limb darkening, (3 solar collapse, (4 the solar density, (5 seismic activity, (6 mass displacement, (7 the chromosphere and critical opalescence, (8 shape, (9 surface activity, (10 photospheric/coronal flows, (11 photospheric imaging, (12 the solar dynamo, and (13 the presence of Sun spots. The explanation of these findings by the gaseous models often requires an improbable combination of events, such as found in the stellar opacity problem. In sharp contrast, each can be explained with simplicity by the condensed state. This work is an invitation to reconsider the phase of the Sun.
Statistical mechanics and applications in condensed matter
Di Castro, Carlo
2015-01-01
This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...
A duality web in condensed matter systems
Ma, Chen-Te
2018-03-01
We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.
Frustration in Condensed Matter and Protein Folding
Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.
2014-03-01
By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.
International Nuclear Information System (INIS)
Hillebrand, C.D.
1999-05-01
An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)
Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee
Energy Technology Data Exchange (ETDEWEB)
Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)
2011-01-15
Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)
Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics
Directory of Open Access Journals (Sweden)
Peter A. Horváthy
2006-12-01
Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.
Gravitational effects of condensate dark matter on compact stellar objects
International Nuclear Information System (INIS)
Li, X.Y.; Wang, F.Y.; Cheng, K.S.
2012-01-01
We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed
International Nuclear Information System (INIS)
Loewdin, Per-Olov; Oehrn, N.Y.; Sabin, J.R.; Zerner, M.C.
1993-01-01
After an introduction and a personal (World War II and postwar) retrospective by C.C.J. Roothaan, 69 papers are presented in fields of quantum biology, quantum chemistry, and condensed matter physics; topics covered include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems. An author index is included
Diffusive instability of a kaon condensate in neutron star matter
International Nuclear Information System (INIS)
Kubis, Sebastian
2004-01-01
The beta equilibrated dense matter with kaon condensate is analyzed with respect to extended stability conditions, including charge fluctuations. This kind of the diffusive instability appeared to be common property in the kaon condensation case. Results for three different nuclear models are presented
Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities
Reyes, Arneil
2006-11-01
Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.
Resource Letter HCMP-1: History of Condensed Matter Physics
Martin, Joseph D.
2017-02-01
This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.
Shattered glass seeking the densest matter: the color glass condensate
Appell, D
2004-01-01
"Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)
Applications of holography to condensed matter physics
Ross, Simon F.
2012-10-01
Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity
Condensed matter applied atomic collision physics, v.4
Datz, Sheldon
1983-01-01
Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc
Pion condensation in cold dense matter and neutron stars
International Nuclear Information System (INIS)
Haensel, P.; Proszynski, M.
1982-01-01
We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface
Indus-I beamlines for condensed matter physics
International Nuclear Information System (INIS)
Nandedkar, R.V.
2001-01-01
Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed
All basic condensed matter physics phenomena and notions mirror ...
Indian Academy of Sciences (India)
biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...
Proceedings of the 9. National Meeting on Condensed Matter Physics
International Nuclear Information System (INIS)
1986-01-01
The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt
Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics
Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI
2006-01-01
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.
Correlated electrons in quantum matter
Fulde, Peter
2012-01-01
An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.
Physics through the 1990s: Condensed-matter physics
International Nuclear Information System (INIS)
1986-01-01
In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed
Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum
Collett, Jeffrey
2008-03-01
The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.
Framework for understanding LENR processes, using conventional condensed matter physics
International Nuclear Information System (INIS)
Chubb, Scott R.
2006-01-01
Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)
Framework for understanding LENR processes, using conventional condensed matter physics
Energy Technology Data Exchange (ETDEWEB)
Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)
2006-07-01
Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)
Interplay between kaon condensation and hyperons in highly dense matter
International Nuclear Information System (INIS)
Muto, Takumi
2008-01-01
The possible coexistence and/or competition of kaon condensation with hyperons are investigated in hyperonic matter, where hyperons are mixed in the ground state of neutron-star matter. The formulation is based on the effective chiral Lagrangian for the kaon-baryon interaction and the nonrelativistic baryon-baryon interaction model. First, the onset condition of the s-wave kaon condensation realized from hyperonic matter is reexamined. It is shown that the usual assumption of the continuous phase transition is not always kept valid in the presence of the negatively charged hyperons (Σ - ). Second, the equation of state (EOS) of the kaon-condensed phase in hyperonic matter is discussed. In the case of the stronger kaon-baryon attractive interaction, it is shown that a local energy minimum with respect to the baryon number density appears as a result of considerable softening of the EOS due to both kaon condensation and hyperon mixing and recovering of the stiffness of the EOS at very high densities. This result implies a possible existence of self-bound objects with kaon condensates on any scale from an atomic nucleus to a neutron star
Diagrammatics lectures on selected problems in condensed matter theory
Sadovskii, Michael V
2006-01-01
The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection
International Nuclear Information System (INIS)
Mukashev, K.M.; Sarsenbinov, Sh. Sh.
2000-01-01
Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)
Neutrino emission in inhomogeneous pion condensed quark matter
International Nuclear Information System (INIS)
Huang, Xuguang; Wang, Qun; Zhuang, Pengfei
2008-01-01
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)
Proton mixing in -condensed phase of neutron star matter
Energy Technology Data Exchange (ETDEWEB)
Takatsuka, Tatsuyuki
1984-08-01
The mixing of protons in neutron star matter under the occurrence of condensation is studied in the framework of the ALS (Alternating Layer Spin) model and with the effective interaction approach. It is found that protons are likely to mix under the situation and cause a remarkable energy gain from neutron matter as the density increases. The extent of proton mixing becomes larger by about a factor (1.5-2.5) according to the density rho asymptotically equals (2-5)rho0, rho0 being the nuclear density, as compared with that for the case without pion condensation. The reason can be attributed to the two-dimensional nature of the Fermi gas state characteristic of the nucleon system under condensation.
Soft condensed matter: Polymers, complex fluids, and biomaterials
International Nuclear Information System (INIS)
Schaefer, D.
1995-01-01
Historians often characterize epochs through their dominant materials, clay, bronze, iron, and steel. From this perspective, the modern era is certainly the age of plastics. The progression from hard to soft materials suggests that the emerging era will be the age of open-quotes soft condensed matter.close quotes
Physics in Brazil in the next decade: condensed matter physics
International Nuclear Information System (INIS)
1990-01-01
This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)
Low dimensional field theories and condensed matter physics
International Nuclear Information System (INIS)
Nagaoka, Yosuke
1992-01-01
This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)
Proceedings of the 12. National Meeting on Condensed Matter Physics
International Nuclear Information System (INIS)
1989-01-01
The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt
Physics of condensed matter at extreme conditions
International Nuclear Information System (INIS)
Ross, M.
1988-01-01
The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied
Quantum condensates and topological bosons in coupled light-matter excitations
Energy Technology Data Exchange (ETDEWEB)
Janot, Alexander
2016-02-29
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
Experimental and Computational Techniques in Soft Condensed Matter Physics
Olafsen, Jeffrey
2010-09-01
1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.
Statistical physics including applications to condensed matter
Hermann, Claudine
2005-01-01
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
No pion condensate in nuclear matter due to fluctuations
International Nuclear Information System (INIS)
Kleinert, H.
1981-01-01
We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)
Computer simulation studies in condensed-matter physics 5. Proceedings
International Nuclear Information System (INIS)
Landau, D.P.; Mon, K.K.; Schuettler, H.B.
1993-01-01
As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs
Theory of condensed matter. Lectures presented at an international course
International Nuclear Information System (INIS)
1968-01-01
The International Centre for Theoretical Physics, since its inception, has striven to maintain an interdisciplinary character in its research and training programme as far as different branches of theoretical physics are concerned. in pursuance of this aim the Centre has followed a policy of organizing extended research seminars with a comprehensive and synoptic coverage on varying disciplines. The first of these — lasting over a month — was held in 1964 on fluids of ionized particles and plasma physics; the second, lasting for two months, was concerned with physics of elementary particles and high-energy physics; the third, of three months’ duration, October — December 1966, covered nuclear theory; the fourth, bringing the series through a complete cycle, was a course on condensed matter held from 3 October to 16 December 1967. The present volume records the proceedings of this research seminar. The publication is divided into four parts containing 29 papers. Part I — General Courses, Part II - Dynamical lattice properties; Part III — Liquids and molecules; Part IV — Electronic properties
Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics
Chubb, Scott
2005-03-01
As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.
13th International Workshop on Condensed Matter Theories
1990-01-01
This volume gathers the invited talks of the XIII International Work shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...
Surface and bulk excitations in condensed matter
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs
International Nuclear Information System (INIS)
Ashley, J.C.
1989-01-01
An ''optical-data model'' is described for evaluating energy loss per unit pathlength and inelastic mean free path for low-energy electrons and positrons (approx lt 10 keV) from optical data on the medium of interest. Exchange between the incident electron and electrons in the medium is included. Results from the optical-data model are compared with previous theoretical calculations. 15 refs., 6 figs., 2 tabs
Diquark Bose Condensates in High Density Matter and Instantons
International Nuclear Information System (INIS)
Rapp, R.; Shuryak, E.; Schaefer, T.; Velkovsky, M.
1998-01-01
Instantons lead to strong correlations between up and down quarks with spin zero and antisymmetric color wave functions. In cold and dense matter, n b >n c ≅1 fm -3 and T c ∼50 thinspthinspMeV, these pairs Bose condense, replacing the usual left-angle bar qq right-angle condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-antiparticle symmetry which relates left-angle bar qq right-angle and left-angle qq right-angle condensates. copyright 1998 The American Physical Society
Statistical Mechanics and Applications in Condensed Matter
Di Castro, Carlo; Raimondi, Roberto
2015-08-01
Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.
10th International Workshop on Condensed Matter Theories
Kalia, Rajiv; Bishop, R
1987-01-01
The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...
Condensed matter research using pulsed neutron sources: a bibliography
International Nuclear Information System (INIS)
Mildner, D.F.R.; Stirling, G.C.
1976-05-01
This report is an updated revision of RL-75-095 'Condensed Matter Research Using Pulsed Neutron Sources: A Bibliography'. As before, the survey lists published papers concerning (a) the production of high intensity neutron pulses suitable for thermal neutron scattering research, (b) moderating systems for neutron thermalization and pulse shaping, (c) techniques and instrumentation for diffraction and inelastic scattering at pulsed sources, and (d) their application to research problems concerning the structural and dynamical properties of condensed matter. Papers which deal with the white beam time-of-flight technique at steady state reactors have also been included. A number of scientists have brought to the author's attention papers which have been published since the previous edition. They are thanked and encouraged to continue the cooperation so that the bibliography may be updated periodically. (author)
Lectures on holographic methods for condensed matter physics
International Nuclear Information System (INIS)
Hartnoll, Sean A
2009-01-01
These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.
Many body quantum physics at the condensed matter
International Nuclear Information System (INIS)
Llano, M. de
1981-01-01
The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)
The 1989 progress report: Physics of the condensed matter
International Nuclear Information System (INIS)
Sapoval, B.
1989-01-01
The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr
Proceedings 17. International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Pudis, D.; Kubicova, I.; Bury, P.
2011-01-01
The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.
Pion condensation and density isomerism in nuclear matter
International Nuclear Information System (INIS)
Hecking, P.; Weise, W.
1979-01-01
The possible existence of density isomers in nuclear matter, induced by pion condensation, is discussed; the nuclear equation of state is treated within the framework of the sigma model. Repulsive short-range baryon-baryon correlations, the admixture of Δ (1232) isobars and finite-range pion-baryon vertex form factors are taken into account. The strong dependence of density isomerism on the high density extrapolation of the equation of state for normal nuclear matter is also investigated. We find that, once finite range pion-baryon vertices are introduced, the appearance of density isomers becomes unlikely
Proceedings 20. International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2014-01-01
The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.
Dark matter seen as a Bose-Einstein condensate
International Nuclear Information System (INIS)
Manzoni, Andre; Pires, Marcelo
2011-01-01
Full text: Astronomical observations of the stellar angular velocity in galaxies shows the general relativity theory, which considers that the usual matter changes the space-time, unable to describe the angular velocity to the peripheral stars. There are two possibilities to solve this problem, or the general relativity theory is not adequate to the phenomena or another type of matter must be considered in the composition of the galaxies. Many astrophysicists are in agreement considering another type of matter. This matter, called dark matter (DM), must interact very weakly with the barionic matter and, therefore, is invisible to direct observation. Some of them consider this dark matter made up of weakly interacting massive particles (WIMPs), which were not detected yet due to their very thin cross-section. A cloud of these particles is distributed around the galaxy under a low temperature and density. If we consider the cloud as a quantum gas, with the energies and the densities low enough to have binary interactions between particles, the gas can reach temperature condition to take a phase transition to the Bose-Einstein condensate where there are a constructive interference partner of these WIMPs. We performed an investigation about the dark matter being a Bose-Einstein condensate of WIMPs confined in itself gravitational potential. Taking the Thomas-Fermi approximation where the number of WIMPs is big enough to neglect the kinetic contribution in the total energy, we got the state equation of barotropic gas. Fitting this state equation with the data of rotational curves and density profiles taken from astronomical observations of galaxies, we estimated the mass and the scattering length of these WIMPs. (author)
Use of ORELA to produce neutrons for scattering studies on condensed matter
International Nuclear Information System (INIS)
Peelle, R.W.; Lewis, T.A.; Mihalczo, J.T.; Mook, H.A.; Moon, R.M.
1975-09-01
The Oak Ridge Electron Linear Accelerator (ORELA) is evaluated as a source of neutrons for condensed matter research. Two options are assessed: (1) use of the present target arrangement with minor modifications; and (2) the construction of a new target and experiment facility designed for condensed matter research and equipped with a subcritical fission booster. The expected source strength and time behavior are discussed, including the fundamentals of moderator design. The effect on the programs presently using the linac are considered. It is concluded that a special-purpose neutron source facility using pulsed electrons from ORELA and containing a subcritical booster could be built to make a cost-effective neutron scattering facility of great power and utility. (auth)
Bose-Einstein condensate & degenerate Fermi cored dark matter halos
Chung, W.-J.; Nelson, L. A.
2018-06-01
There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.
Is a condensed state of nuclear matter possible?
International Nuclear Information System (INIS)
D'yakonov, D.I.; Mirlin, A.D.
1988-01-01
Nucleon chiral models naturally lead to the concept of ''generalized'' or ''classical'' nucleons which are characterized by a definite orientation in spin-isospin space. Nucleons and Δ resonances are different rotational states of generalized nucleons. Interaction of two generalized nucleons is sharply anisotropic and at a definite relative orientation leads to very strong attraction. This gives an idea of possible existence of a condensed state of nuclear matter, i.e. of a crystal or Fermi liquid with a short-range order which consists of N and Δ coherent superpositions. The variational estimate shows that at densities a few times that of the standard nuclear density this condensed state may be energetically favourable
New state of matter: Bose-Einstein condensation
International Nuclear Information System (INIS)
Anon.
1995-01-01
70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several
Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena
Michailov, Michail
2011-01-01
This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Use of ultracold neutrons for condensed-matter studies
Energy Technology Data Exchange (ETDEWEB)
Michaudon, A.
1997-05-01
Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.
Use of ultracold neutrons for condensed-matter studies
International Nuclear Information System (INIS)
Michaudon, A.
1997-05-01
Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples
International Symposium on Dynamics of Ordering Processes in Condensed Matter
Furukawa, H
1988-01-01
The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci ety of Japan. The symposium was financially supported by the four orga nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...
Condensed Matter Physics in Colombia is in its forties
Camacho, Angela
2015-03-01
Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties
International Workshop on Current Problems in Condensed Matter
Current Problems in Condensed Matter
1998-01-01
This volume contains the papers presented at the International Workshop on the Cur rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...
Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics
2017-01-01
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
6. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2012-09-01
This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.
24th Condensed Matter Days National Conference (CMDAYS2016)
International Nuclear Information System (INIS)
2016-01-01
The 24 th edition of Condensed Matter Days (CMDAYS) 2016, a National Conference had been decided to be held at Physics Department, Mizoram University, Aizwal, Mizoram, India during 29-31 August 2016. This decision was taken by the General Body meeting of the CMDAYS on 28 August 2015 at Viswa Bharati, Shanti Niketan, West Bengal, India and Prof. R.K. Thapa was proposed as the Convener of CMDAYS-2016. Initiated by the Institute of Physics, Bhubaneswar, Odisa. The CMDAYS conference is held annually in the last week of August. The main objective of the conference was to bring all the researchers/scientists working in the field of Condensed Matter Physics, or related topics, together on a single platform. In this way, they can present, share and discuss their research findings and further plan collaborative works in future. The conference topics were on the theory and experimental research works done on Strongly correlated systems, Soft condensed matter, Magnetism and Magnetic materials, Disordered systems, Phase transition, Materials for energy harvesting, Nanomaterials and applications, Dielectrics and Ferroelectrics, Optoelectronics and devices, Semiconductors and devices, Biophysics, Biomaterials and composites, Superconductivity, Thin films and devices. It was open to all researchers from the research institutes, universities and colleges. Until the last date 1 st June 2016, we have received 1 plenary lecture, 3 Keynote lectures, 8 invited talks and 55 oral contributed papers. In total, there were 10 technical sessions to complete all the contributed papers along with the invited talks. Sessions were very interesting with the young participants interacting extensively with the senior scientists and everybody enjoyed the conference period with two cultural programmes. On the last day after the closing function, a local tour programme was arranged for all the outside participants. We are grateful to Prof. R. Lalthantluanga, Vice Cahncellor, Mizoram University, Aizawl
11th International Workshop on Condensed Matter Theories
Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3
1988-01-01
This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...
7. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2014-09-01
This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Future directions in electron momentum spectroscopy of matter
International Nuclear Information System (INIS)
Weigold, E.
1998-01-01
The development of coincidence spectrometers with multivariable detection techniques, higher energy kinematics, monochromated and spin-polarised electron sources, will usher in a new generation of electron momentum spectroscopy revealing new electronic phenomena in atoms, molecules and solids. This will be enhanced by developments in target preparation, such as spin polarised, oriented and aligned atoms and molecules, radicals, surfaces and strongly correlated systems in condensed matter. Copyright (1998) CSIRO Australia
International Nuclear Information System (INIS)
2017-01-01
We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)
Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.
1999-09-01
As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.
Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia
1999-01-01
As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report
Simulation of condensed matter dynamics in strong femtosecond laser pulses
International Nuclear Information System (INIS)
Wachter, G.
2014-01-01
Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the
Electron Holography: phases matter.
Lichte, Hannes
2013-06-01
Essentially, all optics is wave optics, be it with light, X-rays, neutrons or electrons. The information transfer from the object to the image can only be understood in terms of waves given by amplitude and phase. However, phases are difficult to measure: for slowly oscillating waves such as sound or low-frequency electromagnetic waves, phases can be measured directly; for high frequencies this has to be done by heterodyne detection, i.e. superposition with a reference and averaging over time. In optics, this is called interferometry. Because interference is mostly very difficult to achieve, phases have often been considered 'hidden variables' seemingly pulling the strings from backstage, only visible by their action on the image intensity. This was almost the case in conventional Electron Microscopy with the phase differences introduced by an object. However, in the face of the urgent questions from solid state physics and materials science, these phases have to be determined precisely, because they encode the most dominant object properties, such as charge distributions and electromagnetic fields. After more than six decades of very patient advancement, electron interferometry and holography offer unprecedented analytical facilities down to an atomic scale. Akira Tonomura has prominently contributed to the present state.
Dark matter as the Bose-Einstein condensation in loop quantum cosmology
International Nuclear Information System (INIS)
Atazadeh, K.; Mousavi, M.; Darabi, F.
2016-01-01
We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)
Photon-Electron Interaction and Condense Beams
International Nuclear Information System (INIS)
Chattopadhyay, S.
1998-01-01
We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations
Quark condensates in nuclear matter in the global color symmetry model of QCD
International Nuclear Information System (INIS)
Liu Yuxin; Gao Dongfeng; Guo Hua
2003-01-01
With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks
Finite temperature effects in Bose-Einstein condensed dark matter halos
International Nuclear Information System (INIS)
Harko, Tiberiu; Madarassy, Enikö J.M.
2012-01-01
Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates
Universal properties of relaxation and diffusion in condensed matter
International Nuclear Information System (INIS)
Ngai K L
2017-01-01
By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)
Condensed matter applications of AdS/CFT (I)
CERN. Geneva
2009-01-01
These lectures will discuss the application of ads/cft techniques to condensed matter systems. After motivating this endeavor, I will review the basic features of the ads/cft correspondence that will be used. I will review the physics of spectral functions and how they can be computed via AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...
International Nuclear Information System (INIS)
Andrieux, M.B.
1984-01-01
Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr
Electron correlation in molecules and condensed phases
March, N H
1996-01-01
This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students
A single electron in a Bose-Einstein condensate
International Nuclear Information System (INIS)
Balewski, Jonathan Benedikt
2014-01-01
This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.
Graphene a new paradigm in condensed matter and device physics
Wolf, E L
2014-01-01
The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
In-stack condensible particulate matter measurement and permitting issues
International Nuclear Information System (INIS)
Corio, L.A.; Sherwell, J.
1997-01-01
Based on the results of recent epidemiological studies and assessments of the causes of visibility degradation, EPA is proposing to regulate PM2.5 emissions. PM can be classified as either filterable or condensible PM. Condensible PM includes sulfates, such as sulfuric acid. Sulfates typically account for at least half of the total dry fine PM mass in the atmosphere. Power plant SO x -based emissions make a significant contribution to ambient fine PM levels in the eastern US. Although much of this mass is derived from secondary chemical reactions in the atmosphere, a portion of this sulfate is emitted directly from stacks as condensible PM. The potential condensible PM fraction associated with coal-burning boiler emissions is somewhat uncertain. The characterization of PM emissions from these sources has been, until recently, based on in-stack filterable PM measurements only. To determine the relative magnitude of condensible PM emissions and better understand condensible PM measurement issues, a review and analysis of actual EPA Method 202 results and state-developed hybrid condensible PM methods were conducted. A review of available Method 202 results for several coal-burning boilers showed that the condensible PM, on average, comprises 60% of the total PM10. A review of recent results for state-developed measurement methods for condensible PM for numerous coal-burning boilers indicated that condensible PM accounted for, on average, approximately 49% of total PM. Caution should be exercised in the use of these results because of the seemingly unresolved issue of artifact formation, which may bias the Method 202 and state-developed methods results on the high side. Condensible PM10 measurement results and issues, and potential ramifications of including condensible PM10 emissions in the PSD permit review process are discussed. Selected power plants in Maryland are discussed as examples
FOREWORD: 18th International School on Condensed Matter Physics
Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.
2014-12-01
We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its
Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie
Energy Technology Data Exchange (ETDEWEB)
Devanathan, Ram
2017-06-01
This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12
29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics
International Nuclear Information System (INIS)
2016-01-01
Thirty years ago, because of the dramatic increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the application of simulations in research and teaching: The Center for Simulational Physics. Then, as the international simulations community expanded further, we sensed the need for a meeting place for both experienced simulators and newcomers to discuss inventive algorithms and recent results in an environment that promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop series on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's highly interactive workshop was the 29th in the series marking our efforts to promote high quality research in simulational physics. The continued interest shown by the scientific community amply demonstrates the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia from February 22-26, 2016. It served to mark the 30 th Anniversary of the founding of the Center for Simulational Physics. In addition, during this Workshop we celebrated the 60 th birthday of our esteemed colleague Prof. H.-Bernd Schuttler. Bernd has not only contributed to the understanding of strongly correlated electron system, but has made seminal contributions to systems biology through the introduction of modern methods of computational physics. These Proceedings provide a “status report” on a number of important topics. This on-line “volume” is published with the goal of timely dissemination of the material to a wider audience. This program was supported in part by the President's Venture Fund through the generous gifts of the University of Georgia Partners and other donors. We also wish to offer thanks to the Office of the Vice-President for Research, the Franklin College of Arts and Sciences, and the IBM Corporation for partial
Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case
International Nuclear Information System (INIS)
Bettoni, Dario; Colombo, Mattia; Liberati, Stefano
2014-01-01
Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales
International Nuclear Information System (INIS)
Messina, A.
2000-01-01
This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina
2017-01-01
This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.
Pion condensation in a theory consistent with bulk properties of nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1980-01-01
A relativistic field theory of nuclear matter is solved for the self-consistent field strengths inthe mean-field approximation. The theory is constrained to reproduce the bulk properties of nuclear matter. A weak pion condensate is compatible with this constraint. At least this is encouraging as concerns the possible existence of a new phase of nuclear matter. In contrast, the Lee-Wick density isomer is probably not compatible with the properties of nuclear matter. 3 figures
The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body
Kukuruznyak , Dmitry ,
2017-01-01
Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...
Effects of delta degrees of freedom on quark condensate in hot and dense matter
International Nuclear Information System (INIS)
Li Lei; Ning Pingzhi
1996-01-01
The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate
Phase transition in dense nuclear matter with quark and gluon condensates
International Nuclear Information System (INIS)
Ellis, J.; Kapusta, J.I.; Olive, K.A.
1991-01-01
Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)
International Conference on Polarised Neutrons for Condensed Matter Investigations (PNCMI 2016)
International Nuclear Information System (INIS)
2017-01-01
The present volume of the Journal of Physics: Conference Series represents Proceedings of the 11th International Conference on Polarised Neutrons for Condensed Matter Investigation (PNCMI) held in Freising, Germany from July 4–7, 2016. The conference attended by more than 120 scientists from various academic, government, and industrial institutions in Europe, Asia and the Americas was organized by the Jülich Centre for Neutron Science of the Forschungszentrum Jülich. The PNCMI-2016 continuoued the successful previous conferences in this series covering the latest condensed matter investigations using polarised neutrons and state-of-the-art methodologies, from effective polarization of neutron beams to wide-angle polarization analysis, as well as applications for novel instrumentation and experiments, with emphasis on prospects for new science and new instrument concepts. The conference program included invited and contributed oral presentations and posters which demonstrated the activities using polarized neutrons all over the world and showed the deep interest in developing the topic. The presentations tackled all area of science including multiferroic and chirality, strongly correlated electron systems, superconductors, frustrated and disordered systems, magnetic nanomaterials, thin films and multilayers, soft matter and biology, imaging, as well as further developments in polarized neutron techniques and methods, including nuclear polarisation, Larmor techniques and depolarisation methods.. We would like to thank all speakers for their presentations and all attendees for their participation. We would also like to gratefully acknowledge the financial support by J-PARC and AIRBUS DS as Premium Sponsors and Swiss Neutronics, ISIS, LLB, PSI and Mirrotron as Standard Sponsors of this conference. The next PNCMI will take place in Great Britain in 2018 and will be organized by ISIS. Alexander Ioffe (Conference Chair) Thomas Gutberlet (Conference Secretary) (paper)
Energy Technology Data Exchange (ETDEWEB)
Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov
2007-10-11
Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.
Soft condensed matter approach to cooking of meat
Sman, van der R.G.M.
2007-01-01
We have viewed cooking meat from the perspective of soft condensed physics and posed that the moisture transport during cooking can be described by Flory-Rehner theory of swelling/shrinking polymer gels. This theory contains the essential physics to describe the transport of liquid moisture due to
Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces
Tratnik, H; Hilleret, Noël
2005-01-01
In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which inÂ°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly inÂ°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can aÂ®ect the operation of the accelerator by modifying th...
Understanding soft condensed matter via modeling and computation
Shi, An-Chang
2011-01-01
All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.
One dimensional Bosons: From Condensed Matter Systems to Ultracold Gases
Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M.
2011-01-01
The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium ...
On the existence of combined condensation of neutral and charged pions in neutron matter
International Nuclear Information System (INIS)
Muto, Takumi; Tatsumi, Toshitaka
1987-01-01
Combined condensation of neutral and charged pions at high-density neutron matter is studied in an approach based on the chiral symmetry. Energy density in the combined π 0 -π c condensed phase to be considered as most energetically favored is derived in a realistic calculation, where we take into account the isobar Δ (1232) degrees of freedom, baryon-baryon short-range correlations described in terms of the Landau-Migdal parameter g', and form factors in the π-baryon vertex. Characteristic features of this phase are discussed in comparison with those of the pure π 0 or the pure π c condensation. The combined π 0 -π c condensed phase sets in at baryon density (3 ∼ 5) times the nuclear density ρ 0 depending on g' after the appearance of the pure π c condensed phase. (author)
Bright matter wave solitons and their collision in Bose-Einstein condensates
International Nuclear Information System (INIS)
Radha, R.; Ramesh Kumar, V.
2007-01-01
We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates
The research of condensed matter physics by using intense proton accelerator
International Nuclear Information System (INIS)
Endoh, Yasuo
1990-01-01
The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)
International Nuclear Information System (INIS)
Neklyudov, I.M.
2006-01-01
The main topics of this conference deal with: fundamental base of superconductivity; superconductors with high critical parameters and applied superconductivity; quantum phenomena in condensed media; physics of strength and plasticity; electronic and magnetic properties of metals
Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII
2006-01-01
This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.
Noise study in condensed matter physics-Towards extension to surrounding fields
International Nuclear Information System (INIS)
Maeda, Atsutaka
2006-01-01
I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe
Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.
2001-07-01
This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.
Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit
2001-01-01
This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10 14 n cm -2 s 1 which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided
Energy Technology Data Exchange (ETDEWEB)
Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences
2015-02-02
On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Swarts, C.A.
1979-01-01
Chapter I: Here the results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are (I) the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, (II) the pseudopotential method, (III) Hartree-Fock theory as evaluated by Kennedy and Manson, and (IV) Amusia's Random Phase Approximation with Exchange (RPAE). It is shown that the local density theories, although simple, generally fail to produce reliable cross section; the more complicated Hartree-Fock method is no more reliable; the a priori RPAE method is most reliable, but tedious; and the phenomenological pseudopotential method offers a good combination of reliability and simplicity. The muffin-tin approximation, widely used in molecular and condensed matter physics, is examined and found to be adequate. Chapter II: Extended Hueckel theory is applied to GaAs, GaP and to the nitrogen isoelectronic trap in GaAs and GaP. The computed perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. Chapter III: By means of model calculations for an independent electron metal, we obtain exact lineshapes for the photon absorption, emission and photoemission spectra of deep core states. We find in each case an X-ray edge anomaly as pedicted by Nozieres and De Dominicis. Sumrules are used as a general check on the calculations and to explain the deviations of the exact theory from the exciton theory away from threshold
First-principles Theory of Magnetic Multipoles in Condensed Matter Systems
Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.
2018-04-01
The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.
Radial oscillations of strange quark stars admixed with condensed dark matter
Panotopoulos, G.; Lopes, Ilídio
2017-10-01
We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.
ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists
Morandi, G; Lu, Y
1995-01-01
This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.
4. International conference on materials science and condensed matter physics. Abstracts
International Nuclear Information System (INIS)
2008-09-01
This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems
DEFF Research Database (Denmark)
Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak
2012-01-01
We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...
Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting
International Nuclear Information System (INIS)
Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.
1994-01-01
The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately
Elements of a dialogue between nonlinear models in condensed matter and biophysics
International Nuclear Information System (INIS)
Bishop, A.R.; Lomdahl, P.S.; Kerr, W.C.
1985-01-01
We indicate some of the emerging thematic connections between strongly nonlinear effects in condensed matter and biological materials. These are illustrated with model studies of: (1) structural phase transitions in anisotropic lattices; and (2) finite temperature effects on self-trapped states in vibron-phonon models of α-helix proteins. 13 refs., 8 figs
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
DEFF Research Database (Denmark)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...
The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect
Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim
2008-01-01
The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
Quantum electrodynamics of resonant energy transfer in condensed matter
International Nuclear Information System (INIS)
Juzeliunas, G.; Andrews, D.L.
1994-01-01
A microscopic many-body QED theory for dipole-dipole resonance energy transfer has been developed from first principles. A distinctive feature of the theory is full incorporation of the dielectric effects of the supporting medium. The approach employs the concept of bath polaritons mediating the energy transfer. The transfer rate is derived in terms of the Green's operator corresponding to the polariton matrix Hamiltonian. In contrast to the more common lossless polariton models, the present theory accommodates an arbitrary number of energy levels for each molecule of the medium. This includes, a case of special interest, where the excitation energy spectrum of the bath molecules is sufficiently dense that it can be treated as a quasicontinuum in the energy region in question, as in the condensed phase normally results from homogeneous and inhomogeneous line broadening. In such a situation, the photon ''dressed'' by the medium polarization (the polariton) acquires a finite lifetime, the role of the dissipative subsystem being played by bath molecules. It is this which leads to the appearance of the exponential decay factor in the microscopically derived pair transfer rates. Accordingly, the problem associated with potentially infinite total ensemble rates, due to the divergent R -2 contribution, is solved from first principles. In addition, the medium modifies the distance dependence of the energy transfer function A(R) and also produces extra modifications due to screening contributions and local field effects. The formalism addresses cases where the surrounding medium is either absorbing or lossless over the range of energies transferred. In the latter case the exponential factor does not appear and the dielectric medium effect in the near zone reduces to that which is familiar from the theory of radiationless (Foerster) energy transfer
Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons
Energy Technology Data Exchange (ETDEWEB)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.
2000-07-01
This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.
Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons
International Nuclear Information System (INIS)
Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit
2000-01-01
This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided
Applications of Density Functional Theory in Soft Condensed Matter
Löwen, Hartmut
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.
Femtosecond X-ray scattering in condensed matter
Energy Technology Data Exchange (ETDEWEB)
Korff Schmising, Clemens von
2008-11-24
This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)
Femtosecond X-ray scattering in condensed matter
International Nuclear Information System (INIS)
Korff Schmising, Clemens von
2008-01-01
This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)
Polyacetylene: a real material linking condensed matter and field theory
International Nuclear Information System (INIS)
Campbell, D.K.
1983-01-01
A subject at the interface between field theory and statistical mechanics is polyacetylene ((CH) /SUB x/ ), a quasi-one-dimensional organic polymer. Recent theoretical studies are reviewed in this paper. Background chemistry determines the schematic for trans (CH) /SUB x/ . A trans (CH) /SUB x/ chain is modelled microscopically by describing the coupled motions of the lattice backbone of C-H units and the single pi-orbital electron per carbon that determines where the double bond goes. Continuum theory is focused on here. Kink and polaron nonlinear excitations, fractionally charged solitons, and confinement of kinklike solutions in cis (CH) /SUB x/ are then studied. Finally, it is shown that the continuum electron-phonon equations for trans-(CH) /SUB x/ are identical to the static, semi-classical equations of the N=2 Gross-Neveu model. Another such field theory connection involves an alternate description of kink solutons in trans (CH) /SUB x/ . The possible existence of fractionally charged solutons is touched upon in conclusion
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
Gauge/gravity duality applied to condensed matter systems
International Nuclear Information System (INIS)
Ammon, Martin Matthias
2010-01-01
developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.
Gauge/gravity duality applied to condensed matter systems
Energy Technology Data Exchange (ETDEWEB)
Ammon, Martin Matthias
2010-07-07
developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.
Inelastic scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1990-10-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
Gamma scattering in condensed matter with high intensity Moessbauer radiation
International Nuclear Information System (INIS)
1990-01-01
We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR
Durakiewicz, Tomasz
The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666
International Nuclear Information System (INIS)
Bisanti, Paola; Lovesey, S.W.
1987-05-01
The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)
Condensed matter physics of biomolecule systems in a differential geometric framework
DEFF Research Database (Denmark)
Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen
2007-01-01
In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....
Condensed matter physics of biomolecule systems in a differential geometric framework
DEFF Research Database (Denmark)
Bohr, H.; Ipsen, John Hjort; Markvorsen, S
2007-01-01
In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....
DEFF Research Database (Denmark)
2001-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...
Proceedings of the 19th International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2013-01-01
The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.
Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Yong Wenmei; Xue Jukui
2008-01-01
The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained
Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale
International Nuclear Information System (INIS)
Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela
2015-01-01
The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm
Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.
2012-12-01
We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors
The impact parameter dependence of swift electron-matter interactions
International Nuclear Information System (INIS)
Ritchie, R.H.
1988-01-01
In quantal collision theories, momentum and energy are usually taken to be good quantal variables. Classical collision theory, on the other hand, uses position and time to describe interactions between a probe and a target. In modern physics one may wish to express quantal theories in terms of spacelike variables. For example, experiments are now common in which one measures, by means of a narrowly focused beam of swift electrons, the distribution in energy of losses experienced in a very small region of space. Also, in experiments with channeled ions, and in microdosimetry, one is interested in the spatial coherence of unlocalized excitations created by swift ions and electrons, and their ultimate localization through transfer of energy to, e.g., single-particle excitations. In this lecture the author describes work, done in part in collaboration with Professor Howie, on some aspects of the spatial dependence of inelastic interactions between a charged particle and a condensed matter target. 6 refs., 1 fig
Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter
Shock Waves in Condensed Matter
1986-01-01
The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...
Proceedings of the 18th International Conference on Applied Physics of Condensed Matter
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2012-01-01
The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.
DEFF Research Database (Denmark)
2000-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...
International Nuclear Information System (INIS)
Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)
1994-01-01
The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs
Prieto, P.
2009-05-01
We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This
Neutron beams for the study of condensed matter: a view of the first half-century
International Nuclear Information System (INIS)
Bacon, G.E.
1982-01-01
Neutron diffraction was first demonstrated in 1936 but awaited the development of the nuclear reactor before becoming a practical technique for the study of condensed matter. Neutrons have unique advantages for the location of hydrogen atoms, the recognition of magnetic architecture and the study of crystal vibrations and atomic and molecular motions. The techniques available exploit the optical properties of neutrons over a wavelength range from 0.5 to 500 A. Progress has gone hand in hand with a steady increase of reactor flux over 50 years but future improvements may depend on pulsed linear accelerators as the source of neutrons. (author)
Kim, Yeong E.; Zubarev, Alexander L.
2006-02-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.
Energy Technology Data Exchange (ETDEWEB)
Yeong, E. Kim; Zubarev, Alexander L. [Purdue Nuclear and Many-Body Theory Group (PNMBTG) Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)
2006-07-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + {sup 6}Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
International Nuclear Information System (INIS)
Yeong, E. Kim; Zubarev, Alexander L.
2006-01-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in some regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deuteron-lithium (d + Li) LENR, the result indicates that (d + 6 Li) reactions may dominate over (d + d) reactions in LENR experiments. (authors)
Inhomogeneous condensates in dilute nuclear matter and BCS-BEC crossovers
International Nuclear Information System (INIS)
Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W; Röpke, Gerd
2014-01-01
We report on recent progress in understanding pairing phenomena in low-density nuclear matter at small and moderate isospin asymmetry. A rich phase diagram has been found comprising various superfluid phases that include a homogeneous and phase-separated BEC phase of deuterons at low density and a homogeneous BCS phase, an inhomogeneous LOFF phase, and a phase-separated BCS phase at higher densities. The transition from the BEC phases to the BCS phases is characterized in terms of the evolution, from strong to weak coupling, of the condensate wavefunction and the second moment of its density distribution in r-space. We briefly discuss approaches to higher-order clustering in low-density nuclear matter.
Limitations of the condensed history method for low-energy electrons
International Nuclear Information System (INIS)
Martin, W.R.; Ballinger, C.T.; Rathkopf, J.A.
1991-01-01
A systematic evaluation of the conventional, condensed history electron transport methodology has been performed through comparisons with more accurate single-scatter Monte Carlo calculations. These comparisons highlight the inaccuracies associated with the condensed history method and indicate its range of validity. The condensed history method is used in codes such as MCNP4, SANDYL, ETRAN, ITS, and EGS and requires a number of restrictive assumptions about the scattering characteristics to make tractable the analytical solution to the infinite-medium transport equation. Distributions describing electron characteristics after multiple collisions (multiscatter distributions) are constructed from such solutions and serve as the heart of the condensed history codes. A two-level approach is taken to quantify the errors inherent in condensed history. First, conventional condensed history multiscattering distributions in energy and angle are compared directly with analogous distributions generated with a single-scatter Monte Carlo code. This recently developed code directly simulates individual electron interactions. Second, the conventional distributions are replaced in the condensed history code by distributions constructed via a single-scatter Monte Carlo simulation
History of the APS Topical Group on Shock Compression of Condensed Matter
International Nuclear Information System (INIS)
Forbes, J W
2001-01-01
In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years
Condensation for non-relativistic matter in Hořava–Lifshitz gravity
Directory of Open Access Journals (Sweden)
Jiliang Jing
2015-10-01
Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.
International Nuclear Information System (INIS)
2010-09-01
This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for
Many-Body Quantum Theory in Condensed Matter Physics-An Introduction
International Nuclear Information System (INIS)
Logan, D E
2005-01-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction
Logan, D. E.
2005-02-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model
Directory of Open Access Journals (Sweden)
Jae-Weon Lee
2016-05-01
Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.
Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University
1985-01-01
Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...
International Nuclear Information System (INIS)
1977-01-01
An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2013-07-01
Full Text Available The K-corona, a signiﬁcant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of ﬂares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.
Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications
Directory of Open Access Journals (Sweden)
Mark Melnykowycz
2016-03-01
Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.
Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F
2017-01-01
Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...
International Nuclear Information System (INIS)
Lebech, B.
2001-03-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Lebech, B [ed.
2000-02-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
3-sphere fibrations: a tool for analyzing twisted materials in condensed matter
International Nuclear Information System (INIS)
Sadoc, J F; Charvolin, J
2009-01-01
Chiral molecules, when densely packed in soft condensed matter or biological materials, build organizations which are most often spontaneously twisted. The crystals of 'blue' phases formed by small mesogenic molecules demonstrate the structural importance of such a twist or torsion, and its presence was also recently observed in finite toroidal aggregates formed by long DNA molecules. The formation of these organizations is driven by the fact that compactness, which tends to align the molecules, enters into conflict with torsion, which tends to disrupt this alignment. This conflict of topological nature, or frustration, arises because of the flatness of the Euclidean space, but does not exist in the curved space of the 3-sphere where particular lines, its fibres, can be drawn which are parallel and nevertheless twisted. As these fibrations conciliate compactness and torsion, they can be used as geometrical templates for the analysis of organizations in the Euclidean space. We describe these fibrations, with a particular emphasis on their torsion.
Roy, S. B.; Myneni, G. R.
2015-12-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
International Nuclear Information System (INIS)
Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.
1998-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)
2015-12-04
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter
Directory of Open Access Journals (Sweden)
P.S. Bhupal Dev
2017-10-01
Full Text Available There exists a class of ultralight Dark Matter (DM models which could give rise to a Bose–Einstein condensate (BEC in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.
International Nuclear Information System (INIS)
Roy, S. B.; Myneni, G. R.
2015-01-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values
International Nuclear Information System (INIS)
Lebech, B.
2000-02-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
Energy Technology Data Exchange (ETDEWEB)
Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.
1999-04-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.
Energy Technology Data Exchange (ETDEWEB)
Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.
1998-01-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.
Measurement of Viscoelastic Properties of Condensed Matter using Magnetic Resonance Elastography
Gruwel, Marco L. H.; Latta, Peter; Matwiy, Brendon; Sboto-Frankenstein, Uta; Gervai, Patricia; Tomanek, Boguslaw
2010-01-01
Magnetic resonance elastography (MRE) is a phase contrast technique that provides a non-invasive means of evaluating the viscoelastic properties of soft condensed matter. This has a profound bio-medical significance as it allows for the virtual palpation of areas of the body usually not accessible to the hands of a medical practitioner, such as the brain. Applications of MRE are not restricted to bio-medical applications, however, the viscoelastic properties of prepackaged food products can also non-invasively be determined. Here we describe the design and use of a modular MRE acoustic actuator that can be used for experiments ranging from the human brain to pre-packaged food products. The unique feature of the used actuator design is its simplicity and flexibility, which allows easy reconfiguration.
International Nuclear Information System (INIS)
Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.
1999-04-01
The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)
International Nuclear Information System (INIS)
Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.
1993-01-01
This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties
Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li
2013-01-01
Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff
Energy Technology Data Exchange (ETDEWEB)
Nicolis, Alberto; Penco, Riccardo [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Piazza, Federico [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Paris Center for Cosmological Physics and Laboratoire APC,Université Paris 7, 75205 Paris (France); CPT, Aix Marseille Université,UMR 7332, 13288 Marseille (France); Rattazzi, Riccardo [Institut de Théorie des Phénomènes Physiques,EPFL Lausanne (Switzerland)
2015-06-23
We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the “galileids”, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E{sup 2}, E{sup 4}, and E{sup 6}. Similarly the energy momentum tensor in the ground state is “trivial' for framids (ρ+p=0), normal for solids (ρ+p>0) and even inhomogenous for galileids.
Confinement of quasi-particles in a condensed matter system: an inelastic neutron scattering study
International Nuclear Information System (INIS)
Bera, A.K.
2016-01-01
The confinement of quasi particles, a well-known phenomenon in particle physics, can also be realized in a condensed matter system. In particle physics, baryons and mesons are produced by the confinement of quarks, where quarks are bound together by a strong interaction (gauge field) that grows stronger with increasing distance and, therefore, the quarks never exist as individual particles. The condensed matter analogue, confinement of magnetic quasiparticles (spinons) can be illustrated in quasi-one-dimensional spin-1/2 chains. We demonstrate experimentally such spinon confinement in the weakly coupled spin-1/2 XXZ antiferromagnetic chain compound SrCo_2V_2O_8 by single crystal inelastic neutron scattering. The compound SrCo_2V_2O_8 belongs to the general family SrM_2V_2O_8 (M = Ni, Co and Mn), having four-fold screw chains of edge sharing MO_6 octahedra along the crystallographic c axis. In the pure 1D magnetic state of SrCo_2V_2O_8 (above the 3D magnetic ordering temperature T_N =5 K) two spinons (excitations of individual chains) are created by a spin flip, and those spinons propagate independently by subsequent spin flips without any cost of energy. However, below the T_N, two spinons are bound together by weak interchain interactions since the separation between them frustrates the interchain interactions. The interchain interactions play the role of an attractive potential (equivalent to the gauge field), proportional to the distance between spinons, and result in confinement of spinons into bound pairs. (author)
Energy Technology Data Exchange (ETDEWEB)
Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)
2016-11-15
Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.
International Nuclear Information System (INIS)
Hu, Bambi.
1988-01-01
This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report
International Nuclear Information System (INIS)
Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.
1988-04-01
Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry
Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves
Directory of Open Access Journals (Sweden)
M. Dwornik
2017-01-01
Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.
Electron-stimulated desorption from condensed branched alkanes
International Nuclear Information System (INIS)
Kelber, J.A.; Knotek, M.L.
1982-01-01
Desorption of H + , CH 3+ , H 2+ , and D + have been measured as a function of electron excitation energy for solid neopentane, tetramethylsilane and two deuterated isomers of isobutane. The evidence shows that C-C (or Si-C) and C-H bonds are broken by electronic excitations localized on methyl groups, in contrast to CH 3+ production in gas-phase neopentane, and that these excitations are the final states of decay processes initiated by creation of a hole in the C2s level, or, in tetramethylsilane, the C2s/Si3s level. This is in accord with other evidence which shows that localized multi-valence hole states result in C-H, C-C, Si-C and Si-H dissociation, and that such states may be excited either directly or by shakeup, by decay from a C2s hole, or by decay for a C1s core hole. It is apparent then, that dissociation and desorption of ions from covalent materials is a multi (electron) hole mechanism, and that the means of localizing the excitation energy in such systems involves multi-hole correlation
Large scale electronic structure calculations in the study of the condensed phase
van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.
2006-01-01
We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to
Complex composition film condensation in the sluice device of an electron microscope
International Nuclear Information System (INIS)
Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.
1994-01-01
Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films
International Nuclear Information System (INIS)
Gonzalez, J. A; Guzman, F. S.
2011-01-01
In order to explore nonlinear effects on the distribution of matter during collisions within the Bose-Einstein condensate (BEC) dark matter model driven by the Schroedinger-Poisson system of equations, we study the head-on collision of structures and focus on the interference pattern formation in the density of matter during the collision process. We explore the possibility that the collision of two structures of fluid matter modeled with an ideal gas equation of state also forms interference patterns and found a negative result. Given that a fluid is the most common flavor of dark matter models, we conclude that one fingerprint of the BEC dark matter model is the pattern formation in the density during a collision of structures.
International Nuclear Information System (INIS)
Vajda, J.; Jamnicky, I.
2015-01-01
The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.
Ferry, David
2009-01-01
It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation
The Art of the Motorcycle and the History of Art (and Condensed Matter Physics)
Falco, Charles
Many topics in physics are such that they are difficult to present in ways that the general public finds engaging. In this talk I will discuss two topics I have worked on, directly related to my research in optical and condensed matter physics, that continue to have widespread appeal. In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle and thus produced the world's first motorcycle. The 145 years since the Michaux-Perreaux have resulted in standard production motorcycles incorporating such materials as carbon-fiber composites, maraging steels, and ''exotic'' alloys of magnesium, titanium and aluminum that can exceed 190 mph straight from the show room floor. As a result of 'The Art of the Motorcycle' exhibition I co-curated at the Solomon R. Guggenheim Museum the public has learned the evolution of motorcycles is interwoven with developments in materials physics. In a second topic, discoveries I made with the renowned artist David Hockney convincingly demonstrated optical instruments were in use - by artists, not scientists - nearly 200 years earlier than commonly thought possible, and for the first time account for the remarkable transformation in the reality of portraits that occurred early in the 15th century. By learning a few principles of geometrical optics the public gains insight into the working process of artists such as van Eyck, Bellini and Caravaggio. Acknowledgement: Portions of this work done in collaboration with David Hockney.
Directory of Open Access Journals (Sweden)
S. L. Johnson
2017-11-01
Full Text Available We present a non-comprehensive review of some representative experimental studies in crystalline condensed matter systems where the effects of intense ultrashort light pulses are probed using x-ray diffraction and photoelectron spectroscopy. On an ultrafast (sub-picosecond time scale, conventional concepts derived from the assumption of thermodynamic equilibrium must often be modified in order to adequately describe the time-dependent changes in material properties. There are several commonly adopted approaches to this modification, appropriate in different experimental circumstances. One approach is to treat the material as a collection of quasi-thermal subsystems in thermal contact with each other in the so-called “N-temperature” models. On the other extreme, one can also treat the time-dependent changes as fully coherent dynamics of a sometimes complex network of excitations. Here, we present examples of experiments that fall into each of these categories, as well as experiments that partake of both models. We conclude with a discussion of the limitations and future potential of these concepts.
Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang
Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
Realization of a tilted reference wave for electron holography by means of a condenser biprism
Energy Technology Data Exchange (ETDEWEB)
Röder, Falk, E-mail: Falk.Roeder@tu-dresden.de [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Houdellier, Florent; Denneulin, Thibaud; Snoeck, Etienne; Hÿtch, Martin [CEMES-CNRS and Université de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)
2016-02-15
As proposed recently, a tilted reference wave in off-axis electron holography is expected to be useful for aberration measurement and correction. Furthermore, in dark-field electron holography, it is considered to replace the reference wave, which is conventionally diffracted in an unstrained object area, by a well-defined object-independent reference wave. Here, we first realize a tilted reference wave by employing a biprism placed in the condenser system above three condenser lenses producing a relative tilt magnitude up to 20/nm at the object plane (300 kV). Paraxial ray-tracing predicts condenser settings for a parallel illumination at the object plane, where only one half of the round illumination disc is tilted relative to the optical axis without displacement. Holographic measurements verify the kink-like phase modulation of the incident beam and return the interference fringe contrast as a function of the relative tilt between both parts of the illumination. Contrast transfer theory including condenser aberrations and biprism instabilities was applied to explain the fringe contrast measurement. A first dark-field hologram with a tilted – object-free – reference wave was acquired and reconstructed. A new application for bright/dark-field imaging is presented.
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2004-01-01
Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate
The generation of high-power charge particle micro beams and its interaction with condensed matter
International Nuclear Information System (INIS)
Vogel, N.; Skvortsov, V.A.
1996-01-01
As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs
Impact of condensed matter theories on material studies at high pressures
International Nuclear Information System (INIS)
Godwal, B.K.; Rao, R.S.; Sikka, S.K.; Chidambaram, R.
1997-01-01
We are vigorously pursuing a program to study the behaviour of materials under pressure for the last three decades. Theoretical component has been an important part of our activity. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperature and matter density. With the advent of diamond anvil cell device and improvements of the diagnostic technique in dynamic methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Many times these have led to intense experimental studies and sometimes helped in resolving the controversies. The introduction of linear methods in electron band theory and availability of supercomputers and parallel processors have given boost to the computational physics, and the efforts are now being extended more and more to the ab-initio molecular dynamics simulations. These simulations have a promise to avoid the tedious search for structural stability by trail and error in phase transition studies under pressure or temperature. The current status of our efforts in this direction will be listed with an illustration on liquid sulphur. Our past work on electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on other compounds (AuIn 2 , YNi 2 B 2 C), which have also been found to display electronic topological transition under pressure, will be discussed. (author)
International Nuclear Information System (INIS)
Doddato, Francesca; McDonald, John
2011-01-01
We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Φ when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m 3/2 ≈ 2GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Φ dependence of the SUSY breaking terms, we numerically solve for the evolution of Φ and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of gravitino dark matter
Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara
2010-03-01
This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and
PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter
Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.
2014-05-01
The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG
Energy Technology Data Exchange (ETDEWEB)
Borchardt, Julia
2017-02-07
By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Augustinský, Pavel
2014-01-01
Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud
Baglin, V
2004-01-01
In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been done with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications for the LHC design and operation are discussed.
International Nuclear Information System (INIS)
2014-01-01
This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately
Electronically excited and ionized states in condensed phase: Theory and applications
Sadybekov, Arman
Predictive modeling of chemical processes in silico is a goal of XXI century. While robust and accurate methods exist for ground-state properties, reliable methods for excited states are still lacking and require further development. Electronically exited states are formed by interactions of matter with light and are responsible for key processes in solar energy harvesting, vision, artificial sensors, and photovoltaic applications. The greatest challenge to overcome on our way to a quantitative description of light-induced processes is accurate inclusion of the effect of the environment on excited states. All above mentioned processes occur in solution or solid state. Yet, there are few methodologies to study excited states in condensed phase. Application of highly accurate and robust methods, such as equation-of-motion coupled-cluster theory EOM-CC, is limited by a high computational cost and scaling precluding full quantum mechanical treatment of the entire system. In this thesis we present successful application of the EOM-CC family of methods to studies of excited states in liquid phase and build hierarchy of models for inclusion of the solvent effects. In the first part of the thesis we show that a simple gasphase model is sufficient to quantitatively analyze excited states in liquid benzene, while the latter part emphasizes the importance of explicit treatment of the solvent molecules in the case of glycine in water solution. In chapter 2, we use a simple dimer model to describe exciton formation in liquid and solid benzene. We show that sampling of dimer structures extracted from the liquid benzene is sufficient to correctly predict exited-state properties of the liquid. Our calculations explain experimentally observed features, which helped to understand the mechanism of the excimer formation in liquid benzene. Furthermore, we shed light on the difference between dimer configurations in the first solvation shell of liquid benzene and in unit cell of solid
International Nuclear Information System (INIS)
Huo, Pengfei; Miller, Thomas F. III; Coker, David F.
2013-01-01
A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime
Energy Technology Data Exchange (ETDEWEB)
Kolomeitsev, E.E. [Matej Bel University, Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), Moscow (Russian Federation)
2016-12-15
The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f{sub 0} in the particle-hole channel. For f{sub 0} > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 < f{sub 0} < 0 there are only damped excitations, and for f{sub 0} < -1 the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f{sub 0}(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f{sub 0} > -1. (orig.)
Laser control of electron matter waves
Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.
2016-01-01
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted
Investigation of static and dynamic properties of condensed matter by using neutron scattering
International Nuclear Information System (INIS)
Davidovic, M.
1997-01-01
Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)
New analytic and computational techniques for finite temperature condensed matter systems
International Nuclear Information System (INIS)
Arias, T.A.
1992-01-01
By employing a special summation technique we find that the breakdown of the Meissner-Ochsenfeld effect in the three dimensional Bose gas as the applied field passes;through its critical value is an entropy driven weakly first order transition, rather than the second order transition usually ascribed to the system. The transition is second order at the usual Bose condensation temperature T c as well as at T = O, with a line o first order transition connecting these critical points. The first order transitions make the Bose gas resemble familiar superconductors, and a Landau-Ginzburg analysis indicates that the Bose gas is always a type I superconductor. We employ the recently introduce conjugate-gradient methods for minimization of the electronic energy functional to perform an extensive ab initio study of the Σ = 5 tilt [310] grain boundary in germanium. We find that the boundary reliably reconstructs to the tetrahedrally bonded network observed in HREM experiments without the proliferation of false local minima observed in similar twist boundaries. The reduced density of bonds crossing the grain boundary plan leads us to conjecture that the boundary may be a preferred fracture interface. We then combine these conjugate-gradient methods with a new technique for generating trail wavefunctions to produce an efficient ab initio molecular dynamics scheme that is that is at least two orders of magnitude more accurate than previous schemes and thus allows accurate calculation of dynamic correlation functions while maintaining tolerable energy conservation for microcanonical averages of those correlation function over picosecond time scales. We present two advances which greatly enhance the efficiency of our new ab initio molecular dynamics technique. We introduce a class of generalizations of traditional Fermionic energy functionals which allow us to lift the orthonormality constraints on the single particle orbitals and thus speed convergence
High energy synchrotron radiation. A new probe for condensed matter research
International Nuclear Information System (INIS)
Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von
1994-01-01
The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)
Chen, Sow-Hsin; Baglioni, Piero
2006-09-01
This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of
International Nuclear Information System (INIS)
Schurtenberger, P.; Cavaco, C.
1992-01-01
''Complex fluids'' or ''soft condensed matter'' have recently attracted considerable attention both experimentally as well as theoretically. The hypothesis of a water-induced formation of flexible cylindrical micelles and the existence of entanglement networks was largely based on ''low-resolution'' light scattering and rheological measurements and analogies to classical polymer theory. In order to directly confirm this picture and verify the postulated analogy between the structural properties of polymer chains and lecithin reverse micelles we now used a combination of static light scattering and small angle neutron scattering. (author) 2 figs., 3 refs
International Nuclear Information System (INIS)
1996-01-01
Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de
International Nuclear Information System (INIS)
Khonik, V A
2017-01-01
A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)
International Nuclear Information System (INIS)
Ryu, C; Henderson, K C; Boshier, M G
2014-01-01
Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)
Erosion of volatile elemental condensed gases by keV electron and light-ion bombardment
International Nuclear Information System (INIS)
Schou, J.
1991-11-01
Erosion of the most volatile elemental gases by keV electron and light-ion bombardment has been studied at the experimental setup at Risoe. The present work includes frozen neon, argon, krypton, nitrogen, oxygen and three hydrogen isotopes, deuterium, hydrogen deuteride and hydrogen. The yield of these condensed gases has been measured as a function of film thickness and primary energy for almost all combinations of primary particles (1-3 keV electrons, 5-10 keV hydrogen- and helium ions) and ices. These and other existing results show that there are substantial common features for the sputtering of frozen elemental gases. Within the two groups, the solid rare gases and the solid molecular gases, the similarity is striking. The hydrogenic solids deviate in some respects from the other elements. The processes that liberate kinetic energy for the particle ejection in sputtering are characteristic of the specific gas. (au) 3 tabs., 12 ills., 159 refs
Terrestrial effects on dark matter-electron scattering experiments
DEFF Research Database (Denmark)
Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.
2017-01-01
A well-studied possibility is that dark matter may reside in a sector secluded from the Standard Model, except for the so-called photon portal: kinetic mixing between the ordinary and dark photons. Such interactions can be probed in dark matter direct detection experiments, and new experimental...... techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...... stopping on dark photon models of dark matter, and find that they significantly reduce the sensitivity of XENON10 and DAMIC. In particular we find that XENON10 only excludes masses in the range (5-3000) MeV while DAMIC only probes (20-50) MeV. Their corresponding cross section sensitivity is reduced...
International Nuclear Information System (INIS)
Ne, F.; Zemb, T.
1998-01-01
This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)
International Nuclear Information System (INIS)
Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka
2016-02-01
The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)
Excess electron transport and delayed muonium formation in condensed rare gases
International Nuclear Information System (INIS)
Eshchenko, D.G.; Storchak, V.G.; Brewer, J.H.; Morris, G.D.; Cottrell, S.P.; Cox, S.F.J.
2002-01-01
Experimental studies of excess electron transport in solid and liquid phases of Ne and Ar are presented and compared with those for He. The technique of muon spin relaxation in frequently reversed electric fields was used to study the phenomenon of delayed muonium formation, whereby excess electrons liberated in the μ + ionization track converge upon the positive muons and form μ + e - atoms. This process is shown to be crucially dependent upon the electron's interaction with its environment (i.e., whether it occupies the conduction band or becomes localized) and upon its mobility in these states. The characteristic lengths involved are 10 -6 to 10 -4 cm; the characteristic times range from nanoseconds to tens of microseconds. Such a microscopic length scale sometimes enables the electron to spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The end-of-track processes are compared in (i) liquid and solid helium (where the electron is known to be localized in a bubble in the liquid phase and is thought to behave in a similar manner in the solid); (ii) liquid and solid neon (where both localized and bandlike electrons are found in the liquid phase while most are delocalized in the solid); and (iii) liquid and solid argon (where most electrons are bandlike in both phases). This scaling from light to heavy rare gases enables us to demonstrate new features of excess electron localization on the microscopic scale and provides insight into the structure of the end of the muon track in condensed rare gases
Polarization and magnetization of electronic matter
International Nuclear Information System (INIS)
Beck, G.
1979-01-01
The behaviour of a system of spin-electrons in a weak external electric or magnetic field is studied. Already in the case of a single free electron classical and quantum theory lead to different results concerning the Lorentz transformation of the magnetic moment (Thomas factor of spin-orbit coupling). The separation of the current into a convection and a spin part can be performed in a covariant way. While the convection current is responsible for the diamagnetism of a system, the spin current accounts for paramagnetic behaviour. After a Lorentz transformation of a diamagnetic system paraelectric components appear, while a paramagnetic system, after rransformation, exhibits dia-electric properties, epsilon 1) after a Lorentz transformation shows diamagnetic components, while a diaelectric system would acquire paramagnetic behaviour. Quantum electrodynamics leads to the result, that Dirac's electron vacuum behaves like a paramagnetic medium. It follows from this result, that the electron vacuum in a weak external electric field represents a diaelectric system. (Author) [pt
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Miller, D.L.
1979-01-01
KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron--electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic pseudopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron--electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Miller, D.L.
1979-01-01
KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron-electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic psuedopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron-electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical psuedopotentials. Nitrogen impurity levles in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom
Study of the Condensed Matter Dynamics by the Deep Inelastic Neutron Technique
International Nuclear Information System (INIS)
Blostein, Juan Jeronimo
2004-01-01
physical phenomena.For the special case of light water/ heavy water mixtures we present calculations that reproduce the behavior of the reported anomalies on the hydrogen-deuterium neutron cross section rate.We present total cross section measurements of such liquid mixtures, in total agreement with the expected values, whereby we conclude that the purported anomalous cross sections (reported after employing the convolution approximation in the eVS data treatment) do not exist.The absence of anomalies in the total cross sections of those liquid mixtures provides a clear evidence of the invalidity of the convolution formalism usually employed in the eVS data treatment. In view of the main motivation that originated the eVS technique, and the clear invalidity of the convolution formalism, we present for the first time the exact formalism to obtain the nuclear impulse distributions in condensed matter systems, starting form the experimentally observed intensity profiles.Such formalism, valid for an arbitrary impulse distribution, does not require the harmonic potential hypothesis, and involves an integration kernel that depends analytically only on the instrumental characteristics, and is independent of the sample characteristics. Our work, besides assessing the magnitude of the inaccuracy of the convolution formalism, establishes the basis for a correct treatment of the experimental data obtained with this technique.On the experimental side, we implemented successfully the eVS technique in the linear accelerator pulsed neutron facility at the Bariloche Atomic Center, thus being the second laboratory in the world to employ it regularly.Monte Carlo simulation presented in this thesis, show the importance to adequately select the sample thickness, and to correct by multiple scattering, attenuation and detector efficiency effects, and also to employ the exact formalism.To this end it is necessary to characterize in detail the different elements that compose the experimental
Studies in the electronic structure of matter
International Nuclear Information System (INIS)
Swarts, C.A.
1979-01-01
The results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, the pseudopotential method, Hartree-Fock theory as evaluated by Kennedy and Manson, and Amusia's random phase approximation with exchange (RPAE). Extended Huekel theory is applied to GaAs, GaP, and to the nitrogen isoelectronic trap in GaAs and GaP. The computer perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. By means of model calculations for an independent electron metal, exact lineshapes are obtained for the photon absorption, emission and photoemission spectra of deep core states. 97 references
Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates
International Nuclear Information System (INIS)
He, Y J; Wang, H Z; Malomed, Boris A; Mihalache, Dumitru
2008-01-01
We demonstrate that by spatially modulating the Bessel optical lattice where a Bose-Einstein condensate is loaded, we get tunable rotary orbits of nonlinear lattice modes. We show that the radially expanding or shrinking Bessel lattice can drag the nonlinear localized modes to orbits of either larger or smaller radii and the rotary velocity of nonlinear modes can be changed accordingly. The localized modes can even be transferred to the Bessel lattice core when the localized modes' rotations are stopped. Effects beyond the quasi-particle approximation such as destruction of the nonlinear modes by nonadiabatic dragging are also explored
Quantum Electronic Matter in Two Dimensions
Energy Technology Data Exchange (ETDEWEB)
Eisenstein, James [California Inst. of Technology (CalTech), Pasadena, CA (United States)
2015-01-27
Most often, the electrical properties of a material are described as either "conducting" or "insulating". Copper, everyone knows, is a good conductor. It is the foundation of the electrical infrastructure of the nation. Glass, on the other hand, is an excellent insulator. But do these two words describe all the possibilities? The answer is emphatically no, and the basic subject of the research funded by this grant is aimed at fleshing out a more complete description of the electrical properties of materials. Many people are aware that there are also special materials called superconductors. A superconductor (e.g. aluminum when cooled to very low temperatures) is like a regular conductor except that it conducts electricity with no energy loss at all. Ordinary metals get hot when current flows through them; witness the toaster in your kitchen. In a superconductor something very special is going on: The electrons in the metal don't behave individually as they do in an ordinary conductor. Instead they act collectively. It is this collective aspect that makes superconductors so interesting to physicists. So now we have metals, insulators and superconductors. Is there anything else? We now know the answer is yes. In this research we examine special conducting materials, ones in which the mobile electrons are confined to move on a plane surface (as opposed to motion in all three directions). Examples of such "2D" materials include electrons confined to the interface between two otherwise insulating materials (as in the so-called "semiconductor heterostructures" used here) and the single atomic layer of carbon atoms now known as "graphene". Materials like these are not just museum curiosities; each of the billions of transistors in every smart-phone has a 2D electron system in it. In the work supported by this grant, the focus is on both collective conducting states in semiconductor heterostructures and on the conducting properties of graphene and its few
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division
2016-11-14
These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.
Martins, C J A P
2016-01-01
This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
Directory of Open Access Journals (Sweden)
Robitaille P.-M.
2013-07-01
Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoﬀ’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoﬀ’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.
Dai, Jiayu; Hou, Yong; Yuan, Jianmin
2010-06-18
Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.
Electronic referrals: what matters to the users.
Warren, Jim; Gu, Yulong; Day, Karen; White, Sue; Pollock, Malcolm
2012-01-01
Between September 2010 and May 2011 we evaluated three implementations of electronic referral (eReferral) systems at Hutt Valley, Northland and Canterbury District Health Boards in New Zealand. Qualitative and quantitative data were gathered through project documentation, database records and stakeholder interviews. This paper reports on the user perspectives based on interviews with 78 clinical, management and operational stakeholders in the three regions. Themes that emerge across the regions are compared and synthesised. Interviews focused on pre-planned domains including quality of referral, ease of use and patient safety, but agendas were adapted progressively to elaborate and triangulate on themes emerging from earlier interviews and to clarify indications from analysis of database records. The eReferral users, including general practitioners, specialists and administrative staff, report benefits in the areas of: (1) availability and transparency of referral-related data; (2) work transformation; (3) improved data quality and (4) the convenience of auto-population from the practice management system into the referral forms. eReferral provides enhanced visibility of referral data and status within the limits of the implementation (which only goes to the hospital door in some cases). Users in all projects indicated the desire to further exploit IT to enhance two-way communication between community and hospital. Reduced administrative handling is a clear work transformation benefit with mixed feedback regarding clinical workload impact. Innovations such as GP eReferral triaging teams illustrate the further potential for workflow transformation. Consistent structure in eReferrals, as well as simple legibility, enhances data quality. Efficiency and completeness is provided by auto-population of forms from system data, but opens issues around data accuracy. All three projects highlight the importance of user involvement in design, implementation and refinement. In
Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II
International Nuclear Information System (INIS)
Silver, R.N.
1984-12-01
This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base
Condensed tannins in the diets of primates: a matter of methods?
Rothman, Jessica M; Dusinberre, Kathy; Pell, Alice N
2009-01-01
To understand the ways in which condensed tannins (CT) affect primate diet selection and nutritional status, correct measurements are essential. In the majority of studies of the CT contents of primate foods, a tannin source such as "quebracho" is used to standardize CT assays, but the CT in quebracho tannin may not be similar to those in the plants of interest. We investigated how the choice of standard to calibrate CT assays affects the estimation of CT in the diets of mountain gorillas (Gorilla beringei). We purified the CT from gorilla foods and compared the actual amounts of CT in the foods with estimates produced by using the quebracho tannin. When quebracho was used, the estimates of CT contents of gorilla foods were, on average, 3.6 times the actual content of CT so that the amounts in frequently eaten gorilla foods were substantially overestimated. The overestimation for a given plant could not be predicted reliably and the ranking of plants by tannin content differed according to the standard used. Our results demonstrate that accurate measurements of CT necessitate the use of tannins purified from the plant species of interest. A reevaluation of primatology studies using interspecific comparisons of tannin content will provide new insights into primate food selection and nutritional ecology. (c) 2008 Wiley-Liss, Inc.
Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems
Nistor, Razvan A.
The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high
12th general conference of the condensed matter division of the E.P.S. V.16A
International Nuclear Information System (INIS)
Velicky, B.; Vorlicek, V.; Zaveta, K.
1992-01-01
The proceedings contain 630 abstracts of contributions and posters presented at the conference, out of which 35 have been inputted in INIS. They deal with the application of the dispersion and diffraction of X-rays and neutrons to the investigation of the structure of matter, crystals in particular; with spin-lattice relaxation and superlattices; and with electron spin resonance, nuclear magnetic resonance and Moessbauer spectroscopy. (M.D.)
Carrier-doped aromatic hydrocarbons: a new platform in condensed matter chemistry and physics.
Heguri, Satoshi; Tanigaki, Katsumi
2018-02-27
High-quality bulk samples of the first four polyacenes, which are naphthalene, anthracene, tetracene, and pentacene, doped with alkali metal in 1 : 1 and 1 : 2 stoichiometries were prepared and their fundamental properties were systematically studied. A new systematic understanding on the electronic states of electron-doped polyacenes sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth and the Peierls instability was provided. The carrier-doped typical aromatic hydrocarbons showed a large variety of properties as well as charge transfer complexes and metal-doped fullerides. We open a new avenue for organometallic and inorganic chemistry.
International Nuclear Information System (INIS)
Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.
2013-01-01
Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2012-11-02
We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.
Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics
Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph
2014-03-01
The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
Schertz, T D; Reiter, R C; Stevenson, C D
2001-11-16
Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.
Levy, Pablo
2015-03-01
In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.
Applications of Classical and Quantum Mechanical Channeling in Condensed Matter Physics
Haakenaasen, Randi
1995-01-01
The first part of this work involves ion channeling measurements on the high temperature superconductor rm YBa_{2}Cu_{3}O _{7-delta}(YBCO). The experiments were motivated by several previous reports of anomalous behavior in the displacements of the Cu and O atoms in the vicinity of the critical temperature rm(T _{c}) in several high temperature superconductors. Our measurements were complimentary to previous experiments in that we used thin film YBCO (as opposed to bulk single crystals) and focused on a small region around rm T_{c}. We mapped out the channeling parameters chi _{min} and Psi_ {1/2} in a 30 K region around rm T_{c} in 1-2 K steps in thin film YBCO(001) on MgO. Neither of our measurements showed any discontinuities in chi _{min} or Psi_ {1/2} near the superconducting phase transition, and we therefore have no reason to expect anything but a smooth increase in atomic vibrations in this region. We conclude that any anomalous behavior in atomic displacements deduced from previous channeling experiments is not essential to superconductivity. In the second part of the work positrons were used to study quantum mechanical channeling effects. We clearly observed and quantitatively accounted for quantum interference effects, including Bragg diffraction, in the forward transmission of channeled MeV positrons through a single crystal. Experimental scans across the (100), (110), and (111) planes in Si showed excellent agreement with theoretical dynamical diffraction calculations, giving us confidence that we can accurately predict the spatial and momentum distributions of channeled positrons. New experiments are envisioned in which the channeling effect is combined with 2 quantum annihilation in flight measurements to determine valence electron and magnetic spin distributions in a crystal. Since the channeling effect focuses the positrons to the interstices of the crystal, the annihilation rate will reflect the valence electron density. Furthermore, the
Lemelin, V.; Bass, A. D.; Wagner, J. R.; Sanche, L.
2017-12-01
Absolute cross sections (CSs) for vibrational excitation by 1-18 eV electrons incident on condensed dimethyl phosphate (DMP) were measured with a high-resolution electron energy loss (EEL) spectrometer. Absolute CSs were extracted from EEL spectra of DMP condensed on multilayer film of Ar held at about 20 K under ultra-high vacuum (˜1 × 10-11 Torr). Structures observed in the energy dependence of the CSs around 2, 4, 7, and 12 eV were compared with previous results of gas- and solid-phase experiments and with theoretical studies on dimethyl phosphate and related molecules. These structures were attributed to the formation of shape resonances.
Practical integrated design of a condenser-objective lens for transmission electron microscope
International Nuclear Information System (INIS)
Li Wenping; Wu Jian; Zhou Zhen; Gui Lijiang; Han Li
2009-01-01
A condenser-objective lens is designed through combination of separating and integrating to consider the effect of the front condenser field on its objective performance. A practical lens model including magnetic pole piece, magnetic circuit and coil windings is built to optimize its rear field. The front field can be integrated into the rear one by simply adjusting the position of the specimen and the excitation on the condenser-objective lens. Optical performance of the integrated lens is researched as both a condenser lens and an imaging one. The total aberrations at the specimen plane are 0.01nm under STEM operation mode and its spherical aberration coefficient is 1.5mm when being an imaging objective lens, which can meet for high resolution microanalysis and TEM imaging.
2014-09-01
This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
DFT, Its Impact on Condensed Matter and on ``Materials-Genome'' Research
Scheffler, Matthias
About 40 years ago, two seminal works demonstrated the power of density-functional theory (DFT) for real materials. These studies by Moruzzi, Janak, and Williams on metals and Yin and Cohen on semiconductors visualized the spatial distribution of electrons, predicted the equation of state of solids, crystal stability, pressure-induced phase transitions, and more. They also stressed the importance of identifying trends by looking at many systems (e.g. the whole transition-metal series). Since then, the field has seen numerous applications of DFT to solids, liquids, defects, surfaces, and interfaces providing important descriptions and explanations as well as predictions of experimentally not yet identified systems. - ∖ ∖ About 10 years ago, G. Ceder and his group [Ref. 3 and references therein] started with high-throughput screening calculations in the spirit of what in 2011 became the ``Materials Genome Initiative''. The idea of high-throughput screening is old (a key example is the ammonia catalyst found by A. Mittasch at BASF more than 100 years ago), but it is now increasingly becoming clear that big data of materials does not only provide direct information but that the data is structured. This enables interpolation, (modest) extrapolation, and new routes towards understanding [Ref. 5 and references therein]. - ∖ ∖ The amount of data created by ``computational materials science'' is significant. For instance, the NoMaD Repository (which includes also data from other repositories, e.g. AFLOWLIB and OQMD) now holds more than 18 million total-energy calculations. In fact, the amount of data of computational materials science is steadily increasing, and about hundred million CPU core hours are nowadays used every day, worldwide, for DFT calculations for materials. - ∖ ∖ The talk will summarize this enormous impact of DFT on materials science, and it will address the next steps, e.g. the issue how to exploit big data of materials for doing forefront
Dark matter electron anisotropy. A universal upper limit
International Nuclear Information System (INIS)
Borriello, Enrico; Maccione, Luca; Cuoco, Alessandro
2010-12-01
Indirect searches of particle Dark Matter (DM) with high energy Cosmic Rays (CR) are affected by large uncertainties, coming both from the DM side, and from poor understanding of the astrophysical backgrounds. We show that, on the contrary, the DM intrinsic degree of anisotropy in the arrival directions of high energy CR electrons and positrons does not suffer from these unknowns. Furthermore, if contributions from possible local sources are neglected, the intrinsic DM anisotropy sets the maximum degree of total anisotropy. As a consequence, if some anisotropy larger than the DM upper bound is detected, its origin could not be ascribed to DM, and would constitute an unambiguous evidence for the presence of astrophysical local discrete sources of high energy electrons and positrons. The Fermi-LAT will be able to probe such scenarios in the next years. (orig.)
International Nuclear Information System (INIS)
Snoke, David; Littlewood, Peter
2010-01-01
Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.
International Nuclear Information System (INIS)
Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng Zhengming; Zhang Jie; Osman, F.; Zhang Weiyan; Tuhe Xia
2009-01-01
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B 11 with proton clusters imbedded. This then makes p-B 11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B 11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants
Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia
2009-03-01
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p
International Nuclear Information System (INIS)
Holmlid, Leif
2009-01-01
Clusters of the electronically excited condensed matter Rydberg matter (RM) are planar and sixfold symmetric with specific magic numbers N as shown by rotational spectroscopy of potassium K N clusters [L. Holmlid, Mol. Phys. 105 (2007) 933; L. Holmlid, J. Mol. Struct. 885 (2008) 122]. In radio frequency emission spectra from such clusters, features are observed that are due to the hyperfine interaction between the atomic nucleus 39 K and two Rydberg electrons. These electrons exist in a doubly excited K atom at n'' = 5 or 6 in a 'sleeping-top' type rotating cluster. Such low excited electrons were observed recently in optical intra-cavity experiments in K(RM), where the electrons in the conduction band are involved in the angular momentum conservation in the stimulated emission. Here we show that the agreement with the theoretical description of circular Rydberg states is excellent within ±0.2% in the magnetic field, invoking angular momentum conservation by electrons in the condensed phase. Sleeping-top clusters may form stacks of clusters, and it is likely that such stacks are the emitting entities involved in the two nuclear spin series observed.
International Nuclear Information System (INIS)
1981-01-01
The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables
2010-06-28
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...
Modelling of condensation phenomena
International Nuclear Information System (INIS)
Jeong, Jae Jun; Chang, Won Pyo
1996-07-01
Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)
ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.
2015-08-21
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.
Detecting electron neutrinos from solar dark matter annihilation by JUNO
International Nuclear Information System (INIS)
Guo, Wan-Lei
2016-01-01
We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ → νν-bar , τ + τ − , b b-bar , we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ + τ − channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV . If the νν-bar or τ + τ − channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions
Utilization of a channel electron multiplier for counting-measurement on condensed molecular jet
International Nuclear Information System (INIS)
Le Bihan, A.M.; Bottiglioni, F.; Coutant, J.; Fois, M.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92
1974-01-01
A channel electron multiplier has been used for counting ionized clusters containing up to a few thousands molecules; clusters are accelerated towards a negative (approximately-220V) copper target; a larger negative bias (approximately-3000V) is applied to the multiplier entrance so as to collect positive secondary ions and/or reflected cluster fragments; in the present application this gives better signal to noise ratio than detecting clusters directly or by secondary electron emission on the target [fr
Kang, Dongdong; Dai, Jiayu
2018-02-01
The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.
Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter
Whelan, Colm T
2005-01-01
Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.
Do electronic transitions contribute to the thermodynamics of condensed UO2
International Nuclear Information System (INIS)
MacInnes, D.A.
1979-01-01
Recent analysis of the role of electronic transitions in the thermophysical properties of UO 2 is surveyed. It is concluded to be highly likely that the 5f 2 electrons on the U 4+ metal ion play a major role in both the specific heat and thermal conductivity, in that they are primarily responsible for the large 'anomalous' increase displayed by each of these quantities between T = 1600 0 K and Tm = 3100 0 K. This has important implications for reactor analysis, since to obtain the required data for molten fuel one must extrapolate existing data through a wide range in temperature, and the behaviour of the electronic mechanisms may be expected to extrapolate quite differently from that of the mechanisms in current use (Frenkel defect generation and internal radiative heat transfer). (orig.) [de
Time dependent degradation of energetic electrons in gaseous and condensed media
International Nuclear Information System (INIS)
Dillon, M.; Kimura, M.
1987-01-01
A transport equation formulated by Spencer and Fano has been used to calculate initial yields of products formed by electron interactions under conditions of steady state irradiation. Since experimental observation of initial yields may now be possible it is desirable to generalize the treatment of Spencer and Fano to include transient effects explicitly. 6 refs., 2 figs
International Nuclear Information System (INIS)
Kutolin, S.A.; Kotyukov, V.I.; Komarova, S.N.; Smirnova, E.G.
1980-01-01
A functional dependence between physicochemical properties of rare earth sesquioxides and energy state of rare earth atom sublattice valent electrons in sesquioxides is found out. The results of calculation of a simplified zone strucrure of rare earth sesquioxides are presented. The energy of the band of metal sublattice valent electrons for rare earth oxides is presented by the Chebyshev coefficients and polynomials and is calculated in the atomic units of mass. The density, melting points, standard change of enthalpy entropy, free energy, specific heat, standard entropy, forbidden zone width, static permitivity with a relative error of 10-12%, and thermal value of seeming activation energy, tangent of a dielectric losses angle, puncture voltage in rare earth oxides with a relative error of 20% are calculated on the base of calculation of electronic structure of rare earth sesquioxide in a condensed state and regression equations of calculation of oxide physicochemical properties. It is shown that only the Chebyshev coefficients determining the metal sublattice electronic structure in an oxide are ''information'' ones, i e. they contribute into the quantitative description of the system
Zheng, Yi; Sanche, Léon
2018-06-01
theoretical calculations and gas-phase experiments. The properties of LEE scattering in the gas-phase are then compared to those in the condensed phase. The remaining portion of the article is devoted to condensed-phase CSs. We provide absolute LEE scattering CSs for electronic, vibrational, and phonon excitation of biomolecules as well as for dissociative electron attachment, electron intra- and inter-molecular stabilization, and bond dissociation, including strand breaks and degradation product formation. The biomolecules are O2, CO2, H2O, DNA bases, sugar and phosphate unit analogs, oligonucleotides, plasmid DNA, and the amino acid tryptophan. CSs for strand breaks in radiosensitizing and chemotherapeutic molecules bond or not to a short DNA strand are also listed. The principle of each experimental technique and mathematical methods utilized to generate all condensed-phase CSs are briefly explained. The mechanisms responsible for the magnitudes of the CSs are discussed.
International Nuclear Information System (INIS)
Wang Haobin; Thoss, Michael
2008-01-01
A quantum dynamical method is presented to accurately simulate time-resolved nonlinear spectra for complex molecular systems. The method combines the nonpertubative approach to describe nonlinear optical signals with the multilayer multiconfiguration time-dependent Hartree theory to calculate the laser-induced polarization for the overall field-matter system. A specific nonlinear optical signal is obtained by Fourier decomposition of the overall polarization. The performance of the method is demonstrated by applications to photoinduced ultrafast electron transfer reactions in mixed-valence compounds and at dye-semiconductor interfaces
International Nuclear Information System (INIS)
Liu, Rong-Xiang; Tian, Bo; Liu, Li-Cai; Qin, Bo; Lü, Xing
2013-01-01
In this paper we investigate a fourth-order dispersive nonlinear Schrödinger equation, which governs the dynamics of a one-dimensional anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction in condensed-matter physics as well as the alpha helical proteins with higher-order excitations and interactions in biophysics. Beyond the existing constraint, upon the introduction of an auxiliary function, bilinear forms and N-soliton solutions are constructed with the Hirota method. Asymptotic analysis on the two-soliton solutions indicates that the soliton interactions are elastic. Soliton velocity varies linearly with the coefficient of discreteness and higher-order magnetic interactions. Bound-state solitons can also exist under certain conditions. Period of a bound-state soliton is inversely correlated to the coefficient of discreteness and higher-order magnetic interactions. Interactions among the three solitons are all pairwise elastic
Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96
1996-01-01
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...
Dual-comb spectroscopy of molecular electronic transitions in condensed phases
Cho, Byungmoon; Yoon, Tai Hyun; Cho, Minhaeng
2018-03-01
Dual-comb spectroscopy (DCS) utilizes two phase-locked optical frequency combs to allow scanless acquisition of spectra using only a single point detector. Although recent DCS measurements demonstrate rapid acquisition of absolutely calibrated spectral lines with unprecedented precision and accuracy, complex phase-locking schemes and multiple coherent averaging present significant challenges for widespread adoption of DCS. Here, we demonstrate Global Positioning System (GPS) disciplined DCS of a molecular electronic transition in solution at around 800 nm, where the absorption spectrum is recovered by using a single time-domain interferogram. We anticipate that this simplified dual-comb technique with absolute time interval measurement and ultrabroad bandwidth will allow adoption of DCS to tackle molecular dynamics investigation through its implementation in time-resolved nonlinear spectroscopic studies and coherent multidimensional spectroscopy of coupled chromophore systems.
Exclusion of leptophilic dark matter models using XENON100 electronic recoil data
Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.
2015-01-01
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our
Electron Scattering in Solid Matter A Theoretical and Computational Treatise
Zabloudil, Jan; Szunyogh, Laszlo
2005-01-01
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the Screened Korringa-Kohn-Rostoker method that have emerged during the last 5 – 10 years are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Going beyond ordered matter and translationally invariant systems, special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties...
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Energy Technology Data Exchange (ETDEWEB)
Helgesen, G. ed.
2003-05-01
The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.
High Energy Electron Signals from Dark Matter Annihilation in the Sun
Energy Technology Data Exchange (ETDEWEB)
Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP; Weiner, Neal; Yavin, Itay; /New York U., CCPP
2012-04-09
In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.
Electronic energy loss of fast molecules in matter
International Nuclear Information System (INIS)
Steinbeck, J.
1975-06-01
In high velocity collisions of molecular ions the correlated motion influence of the ion cores on the electronic energy loss is investigated. The stopping power in first Born approximation for a random arrangement of target atoms can be formulated in terms of the inelastic electronic structure factor. In treating the target atoms in Hartree-Fock approximation each electron can be regarded as stopping the ion independent of all other electrons without restriction by the Pauli principle. A second equivalent formulation of the stopping power leads to the dielectric function of the target. The results are applied to the stopping of H 2 + -ions. For vanishing distance between the two protons the stopping power per particle is twice that for single proton collisions. For distances in the order of the Bohr radius the correlated stopping power may even be smaller than for uncorrelated protons. With increasing distances the correlation influence vanishes. The stopping of H 2 + -ions in C, Si and Ge is discussed using Clementi wave functions for the core electrons and a free electron approximation with Lindhard's dielectric function for the valence electrons. The comparison with the only experimental result available for H 2 + in C at 300 keV yields qualitative agreement. (orig.) [de
PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS
Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...
Experiential Learning of Electronics Subject Matter in Middle School Robotics Courses
Rihtaršic, David; Avsec, Stanislav; Kocijancic, Slavko
2016-01-01
The purpose of this paper is to investigate whether the experiential learning of electronics subject matter is effective in the middle school open learning of robotics. Electronics is often ignored in robotics courses. Since robotics courses are typically comprised of computer-related subjects, and mechanical and electrical engineering, these…
High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?
Moiseev, Alexander
2011-01-01
This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,
Hadronic matter or ... to-day and tomorrow with electrons
International Nuclear Information System (INIS)
1992-01-01
The various themes of this course are: nature of the electromagnetic probe (basics of electron scattering, electron and photon properties and derivation of the main cross sections); the main research program themes of the CEBAF new 4 GeV continuous beam electron accelerator; interaction of real photons with nuclei (proton polarizability, role of MEC in photonuclear absorption, possible evidence of three-body forces); introduction to the inelastic scattering of leptons; the nucleon spin structure; the quantum chromodynamics; electroproduction of heavy flavors, notion of color transparency and propagation of a quark in the nuclear medium; two aspects of the EEF project: the 15-30 GeV superconducting electron linac and high luminosity detectors; charged particle channeling in a crystal; channeling radiation and strong field phenomena
Organizational matters of competition in electronic educational resources
Directory of Open Access Journals (Sweden)
Ирина Карловна Войтович
2015-12-01
Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.
Student decisions about lecture attendance: do electronic course materials matter?
Billings-Gagliardi, Susan; Mazor, Kathleen M
2007-10-01
This study explored whether first-year medical students make deliberate decisions about attending nonrequired lectures. If so, it sought to identify factors that influence these decisions, specifically addressing the potential impact of electronic materials. Medical students who completed first-year studies between 2004 and 2006 responded to an open-ended survey question about their own lecture-attendance decisions. Responses were coded to capture major themes. Students' ratings of the electronic materials were also examined. Most respondents made deliberate attendance decisions. Decisions were influenced by previous experiences with the lecturer, predictions of what would occur during the session itself, personal learning preferences, and learning needs at that particular time, with the overriding goal of maximizing learning. Access to electronic materials did not influence students' choices. Fears that the increasing availability of technology-enhanced educational materials has a negative impact on lecture attendance seem unfounded.
New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon
Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien
2017-08-01
We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.
Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.
2013-12-01
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the
Strangeness condensation and ''clearing'' of the vacuum
International Nuclear Information System (INIS)
Brown, G.E.; Kubodera, Kuniharu; Rho, M.; State Univ. of New York, Stony Brook
1987-01-01
We show that a substantial amount of strange quark-antiquark pair condensates in the nucleon required by the πN sigma term implies that kaons could condense in nuclear matter at a density about three times that of normal nuclear matter. This phenomenon can be understood as the ''cleansing'' of qanti q condensates from the QCD vacuum by a dense nuclear matter, resulting in a (partial) restoration of the chiral symmetry explicitly broken in the vacuum. It is suggested that the condensation signals a new phase distinct from that of quark plasma and that of ordinary dense hadronic matter. (orig.)
International Nuclear Information System (INIS)
Mullen, J.G.
1985-10-01
The past year has seen the completion of most of the design and construction phases of our instrument development and the beginning of our scientific investigations. Many technical difficulties relating to mechanical strains in the source cryostat and in the Microfoil Internal Conversion Electron (MICE) detector assembly caused by cycling them between 300 and 100 K have been overcome. The scientific work has been highlighted by the performance of the MICE detector and how it has allowed us to measure the asymmetry parameters in 183 W and 182 W much more reliably than in the past and by the high momentum resolution made possible with our intense sources as demonstrated by studies on Si
International Nuclear Information System (INIS)
Chandelier, F.
2003-12-01
The quantum Hall effect appears in low temperature electron systems submitted to intense magnetic fields. Electrons are trapped in a thin layer (∼ 100.10 -8 cm thick) at the interface between 2 semiconductors or between a semiconductor and an insulating material. This thesis presents 3 personal contributions to the physics of plane systems and particularly to quantum Hall effect systems. The first contribution is a topological approach, it involves the study of Landau's problem in a geometry nearing that of Hall effect experiments. A mathematical formalism has been defined and by using the Kubo's formula, the quantification of the Hall conductivity can be linked to the Chern class of threaded holes. The second contribution represents a phenomenological approach based on dual symmetries and particularly on modular symmetries. This contribution uses visibility diagrams that have already produced right predictions concerning resistivity curves or band structures. The introduction of a physical equivalence has allowed us to build a phase diagram for the quantum Hall effect at zero temperature. This phase diagram agrees with the experimental facts concerning : -) the existence of 2 insulating phases, -) direct transitions between an insulating phase and any Hall phase through integer or fractionary values of the filling factor (ν), -) selection rules, and -) classification of the Hall states and their distribution around a metal state. The third contribution concerns another phenomenological approach based on duality symmetries. We have considered a class of (2+1)-dimensional effective models with a Maxwell-Chern-Simons part that includes a non-locality. This non-locality implies the existence of a hidden duality symmetry with a Z 2 component: z → 1/z. This symmetry has allowed us to meet the results of the Fisher's law concerning the components of the resistivity tensor. (A.C.)
DEFF Research Database (Denmark)
Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund
2014-01-01
The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...
ELectron stopping of heavy ions in a matter
International Nuclear Information System (INIS)
Akhiezer, I.A.; Davydov, L.N.
1978-01-01
The theory of heavy ion stopping by electrons in solids is analyzed with an aim to establish which physical mechanisms are of importance at different ion velocity values v. The theory is presented for deep inelastic collisions taking the main part in stopping at v > Zsub(1)sup(1/3) v 0 (z 1 is the atomic number of the ion, v 0 is the Bohr velocity). Elastic scattering (relative to the incident ion) are investigated. It is shown that the contribution from these processes to the stopping cross-section is predominant at Zsub(1)sup(1/3) v 0 > v > Zsub(1)sup(2/3) v 0
International Nuclear Information System (INIS)
Yelon, W.B.; Schupp, G.
1987-10-01
A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support
International Nuclear Information System (INIS)
Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; Titov, S. V.
2013-01-01
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ 0 =ℏω 0 /k B T where ω 0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ 0 0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the
Energy Technology Data Exchange (ETDEWEB)
Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)
2013-12-21
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the
Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A
2013-12-21
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local
Raymond, Louis; Paré, Guy; Marchand, Marie
2017-04-01
The deployment of electronic health record systems is deemed to play a decisive role in the transformations currently being implemented in primary care medical practices. This study aims to characterize electronic health record systems from the perspective of family physicians. To achieve this goal, we conducted a survey of physicians practising in private clinics located in Quebec, Canada. We used valid responses from 331 respondents who were found to be representative of the larger population. Data provided by the physicians using the top three electronic health record software products were analysed in order to obtain statistically adequate sub-sample sizes. Significant differences were observed among the three products with regard to their functional capability. The extent to which each of the electronic health record functionalities are used by physicians also varied significantly. Our results confirm that the electronic health record artefact 'does matter', its clinical functionalities explaining why certain physicians make more extended use of their system than others.
Electron density interferometry measurement in laser-matter interaction
International Nuclear Information System (INIS)
Popovics-Chenais, C.
1981-05-01
This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr
Reciprocity in the electronic stopping of slow ions in matter
International Nuclear Information System (INIS)
Sigmund, P.
2008-01-01
The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ∼10%) for many systems studied, and deviations exceeding ∼20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z 1 with Z 2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high. (authors)
Reciprocity in the electronic stopping of slow ions in matter
Sigmund, P.
2008-04-01
The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ~10%) for many systems studied, and deviations exceeding ~20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z1 with Z2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high.
Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.
2018-02-01
With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5 ± 1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.
Electron Dynamics by Inelastic X-Ray Scattering
Schülke, Winfried
2007-01-01
The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).
Materials Meets Concepts in Molecule-Based Electronics
Ortmann, Frank; Radke, K. Sebastian; Gü nther, Alrun; Kasemann, Daniel; Leo, Karl; Cuniberti, Gianaurelio
2014-01-01
In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance
Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse
Directory of Open Access Journals (Sweden)
J. Szlachetko
2014-03-01
Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.
DEFF Research Database (Denmark)
Torchio, R.; Boccato, S.; Cerantola, V.
2016-01-01
In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...
2011-09-30
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-808] In the Matter of Certain Electronic Devices... Investigation; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on August 16, 2011, under section 337 of the Tariff Act of 1930, as amended, 19 U...
2010-03-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...
2010-07-01
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-724] In the Matter of Certain Electronic Devices... AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...
75 FR 39971 - In the Matter of Certain Electronic Imaging Devices; Notice of Investigation
2010-07-13
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-726] In the Matter of Certain Electronic Imaging Devices; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION: Institution of....S. International Trade Commission on May 13, 2010, under section 337 of the Tariff Act of 1930, as...
2011-04-25
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-769] In the Matter of Certain Handheld Electronic.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 21, 2011, under section 337 of the Tariff Act of 1930...
Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data
Energy Technology Data Exchange (ETDEWEB)
Mauro, Mattia Di; Donato, Fiorenza; Fornengo, Nicolao; Vittino, Andrea, E-mail: mattia.dimauro@to.infn.it, E-mail: donato@to.infn.it, E-mail: fornengo@to.infn.it, E-mail: vittino@to.infn.it [Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino (Italy)
2016-05-01
We perform a detailed quantitative analysis of the recent AMS-02 electron and positron data. We investigate the interplay between the emission from primary astrophysical sources, namely Supernova Remnants and Pulsar Wind Nebulae, and the contribution from a dark matter annihilation or decay signal. Our aim is to assess the information that can be derived on dark matter properties when both dark matter and primary astrophysical sources are assumed to jointly contribute to the leptonic observables measured by the AMS-02 experiment. We investigate both the possibility to set robust constraints on the dark matter annihilation/decay rate and the possibility to look for dark matter signals within realistic models that take into account the full complexity of the astrophysical background. Our results show that AMS-02 data enable to probe efficiently vast regions of the dark matter parameter space and, in some cases, to set constraints on the dark matter annihilation/decay rate that are comparable or even stronger than the ones derived from other indirect detection channels.
Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data
International Nuclear Information System (INIS)
Mauro, Mattia Di; Donato, Fiorenza; Fornengo, Nicolao; Vittino, Andrea
2016-01-01
We perform a detailed quantitative analysis of the recent AMS-02 electron and positron data. We investigate the interplay between the emission from primary astrophysical sources, namely Supernova Remnants and Pulsar Wind Nebulae, and the contribution from a dark matter annihilation or decay signal. Our aim is to assess the information that can be derived on dark matter properties when both dark matter and primary astrophysical sources are assumed to jointly contribute to the leptonic observables measured by the AMS-02 experiment. We investigate both the possibility to set robust constraints on the dark matter annihilation/decay rate and the possibility to look for dark matter signals within realistic models that take into account the full complexity of the astrophysical background. Our results show that AMS-02 data enable to probe efficiently vast regions of the dark matter parameter space and, in some cases, to set constraints on the dark matter annihilation/decay rate that are comparable or even stronger than the ones derived from other indirect detection channels.
Hospital electronic medical record enterprise application strategies: do they matter?
Fareed, Naleef; Ozcan, Yasar A; DeShazo, Jonathan P
2012-01-01
Successful implementations and the ability to reap the benefits of electronic medical record (EMR) systems may be correlated with the type of enterprise application strategy that an administrator chooses when acquiring an EMR system. Moreover, identifying the most optimal enterprise application strategy is a task that may have important linkages with hospital performance. This study explored whether hospitals that have adopted differential EMR enterprise application strategies concomitantly differ in their overall efficiency. Specifically, the study examined whether hospitals with a single-vendor strategy had a higher likelihood of being efficient than those with a best-of-breed strategy and whether hospitals with a best-of-suite strategy had a higher probability of being efficient than those with best-of-breed or single-vendor strategies. A conceptual framework was used to formulate testable hypotheses. A retrospective cross-sectional approach using data envelopment analysis was used to obtain efficiency scores of hospitals by EMR enterprise application strategy. A Tobit regression analysis was then used to determine the probability of a hospital being inefficient as related to its EMR enterprise application strategy, while moderating for the hospital's EMR "implementation status" and controlling for hospital and market characteristics. The data envelopment analysis of hospitals suggested that only 32 hospitals were efficient in the study's sample of 2,171 hospitals. The results from the post hoc analysis showed partial support for the hypothesis that hospitals with a best-of-suite strategy were more likely to be efficient than those with a single-vendor strategy. This study underscores the importance of understanding the differences between the three strategies discussed in this article. On the basis of the findings, hospital administrators should consider the efficiency associations that a specific strategy may have compared with another prior to moving toward
International Nuclear Information System (INIS)
Masuda, Fujio
1980-01-01
Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)
Pion condensation and neutron star dynamics
International Nuclear Information System (INIS)
Kaempfer, B.
1983-01-01
The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)
The use of low energy electron accelerator for processing of liquid matter in Indonesia
International Nuclear Information System (INIS)
Danu, Sugiarto
2003-01-01
Activities of radiation processing in Indonesia covering various fields are reviewed. The low and medium energy electron accelerator specially designed for radiation processing of liquid materials is introduced. P3TIR-BATAN is mostly engaged in radiation processing in general with Co-60 source and electron accelerators (300 keV, 50 mA and 2 MeV, 10 mA). A private company, Gajah Tunggal, has an accelerator of 500 keV, 20 mA. The use of low energy electron accelerator to irradiate liquid matter matter such as natural rubber latex, polysaccharides, starch, chitosan and other natural polymers in Indonesia are reported and future program of national research cooperation between government institutions and private companies are described. (S. Ohno)
Condensed Matter division: GCDMD-14
International Nuclear Information System (INIS)
Segovia, J.L. de; Flores, F.; Garcia-Molines, F.
1994-01-01
The present book contains the abstracts of the plenary lectures, invited talks and communications either as oral or poster presentation. The 692 papers have been distributed according to their scheduled presentation of the corresponding session of the Conference: A. Semiconductors and Insulators B. Surfaces and Interfaces C. Liquid and Statistical Mechanics D. Magnetism and Metals E. Macromolecules and Chemical Physics
Frontiers in condensed matter theory
International Nuclear Information System (INIS)
Lax, M.; Gor'kov, L.P.; Birman, J.L.
1990-01-01
This report contains papers on the following topics: superconductivity; transport, quantum hall effect, localization, and scattering in random systems; high-tc superconductivity; antiferromagnetism and superconductivity; nonradiative transport and energy transport; self-similarity and chaos; superfluids; dielectrics and semiconductors; two dimensional transport and the quantum hall effect; and localization effects
Investigation of condensed matter fusion
International Nuclear Information System (INIS)
Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.
1990-12-01
Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Study of suprathermal electron transport in solid or compressed matter for the fast-ignitor scheme
International Nuclear Information System (INIS)
Perez, F.
2010-01-01
The inertial confinement fusion (ICF) concept is widely studied nowadays. It consists in quickly compressing and heating a small spherical capsule filled with fuel, using extremely energetic lasers. Since approximately 15 years, the fast-ignition (FI) technique has been proposed to facilitate the fuel heating by adding a particle beam - electrons generated by an ultra-intense laser - at the exact moment when the capsule compression is at its maximum. This thesis constitutes an experimental study of these electron beams generated by picosecond-scale lasers. We present new results on the characteristics of these electrons after they are accelerated by the laser (energy, divergence, etc.) as well as their interaction with the matter they pass through. The experimental results are explained and reveal different aspects of these laser-accelerated fast electrons. Their analysis allowed for significant progress in understanding several mechanisms: how they are injected into solid matter, how to measure their divergence, and how they can be automatically collimated inside compressed matter. (author) [fr
Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics
International Nuclear Information System (INIS)
Fassler, A; Majidi, C
2013-01-01
We introduce a family of soft-matter capacitors and inductors composed of microchannels of liquid-phase gallium–indium–tin alloy (galinstan) embedded in a soft silicone elastomer (Ecoflex ® 00-30). In contrast to conventional (rigid) electronics, these circuit elements remain electronically functional even when stretched to several times their natural length. As the surrounding elastomer stretches, the capacitance and inductance of the embedded liquid channels change monotonically. Using a custom-built loading apparatus, we experimentally measure relative changes in capacitance and inductance as a function of stretch in three directions. These experimental relationships are consistent with theoretical predictions that we derive with finite elasticity kinematics. (paper)
Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics
Fassler, A.; Majidi, C.
2013-05-01
We introduce a family of soft-matter capacitors and inductors composed of microchannels of liquid-phase gallium-indium-tin alloy (galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). In contrast to conventional (rigid) electronics, these circuit elements remain electronically functional even when stretched to several times their natural length. As the surrounding elastomer stretches, the capacitance and inductance of the embedded liquid channels change monotonically. Using a custom-built loading apparatus, we experimentally measure relative changes in capacitance and inductance as a function of stretch in three directions. These experimental relationships are consistent with theoretical predictions that we derive with finite elasticity kinematics.
Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron
Fujita, Shigeji
2007-01-01
Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...
International Nuclear Information System (INIS)
He, Xiao-Song; Xi, Bei-Dou; Cui, Dong-Yu; Liu, Yong; Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan
2014-01-01
Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol e− (g C) −1 and 57.1– 346.07 μmol e− (g C) −1 , respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting
Energy Technology Data Exchange (ETDEWEB)
He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)
2014-03-01
Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.
Intense e-beam interaction with matter
International Nuclear Information System (INIS)
Ritchie, R.H.; Crawford, O.H.
1984-01-01
This document describes work done in this period on certain nonlinear processes of potential importance at high energy densities in condensed matter, and on the theory of the electron slowing-down-cascade spectrum engendered in solids by e-beams
Charge Screening in a Charged Condensate
International Nuclear Information System (INIS)
Gabadadze, Gregory; Rosen, Rachel A.
2009-01-01
We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.
Coherent properties of a tunable low-energy electron-matter-wave source
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
Bose condensation in 4He and neutron scattering
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995
Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)
2014-04-01
Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.
A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal
Energy Technology Data Exchange (ETDEWEB)
Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)
1996-07-01
Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.
The color class condensate RHIC and HERA
McLerran, L
2002-01-01
In this talk, I discuss a universal form of matter, the color glass condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and RHIC may allow us to probe and study the properties of this matter. (8 refs).
Condensate and feedwater systems, pumps, and water chemistry. Volume seven
International Nuclear Information System (INIS)
Anon.
1986-01-01
Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry
Directory of Open Access Journals (Sweden)
Anto Sulaksono
2011-11-01
Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.
Charged condensate and helium dwarf stars
Energy Technology Data Exchange (ETDEWEB)
Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)
2008-10-15
White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.
The Mott localization and magnetic properties in condensed fermions systems
International Nuclear Information System (INIS)
Wojcik, W.
1995-01-01
In the present thesis the Mott localization and magnetic properties in condensed fermions system are considered. The Hubbard model has been used to strongly correlated electron systems and the Skyrme potential to a dense neutron matter with small concentration of protons. A variational approach to the metal-insulator transition is proposed which combines the Mott and Gutzwiller-Brinkman-Rice aspects of the localization. Magnetic properties of strongly correlated electrons are analyzed within the modified spin-rotation-invariant approach in the slow-boson representation. The theoretical prediction for considered systems are presented. 112 refs, 39 figs
Black holes in the ghost condensate
International Nuclear Information System (INIS)
Mukohyama, Shinji
2005-01-01
We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter
International Nuclear Information System (INIS)
Tanaka, Midori; Tanimura, Yoshitaka
2010-01-01
Multiple displaced oscillators coupled to an Ohmic heat bath are used to describe electron transfer (ET) in a dissipative environment. By performing a canonical transformation, the model is reduced to a multilevel system coupled to a heat bath with the Brownian spectral distribution. A reduced hierarchy equations of motion approach is introduced for numerically rigorous simulation of the dynamics of the three-level system with various oscillator configurations, for different nonadiabatic coupling strengths and damping rates, and at different temperatures. The time evolution of the reduced density matrix elements illustrates the interplay of coherences between the electronic and vibrational states. The ET reaction rates, defined as a flux-flux correlation function, are calculated using the linear response of the system to an external perturbation as a function of activation energy. The results exhibit an asymmetric inverted parabolic profile in a small activation regime due to the presence of the intermediate state between the reactant and product states and a slowly decaying profile in a large activation energy regime, which arises from the quantum coherent transitions.
Volume changes in glass induced by an electron beam
Czech Academy of Sciences Publication Activity Database
Gavenda, T.; Gedeon, O.; Jurek, Karel
2014-01-01
Roč. 322, Mar (2014), s. 7-12 ISSN 0168-583X Institutional support: RVO:68378271 Keywords : borosilicate glass * electron irradiation * densification * alkali migration Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.124, year: 2014
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J
2010-01-01
Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the
Warm Dark Matter Sterile Neutrinos in Electron Capture and Beta Decay Spectra
Directory of Open Access Journals (Sweden)
O. Moreno
2016-01-01
Full Text Available We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra, with a global perspective. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead, 202 and 205, as well as in the beta decay of Tritium. We study the deexcitation spectrum in the considered cases of electron capture and the charged lepton spectrum in the case of Tritium beta decay. For each of these cases, we define ratios of integrated transition rates over different regions of the spectrum under study and give new results that may guide and facilitate the analysis of possible future measurements, paying particular attention to forbidden transitions in Lead isotopes.
Highly Deformable Liquid Embedded Soft-Matter Capacitors and Inductors for Stretchable Electronics
Fassler, Andrew; Majidi, Carmel
2013-03-01
We have developed a family of soft-matter capacitors and inductors that can be stretched to several times their natural length. These circuit elements are composed of microchannels of a liquid-phase Gallium-Indium-Tin alloy (Galinstan) embedded in a soft silicone elastomer (Ecoflex® 00-30). As the elastomer stretches, the embedded liquid channels deform, causing the capacitance and inductance to change monotonically. The relative changes in capacitance and inductance are experimentally measured as a function of stretch in three directions. The relationships found show potential for these devices to be used as strain sensors and tunable electronic filters. Additionally, theoretical predictions derived using finite elasticity kinematics are consistent with these experimentally found relationships.
Electron anisotropy: A tool to discriminate dark matter in cosmic rays
International Nuclear Information System (INIS)
Borriello, Enrico; Maccione, Luca; Cuoco, Alessandro
2012-01-01
Indirect searches of particle Dark Matter (DM) with high energy Cosmic Rays (CR) are typically affected by large uncertainties. We show that, on the contrary, the DM intrinsic degree of anisotropy in the arrival directions of high energy CR electrons and positrons (CRE) is basically model independent and offers a straightforward criterion to discriminate among CRE from DM or from local discrete sources, like e.g. pulsars. In particular, in absence of the latter, DM sets the maximum degree of total anisotropy. As a consequence, if a larger anisotropy is detected, this would constitute an unambiguous evidence for the presence of astrophysical local discrete CRE sources. The Fermi-LAT will be able to probe such scenarios in the next years.
Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan
2018-03-01
We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.
The Electronics and Data Acquisition System of the DarkSide Dark Matter Search
Energy Technology Data Exchange (ETDEWEB)
Agnes, P.; et al.
2014-12-09
It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions.
Interference of an array of independent Bose-Einstein condensates
International Nuclear Information System (INIS)
Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean
2004-01-01
We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates
Energy Technology Data Exchange (ETDEWEB)
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.
2017-10-01
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.
Condensation of exciton polaritons
International Nuclear Information System (INIS)
Kasprzak, J.
2006-10-01
Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)
Shantappa, A.; Hanagodimath, S. M.
2014-01-01
Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.
International Nuclear Information System (INIS)
Freeman, R.; Anderson, C.; Hill, J.M.; King, J.; Snavely, R.; Hatchett, S.; Key, M.; Koch, J.; MacKinnon, A.; Stephens, R.; Cowan, T.
2003-01-01
An intense laser impinging upon dense matter converts a large fraction of its energy into fast electrons. (Here we take 'fast' to mean electrons that are much more energetic than the normal Boltzmann-like distribution measured in the tens to hundreds of eV.) Upon transiting the interior of the dense matter, these electrons are responsible for isochoric heating of the material. Just how these electrons traverse the material, and various interfaces within the material, is a subject of substantial amounts of computation and theory, and recently, experiments. Here we outline the nature of the heating mechanisms, and the current level of understanding of the complex physical processes. In particular we discuss new experimental techniques to record essential features of this transport problem
Swift heavy ion induced electron emission from solids
International Nuclear Information System (INIS)
Rothard, Hermann; Gervais, Benoit; Lanzanò, Gaetano; De Filippo, Enrico; Caron, Michel; Beuve, Michael
2015-01-01
We briefly summarize the results of numerous experiments performed at GANIL aimed at measuring electron yields and doubly differential yields (energy or velocity spectra at different ejection angles, angular distributions). These studies, supported by theoretical investigations and numerical simulations, contributed decisively to our understanding of the very first step in energy deposition in matter, i.e. ionization and subsequent electron transport through condensed matter. The emitted electron spectrum contains a rich variety of features including binary encounter electrons (BEE), convoy electrons (CE), Auger electrons (AE) and the low-energy peak of “secondary” electrons (SE). (paper)
Chaput, Jean-Philippe; Leduc, Geneviève; Boyer, Charles; Bélanger, Priscilla; LeBlanc, Allana G; Borghese, Michael M; Tremblay, Mark S
2014-07-11
To examine whether the number and type of electronic screens available in children's bedrooms matter in their relationship to adiposity, physical activity and sleep. A cross-sectional study was conducted involving 502 children aged 9-11 years from Ottawa, Ontario. The presence (yes/no) of a television (TV), computer or video game system in the child's bedroom was reported by the parents. Percentage body fat was measured using bioelectrical impedance. An accelerometer was worn over seven days to assess moderate-to-vigorous physical activity (MVPA), total sedentary time, sleep duration and sleep efficiency. Screen time was self-reported by the child. After adjustment for age, sex, ethnicity, annual household income and highest level of parental education, children with 2-3 screens in their bedroom had a significantly higher percentage of body fat than children with no screen in their bedroom. However, while children with 2-3 screens in their bedroom engaged in more screen time overall than those with no screen, total sedentary time and MVPA were not significantly different. Sleep duration was not related to the number of screens in the bedroom, but sleep efficiency was significantly lower in children with at least 2 screens in the bedroom. Finally, children having only a TV in their bedroom had significantly higher adiposity than those having no screen at all. In contrast, the presence of a computer in children's bedrooms was not associated with higher adiposity than that of children with no screen. A higher number of screens in a child's bedroom was associated with higher adiposity, more total screen time and lower sleep efficiency. Having a TV in the bedroom appears to be the type of screen presence associated with higher levels of adiposity. Given the popularity of screens among children, these findings are increasingly relevant to health promotion strategies.
International Nuclear Information System (INIS)
Sheikin, E G
2010-01-01
The effective differential cross section (DCS) for elastic scattering of electrons by atoms is proposed that reproduces known energy dependences for the first and second transport cross sections but provides a total elastic cross section that is significantly small compared with the known energy dependences. The number of elastic collisions of electrons in matter when using the effective DCS in Monte Carlo simulations is significantly lower than that when using the real DCS. The results of our Monte Carlo simulation of electron propagation in aluminium using the proposed DCS are in good agreement with experimental data.
2010-04-29
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-714] In the Matter of Certain Electronic Devices... Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on March 29, 2010...
2010-05-21
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-718] In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice of Investigation AGENCY: International Trade... that a complaint was filed with the U.S. International Trade Commission on April 19, 2010, under...
2010-06-17
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-721] In the Matter of: Certain Portable Electronic Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... filed with the U.S. International Trade Commission on May 12, 2010, under section 337 of the Tariff Act...
2011-08-25
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-718] In the Matter of Certain Electronic... Section 337 by Defaulting Respondents AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has determined not to review an...
2011-06-06
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-774] In the Matter of Certain Electronic Devices... AGENCY: U.S. International Trade Commission. ACTION: Institution of investigation pursuant to 19 U.S.C. 1337. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade...
Condensation model for the ESBWR passive condensers
International Nuclear Information System (INIS)
Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.
2012-01-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)
Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings
International Nuclear Information System (INIS)
Feldmeier, H.; Noerenberg, W.
1995-01-01
The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)
Universal Themes of Bose-Einstein Condensation
Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.
2017-04-01
Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose
Sixteenth International Conference on the physics of electronic and atomic collisions
International Nuclear Information System (INIS)
Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.
1989-01-01
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter
Sixteenth International Conference on the physics of electronic and atomic collisions
Energy Technology Data Exchange (ETDEWEB)
Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)
1989-01-01
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.
Enhanced Condensation Heat Transfer
Rose, John Winston
The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.
Applications of scanning electron microscopy to the study of mineral matter in peat
Energy Technology Data Exchange (ETDEWEB)
Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.
1983-01-01
Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.
Quasi-static electron density fluctuations of atoms in hot compressed matter
International Nuclear Information System (INIS)
Grimaldi, F.; Grimaldi-Lecourt, A.
1982-01-01
The standard theoretical methods for the calculation of properties of hot compressed matter lead to a description based on the Average Atom model. In this model the degenerate orbitals are populated with the Fermi-Dirac (FD) density, partitioned according to the binomial distribution. Since the one particle picture is inadequate to evaluate reliable optical properties, a method involving correlated population fluctuations, but limited to unrelaxed orbitals and lacking time dependence, has been examined. The probability distribution of fluctuations in a particular level is evaluated through a decoupling procedure. The method is carried out self consistently. For each level this leads to the definition of an effective 1st order ionization energy as a statistical sum of all possible transition energies. As a result the effective number of electrons exchanged with the outside weights the chemical potential. This defines an effective chemical potential μsup(k) for each level. In many cases of interest the statistics leads to FD type average occupation numbers. This allows a treatment of the continuum in a Thomas-Fermi like model using the effective ionization energy and μsup(k). We obtain a simultaneous description of charge rearrangements and net fluctuations in the Wigner-Seitz cell. The discussion is supported by numerical results for iron. (author)
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
Monte-Carlo simulation of primary electrons in the matter for the generation of x-rays
International Nuclear Information System (INIS)
Bendjama, H.; Laib, Y.; Allag, A.; Drai, R.
2006-01-01
The x-rays imagining chains components from the source to the detector, rest on the first part of simulation to the energy production of x-rays emission (source), which suggest us to identified the losses energies result from interaction between the fast electrons and the particles of metal : the energies losses due to 'collisional losses' (ionization, excitation) and radiative losses. For the medium and the primary electron energy which interests us, the electrons slowing down in the matter results primarily from the inelastic collisions; whose interest is to have to simulate the x-rays characteristic spectrum. We used a Monte-Carlo method to simulate the energy loss and the transport of primary electrons. This type of method requires only the knowledge of the cross sections attached to the description of all the elementary events. In this work, we adopted the differential cross section of Mott and the total cross section of inner-shell ionization according to the formulation of Gryzinski, to simulate the energy loss and the transport of primary electrons respectively. The simulation allows to follow the electrons until their energy reaches the atomic ionization potential of the irradiated matter. The differential cross section of Mott gives us a very good representation of the pace of the distribution of the energy losses. The transport of primary electron is approximately reproduced
Organic matter and hydrogen as electron donor for SRB and IRB activities in a clayey medium
International Nuclear Information System (INIS)
Chautard, C.; Mifsud, A.; Libert, M.; Marsal, F.
2012-01-01
Document available in extended abstract form only. According to the French concept for the disposal of High-Level radioactive Waste (HLW), waste will be emplaced in an environment with multiple metallic components into a geological clay formation. The presence of microorganisms has recently been evidenced in deep clayey environment. Therefore, neither the introduction of microbial species during the construction and operational phases nor the survival of bacteria after the disposal closure can be excluded. Indeed, microbial species may be able to tolerate specific environment with few nutrients to sustain life under high temperature, dry and highly radioactive conditions. Moreover, despite the low porosity of clays, cracks in the excavated disturbed zone and remaining void spaces between disposal components may be favorable for bacterial growth. Sulfate-Reducing Bacteria (SRB) and Iron-Reducing Bacteria (IRB) activities are notably expected to influence iron-clay reactivity, including corrosion processes. Their potential development must be investigated in order to better assess their metabolism, which may in turn influence the evolution of metallic and clayey materials involved in a HLW disposal cell. More specifically, deep geological environments containing low amounts of biodegradable Organic Matter (OM) are generally nutrient poor for microbial development. However, the radiolysis of pore water and the corrosion of metallic components of HLW disposal cell in anoxic conditions will lead to the production of hydrogen, which may also be used as an electron donor for microbial activity. Thus, the purpose of the present work is to quantify the potential of bacterial growth stimulation due either to the production of hydrogen or the presence of OM. In a first step, characterization of DOM leached from Tournemire clay powder has been performed in order to identify and estimate the concentration of soluble organic matter available for bacteria activity which will
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
Interfacial Charge Transfer States in Condensed Phase Systems
Vandewal, Koen
2016-05-01
Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.
Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja
2017-09-01
We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that
Energy Technology Data Exchange (ETDEWEB)
Khakoo, M A [Department of Physics, California State University, Fullerton, CA 92831 (United States); Lima, M A P [Departamento de Eletronica Quantica, Instituto de Fisica ' Gleb Wataghin' -UNICAMP, Caixa Postal 6165, 13083-970 Campinas (Brazil); Tennyson, J [Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT (United Kingdom)
2006-07-15
A report is presented of the 13th International Symposium on Electron-Molecule Collisions Physics (Instituto de Fisica, Unicamp, Campinas, Brazil, 27-30 July 2005). This workshop covered low-energy electron interactions with atoms, molecules and condensed matter systems. Several important aspects of this symposium were to bring together theory and experimental advances in this field for gaseous targets as well as showcasing the increasing diversity of electron-molecule collision applications in condensed matter and biological applications. A summary session was held wherein were discussed aspects of the future of the field, including the development of new theoretical and experimental capabilities.
Landau-Migdal parameters and pion condensation
Energy Technology Data Exchange (ETDEWEB)
Tatsumi, Toshitaka [Department of Physics, Kyoto Univ., Kyoto (Japan)
1999-08-01
The possibility of pion condensation, one of the long-standing issues in nuclear physics, is reexamined in the light of the recent experimental data on the giant Gamow-Teller resonance. The experimental result tells that the coupling of nucleon particle-hole states with {delta} isobar-hole states in the spin-isospin channel should be weaker than that previously believed. It, in turn, implies that nuclear matter has the making of pion condensation at low densities. The possibility and implications of pion condensation in the heavy-ion collisions and neutron stars should be seriously reconsidered. (author)
Preparata, Giuliano
1995-01-01
Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o
Energy Technology Data Exchange (ETDEWEB)
Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Sokolowski-Tinten, K. [Faculty of Physics and Centre for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg (Germany)
2016-11-15
We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.
International Nuclear Information System (INIS)
1993-01-01
This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de
Performance of evaporative condensers
Energy Technology Data Exchange (ETDEWEB)
Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader
2001-07-01
Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)
Born-Kothari Condensation for Fermions
Directory of Open Access Journals (Sweden)
Arnab Ghosh
2017-09-01
Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.
International Nuclear Information System (INIS)
Jaksch, D
2003-01-01
The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is
Energy Technology Data Exchange (ETDEWEB)
Kraux, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-06-01
An electromotive force is produced between a cold and a hot electrode immersed in an ionized vapour. It is shown that the dissymmetry thus created consists in the formation of heavy, negative charge carriers following the condensation of the vapour in the volume close to the cold electrode. The electromotive forces produced are explained on the basis of a decrease in the floating potential of the cold electrode. (author) [French] Une force electromotrice apparaissant entre une electrode chaude et une electrode froide plongees dans une vapeur ionisee, on etablit que la disymetrie ainsi causee consiste en la formation de porteurs de charge negatifs lourds consecutive a la condensation de la vapeur en volume pres de l'electrode froide. On justifie les forces electromotrices observees par la diminution du potentiel flottant de l'electrode froide. (auteur)
The Color Glass Condensate and the Glasma: Two Lectures.
Energy Technology Data Exchange (ETDEWEB)
McLerran,L.
2007-08-29
These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wave function important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after a collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction, where the Glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.
Neutron stars with kaon condensation in relativistic effective model
International Nuclear Information System (INIS)
Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng
2013-01-01
Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)
Public Notice: 2016-05, In the matter of Thomas Electronics, Inc.
On the date identified below, EPA commenced the following administrative action for the assessment of Administrative civil penalties: in the matter of Ducommun Incorporated, D/B/S Ducommun Aerostructures New York, Inc., 2 Flint Mine Road, Coxsackie, NY
Characteristic aspects of pion-condensed phases
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.
1993-01-01
Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)
Harris, J. R.; Miller, R. B.
2018-02-01
The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.
The Color Glass Condensate: An Intuitive Physical Description
International Nuclear Information System (INIS)
McLerran, Larry
2006-01-01
I argue that the scattering of very high energy strongly interacting particles is controlled by a new, universal form of matter, the Color Glass Condensate. This matter is predicted by QCD and explains the saturation of gluon densites at small x. I motivate the existence of this matter and describe some of its properties
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
International Nuclear Information System (INIS)
Prisyazhniuk, V.A.
2002-01-01
An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)
Low pressure lithium condensation
International Nuclear Information System (INIS)
Wadkins, R.P.; Oh, C.H.
1985-01-01
A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius
International Nuclear Information System (INIS)
Ishino, Masahiko; Hasegawa, Noboru; Nishikino, Masaharu; Kawachi, Tetsuya; Yamagiwa, Mitsuru; Pikuz, Tatiana; Skobelev, Igor; Faenov, Anatoly; Inogamov, Nail
2014-01-01
We investigated the optical emission from the ablating surfaces induced by the irradiations of soft x-ray laser (SXRL) pulses with the aim of estimation of the maximum electron temperature. No emission signal in the spectral range of 400–800 nm could be observed despite the formation of damage structures on the target surfaces. Hence, we estimated an upper limit for the electron temperature of 0.4–0.7 eV for the process duration of 100–1000 ps. Our results imply that the ablation and/or surface modification by the SXRL is not accompanied by plasma formation but is induced by thermo-mechanical pressure, which is so called a spallative ablation. This spallative ablation process occurs in the low electron temperature region of a non-equilibrium state of warm dense matter
Quantum tunnelling in condensed media
Kagan, Yu
1992-01-01
The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse
Vast Antimatter Regions and Scalar Condensate Baryogenesis
Kirilova, D.; Panayotova, M.; Valchanov, T.
2002-01-01
The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.
Parity and isospin in pion condensation and tensor binding
International Nuclear Information System (INIS)
Pace, E.; Palumbo, F.
1978-01-01
In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)
Kaon condensates, nuclear symmetry energy and cooling of neutron stars
Energy Technology Data Exchange (ETDEWEB)
Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M
2003-06-02
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.
Kaon condensates, nuclear symmetry energy and cooling of neutron stars
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
2003-01-01
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists
Proceedings: Condenser technology conference
International Nuclear Information System (INIS)
Tsou, J.L.; Mussalli, Y.G.
1991-08-01
Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues
Workshop on scientific and industrial applications of free electron lasers
International Nuclear Information System (INIS)
Difilippo, F.C.; Perez, R.B.
1990-05-01
A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics
Hot-electron surface retention in intense short-pulse laser-matter interactions.
Mason, R J; Dodd, E S; Albright, B J
2005-07-01
Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.
2010-01-05
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-697] In the Matter of: Certain Authentication... the sale within the United States after importation of certain authentication systems, including... importation, or the sale within the United States after importation of authentication systems, including...
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
Condensed matter at high shock pressures
International Nuclear Information System (INIS)
Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.
1985-01-01
Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab
The butane condensed matter conformational problem
Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.
2010-01-01
From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of
Topological Insulators Dirac Equation in Condensed Matters
Shen, Shun-Qing
2012-01-01
Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...
XX International Workshop on Condensed Matter Theories
1998-01-01
Rojo5, M.A. Solis6 and A.A. Valladares4 1 Institute de Fisica Teorica-UNESP, 01405 Säo Paulo, BRAZIL and Departamento de Fisica , Universidade...Estadual de Londrina Londrina, PR, BRAZIL 2Departament de Fisica , Universität de les Hies Balears 07071 Palma de Mallorca, SPAIN department of Physics...SUNY, Buffalo, NY 14260-1500, USA 4Instituto de Investigaciones en Materiales, UN AM 04510 Mexico DF, MEXICO 5PESTIC, Secretaria Academica, IPN
Chirality: from QCD to condensed matter
International Nuclear Information System (INIS)
Kharzeev, D.
2015-01-01
This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)
Positron annihilation spectroscopy in condensed matter
International Nuclear Information System (INIS)
Brauer, G.
1982-09-01
The topic of positron annihilation spectroscopy (PAS) is the investigation of all aspects connected with the annihilation of slow positrons. This work deals with the application of PAS to different problems of materials science. The first chapter is an introduction to fundamental aspects of positron annihilation, as far as they are important to the different experimental techniques of PAS. Chapter 2 is concerned with the information obtainable by PAS. The three main experimental techniques of PAS (2γ-angular correlation, positron lifetime and Doppler broadening) are explained and problems in the application of these methods are discussed. Chapter 3 contains experimental results. According to the different fields of application it was subgrouped into: 1. Investigations of crystalline solids. Detection of structural defects in Cu, estimation of defect concentrations, study of the sintering of Cu powders as well as lattice defects in V 3 Si. 2. Chemical investigations. Structure of mixed solvents, selective solvation of mixed solvents by electrolytes as well as the micellization of sodium dodecylsulphate in aqueous solutions. 3. Investigations of glasses. Influence of heat treatment and production technology on the preorder of X-amorphous silica glass as well as preliminary measurements of pyrocerams. 4. Investigations of metallic glasses. Demonstration of the influence of production technology on parameters measurable by PAS. Chapter 4 contains a summary as well as an outlook of further applications of PAS to surface physics, medicine, biology and astrophysics. (author)
Latest trends in condensed matter physics
Singhal, R K
2011-01-01
This special issue of ""Solid State Phenomena"" documents some novel experimental and theoretical approaches applied to fascinating materials. Motivated by the increasing need to synthesize and understand the properties of technologically important materials, this issue represents an important step forward in improving our understanding of how modern materials can be optimised for technology and industry. The issue comprises 9 original review papers covering experimental approaches and theoretical modeling. The contributions will be very useful to researchers working in various areas of CMP an
Quantum Computing in Condensed Matter Systems
National Research Council Canada - National Science Library
Privman, V
1997-01-01
Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...
Condensed matter at high shock pressures
Energy Technology Data Exchange (ETDEWEB)
Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.
1985-07-12
Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.
Condensed matter optical spectroscopy an illustrated introduction
Ionita, Iulian
2014-01-01
Molecular Symmetry and the Symmetry GroupsSymmetry Elements and Symmetry OperationsPoint Groups and Molecular SymmetrySymmetry Classification of MoleculesMatrix Representation of Symmetry TransformationGroup RepresentationsProperties of Irreducible RepresentationsTables of CharactersSymmetry of Crystals and Space GroupsRotation Groups and OperatorsExamples of SymmetryStudy QuestionsReferencesCrystal Field TheoryStates and Energies of Free Atoms and IonsOptical Spectra of Ionic CrystalsImpurities in Crystal Lattice: Splitting of Levels and Terms in Lattice SymmetryWeak Crystalline Field of Octahedral SymmetryEffect of a Weak Crystalline Field of Lower SymmetriesSplitting of Multielectron dn Configurations in the Crystalline FieldJahn-Teller EffectConstruction of Energy-Level DiagramsTanabe-Sugano DiagramsExample of the Co IonLimitations of the Crystal Field TheoryStudy QuestionsReferencesSymmetry and Molecular Orbitals TheoryMolecular OrbitalsHybridization Scheme for σ OrbitalsHybridization Scheme for π Orbi...
Study of interactions of a electron beam of 10 MeV energy and matter
International Nuclear Information System (INIS)
Askri, Boubaker
2002-01-01
In this work, we tried to extend the algorithm of the Monte Carlo method to the case of relativistic electrons of energy 10 MeV through the material, after appropriate to the simple case of non-relativistic electrons of energy 20 keV. It was determined the coefficients of reflection, transmission and absorption of electrons through the middle in both cases. As the energy and angular distributions of electrons transmitted. The results show a fairly good precision on the determination of the three coefficients. For the non-relativistic case, it was in 1000 simulations of 1000 lots electrons for gold and aluminum, it has reached an accuracy of about 0.5 pour cent. For the relativistic case, it was 20 lots of simulations for 500 electrons carbon and aluminum. we reached an accuracy of about 2, 5 pour cent determining the coefficients. The energy and angular distributions of electrons transmitted, are close those derived from the program GEANT, taken as a reference and as comparison tool. It hopes to increase the accuracy by increasing the number of lots and the size of each batch of electrons. However, the process took six days to simulate ten miles electrons under normal conditions on the HP9000 machine calculation takes a greatest time of execution for a statistical sample of smaller great. Several criteria are necessary to optimize the study. About improving the theoretical model and the algorithm, and implementation the procedure on a machine more powerful computing. (Author)
International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)
2018-05-01
The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.
The interaction of swift electrons with surface excitations
International Nuclear Information System (INIS)
Ritchie, R.H.; Tennessee Univ., Knoxville, TN
1992-01-01
For many decades swift electrons have comprised a powerful tool for the study of the dynamical properties of condensed matter. The development of this technique has involved much important physics. Here we sketch the historical background of the field and some important developments in theory and experiment. Possible directions for future research are indicated
International Nuclear Information System (INIS)
Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.
1982-01-01
Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)