WorldWideScience

Sample records for condensation enzyme catalyzing

  1. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  2. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  3. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  4. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  5. Norcoclaurine Synthase: Mechanism of an Enantioselective Pictet-Spengler Catalyzing Enzyme

    Directory of Open Access Journals (Sweden)

    Alberto Macone

    2010-03-01

    Full Text Available The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids and Lewis bases to modify the substrate as required for the given transformation. They bear a clear advantage over non-biological methods for their ability to tackle problems related to the synthesis of enantiopure compounds as chiral building blocks for drugs and agrochemicals. Moreover, enzymatic synthesis may offer the advantage of a clean and green synthetic process in the absence of organic solvents and metal catalysts. In this work the reaction mechanism of norcoclaurine synthase is described. This enzyme catalyzes the Pictet-Spengler condensation of dopamine with 4-hydroxyphenylacetaldehyde (4-HPAA to yield the benzylisoquinoline alkaloids central precursor, (S-norcoclaurine. Kinetic and crystallographic data suggest that the reaction mechanism occurs according to a typical bifunctional catalytic process.

  6. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  7. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  8. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    Science.gov (United States)

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  9. Enzyme-Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Brouwer, Sander; Loos, Katja

    Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol% of the acrylate. The structures of the products were revealed by

  10. Iridium‐Catalyzed Condensation of Amines and Vicinal Diols to Substituted Piperazines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh; Nordstrøm, Lars Ulrik Rubæk; Madsen, Robert

    2012-01-01

    is believed to involve dehydrogenation of the 1,2‐diol to the α‐hydroxy aldehyde, which condenses with the amine to form the α‐hydroxy imine. The latter rearranges to the corresponding α‐amino carbonyl compound, which then reacts with another amine followed by reduction of the resulting imine.......A straightforward procedure is described for the synthesis of piperazines from amines and 1,2‐diols. The heterocyclization is catalyzed by [Cp*IrCl2]2 and sodium hydrogen carbonate and can be achieved with either toluene or water as solvent. The transformation does not require any stoichiometric...

  11. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  12. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  13. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  14. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Enzyme catalyzed oxidative cross-linking of feruloylated pectic polysaccharides from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz

    beet pulp as a potential starting material for production of pectin derived products which could help maintain the competitiveness of the sugar beet based industry. The overall objective of this study has been focusing on understanding the kinetics of enzyme catalyzed oxidative crosslinking......-linked by HRP catalysis in the presence of hydrogen peroxide (H2O2) to form ferulic acid dehydrodimers (diFAs). The composition of the substrate was analyzed by HPAEC, HPLC and MALDI-TOF, confirming the structural make up of the arabinan-oligosaccharide (Arabinose: 2.9- 3.4 mmol?g-1 DM; FA: 2.5-7.0 mg?g-1 DM......, identically composed, oil-in-water emulsion systems to study the effect of different methods of emulsion preparation on the emulsion stability in the presence of SBP and the kinetics of enzyme catalyzed oxidative gelation of SBP. The result shows that the different methods of emulsion preparation affect...

  16. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  17. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  18. Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol

    Directory of Open Access Journals (Sweden)

    Bäckvall Jan-E

    2007-12-01

    Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.

  19. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    Science.gov (United States)

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions

    Science.gov (United States)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabi...

  1. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  2. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  3. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  4. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    Science.gov (United States)

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis

    Science.gov (United States)

    Sutter, Thomas M.; Dickerson, Matthew B.; Creasy, Terry S.; Justice, Ryan S.

    2013-09-01

    A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO2(g) that flowed into the actuator. The actuator’s power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml-1.

  6. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis

    International Nuclear Information System (INIS)

    Sutter, Thomas M; Dickerson, Matthew B; Creasy, Terry S; Justice, Ryan S

    2013-01-01

    A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO 2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO 2(g) that flowed into the actuator. The actuator’s power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO 2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml −1 . (paper)

  7. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  8. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  9. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    Science.gov (United States)

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2005-01-01

    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24 nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393 Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1 Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D - ) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H

  11. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  12. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  13. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  14. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Matthew R.; Goblirsch, Brandon R.; Christenson, James K.; Esler, Morgan A.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2017-10-12

    In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon–carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.

  15. 1+1 = 3: a fusion of 2 enzymes in the methionine salvage pathway of Tetrahymena thermophila creates a trifunctional enzyme that catalyzes 3 steps in the pathway.

    Directory of Open Access Journals (Sweden)

    Hannah M W Salim

    2009-10-01

    Full Text Available The methionine salvage pathway is responsible for regenerating methionine from its derivative, methylthioadenosine. The complete set of enzymes of the methionine pathway has been previously described in bacteria. Despite its importance, the pathway has only been fully described in one eukaryotic organism, yeast. Here we use a computational approach to identify the enzymes of the methionine salvage pathway in another eukaryote, Tetrahymena thermophila. In this organism, the pathway has two fused genes, MTNAK and MTNBD. Each of these fusions involves two different genes whose products catalyze two different single steps of the pathway in other organisms. One of the fusion proteins, mtnBD, is formed by enzymes that catalyze non-consecutive steps in the pathway, mtnB and mtnD. Interestingly the gene that codes for the intervening enzyme in the pathway, mtnC, is missing from the genome of Tetrahymena. We used complementation tests in yeast to show that the fusion of mtnB and mtnD from Tetrahymena is able to do in one step what yeast does in three, since it can rescue yeast knockouts of mtnB, mtnC, or mtnD. Fusion genes have proved to be very useful in aiding phylogenetic reconstructions and in the functional characterization of genes. Our results highlight another characteristic of fusion proteins, namely that these proteins can serve as biochemical shortcuts, allowing organisms to completely bypass steps in biochemical pathways.

  16. Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida antarctica and Hog pancreas.

    Science.gov (United States)

    Liu, Feng; Yang, Jian; Fan, Zhongyong; Li, Suming; Kasperczyk, Janusz; Dobrzynski, Piotr

    2012-01-01

    Enzyme-catalyzed degradation of poly(trimethylene carbonate) homo-polymer (PTMC) and poly(trimethylene carbonate-co-glycolide) co-polymer (PTGA) was investigated in the presence of lipases from Candida antarctica and Hog pancreas. Degradation was monitored by gravimetry, size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR), tensiometry and environmental scanning electron microscopy (ESEM). PTMC can be rapidly degraded by Candida antarctica lipase with 98% mass loss after 9 days, while degradation by Hog pancreas lipase leads to 27% mass loss. Introduction of 16% glycolide units in PTMC chains strongly affects the enzymatic degradation. Hog pancreas lipase becomes more effective to PTGA co-polymer with a mass loss of 58% after 9 days, while Candida antarctica lipase seems not able to degrade PTGA. Bimodal molecular weight distributions are observed during enzymatic degradation of both PTMC and PTGA, which can be assigned to the fact that the surface is largely degraded while the internal part remains intact. The composition of the PTGA co-polymer remains constant, and ESEM shows that the polymers are homogeneously eroded during enzymatic degradation. Contact angle measurements confirm the enzymatic degradation mechanism, i.e., enzyme adsorption on the polymer surface followed by enzyme-catalyzed chain cleavage.

  17. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  18. Long-term effect of medium-chain triglyceride on hepatic enzymes catalyzing lipogenesis and cholesterogenesis in rats

    International Nuclear Information System (INIS)

    Takase, Sachiko; Morimoto, Ayami; Nakanishi, Mayumi; Muto, Yasutoshi.

    1977-01-01

    This study was conducted to investigate the long-term effect of dietary medium-chain triglyceride (MCT) as compared with that of corn oil feeding on lipid metabolism in rats. Both serum cholesterol and triglyceride levels in MCT-fed rats showed significant decrease during the experimental period of eight weeks, although liver cholesterol and triglyceride contents were not distinguishable between the two groups. Significant elevation of the activity of lipogenic enzymes, such as fatty acid synthetase (FAS) and malic enzyme (ME) of the liver, was observed in MCT-fed rats without any fat accumulation of the liver (fatty liver). The increase of lipogenic enzyme activity was accompanied by a significant reduction of essential fatty acids (EFA) such as 18:2 (ωsigma) and 20:4 (ωsigma) in total liver lipid. In contrast, hepatic β-hydroxy-β-methylglutaryl CoA(HMG-CoA) reductase activity was significantly decreased in MCT-fed rats, that would play an important role in achieving hypocholesterolemia. From these results obtained in a long-term experiment, it is concluded that exogenous MCT depresses the key enzyme catalyzing cholesterol synthesis with a concomitant elevation of lipogenic enzyme activity in the rat liver. (auth.)

  19. Size exclusion chromatography for the quantitative profiling of the enzyme-catalyzed hydrolysis of xylo-oligosaccharides

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Meyer, Anne S.

    2010-01-01

    High-performance size exclusion chromatography (HPSEC) is a widely used method for the qualitative profiling of oligosaccharide mixtures, including, for example, enzymatic hydrolysates of plant biomass materials. A novel method employing HPSEC for the quantitative analytical profiling......, the method was designed using 0.1 M CH3COONa both in the mobile phase and as the sample solution matrix, after systematic evaluation of the influence of the mobile phase, including the type, ionic strength, and pH, on the refractive index detector response. A time study of the enzyme-catalyzed hydrolysis...

  20. Stereochemical course of enzyme-catalyzed aminopropyl transfer: spermidine synthase

    International Nuclear Information System (INIS)

    Kullberg, D.W.; Orr, G.R.; Coward, J.K.

    1986-01-01

    The R and S enantionmers of S-adenosyl-3-[ 2 H]3-(methylthio)-1-propylamine (decarboxylated S-adenosylmethionine), previously synthesized in this laboratory, were incubated with [1,4- 2 H 4 ]-putrescine in the presence of spermidine synthase from E. coli. The resulting chiral [ 2 H 5 ]spermidines were isolated and converted to their N 1 ,N 7 -dibocspermidine-N 4 -(1S,4R)-camphanamides. The derivatives were analyzed by 500 MHz 1 H-NMR and the configuration of the chiral center assigned by correlation with the spectra of synthetic chiral [ 2 H 3 ]dibocspermidine camphanamide standards. The enzyme-catalyzed aminopropyl transfer was shown to occur with net retention of configuration, indicative of a double-displacement mechanism. This result concurs with that of a previous steady-state kinetics study of spermidine synthase isolated from E. coli, but contradicts the single-displacement mechanism suggested by a stereochemical analysis of chiral spermidines biosynthesized in E. coli treated with chirally deuterated methionines. It also indicates that this aminopropyltransferase is mechanistically distinct from the methyltransferases, which have been shown to act via a single-displacement mechanism (net inversion at -CH 3 ) in all cases studied to date

  1. pH-sensitive pHluorins as a molecular sensor for in situ monitoring of enzyme-catalyzed prodrug activation.

    Science.gov (United States)

    Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan

    2017-07-01

    This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  3. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Nickbarg, E.B.; Knowles, J.R.

    1988-01-01

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from [1(R)- 3 H]dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase

  4. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide

    International Nuclear Information System (INIS)

    Skoog, M.T.

    1986-01-01

    The kinetic alpha-deuterium isotope effect on Vmax/Km for hydrolysis of NMN catalyzed by AMP nucleosidase at saturating concentrations of the allosteric activator MgATP2- is kH/kD = 1.155 +/- 0.012. This value is close to that reported previously for the nonenzymatic hydrolysis of nucleosides of related structure, suggesting that the full intrinsic isotope effect for enzymatic NMN hydrolysis is expressed under these conditions; that is, bond-changing reactions are largely or completely rate-determining and the transition state has marked oxocarbonium ion character. The kinetic alpha-deuterium isotope effect for this reaction is unchanged when deuterium oxide replaces water as solvent, corroborating this conclusion. Furthermore, this isotope effect is independent of pH over the range 6.95-9.25, for which values of Vmax/Km change by a factor of 90, suggesting that the isotope-sensitive and pH-sensitive steps for AMP-nucleosidase-catalyzed NMN hydrolysis are the same. Values of kH/kD for AMP nucleosidase-catalyzed hydrolysis of NMN decrease with decreasing saturation of enzyme with MgATP2- and reach unity when the enzyme is less than half-saturated with this activator. This requires that the rate-determining step changes from cleavage of the covalent C-N bond to one which is isotope-independent. In contrast to the case for NMN hydrolysis, AMP nucleosidase-catalyzed hydrolysis of AMP at saturating concentrations of MgATP2- shows a kinetic alpha-deuterium isotope effect of unity. Thus, covalent bond-changing reactions are largely or completely rate-determining for hydrolysis of a poor substrate, NMN, but make little or no contribution to rate-determining step for hydrolysis of a good substrate, AMP, by maximally activated enzyme. This behavior has several precedents

  5. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  7. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    International Nuclear Information System (INIS)

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan

    2017-01-01

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and

  8. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.

    Science.gov (United States)

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-09-24

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C(30)H(50)O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761-779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.

  9. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.

    Science.gov (United States)

    Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I

    2016-01-01

    We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

  10. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  11. de novo computational enzyme design.

    Science.gov (United States)

    Zanghellini, Alexandre

    2014-10-01

    Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  13. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2010-03-01

    Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.

  14. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-01-01

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-[ 17 O, 18 O]phosphoethanolamine ([ 17 O, 18 O]DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-[ 16 O, 17 O, 18 O]DPPA), respectively, by incubating with phospholipase D. Condensation of [ 16 O, 17 O, 18 O]DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, [ 17 O, 18 O]cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ([ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O] CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave [ 17 O, 18 O]DPPE. The configuration and isotopic enrichments of the starting [ 17 O, 18 O]DPPE and the product were analyzed by 31 P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments

  15. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  17. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  18. Discovery of enzymes for toluene synthesis from anoxic microbial communities

    DEFF Research Database (Denmark)

    Beller, Harry R.; Rodrigues, Andria V.; Zargar, Kamrun

    2018-01-01

    Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes...... phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from...... a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic...

  19. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  20. Possibilities and scope of the double isotope effect method in the elucidation of mechanisms of enzyme catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H L; Medina, R [Technische Univ. Muenchen, Freising (Germany, F.R.). Lehrstuhl fuer Allgemeine Chemie und Biochemie

    1991-01-01

    Kinetic isotope effects on enzyme catalyzed reactions are indicative for the first irreversible in a sequence of individual steps. Hints on the relative velocities of other steps can only be obtained from the partitioning factor R and its dependence on external reaction conditions. In general, the experimental data needed are obtained from isotope abundance measurements in a defined position of the substrate or product as a function of turnover. This method does not reveal events dealing with neighbour atoms or preceding the main isotope sensitive step. In the method presented here, the analytical measurement is extended to the second atom involved in a bond fission of formation (Double Isotope Effect Method). It is shown that the additional results obtained support the identification of the main isotopically sensitive step and its relative contribution to the overall reaction rate, the identification of other kinetically significant steps and the differentiation between stepwise and concerted reaction mechanisms. The method and its advantages are demonstrated on reactions comprising C-N-bond splitting (urease and arginase reaction), C-C-bound fission (reactions catalyzed by pyruvate-dehydrogenase, pyruvate-formiate-lyase and lactate-oxidase), C-O-bound formation (ribulose-bisphosphate-oxygenase reaction), and N-O-bond fission (nitrate- and nitrite-reductase reactions). (orig.).

  1. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  2. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  3. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  4. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  5. Palladium-Catalyzed Synthesis of Natural and Unnatural 2-, 5-, and 7-Oxygenated Carbazole Alkaloids from N-Arylcyclohexane Enaminones

    Directory of Open Access Journals (Sweden)

    Joaquín Tamariz

    2013-08-01

    Full Text Available A palladium-catalyzed synthesis of the carbazole framework is described, including the preparation of 2-, 5-, and 7-oxygenated natural and unnatural carbazole alkaloids. A series of N-arylcyclohexane enaminones, generated by condensation of cyclohexane-1,3-dione with diverse anilines, were aromatized by a Pd(0-catalyzed thermal treatment to afford the corresponding diarylamines. The latter were submitted to a Pd(II-catalyzed cyclization and methylation processes to provide the desired carbazoles, including clausine V. Following an inverse strategy, a new and short total synthesis of glycoborine is also reported.

  6. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  7. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Daniela Münch

    2012-01-01

    Full Text Available The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly₅. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly₅ may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling.

  8. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time.

    Science.gov (United States)

    Zhang, Hongdan; Zhang, Shuaishuai; Yuan, Hongyou; Lyu, Gaojin; Xie, Jun

    2018-02-01

    An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L -1 FeCl 3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl 3 -catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  10. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    Science.gov (United States)

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  11. Enzymatically-Catalyzed Polymerization (ECP)- Derived Polymer Electrolyte for Rechargeable Li-Ion Batteries

    National Research Council Canada - National Science Library

    Chua, David

    1998-01-01

    Report developed under SBIR contract covers the syntheses and electrochemical characterizations of novel polymer electrolytes derived from compounds synthesized via enzyme-catalyzed polymerization(ECP) techniques...

  12. Differential Selectivity of the Escherichia coli Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose▿

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-01-01

    An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746

  13. Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose.

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-04-01

    An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.

  14. Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Chen

    Full Text Available Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents.

  15. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    International Nuclear Information System (INIS)

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 (angstrom) resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg 2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  16. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  17. Transesterification of Castor Oil Catalyzed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    economy. Based on this, and considering its low influence with food production, castor oil was investigated as a potential feedstock. Compared to other vegetable oils, it has a higher polarity resulting in better system homogeneity during reaction. The enzyme tested as catalyst was Eversa Transform. Four...... main reaction parameters were investigated for the optimization of the reaction route: the temperature was varied from 35 to 45 °C, the water content between 0-10 wt%, the enzyme content in the range of 2-10 wt%, and the alcohol-to-oil molar ratio from 4.5 to 7.5. The Response Surface Methodology...... was used to determine the optimal reaction conditions to get a high biodiesel yield and a low free fatty acids concentration. The results obtained showed that at 35 °C, 5 wt% of enzymes, 5 wt% of water, and a 6.0 alcohol-to-oil molar ratio, the yield in biodiesel was about 94% with a content of free fatty...

  18. Self-condensation of n-(N-propyl)butanimine: NMR and mass spectral analyses and investigation by theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manfrini, Rozangela Magalhaes; Teixeira, Flavia Rodrigues; Pilo-Veloso, Dorila; Alcantara, Antonio Flavio de Carvalho, E-mail: aalcantara@zeus.qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Nelson, David Lee [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Quimica; Siqueira, Ezequias Pessoa de [Centro de Pesquisas Rene Rachou (FIOCRUZ), Belo Horizonte, MG (Brazil)

    2012-07-01

    The stability of N-propylbutanimine (1) was investigated under different experimental conditions. The acid-catalyzed self-condensation that produced the E-enimine (4) and Z-inimine (5) was studied by experimental analyses and theoretical calculations. Since the calculations for the energy of 5 indicated that it had a lower energy than 4, yet 4 was the principal product, the self-condensation of 1 must be kinetically controlled. (author)

  19. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    Science.gov (United States)

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  20. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  1. The evolution of function in strictosidine synthase-like proteins.

    Science.gov (United States)

    Hicks, Michael A; Barber, Alan E; Giddings, Lesley-Ann; Caldwell, Jenna; O'Connor, Sarah E; Babbitt, Patricia C

    2011-11-01

    The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural, and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called strictosidine synthase-like (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins. Copyright © 2011 Wiley-Liss, Inc.

  2. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms

    NARCIS (Netherlands)

    Veen, Bart A. van der; Alebeek, Gert-Jan W.M. van; Uitdehaag, Joost C.M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

    Cyclodextrin glycosyltransferase (CGTase) catalyzes three transglycosylation reactions via a double displacement mechanism involving a covalent enzyme-intermediate complex (substituted-enzyme intermediate). Characterization of the three transglycosylation reactions, however, revealed that they

  3. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride...

  4. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  5. The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23S rRNA

    DEFF Research Database (Denmark)

    Lartigue, Carole; Lebaudy, Anne; Blanchard, Alain

    2014-01-01

    Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl g...... specifically modifies m5U1939 in 23S rRNA, a conserved methylation catalyzed by AdoMet-dependent enzymes in all other characterized bacteria. The Mcap0476 methyltransferase (renamed RlmFO) represents the first folate-dependent flavoprotein seen to modify ribosomal RNA.......Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl...... group donor. One noteworthy exception is seen in some bacteria, where the conserved tRNA methylation at m5U54 is added by the enzyme TrmFO using flavin adenine dinucleotide together with N5,N10-methylenetetrahydrofolate as the one-carbon donor. The minimalist bacterium Mycoplasma capricolum possesses...

  6. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  7. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes

    NARCIS (Netherlands)

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-01-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their

  8. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-01-01

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction

  10. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones.

    Science.gov (United States)

    Schröder, J; Raiber, S; Berger, T; Schmidt, A; Schmidt, J; Soares-Sello, A M; Bardshiri, E; Strack, D; Simpson, T J; Veit, M; Schröder, G

    1998-06-09

    Heterologous screening of a cDNA library from Pinusstrobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinus sylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.

  11. Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver

    NARCIS (Netherlands)

    Peters, W. H.; Jansen, P. L.

    1986-01-01

    Human liver microsomal bilirubin UDP-glucuronyltransferase catalyzes formation of bilirubin mono- and diglucuronide. KmUDPGA and Vmax of the enzyme are 0.6 mM and 1.69 nmol/mg protein X min. In vitro, bilirubin readily dissolves in the microsomal lipid phase. Taking this into account a Kmbilirubin

  12. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    Science.gov (United States)

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  13. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  14. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  15. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2011-01-01

    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  16. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 21 CFR 184.1287 - Enzyme-modified fats.

    Science.gov (United States)

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... that are generally recognized as safe (GRAS). Enzyme-modified milk powder may be prepared with GRAS enzymes from reconstituted milk powder, whole milk, condensed or concentrated whole milk, evaporated milk...

  18. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    Science.gov (United States)

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  19. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Hands-On Classroom Simulation to Demonstrate Concepts in Enzyme Kinetics

    Science.gov (United States)

    Junker, Matthew

    2010-01-01

    A classroom exercise is described to introduce enzyme kinetics in an undergraduate biochemistry or chemistry course. The exercise is a simulation in which a student acts as an enzyme that "catalyzes" the unscrewing of a nut from a bolt. With other students assisting, the student enzyme carries out reactions with bolt-nut substrates under different…

  1. The effects of crown ethers on the activity of enzymes in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David; Vulfson, Evgeny N.; Halling, Peter J.; Holland, Herbert L.

    2001-01-01

    Currently, the applicability of enzymes in synthetic organic chemistry is well recognized. The field of enzyme-catalyzed organic synthesis has been further boosted by the recognition that enzymes can operate in organic solvents. The use of nonaqueous media for enzymatic conversions offers a number

  2. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

    Science.gov (United States)

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-01

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

  3. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  4. HPLC, NMR and MALDI-TOF MS Analysis of Condensed Tannins from Lithocarpus glaber Leaves with Potent Free Radical Scavenging Activity

    OpenAIRE

    Zhang, Liang Liang; Lin, Yi Ming

    2008-01-01

    Using acid-catalyzed degradation in the presence of cysteamine, the condensed tannins from Lithocarpus glaber leaves were characterized, following thiolysis, by means of reversed-phase HPLC, 13C-NMR and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. The thiolysis reaction products showed the presence of the procyanidin (PC) and prodelphinidin (PD) structures. The 13C-NMR spectrum revealed that the condensed tannins were comprised of PD (7...

  5. 1,3-Dibromo 5,5-dimethylhydantoin (DBH-Catalyzed Solvent-Free Synthesis of 2-arylbenzimidazoles under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzani

    2012-01-01

    Full Text Available An expeditious synthesis of 2-aryl-benzimidazoles by the condensation of o-phenylenediamine with various arylaldehydes is described. This greener protocol is catalyzed by 1,3-Dibromo 5,5-dimethylhydantoin (DBH, and proceeds efficiently in the absence of any organic solvent under thermal condition and microwave irradiation in high yields.

  6. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    Science.gov (United States)

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enzymic oxidation of carbon monoxide. II

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, T

    1959-01-01

    An enzyme which catalyzes the oxidation of carbon monoxide into carbon dioxide was obtained in a cell free state from Desulfovibrio desulfuricans. The enzyme activity was assayed manometrically by measuring the rate of gas uptake under the atmosphere of carbon monoxide in the presence of benzyl-viologen as an oxidant. The optimum pH range was 7 to 8. The activity was slightly suppressed by illumination. The enzyme was more stable than hydrogenase or formate dehydrogenase against the heat treatment, suggesting that it is a different entity from these enzymes. In the absence of an added oxidant, the enzyme preparation produced hydrogen gas under the atmosphere of carbon monoxide. The phenomenon can be explained assuming the reductive decomposition of water. 17 references, 4 figures, 2 tables.

  8. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  9. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia; van Dijk, Aalt D J; Scaffidi, Adrian; Flematti, Gavin R.; Hofmann, Manuel; Charnikhova, Tatsiana; Verstappen, Francel; Hepworth, Jo; van der Krol, Sander; Leyser, Ottoline; Smith, Steven M.; Zwanenburg, Binne; Al-Babili, Salim; Ruyter-Spira, Carolien; Bouwmeester, Harro J.

    2014-01-01

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  10. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  11. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  12. Enzyme technology for precision functional food ingredient processes.

    Science.gov (United States)

    Meyer, Anne S

    2010-03-01

    A number of naturally occurring dietary substances may exert physiological benefits. The production of enhanced levels or particularly tailored versions of such candidate functional compounds can be targeted by enzymatic catalysis. The recent literature contains examples of enhancing bioavailability of iron via enzyme-catalyzed degradation of phytate in wheat bran, increasing diacyl-glycerol and conjugated linoleic acid levels by lipase action, enhancing the absorption of the citrus flavonoid hesperetin via rhamnosidase treatment, and obtaining solubilized dietary fiber via enzymatic modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much-needed improved understanding of the physiological benefits of complex natural substances.

  13. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael

    2010-01-01

    The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  14. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  15. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  16. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  17. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis*

    Science.gov (United States)

    Le, Nguyen-Hung; Molle, Virginie; Eynard, Nathalie; Miras, Mathieu; Stella, Alexandre; Bardou, Fabienne; Galandrin, Ségolène; Guillet, Valérie; André-Leroux, Gwenaëlle; Bellinzoni, Marco; Alzari, Pedro; Mourey, Lionel; Burlet-Schiltz, Odile; Daffé, Mamadou; Marrakchi, Hedia

    2016-01-01

    Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target. PMID:27590338

  18. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution

    Science.gov (United States)

    Renata, Hans; Wang, Z. Jane

    2015-01-01

    High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts. Examples of new enzyme functions include epoxide opening reactions with non-natural nucleophiles catalyzed by a laboratory-evolved halohydrin dehalogenase, cyclopropanation and other carbene transfer reactions catalyzed by cytochrome P450 variants, and non-natural modes of cyclization by a modified terpene synthase. Lastly, we describe discoveries of non-native catalytic functions that may provide future opportunities for expanding the enzyme universe. PMID:25649694

  19. Enzyme technology for precision functional food ingredient processes

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2010-01-01

    modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much...

  20. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.

    Science.gov (United States)

    Dai, Yumin; Kizjakina, Karina; Campbell, Ashley C; Korasick, David A; Tanner, John J; Sobrado, Pablo

    2018-01-04

    The flavin-dependent enzyme 2-haloacrylate hydratase (2-HAH) catalyzes the conversion of 2-chloroacrylate, a major component in the manufacture of acrylic polymers, to pyruvate. The enzyme was expressed in Escherichia coli, purified, and characterized. 2-HAH was shown to be monomeric in solution and contained a non-covalent, yet tightly bound, flavin adenine dinucleotide (FAD). Although the catalyzed reaction was redox-neutral, 2-HAH was active only in the reduced state. A covalent flavin-substrate intermediate, consistent with the flavin-acrylate iminium ion, was trapped with cyanoborohydride and characterized by mass spectrometry. Small-angle X-ray scattering was consistent with 2-HAH belonging to the succinate dehydrogenase/fumarate reductase family of flavoproteins. These studies establish 2-HAH as a novel noncanonical flavoenzyme. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glycolysis of poly (3-hydroxybutyrate) catalyzed by an enzyme system

    International Nuclear Information System (INIS)

    Campos, T.F.; Mano, V.

    2010-01-01

    In this work we report the studies of PHB glycolysis catalyzed by lipase Amano PS (Pseudomonas cepacia) in the presence of 1,2-ethanediol (ethylene glycol). The reactions were performed in toluene:dichloroethane 3:1 (v/v) at 60 deg C, varying reaction time and concentration of ethylene glycol. PHB and the products of glycolysis (polyols) were characterized by FTIR, 1 H-NMR, and TG. The FTIR spectra of polyols showed no significant change compared to the spectrum of PHB. The 1 H-NMR spectra of the products of glycolysis showed signs of interest between 3 and 4.7 ppm, related to the ethylene glycol protons inserted in the polymer chain. By analyzing the thermograms we observed that the polyols are more thermally stable than PHB. (author)

  2. Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Xu, Cheng; Sørensen, Jens

    2012-01-01

    This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α...... α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant...... than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan...

  3. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  5. PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription

    Science.gov (United States)

    Beck, David B.; Oda, Hisanobu; Shen, Steven S.; Reinberg, Danny

    2012-01-01

    Histone post-translational modifications impact many aspects of chromatin and nuclear function. Histone H4 Lys 20 methylation (H4K20me) has been implicated in regulating diverse processes ranging from the DNA damage response, mitotic condensation, and DNA replication to gene regulation. PR-Set7/Set8/KMT5a is the sole enzyme that catalyzes monomethylation of H4K20 (H4K20me1). It is required for maintenance of all levels of H4K20me, and, importantly, loss of PR-Set7 is catastrophic for the earliest stages of mouse embryonic development. These findings have placed PR-Set7, H4K20me, and proteins that recognize this modification as central nodes of many important pathways. In this review, we discuss the mechanisms required for regulation of PR-Set7 and H4K20me1 levels and attempt to unravel the many functions attributed to these proteins. PMID:22345514

  6. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  7. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  8. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  9. Recombinant silicateins as model biocatalysts in organosiloxane chemistry

    Science.gov (United States)

    Tabatabaei Dakhili, S. Yasin; Caslin, Stephanie A.; Faponle, Abayomi S.; Quayle, Peter; de Visser, Sam P.

    2017-01-01

    The family of silicatein enzymes from marine sponges (phylum Porifera) is unique in nature for catalyzing the formation of inorganic silica structures, which the organisms incorporate into their skeleton. However, the synthesis of organosiloxanes catalyzed by these enzymes has thus far remained largely unexplored. To investigate the reactivity of these enzymes in relation to this important class of compounds, their catalysis of Si–O bond hydrolysis and condensation was investigated with a range of model organosilanols and silyl ethers. The enzymes’ kinetic parameters were obtained by a high-throughput colorimetric assay based on the hydrolysis of 4-nitrophenyl silyl ethers. These assays showed unambiguous catalysis with kcat/Km values on the order of 2–50 min−1 μM−1. Condensation reactions were also demonstrated by the generation of silyl ethers from their corresponding silanols and alcohols. Notably, when presented with a substrate bearing both aliphatic and aromatic hydroxy groups the enzyme preferentially silylates the latter group, in clear contrast to nonenzymatic silylations. Furthermore, the silicateins are able to catalyze transetherifications, where the silyl group from one silyl ether may be transferred to a recipient alcohol. Despite close sequence homology to the protease cathepsin L, the silicateins seem to exhibit no significant protease or esterase activity when tested against analogous substrates. Overall, these results suggest the silicateins are promising candidates for future elaboration into efficient and selective biocatalysts for organosiloxane chemistry. PMID:28630316

  10. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  11. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-06-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.

  12. Deduction of kinetic mechanism in multisubstrate enzyme reactions from tritium isotope effects. Application to dopamine beta-hydroxylase

    International Nuclear Information System (INIS)

    Klinman, J.P.; Humphries, H.; Voet, J.G.

    1980-01-01

    Primary tritium isotope effects have been measured for the hydroxylation of [2-3H] dopamine catalyzed by dopamine beta-hydroxylase. Experimental values vary from 8.8 +/- 1.4 at 0.02 mM oxygen to 4.1 +/- 0.6 at 1.0 mM oxygen. It is shown that the observed dependence of the isotope effect on oxygen concentration provides unequivocal evidence for a kinetically significant dissociation of both dopamine and oxygen from enzyme, ternary complex. This approach, which is applicable to any multisubstrate enzyme characterized by detectable kinetic isotope effects, provides an alternate to classical methods for the elucidation of kinetic order in enzyme-catalyzed reactions

  13. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  14. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  15. Cu(I)-catalyzed efficient synthesis of 2′-Triazolo-nucleoside conjugates

    DEFF Research Database (Denmark)

    Mathur, D.; Rana, N.; Olsen, Carl Erik

    2015-01-01

    -nucleoside conjugates, which can be evaluated for different biological activity for suitable drug development, were unambiguously identified on the basis of 1H NMR, 13C NMR, IR, and HRMS data analysis. These compounds have been synthesized for the first time and have not been reported in the literature earlier.......A small library of thirty-two 2′-triazolyl uridine and 2′-triazolyl-5-methyluridine has been synthesized by Cu(I)-catalyzed condensation of 2′-azido-2′-deoxyuridine and 2′-azido-2′-deoxy-5-methyluridine with different alkynes and aryl propargyl ethers in almost quantitative yields. Triazolo...

  16. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  17. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.

    Science.gov (United States)

    Caspers, Michael; Czogalla, Katrin J; Liphardt, Kerstin; Müller, Jens; Westhofen, Philipp; Watzka, Matthias; Oldenburg, Johannes

    2015-05-01

    VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are γ-carboxylated by the hepatic γ-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways. Copyright © 2015. Published by Elsevier Ltd.

  18. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  19. Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction

    NARCIS (Netherlands)

    de Macedo-Ribeiro, S.; Renirie, R.; Wever, R.; Messerschmidt, A.

    2008-01-01

    The crystal structure of the apo form of vanadium chloroperoxidase from Curvularia inaequalis reacted with para-nitrophenylphosphate was determined at a resolution of 1.5 Å. The aim of this study was to solve structural details of the dephosphorylation reaction catalyzed by this enzyme. Since the

  20. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    Science.gov (United States)

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  1. Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system - Performance and diastereoselectivity studies

    NARCIS (Netherlands)

    Čech, J.; Hessel, V.; Přibyl, M.

    2017-01-01

    We study synthesis of . L-phenylserine catalyzed by the enzyme . L-threonine aldolase in a slug-flow microfluidic system. Slug-flow arrangement allows for the continuous refilling of sparingly soluble substrate (benzaldehyde) into an aqueous reaction mixture. We identified suitable composition of an

  2. Biogenesis of ER subdomains containing DGAT2, an enzyme involved in industrial oil biosynthesis

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) are enzymes that catalyze the committed step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl group from the acyl-CoA pool to the sn-3 position of diacylglycerol. The substrate specificity and overall activity of these enzymes play a key role...

  3. Microbial enzyme-catalyzed processes in soils and their analysis

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2009-01-01

    Roč. 55, č. 9 (2009), s. 370-378 ISSN 1214-1178 R&D Projects: GA MŠk LC06066; GA MŠk OC 155; GA MŠk OC08050; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : assay methods * extracellular enzymes * ecology Subject RIV: EE - Microbiology, Virology Impact factor: 0.697, year: 2009

  4. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    Science.gov (United States)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  5. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy*

    Science.gov (United States)

    Farrow, Scott C.; Facchini, Peter J.

    2013-01-01

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311

  6. Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Facchini, Peter J

    2013-10-04

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.

  7. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme.

    Science.gov (United States)

    Watkins, Daniel W; Jenkins, Jonathan M X; Grayson, Katie J; Wood, Nicola; Steventon, Jack W; Le Vay, Kristian K; Goodwin, Matthew I; Mullen, Anna S; Bailey, Henry J; Crump, Matthew P; MacMillan, Fraser; Mulholland, Adrian J; Cameron, Gus; Sessions, Richard B; Mann, Stephen; Anderson, J L Ross

    2017-08-25

    Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 . The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H 2 O 2 .

  8. Engineering a Monolignol 4-O-Methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alcohol*

    Science.gov (United States)

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-01-01

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. PMID:26378240

  9. A Novel Lactone-Forming Carboxylesterase: Molecular Identification of a Tuliposide A-Converting Enzyme in Tulip1[W

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-01-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185

  10. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    OpenAIRE

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinester...

  11. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  12. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    DEFF Research Database (Denmark)

    de Rond, Tristan; Stow, Parker; Eigl, Ian

    2017-01-01

    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigi...... of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution....

  13. Enzyme chemistry and the evolution of metabolic diversity: the β-ketoadipate pathway

    International Nuclear Information System (INIS)

    Kozarich, J.W.

    1986-01-01

    The two converging catechol and protocatechuate branches of the β-ketoadipate pathway in Pseudomonas putida have long been considered a paradigm of evolutionary divergence of specialized enzymes from a common ancestor. The structural similarities of substrates, products and the enzymes themselves have supported this hypothesis. Employing chemical and 1 H NMR techniques, they have determined the absolute stereochemical courses of the reactions catalyzed by β-carboxymuconate cycloisomerase, muconolactone isomerase, and γ-carboxymuconolactone decarboxylase. Surprisingly, β-carboxymuconate cycloisomerase proceeds via an anti addition while the corresponding muconate cycloisomerase has been shown to catalyze a syn addition. Moreover, the chiral centers generated in the products of both enzymes are of the opposite relative configuration. They believe that the shift in mechanism may reflect basic energetic differences of the two reactions. The stereochemistries of the isomerase and decarboxylase have been established by 1 H NMR using a ricochet analysis. Both reactions proceed via a syn process; the relative configurations of muconolactone and γ-carboxymuconolactone necessitate that the enzymes operate on opposite faces of the common enol-lactone product. These findings suggest that either critical active site changes have occurred in these enzymes to accommodate preferred mechanistic pathways or the evolutionary relationship of the two branches is more remote than previously believed

  14. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  15. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    International Nuclear Information System (INIS)

    Arkowitz, R.A.; Abeles, R.H.

    1991-01-01

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P i + 2e - → acetyl phosphate + NH 4 + . Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of [ 32 P]P i into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P i to give acetyl phosphate. When [ 14 C]acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH 4 removes all the radioactivity associated with protein C, resulting in the formation of [ 14 C]ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from [ 3 H]H 2 O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence

  16. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  17. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    Science.gov (United States)

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  18. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    Science.gov (United States)

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  19. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  20. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.

    Science.gov (United States)

    Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun

    2015-10-30

    Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  2. Large acceleration of a-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    The effects of 18-crown-6 on the synthesis of peptides catalyzed by α-chymotrypsin are reported. Lyophilization of the enzyme in the presence of 50 equivalents of 18-crown-6 results in a 425-fold enhanced activity when the reaction between the 2-chloroethylester of N-acetyl-L-phenylalanine and

  3. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    Science.gov (United States)

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    Science.gov (United States)

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  5. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs

    Directory of Open Access Journals (Sweden)

    Alhosna Benjdia

    2017-11-01

    Full Text Available Ribosomally-synthesized and post-translationally modified peptides (RiPPs are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  6. Studies on the self-catalyzed Knoevenagel condensation, characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques

    Science.gov (United States)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.

    2014-10-01

    We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.

  7. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation

    NARCIS (Netherlands)

    Gerwig, Gerrit J; Te Poele, Evelien M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2017-01-01

    The wild-type Gtf180-ΔN glucansucrase enzyme from Lactobacillus reuteri 180 was found to catalyze the α-glucosylation of the steviol glycoside rebaudioside A, using sucrose as glucosyl donor in a transglucosylation process. Structural analysis of the formed products by MALDI-TOF mass spectrometry,

  8. Solvent-dependent reactions for the synthesis of β-keto-benzo-δ-sultone scaffolds via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences.

    Science.gov (United States)

    Ghandi, Mehdi; Bozcheloei, Abolfazl Hasani; Nazari, Seyed Hadi; Sadeghzadeh, Masoud

    2011-12-16

    We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

  9. Insight into cofactor recognition in arylamine N-acetyltransferase enzymes

    DEFF Research Database (Denmark)

    Xu, Ximing; Li de la Sierra-Gallay, Inés; Kubiak, Xavier Jean Philippe

    2015-01-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined...... for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover......, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints....

  10. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  11. Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme.

    Directory of Open Access Journals (Sweden)

    Collin Joseph

    Full Text Available The concept of modulating enzymatic activity by exerting a mechanical stress on the enzyme has been established in previous work. Mechanical perturbation is also a tool for probing conformational motion accompanying the enzymatic cycle. Here we report measurements of the forward and reverse kinetics of the enzyme Guanylate Kinase from yeast (Saccharomyces cerevisiae. The enzyme is held in a state of stress using the DNA spring method. The observation that mechanical stress has different effects on the forward and reverse reaction kinetics suggests that forward and reverse reactions follow different paths, on average, in the enzyme's conformational space. Comparing the kinetics of the stressed and unstressed enzyme we also show that the maximum speed of the enzyme is comparable to the predictions of the relaxation model of enzyme action, where we use the independently determined dissipation coefficient [Formula: see text] for the enzyme's conformational motion. The present experiments provide a mean to explore enzyme kinetics beyond the static energy landscape picture of transition state theory.

  12. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J; Koliwad, Suneil; Harris, Charles; Farese, Robert V

    2008-11-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.

  13. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  14. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. HPLC, NMR and MALDI-TOF MS analysis of condensed tannins from Lithocarpus glaber leaves with potent free radical scavenging activity.

    Science.gov (United States)

    Zhang, Liang Liang; Lin, Yi Ming

    2008-12-04

    Using acid-catalyzed degradation in the presence of cysteamine, the condensed tannins from Lithocarpus glaber leaves were characterized, following thiolysis, by means of reversed-phase HPLC, 13C-NMR and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. The thiolysis reaction products showed the presence of the procyanidin (PC) and prodelphinidin (PD) structures. The 13C-NMR spectrum revealed that the condensed tannins were comprised of PD (72.4%) and PC (27.6%), and with a greater content of cis configuration rather than the trans configuration of C2-C3. The MALDI-TOF MS analysis proved the presence of PD units, and the maximum degree of polymerization (DP) was an undecamer. The antioxidant activity of condensed tannins from L. glaber leaves was evaluated by using a free radical scavenging activity assay.

  16. Crystallization and preliminary X-ray characterization of the tetrapyrrole-biosynthetic enzyme porphobilinogen deaminase from Bacillus megaterium

    International Nuclear Information System (INIS)

    Azim, N.; Deery, E.; Warren, M. J.; Erskine, P.; Cooper, J. B.; Wood, S. P.; Akhtar, M.

    2013-01-01

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. PBGD from B. megaterium was expressed and the enzyme was crystallized in a form which diffracts synchrotron radiation to high resolution. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Expression in Escherichia coli of a His-tagged form of Bacillus megaterium PBGD permitted the crystallization and preliminary X-ray analysis of the enzyme from this species at high resolution

  17. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  18. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    International Nuclear Information System (INIS)

    Nemeti, Balazs; Gregus, Zoltan

    2009-01-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  19. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  20. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  1. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  2. Synthesis of [methine-3H]DDT and its nitro-analog, and isotope effects in their enzyme-catalyzed dehydrochlorination

    International Nuclear Information System (INIS)

    Kurihara, N.; Ikemoto, Y.; Okutani, S.; Clark, A.G.

    1989-01-01

    [methine- 3 H]1,1-Di-(4-chlorophenyl)-2,2,2-trichloroethane ([methine- 3 H]DDT) and its di-(4-nitrophenyl) analog, both of high purity with a moderately high specific activity were prepared. Chloro-benzene was condensed with [1- 3 H]1-(4-chlorophenyl)-2,2,2-trichloro-ethanol, which has been synthesized by sodium boro[ 3 H]hydride reduction of 4-chlorophenyl trichloromethyl ketone. The purified [ 3 H]DDT had a specific activity of 0.77 Ci/mmol (28.49 GBq/mmol). [methine- 3 H]1,1-Diphenyl-2,2,2-trichloroethane was similarly synthesized and was nitrated to give [methine- 3 H]1,1-di-(4-nitrophenyl)-2,2,2-trichloro-ethane of 1.63 Ci/mmol (60.31 GBq/mmol). Dehydrochlorination with housefly enzyme (glutathione-dependent DDT dehydrochlorinase) showed a remarkable isotope effect. For DDT, the observed tritium isotope effect on V max /K m was 11.51±0.52. For the nitro-analog, the value was 11.3±1.2. We measured deuterium isotope effect on V max /K m for DDT in a competitive mode and obtained the value 4.19±0.34. Based on these values, the magnitude of intrinsic isotope effect values on DDT-dehydrochlorination reaction was discussed. (author)

  3. Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis*

    Science.gov (United States)

    Hagel, Jillian M.; Beaudoin, Guillaume A. W.; Fossati, Elena; Ekins, Andrew; Martin, Vincent J. J.; Facchini, Peter J.

    2012-01-01

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The Km values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism. PMID:23118227

  4. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis.

    Science.gov (United States)

    Hagel, Jillian M; Beaudoin, Guillaume A W; Fossati, Elena; Ekins, Andrew; Martin, Vincent J J; Facchini, Peter J

    2012-12-14

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The K(m) values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism.

  5. Identification of two alpha-ketoglutarate-dependent dioxygenases in extracts of Rhodotorula glutinis catalyzing deoxyuridine hydroxylation

    International Nuclear Information System (INIS)

    Stubbe, J.

    1985-01-01

    Attempts to isolate deoxyuridine 2'-hydroxylase from Rhodotorula glutinis J. Biol. Chem. 258, 10551-10557) have led to the identification and partial purification of a newly recognized alpha-ketoglutarate-requiring oxygenase. This activity, designated deoxyuridine (uridine) 1'-hydroxylase, in the presence of iron and ascorbate, catalyzes the conversion of deoxyuridine (uridine), O 2 , and alpha-ketoglutarate to uracil, deoxyribonolactone (ribonolactone), CO 2 , and succinate. Incubation of [1'- 3 H]uridine with this activity results in time-dependent formation of uracil concomitant with production of CO 2 and 3H 2 O. Also reported in this paper is the partial purification and characterization of the alpha-ketoglutarate-requiring enzyme, deoxyuridine 2'-hydroxylase. Incubation of [2'-alpha- 3 H]deoxyuridine with this activity results in concomitant production of uridine and 3H 2 O. Incubation with [2'-beta- 3 H] deoxyuridine results in the production of uridine whose specific activity is identical to that of the starting material. This enzyme catalyzes the conversion of deoxyuridine to uridine with retention of configuration. No isotope effect is observed on this transformation

  6. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  7. In-vitro engineering of novel bioactivity in the natural enzymes

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2016-10-01

    Full Text Available Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.

  8. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  9. Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage

    International Nuclear Information System (INIS)

    Saeki, Yasushi; Tayama, Yoko; Toh-e, Akio; Yokosawa, Hideyoshi

    2004-01-01

    Saccharomyces cerevisiae Ufd2 is a ubiquitin chain elongation factor in the ubiquitin fusion degradation (UFD) pathway and functions in stress tolerance. A recent study has suggested that the mammalian Ufd2 homologue UFD2a catalyzes formation of Lys27- and Lys33-linked polyubiquitin chains rather than the Lys48-linked chain, but the linkage type of the polyubiquitin chain formed by yeast Ufd2 remains unclear. To determine the property of Ufd2, we reconstituted the UFD pathway using purified enzymes from yeast. Direct determination of the ubiquitin chain linkage type in polyubiquitinated UFD substrates by MALDI-TOF mass spectrometry revealed that Ufd2 catalyzes elongation of the ubiquitin chain through Lys48 linkage

  10. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  11. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  12. I2-Catalyzed Oxidative Condensation of Aldoses with Diamines: Synthesis of Aldo-Naphthimidazoles for Carbohydrate Analysis

    Directory of Open Access Journals (Sweden)

    Chunchi Lin

    2010-03-01

    Full Text Available A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.

  13. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  14. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  15. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  16. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  17. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues

    NARCIS (Netherlands)

    Carvalho, A.P.; Swart, M.; van Stralen, J.N.P.; Fernandes, P.A.; Ramos, M.E.; Bickelhaupt, F.M.

    2008-01-01

    Thioredoxins (Trx) are enzymes with a characteristic CXYC active-site motif that catalyze the reduction of disulfide bonds in other proteins. We have theoretically explored this reaction mechanism, both in the gas phase and in water, using density functional theory. The mechanism of disulfide

  19. Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    Directory of Open Access Journals (Sweden)

    Sanghamitra Sen

    2015-05-01

    Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  20. Green polymer chemistry: enzyme catalysis for polymer functionalization.

    Science.gov (United States)

    Sen, Sanghamitra; Puskas, Judit E

    2015-05-21

    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  1. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  2. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes

    NARCIS (Netherlands)

    Vujičić-Žagar, Andreja; Pijning, Tjaard; Kralj, Slavko; López, Cesar A.; Eeuwema, Wieger; Dijkhuizen, Lubbert; Dijkstra, Bauke W.

    2010-01-01

    Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to

  4. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    Science.gov (United States)

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  6. NADP+ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    International Nuclear Information System (INIS)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-01-01

    Cholera or pertussis toxin-catalyzed [ 32 P]ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD + , by endogenous enzymes such as NAD + -glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP + . The effect is concentration dependent; with 20 μM [ 32 P]NAD + as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP + . The enhancement of [ 32 P]ADP-ribosylation by NADP + was much greater than that by other known effectors such as Mg 2+ , phosphate or isoniazid. The effect of NADP + on ADP-ribosylation may occur by inhibition of the degradation of NAD + probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP + , isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl 2 ) to suppress NADase activity, NADP + was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP + in the assay is necessary to obtain maximal ADP-ribosylation

  7. Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools

    Directory of Open Access Journals (Sweden)

    Bornscheuer Uwe T.

    2013-01-01

    Full Text Available In this review, the application of enzymes, especially lipases, for the modification of fats and oils is covered. This includes the lipase-catalyzed selective production of structured triglycerides and the isolation or incorporation of specific fatty acids. Protein engineering methods to modify lipases on a molecular level were used to alter the fatty acid chain-length and ‘‘trans over cis’’ selectivity of lipase A from Candida antarctica. Furthermore, an enzymatic cascade reaction to remove 3-monochloropropanediol and the identification of a phospholipase C for degumming are briefly covered.

  8. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled `Nanozyme

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courntey J.; Fiedler, Dorothea; Bergman, Robert G.; Raymond, Kenneth N.

    2008-02-27

    The tetrahedral [Ga{sub 4}L{sub 6}]{sup 12-} assembly (L = N,N-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) encapsulates a variety of cations, including propargyl enammonium cations capable of undergoing the aza Cope rearrangement. For propargyl enammonium substrates that are encapsulated in the [Ga{sub 4}L{sub 6}]{sup 12-} assembly, rate accelerations of up to 184 are observed when compared to the background reaction. After rearrangement, the product iminium ion is released into solution and hydrolyzed allowing for catalytic turnover. The activation parameters for the catalyzed and uncatalyzed reaction were determined, revealing that a lowered entropy of activation is responsible for the observed rate enhancements. The catalyzed reaction exhibits saturation kinetics; the rate data obey the Michaelis-Menten model of enzyme kinetics, and competitive inhibition using a non-reactive guest has been demonstrated.

  9. Phosphoglycerate Mutase Is a Highly Efficient Enzyme without Flux Control in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Petranovic, D.; Købmann, Brian

    2010-01-01

    The glycolytic enzyme phosphoglycerate mutase (PGM), which catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate, was examined in Lactococcus lactis with respect to its function, kinetics and glycolytic flux control. A library of strains with PGM activities ranging between 15-465% ...

  10. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol......-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35 °C, 6.0 methanol-to-oil molar ratio, 5 wt% of enzyme and 5...... wt% of water contents, 94 % of FAME yield and 6.1 % of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8 hours are necessary to reach a satisfactory FAME yield together with a minor FFA content....

  11. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    Science.gov (United States)

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  13. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  14. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  15. Stoichiometry and Substrate Affinity of the Mannitol Transporter, EnzymeIImtl, from Escherichia coli

    NARCIS (Netherlands)

    Veldhuis, Gertjan; Broos, Jaap; Poolman, Bert; Scheek, Ruud M.

    2005-01-01

    Uptake and consecutive phosphorylation of mannitol in Escherichia coli is catalyzed by the mannitol permease EnzymeIImtl. The substrate is bound at an extracellular-oriented binding site, translocated to an inward-facing site, from where it is phosphorylated, and subsequently released into the cell.

  16. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Science.gov (United States)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  18. Inhibition of α-Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions

    Directory of Open Access Journals (Sweden)

    Camila Gabriel Kato

    2017-01-01

    Full Text Available The aim of the present study was to compare the in vitro inhibitory effects on the salivary and pancreatic α-amylases and the in vivo hypoglycemic actions of the hydrolysable tannin from Chinese natural gall and the condensed tannin from Acacia mearnsii. The human salivary α-amylase was more strongly inhibited by the hydrolysable than by the condensed tannin, with the concentrations for 50% inhibition (IC50 being 47.0 and 285.4 μM, respectively. The inhibitory capacities of both tannins on the pancreatic α-amylase were also different, with IC50 values being 141.1 μM for the hydrolysable tannin and 248.1 μM for the condensed tannin. The kinetics of the inhibition presented complex patterns in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition. Both tannins were able to inhibit the intestinal starch absorption. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 58.8 μmol/kg and 88% inhibition at the dose of 294 μmol/kg. For the condensed tannin, inhibition was not substantially different for doses between 124.4 μmol/kg (49% and 620 μmol/kg (57%. It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the postprandial glycemic levels in diabetes.

  19. Enzyme (re)design: lessons from natural evolution and computation.

    Science.gov (United States)

    Gerlt, John A; Babbitt, Patricia C

    2009-02-01

    The (re)design of enzymes to catalyze 'new' reactions is a topic of considerable practical and intellectual interest. Directed evolution (random mutagenesis followed by screening/selection) has been used widely to identify novel biocatalysts. However, 'rational' approaches using either natural divergent evolution or computational predictions based on chemical principles have been less successful. This review summarizes recent progress in evolution-based and computation-based (re)design.

  20. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity

    DEFF Research Database (Denmark)

    Yang, Ting; Gao, Liping; Hu, Hao

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first path-way-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate...

  1. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  2. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    Science.gov (United States)

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  3. Plant Products for Pharmacology: Application of Enzymes in Their Transformations

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2008-12-01

    Full Text Available Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.. Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a Hydrolysis/alcoholysis of triacylglycerols and (b esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the

  4. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    Science.gov (United States)

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. An Easy and Effective Demonstration of Enzyme Stereospecificity and Equilibrium Thermodynamics

    Science.gov (United States)

    Herdman, Chelsea; Dickman, Michael

    2011-01-01

    Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As…

  6. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  7. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  8. Radioisotope-enzymes and cancer study

    International Nuclear Information System (INIS)

    Luyen, T. van

    2008-01-01

    Cancer is a pathological sign, when the abnormal cells appear in certain human tissues or organs. These cells can reproduce beyond the control of normal biological protection mechanism. Because they reproduce very fast, the metabolic process is accelerated, which causes the extreme need for more energy, substrate and catalyzing enzymes. Based on these needs, we can control the metabolic process by: Stopping supplying the energy. Stopping supplying the substrate and the materials to build up the cell's structure. Stopping operating catalysis by breaking out the enzyme's structure. Destroying the tumor cell by extra agents such as radiations and chemicals. All of these methods have been studied for a long time, which costs too much money, time and labor. Although we succeeded in some ways, the results are still not satisfactory. There are many reasons for this situation but the main one is the lack of information to understand all the processes taking place in the cell and our body. However, as far as we studied, we would like to propose the method to break the structure of the enzyme by nuclear decay process. (author)

  9. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria

    OpenAIRE

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-01-01

    Background Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. Results We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic ...

  10. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  11. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  12. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  13. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  15. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  16. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    International Nuclear Information System (INIS)

    Hara-Nishimura, I.; Nishimura, M.

    1987-01-01

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with [ 35 S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg 2+ , and Cu 2+ , but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles

  17. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  18. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  19. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  20. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  1. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  2. Enzyme-Catalyzed Oxidation of 17β-Estradiol Using Immobilized Laccase from Trametes versicolor

    Science.gov (United States)

    Cardinal-Watkins, Chantale; Nicell, Jim A.

    2011-01-01

    Many natural and synthetic estrogens are amenable to oxidation through the catalytic action of oxidative enzymes such as the fungal laccase Trametes versicolor. This study focused on characterizing the conversion of estradiol (E2) using laccase that had been immobilized by covalent bonding onto silica beads contained in a bench-scale continuous-flow packed bed reactor. Conversion of E2 accomplished in the reactor declined when the temperature of the system was changed from room temperature to just above freezing at pH 5 as a result of a reduced rate of reaction rather than inactivation of the enzyme. Similarly, conversion increased when the system was brought to warmer temperatures. E2 conversion increased when the pH of the influent to the immobilized laccase reactor was changed from pH 7 to pH 5, but longer-term experiments showed that the enzyme is more stable at pH 7. Results also showed that the immobilized laccase maintained its activity when treating a constant supply of aqueous E2 at a low mean residence time over a 12-hour period and when treating a constant supply of aqueous E2 at a high mean residence time over a period of 9 days. PMID:21869925

  3. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    Science.gov (United States)

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen.

    Science.gov (United States)

    Husserl, Johana; Hughes, Joseph B; Spain, Jim C

    2012-05-01

    Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.

  5. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    Science.gov (United States)

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  6. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications.

    Science.gov (United States)

    Elleuche, Skander

    2015-02-01

    It is a mammoth task to develop a modular protein toolbox enabling the production of posttranslational organized multifunctional enzymes that catalyze reactions in complex pathways. However, nature has always guided scientists to mimic evolutionary inventions in the laboratory and, nowadays, versatile methods have been established to experimentally connect enzymatic activities with multiple advantages. Among the oldest known natural examples is the linkage of two or more juxtaposed proteins catalyzing consecutive, non-consecutive, or opposing reactions by a native peptide bond. There are multiple reasons for the artificial construction of such fusion enzymes including improved catalytic activities, enabled substrate channelling by proximity of biocatalysts, higher stabilities, and cheaper production processes. To produce fused proteins, it is either possible to genetically fuse coding open reading frames or to connect proteins in a posttranslational process. Molecular biology techniques that have been established for the production of end-to-end or insertional fusions include overlap extension polymerase chain reaction, cloning, and recombination approaches. Depending on their flexibility and applicability, these methods offer various advantages to produce fusion genes in high throughput, different orientations, and including linker sequences to maximize the flexibility and performance of fusion partners. In this review, practical techniques to fuse genes are highlighted, enzymatic parameters to choose adequate enzymes for fusion approaches are summarized, and examples with biotechnological relevance are presented including a focus on plant biomass-degrading glycosyl hydrolases.

  7. On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions

    Directory of Open Access Journals (Sweden)

    Alessandro Pellis

    2016-09-01

    Full Text Available Microwave energy (MWe is, nowadays, widely used as a clean synthesis tool to improve several chemical reactions, such as drug molecule synthesis, carbohydrate conversion and biomass pyrolysis. On the other hand, its exploitation in enzymatic reactions has only been fleetingly investigated and, hence, further study of MWe is required to reach a precise understanding of its potential in this field. Starting from the authors’ experience in clean synthesis and biocatalyzed reactions, this study sheds light on the possibility of using MWe for enhancing enzyme-catalyzed polycondensation reactions and pre-polymer formation. Several systems and set ups were investigated involving bulk and organic media (solution phase reactions, different enzymatic preparations and various starting bio-based monomers. Results show that MWe enables the biocatalyzed synthesis of polyesters and pre-polymers in a similar way to that reported using conventional heating with an oil bath, but in a few cases, notably bulk phase polycondensations under intense microwave irradiation, MWe leads to a rapid enzyme deactivation.

  8. Synthesis of (/sup 3/H-Tyr/sup B26/)-human insulin by enzymic semisynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haensicke, A; Kaufmann, K D; Beyermann, M; Oehlke, J; Kertscher, U; Bienert, M; Niedrich, H; Mittag, E; Bespalova, Zh D; Titov, M I

    1988-11-01

    A procedure is described for tritium labelling of human insulin in position Tyr/sup B26/ by means of trypsin catalyzed condensation of DiBoc-DOI with (N/sup /epsilon//-Boc, /sup 3/H-Tyr/sup B26/)-IOP, subsequent deprotection and purification by HPLC. The tritium labelling of the octapeptide was accomplished by dehalotritiation of the corresponding Dit/sup B26/-octapeptide which was obtained both by iodination of N/sup /epsilon//-Boc-IOP and by total synthesis. (author). 2 figs., 1 tab., 17 refs.

  9. Exquisite Enzyme-Fenton Biomimetic Catalysts for Hydroxyl Radical Production by Mimicking an Enzyme Cascade.

    Science.gov (United States)

    Zhang, Qi; Chen, Shuo; Wang, Hua; Yu, Hongtao

    2018-03-14

    Hydrogen peroxide (H 2 O 2 ) is a key reactant in the Fenton process. As a byproduct of enzymatic reaction, H 2 O 2 can be obtained via catalytical oxidation of glucose using glucose oxidase in the presence of O 2 . Another oxidation product (gluconic acid) can suitably adjust the microenvironmental pH contributing to the Fe 3+ /Fe 2+ cycle in the Fenton reaction. Enzymes are extremely efficient at catalyzing a variety of reactions with high catalytic activity, substrate specificity, and yields in living organisms. Inspired by the multiple functions of natural multienzyme systems, an exquisite nanozyme-modified α-FeOOH/porous carbon (PC) biomimetic catalyst constructed by in situ growth of glucose oxidase-mimicking Au nanoparticles and crystallization of adsorbed ferric ions within carboxyl into hierarchically PC is developed as an efficient enzyme-Fenton catalyst. The products (H 2 O 2 , ∼4.07 mmol·L -1 ) of the first enzymatic reaction are immediately used as substrates for the second Fenton-like reaction to generate the valuable • OH (∼96.84 μmol·L -1 ), thus mimicking an enzyme cascade pathway. α-FeOOH nanocrystals, attached by C-O-Fe bondings, are encapsulated into the mesoporous PC frameworks, facilitating the electron transfer between α-FeOOH and the PC support and greatly suppressing iron leaching. This study paves a new avenue for designing biomimetic enzyme-based Fenton catalysts mimicking a natural system for • OH production.

  10. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  11. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  12. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.

    Science.gov (United States)

    Bruijnincx, Pieter C A; van Koten, Gerard; Klein Gebbink, Robertus J M

    2008-12-01

    Iron-containing enzymes are one of Nature's main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the stunningly diverse oxidative transformations that these enzymes catalyze. The wealth of available structural data has furthermore established the so-called 2-His-1-carboxylate facial triad as a new common structural motif for the activation of dioxygen. This superfamily of mononuclear iron(ii) enzymes catalyzes a wide range of oxidative transformations, ranging from the cis-dihydroxylation of arenes to the biosynthesis of antibiotics such as isopenicillin and fosfomycin. The remarkable scope of oxidative transformations seems to be even broader than that associated with oxidative heme enzymes. Not only are many of these oxidative transformations of key biological importance, many of these selective oxidations are also unprecedented in synthetic organic chemistry. In this critical review, we wish to provide a concise background on the chemistry of the mononuclear non-heme iron enzymes characterized by the 2-His-1-carboxylate facial triad and to discuss the many recent developments in the field. New examples of enzymes with unique reactivities belonging to the superfamily have been reported. Furthermore, key insights into the intricate mechanistic details and reactive intermediates have been obtained from both enzyme and modeling studies. Sections of this review are devoted to each of these subjects, i.e. the enzymes, biomimetic models, and reactive intermediates (225 references).

  13. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark; Vermathen, Martina; Alder, Adrian; Wü st, Florian; Schaub, Patrick; van der Steen, Rob; Beyer, Peter; Ghisla, Sandro; Al-Babili, Salim

    2017-01-01

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  15. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark

    2017-02-10

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  16. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Science.gov (United States)

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  17. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  18. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  19. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  20. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Pierre Vogel

    2016-08-01

    Full Text Available Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines, P- (e.g., tertiary phosphines and C-nucleophiles (e.g., N-heterocyclic carbenes. Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes.

  1. Long-term chemiluminescence signal is produced in the course of luminol oxidation catalyzed by enhancer-independent peroxidase purified from Jatropha curcas leaves.

    Science.gov (United States)

    Duan, Peipei; Cai, Feng; Luo, Yongting; Chen, Yangxi; Zou, Shujuan

    2015-09-01

    Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.

  2. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  3. Nitrile-synthesizing enzyme: Screening, purification and characterization.

    Science.gov (United States)

    Kumano, Takuto; Suzuki, Takahisa; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    Cyanide is known as a toxic compound for almost all living organisms. We have searched for cyanide-resistant bacteria from the soil and stock culture collection of our laboratory, and have found the existence of a lot of microorganisms grown on culture media containing 10 mM potassium cyanide. Almost all of these cyanide-resistant bacteria were found to show β-cyano-L-alanine (β-CNAla) synthetic activity. β-CNAla synthase is known to catalyze nitrile synthesis: the formation of β-CNAla from potassium cyanide and O-acetyl-L-serine or L-cysteine. We found that some microorganisms were able to detoxify cyanide using O-methyl-DL-serine, O-phospho-L-serine and β-chloro-DL-alanine. In addition, we purified β-CNAla synthase from Pseudomonas ovalis No. 111 in nine steps, and characterized the purified enzyme. This enzyme has a molecular mass of 60,000 and appears to consist of two identical subunits. The purified enzyme exhibits a maximum activity at pH 8.5-9.0 at an optimal temperature of 40-50°C. The enzyme is specific for O-acetyl-L-serine and β-chloro-DL-alanine. The Km value for O-acetyl-L-serine is 10.0 mM and Vmax value is 3.57 μmol/min/mg.

  4. In silico prediction of potential chemical reactions mediated by human enzymes.

    Science.gov (United States)

    Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun

    2018-06-13

    Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.

  5. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  7. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  8. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-02-01

    Full Text Available We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  9. The bacterial catabolism of polycyclic aromatic hydrocarbons: Characterization of three hydratase-aldolase-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Jake A. LeVieux

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are highly toxic, pervasive environmental pollutants with mutagenic, teratogenic, and carcinogenic properties. There is interest in exploiting the nutritional capabilities of microbes to remove PAHs from various environments including those impacted by improper disposal or spills. Although there is a considerable body of literature on PAH degradation, the substrates and products for many of the enzymes have never been identified and many proposed activities have never been confirmed. This is particularly true for high molecular weight PAHs (e.g., phenanthrene, fluoranthene, and pyrene. As a result, pathways for the degradation of these compounds are proposed to follow one elucidated for naphthalene with limited experimental verification. In this pathway, ring fission produces a species that can undergo a non-enzymatic cyclization reaction. An isomerase opens the ring and catalyzes a cis to trans double bond isomerization. The resulting product is the substrate for a hydratase-aldolase, which catalyzes the addition of water to the double bond of an α,β-unsaturated ketone, followed by a retro-aldol cleavage. Initial kinetic and mechanistic studies of the hydratase-aldolase in the naphthalene pathway (designated NahE and two hydratase-aldolases in the phenanthrene pathway (PhdG and PhdJ have been completed. Crystallographic work on two of the enzymes (NahE and PhdJ provides a rudimentary picture of the mechanism and a platform for future work to identify the structural basis for catalysis and the individual specificities of these hydratase-aldolases.

  10. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  11. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  12. Induction of lipid peroxidation in erythrocytes during cholesterol oxidation catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Kagan, V.E.; Monovich, O.; Ribarov, S.R.

    1986-01-01

    The authors study the ability of cholesterol oxidase (ChO), which catalyzes oxidation of cholesterol (Ch) to cholest-4-en-3-one and, at the same time, reduction of O 2 to H 2 O 2 , to induce the lipid peroxidation (LPO) in plasma membranes. Erythrocyte ghosts were obtained from guinea pig blood; the reaction of oxidation of Ch in the erythrocyte ghosts or in micelles with Triton X-100 was carried out in the following medium: Tris-HCl 0.2 M, pH 7.0 (at 37 C), Triton X-100 0.25%, and ChO 0.05 U/ml. At the present time ChO is often used to study the asymmetry of distribution of Ch in biomembranes and the velocity of its transbilayer migration. It is suggested that changes in membrane permeability do not take place during the reaction catalyzed by the enzyme, and no products capable of affecting flip-flop in biological are formed. Accumulation of LPO products in erythrocyte membranes discovered in this investigation under the influence of ChO compels critical re-examination of the resutls

  13. Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization

    Science.gov (United States)

    Zhu, Xing; He, Bin; Zhao, Changwen; Ma, Yuhong; Yang, Wantai

    2018-04-01

    Developing facile and mild strategy to construct multi-enzymes immobilization system has attracted considerable attentions in recent years. Here a simple immobilization strategy called visible light induced graft polymerization that can simultaneously and separately encapsulate two kinds of enzymes on one polymer film was proposed. Two incompatible enzymes, trypsin and transglutaminase (TGase) were selected as model dual-enzymes system and simultaneously immobilized on two sides of low-density polyethylene (LDPE) film. After immobilization, it was found that more than 90% of the enzymes can be embedded into dual-enzymes loaded film without leakage. And the activities of both separately immobilized enzymes were higher than the activities of mixed co-immobilized enzymes or the sequential immobilized ones. This dual-enzymes loaded film (DEL film) showed excellent recyclability and can retain >87% activities of both enzymes after 4 cycles of utilization. As an example, this DEL film was used to conjugate a prodrug of cytarabine with a target peptide. The successful preparation of expected product demonstrated that the separately immobilized two enzymes can worked well together to catalyze a two-step reaction.

  14. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-01-01

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl- 14 C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  15. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  16. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    Science.gov (United States)

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  17. Diversity screening for novel enzymes degrading synthetic polymers

    DEFF Research Database (Denmark)

    Lezyk, Mateusz Jakub

    plant cell wall polymers. Several enzymes catalysed transglycosylation either using lactose or pNP-Fuc as acceptor and Mfuc6 exhibited an unusually high transglycosylation/hydrolysis ratio. Using 25 mM pNP-Fuc as donor and under conditions tested, the maximum yields of 1.6 ± 0.1 mM 2’-fucosyllactose...... of glucose during cellulase-catalyzed hydrolysis of pretreated sugarcane bagasse. We have further utilized the constructed metagenomic library for functional identification of epoxide hydrolase activities using a new agar-plate assay. Using this method, clones with epoxide hydrolase activity were identified...

  18. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.

    Science.gov (United States)

    Świderek, Katarzyna; Arafet, Kemel; Kohen, Amnon; Moliner, Vicent

    2017-03-14

    Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

  19. Glycolysis of poly(3-hydroxybutyrate) via enzyme catalysis

    International Nuclear Information System (INIS)

    Paula, Everton Luiz de; Campos, Tiago Ferreira; Mano, Valdir

    2014-01-01

    Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis. (author)

  20. Effects of non-condensable gas on the condensation of steam

    International Nuclear Information System (INIS)

    Jackson, J.D.; An, P.; Reinert, A.; Ahmadinejad, M.

    2000-01-01

    The experimental work reported here was undertaken with the aim of extending the database currently available on the condensation of steam in the presence of non-condensable gases and thereby improving the empirical input to thermal-hydraulic codes which might be used for design and safety assessment of advanced water-cooled nuclear reactors. Heat was removed from flowing mixtures of steam and air in a test section by means of a water-cooled condensing plate. The test facility constructed for the study incorporates a degassing unit which supplies water to a boiler. This delivers steam steadily to a mixing chamber where it joins with a flow of preheated air. The mixture of steam and air is supplied to the bottom of a cylindrical test section in which it flows upwards over a double sided condensing plate which can be vertical, inclined or horizontal, The rate at which heat is removed by cooling water flowing through internal passages in the plate can de determined calorimetrically knowing the flow rate of the water and its temperature rise. After commissioning experiments had shown that reliable measurements of condensation heat transfer rate could be made using the test facility, a programme of development work followed in the course of which three different designs of condensing plate were evaluated in turn. The version eventually used in the main programme of experiments which followed was made from copper. However, its surfaces were coated with a thin layer of nickel and then with one of chromium. It was found that such a surface consistently promoted dropwise condensation and showed no signs of deterioration after lengthy periods of use. The rate of heat removal from pure steam and from mixtures of steam and air in varying proportions was measured as a function of plate sub-cooling for a variety of plate orientations. (author)

  1. Purification method for condensate

    International Nuclear Information System (INIS)

    Shimoda, Akiyoshi.

    1996-01-01

    Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)

  2. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    Science.gov (United States)

    Aparicio, C.; Resa, P.; Sierra, C.; Elvira, L.

    2012-12-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  3. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    International Nuclear Information System (INIS)

    Aparicio, C; Resa, P; Sierra, C; Elvira, L

    2012-01-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  4. Method for enzyme synthesis of radioactive thymine 5'-deoxyribonucleotides

    International Nuclear Information System (INIS)

    Nejedly, Z.; Ekl, J.; Hybs, K.; Kolina, J.; Filip, J.; Votruba, I.; Skoda, J.

    1978-01-01

    The enzyme synthesis is described for thymidine-5'-monophosphate, thymidine-5'-diphosphate and thymidine-5'-triphosphate specifically or nonspecifically labelled with 14 C or 3 H. The anabolic transformation of radioactive thymine to radioactive thymine 5'-deoxyribonucleotides is catalyzed by the action of enzyme preparations separated from Escherichia coli bacteria. It is achieved by the action of nonpurified cell-free extracts on special auxotrophic mutants of the thymine-dependent Escherichia coli SPT - strain in the presence of deoxyriboso-1-phosphate and adenosine-5'-triphosphate. The radioactive thymidine-5'-monophosphate may further be phosphorylated. In reaction mixtures, radioactive thymine, deoxyriboso-1-phosphate and adenosine-5'-triphosphate are used in molar ratios of 1:1:2 to 1:10:100, the optimum molar ratio being 1:5:10. (B.S.)

  5. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  6. Sequential Condensation and Hydrodeoxygenation Reaction of Furfural-Acetone Adduct over Mix Catalysts Ni/SiO2 and Cu/SiO2 in Water

    Directory of Open Access Journals (Sweden)

    Siti Mariyah Ulfa

    2018-05-01

    Full Text Available Sequential condensation and hydrodeoxygenation reaction were perform using autoclave batch reactor in the presence of water as a solvent. The condensation of furfural and acetone was performed using MgO catalyst followed by hydrodeoxygenation using mix catalyst Ni/SiO2 and Cu/SiO2. The catalyst was prepared by wet-impregnation method and analyzed by XRD, SEM-EDX as well as BET surface. Condensation of furfural and acetone in 1:2 mol ratio was carried out by reflux gave 4-(2-furyl-3-buten-2-one and 1,5-bis-(2-furanyl-1,4-pentadien-3-one. The condensation product was then subjected for hydrodeoxygenation using batch reactor, catalyzed by mixed Ni/SiO2 and Cu/SiO2 at 150 and 180 °C for 2 h. The product identified as alkane derivatives with the conversion at 38.83 and 50.35%, respectively. The selectivity of hydrocarbon is 61.39% at 150 °C and 16.55% at 180 °C. Increasing the reaction temperature to 200 °C did not give any products except the recovery of the precursor. It showed that higher temperature enhanced the catalyst activity but the selectivity is controlled by low reaction temperature.

  7. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  8. Positional isotope exchange studies on enzyme using NMR spectroscopy

    International Nuclear Information System (INIS)

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, 18 O-β,γ-ATP and 18 O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field 31 P NMR, we were able to differentiate between 18 O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with 18 O-β,γ-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the 18 O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN 1 /sub P/) type of mechanism

  9. Estimation of extracellular lipase enzyme produced by thermophilic bacillus sp. isolated from arid and semi-arid region of Rajasthan, India

    OpenAIRE

    Deeksha Gaur; Pankaj Kumar Jain; Yamini Singh Sisodia; Vivek Bajpai

    2012-01-01

    Thermophilic organisms can be defined as microorganisms which are adapted to live at high temperatures. The enzymes produce by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipase enzymes capable of degradation of lipid at temperatures higher than those of mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite useful in te...

  10. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins.

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Acosta, Hector; Quiñones, Wilfredo; Concepción, Juan Luis; Michels, Paul A M; Avilán, Luisana

    2014-02-01

    In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols.

    Science.gov (United States)

    Lin, Kunde; Zhou, Shiyang; Chen, Xi; Ding, Jiafeng; Kong, Xiaoyan; Gan, Jay

    2015-11-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

    Science.gov (United States)

    Shi, Yuguang; Cheng, Dong

    2009-07-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

  13. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  14. Condensation in complex geometries

    International Nuclear Information System (INIS)

    Lauro, F.

    1975-01-01

    A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr

  15. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  16. Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating

    KAUST Repository

    Solhy, Abderrahim

    2011-02-01

    The impregnation of hydroxyapatite (HAP) by NaNO3 leads to a modified-hydroxyapatite which has a bi-functional acid-base property. Sodium-modified-hydroxyapatite (Na-HAP) efficiently catalyzed the cross-aldol condensation of arylaldehydes and cycloketones to afford α-α′- (EE)-bis(benzylidene)-cycloalkanones in good yields under microwave irradiation. Moreover, the methodology described in this paper provides a very easy and efficient synthesis carried out in water as the greenest available solvent under conventional heating. A comparison study between these two different modes of heating was investigated. The catalyst was easily recovered and efficiently re-used. © 2010 Elsevier B.V.

  17. Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence marker-based method

    NARCIS (Netherlands)

    Joosten, H.J.; Han, Y.; Niu, W.; Vervoort, J.J.M.; Dunaway-Mariano, D.; Schaap, P.J.

    2008-01-01

    Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity.

  18. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  19. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  20. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  1. Enzyme-Embedded, Microstructural Reactors for Industrial Biocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Sarah E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knipe, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolaroff, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-04

    In this project we explored enzyme-catalyzed methane conversion to methanol. Industrial biological approaches to methane conversion using whole organisms are predicted to be more energy efficient than chemical approaches, but are limited by mass transfer of the gas phase reactants, methane and oxygen, to the organisms. We demonstrated that 3D printing the enzyme particulate Methane Mono Oxygenase (pMMO) embedded in a polymer can improve the kinetics of methane to methanol conversion. This improvement was likely due to the ability to increase the surface area of the catalytic material using 3D printing. We also demonstrated the first continuous use of pMMO in a flow-through reactor. In order to understand the fundamental kinetic properties of pMMO, we conducted an in-depth study of pMMO kinetics using analytical tools developed in our lab. Finally, we developed a new copolymer system that allowed tuning of the gas permeability of the biocatalytic material.

  2. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  3. Possibility of removing condensate and scattered oil from gas-condensate field during bed flooding

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, N.A.; Yagubov, M.S.

    1984-01-01

    The problem is set of evaluating the possible removal from the bed of scattered oil and condensate during flooding of the bed. For this purpose, an experimental study was made of the displacement by water from the porous medium of the oil and condensate saturating it. The obtained experimental results permit evaluation of the possible removal from the gas-condensate bed of scattered oil and condensate during flooding of the bed.

  4. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    Directory of Open Access Journals (Sweden)

    Cho YY

    2014-11-01

    Full Text Available Yong-Yeon Cho,1 Hyeon-Uk Jeong,1 Jeong-Han Kim,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon, Korea; 2Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea Abstract: Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP, UDP-glucuronosyltransferase (UGT, and sulfotransferase 2A1 (SULT2A1, were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 µM increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 µM did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19 or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1 in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. Keywords: honokiol, human hepatocytes, drug interactions, cytochrome P450, UDP-glucuronosyltransferases

  5. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  6. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    Science.gov (United States)

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step.

  7. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  8. Universal Themes of Bose-Einstein Condensation

    Science.gov (United States)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose

  9. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains

    International Nuclear Information System (INIS)

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-01-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed

  10. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate.

  11. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    International Nuclear Information System (INIS)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk

    2015-01-01

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate

  12. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic

    International Nuclear Information System (INIS)

    Scholten, J.D.; Chang, Kaihsuan; Dunaway-Mariano, D.; Babbitt, P.C.; Charest, H.; Sylvestre, M.

    1991-01-01

    Microbial enzyme systems may be used in the biodegradation of persistent environmental pollutants. The three polypeptide components of one such system, the 4-chlorobenzoate dehalogenase system, have been isolated, and the chemical steps of the 4-hydroxybenzoate-forming reaction that they catalyze have been identified. The genes contained within a 4.5-filobase Pseudomonas sp. strain CBS3 chromosomal DNA fragment that encode dehalogenase activity were selectively expressed in transformed Escherichia coli. Oligonucleotide sequencing revealed a stretch of homology between the 57-kilodalton (kD) polypeptide and several magnesium adenosine triphosphate (MgATP)-cleaving enzymes that allowed MgATP and coenzyme A (CoA) to be identified as the dehalogenase cosubstrate and cofactor, respectively. The dehalogenase activity arises from two components, a 4-chlorobenzoate:CoA ligase-dehalogenase (an αβ dimer of the 57- and 30-kD polypeptides) and a thioesterase (the 16-kD polypeptide)

  13. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  14. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac].

    Science.gov (United States)

    Suresh; Sandhu, Jagir Singh

    2013-03-03

    Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics. Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes. Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4-5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.

  15. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    Science.gov (United States)

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  16. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C. [LOCA Integrated Services I, Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  17. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  18. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  19. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution.

    Science.gov (United States)

    Renata, Hans; Wang, Z Jane; Arnold, Frances H

    2015-03-09

    High selectivity and exquisite control over the outcome of reactions entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature's known repertoire. In this Review, we outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progression has been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been exploited for chemical synthesis, with an emphasis on reactions that do not have natural counterparts. Non-natural activities can be improved by directed evolution, thus mimicking the process used by nature to create new catalysts. Finally, we describe the discovery of non-native catalytic functions that may provide future opportunities for the expansion of the enzyme universe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  1. Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Poreddy, Raju; Engelbrekt, Christian

    2014-01-01

    The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied. The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines. The reactions were performed under mild conditions......-2 in the gas phase. The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B...... and afforded the imines in high yield (up to 99%) without any byproducts other than H2O. The highest activity was obtained over 5 wt% Ag/Al2O3 in toluene with air as oxidant. The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H...

  2. Condensation: the new deal; Condensation: la nouvelle donne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The principle of condensation boilers is based on the recovery of the latent heat of the steam generated by the combustion of natural gas. This technology was introduced in France at the end of the 80's but failed in its promise because of the complexity of the equipments available at that time. Today, constructors' offer is more mature and reliable and the context has changed. This technology can conciliate three goals: a mastery of energy consumptions, the comfort of the user and the respect of environment. This meeting organized by the research center of Gaz de France (Cegibat), was a good opportunity to makes a status of the market of individual condensation systems in France and in Europe, to present the situation of this technology today and the 10 golden rules for the fitting and maintenance of individual condensation boilers, and to present some technical references, examples and results of today's offer. (J.S.)

  3. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis.

    Science.gov (United States)

    Silverman, P M; Eoyang, L

    1987-01-01

    Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site. Images PMID:3294793

  4. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis

    International Nuclear Information System (INIS)

    Silverman, P.M.; Eoyang, L.

    1987-01-01

    Acetohyroxyacid synthease I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2- 14 C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14 C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. The authors confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site

  5. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  6. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology

    OpenAIRE

    Nde, Divine Bup; Astete, Carlos; Boldor, Dorin

    2015-01-01

    Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration?EC, temperature?T, added water content?AWC, and reaction time?RT. Biodiesel yields were quantified by 1H NMR spectrosc...

  7. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  8. The Structural and Functional Coordination of Glycolytic Enzymes in Muscle: Evidence of a Metabolon?

    Directory of Open Access Journals (Sweden)

    Lynda Menard

    2014-09-01

    Full Text Available Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.

  9. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  10. Condensation in Nanoporous Packed Beds.

    Science.gov (United States)

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  11. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  12. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...

  13. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  14. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. Condenser performance monitoring and cleaning

    International Nuclear Information System (INIS)

    Walden, J.V.

    1998-01-01

    The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control

  16. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  17. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Derren J Heyes

    Full Text Available The light-driven enzyme protochlorophyllide oxidoreductase (POR catalyzes the reduction of protochlorophyllide (Pchlide to chlorophyllide (Chlide. This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.

  18. Characteristic aspects of pion-condensed phases

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo; Tatsumi, Toshitaka.

    1993-01-01

    Characteristic aspects of pion-condensed phases are described in a simple model, for the system involving only nucleons and pions which interact through the π-N P-wave interaction. We consider one typical version in each of three kinds of pion condensation; the one of neutral pions (π 0 ), the one of charged pions (π C ) and the combined one in which both the π 0 and π C condensations are coexistent. Emphasis is put on the description to clarify the novel structures of the nucleon system which are realized in the pion-condensed phases. At first, it is shown that the π 0 condensation is equivalent to the particular nucleonic phase realized by a structure change of the nucleon system, where the attractive first-order effect of the one-pion-exchange (OPE) tensor force is brought about coherently. The aspects of this phase are characterized by the layered structure with a specific spin-isospin order with one-dimensional localization (named the ALS structure in short), which provides the source function for the condensed π 0 field. We utilize both descriptions with use of fields and potentials for the π 0 condensation. Next, the π C condensation realized in neutron-rich matter is described by adopting a version of the traveling condensed wave. In this phase, the nucleonic structure becomes the Fermi gas consisting of quasi-neutrons described by a superposition of neutron and proton. In this sense the structure change of the nucleon system for the π C condensation is moderate, and the field description is suitable. Finally, we describe a coexistent pion condensation, in which both the π 0 and π C condensations coexist without interference in such a manner that the π C condensation develops in the ALS structure. The model adopted here provides us with the characteristic aspects of the pion-condensed phases persisting in the realistic situation, where other ingredients affecting the pion condensation are taken into account. (author)

  19. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  20. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  1. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  2. Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications.

    Science.gov (United States)

    Chen, T M; Tian, X M; Huang, L; Xiao, J; Yang, G W

    2017-10-19

    Nanodiamonds (NDs) have recently become a focus of interest from the viewpoints of both science and technology. Their intriguing properties make them suitable as biologically active substrates, in biosensor applications as well as diagnostic and therapeutic biomedical imaging probes. Here, we demonstrate that NDs, as oxidation and reduction catalysts, possess intrinsic enzyme mimetic properties of oxidase, peroxidase and catalase, and these behaviors can be switched by modulating the pH value. NDs not only catalyze the reduction of oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) at acidic pH, but also catalyze the dismutation decomposition of H 2 O 2 to produce O 2 at alkaline pH. It was proposed that the molecular mechanism of their peroxidase-like activity is electron-transfer acceleration, the source of which is likely derived from oxygen containing functional groups on their surface. Based on the color reaction, a nanodiamond-based enzyme linked immunosorbent assay (ELISA) was established for the detection of immunoglobulin G (IgG). Surprisingly, NDs display an excellent antioxidant activity due to the protective effect against H 2 O 2 -induced cellular oxidative damage. These findings make NDs a promising enzyme mimetic candidate and expand their applications in biocatalysis, bioassays and nano-biomedicine.

  3. A CFD study of wave influence on film steam condensation in the presence of non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianmao, E-mail: xm-wang11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Chang, Huajian, E-mail: changhj@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael, E-mail: corradini@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-08-15

    Highlights: • A condensation model is incorporated in the ANSYS FLUENT. • Different turbulence models are evaluated for flows over wavy surfaces. • Wavy surfaces with and without moving velocities are used to model the wave. • Various wavy surfaces with different wave heights and wavelengths are selected. • Wave influence on film steam condensation is investigated. - Abstract: Steam condensation plays an important role in removing heat from the containment of a nuclear plant during postulated accidents. However, due to the presence of non-condensable gases such as air and hydrogen in the containment, the condensation rate can decrease dramatically. Under certain conditions, the condensate film on the cold containment walls can affect the overall heat transfer rate. The wavy interface of the condensate film is a factor and is usually believed to enhance the condensation rate, since the waves can both increase the interfacial area and disturb the non-condensable gas boundary layer. However, it is not clear how to properly account for this factor and what is its quantitative influence in experiments. In this work, a CFD approach is applied to study the wave effects on film condensation in the presence of non-condensable gas. Wavy surfaces with and without moving velocities are used to replace the wavy interface of the falling film. A condensation model is incorporated in the ANSYS FLUENT simulation and a realizable k–ε turbulence model is applied. Various wavy surfaces with different wave heights and wavelengths are selected to conduct numerical experiments with a wide range of gas velocities. The results show that the wave structure can enhance condensation rate up to ten percent mainly due to the alteration of local flow structures in the gas phase. The increments of the condensation rate due to the wavy interface can vary with different gas velocities. The investigation shows that a multiplication factor accounts for the wave effects on film

  4. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  5. Enzyme Kinetics Experiment with the Multienzyme Complex Viscozyme L and Two Substrates for the Accurate Determination of Michaelian Parameters

    Science.gov (United States)

    Guerra, Nelson Pérez

    2017-01-01

    A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…

  6. Enzyme-catalyzed modification of PES surfaces: Reduction in adsorption of BSA, dextrin and tannin

    NARCIS (Netherlands)

    Nady, N.; Schroën, C.G.P.H.; Franssen, M.C.R.; Fokkink, R.G.; Mohy Eldin, M.S.; Zuilhof, H.; Boom, R.M.

    2012-01-01

    Poly(ethersulfone) (PES) can be modified in a flexible manner using mild, environmentally benign components such as 4-hydroxybenzoic acid and gallic acid, which can be attached to the surface via catalysis by the enzyme laccase. This leads to grafting of mostly linear polymeric chains (for

  7. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  8. Synthesis of quinoxaline derivatives via condensation of aryl-1,2-diamines with 1,2-diketones using (NH4)6 Mo7 O24 . 4 H2 O as an efficient, mild and reusable catalyst

    International Nuclear Information System (INIS)

    Hasaninejad, A.; Zare, A.; Mohammadizadeh, M. R.; Karami, Z.

    2009-01-01

    Ammonium heptamolybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24. 4H 2 O] efficiently catalyzes the condensation of aryl-1,2-diamines with l,2-diketones in EtOH/H 2 O as a green media at room temperature to afford quinoxaline derivatives as biologically interesting compounds. Ease of recycling of the catalyst is one of the most advantages of the proposed method

  9. Exploring functionally related enzymes using radially distributed properties of active sites around the reacting points of bound ligands

    Directory of Open Access Journals (Sweden)

    Ueno Keisuke

    2012-04-01

    Full Text Available Abstract Background Structural genomics approaches, particularly those solving the 3D structures of many proteins with unknown functions, have increased the desire for structure-based function predictions. However, prediction of enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based methods for prediction of function is the absence (despite its importance of a measure of similarity of the physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed around catalytic sites should be considered in addition to structural and sequence similarities. Results We showed that radial distribution functions (RDFs, which are associated with the local structural and physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence and structural alignments. Conclusions Our results demonstrate that the application of RDFs provides advantages in the functional classification of enzymes by providing information about catalytic sites.

  10. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  11. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Öztekin, Aykut, E-mail: aoztekin@agri.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Agri Ibrahim Cecen University Faculty of Arts and Sciences, Department of Chemistry, 04100-Agri (Turkey); Almaz, Züleyha, E-mail: zturkoglu-2344@hotmail.com [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Mus Alparslan University Faculty of Sciences, Department of Moleculer Biology, 49250-Mus (Turkey); Özdemir, Hasan, E-mail: hozdemir@atauni.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey)

    2016-04-18

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC{sub 50} values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  12. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Science.gov (United States)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-04-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  13. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    International Nuclear Information System (INIS)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-01-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC_5_0 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  14. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    Science.gov (United States)

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  15. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    Directory of Open Access Journals (Sweden)

    M. Y. Shukor

    2014-01-01

    Full Text Available The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C. A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km of the Mo-reducing enzyme was 5.47 M-1 s-1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  16. Limits on the expression of enzyme-mediated solvent isotope effects

    International Nuclear Information System (INIS)

    Northrop, D.B.

    1981-01-01

    Steady-state analysis of primary solvent isotope effects on enzyme-catalyzed reactions, mediated by solvent-shielded di- or triprotic groups on the enzyme, yields equations describing the upper limit of intramolecular isotopic discrimation. For diprotic groups [P/sub H]/[P/sub D/] = 3k/sub H//k/sub D/ + 3), and for triprotic groups [P/sub H/]/[P/sub D/] = [7(k/sub H//k/sub D/ 2 = 10k/sub H/k/sub D/ + 1]/[(k/sub H//k/sub D/) 2 + 10k/sub H//k/sub D/ + 7]. Given a normal intrinsic isotope effect of k/sub H//k/sub D/ = 7, maximal isotopic discrimation in 50:50 H 2 O:D 2 O is therefore 2.2 and 3.3, respectively, versus 1.0 for a monoprotic group. Intermediate values of isotope discrimination may be interpreted with respect to distinguishing enzyme-mediated catalytic mechanisms from those of direct transfer between solvent and substrate, and to identifying mediating groups, by comparisons of isotopic discrimination at high and low concentrations of substrates and by reference to intrinsic and intermolecular isotope effects

  17. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  18. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  19. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  20. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  1. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  2. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  3. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    International Nuclear Information System (INIS)

    Zhou, W.; Wolf, B.; Revankar, S.T.

    2011-01-01

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well. (author)

  4. Assessment of RELAP5/MOD3.3 condensation models for the tube bundle condensation in the PCCS of ESBWR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wolf, B. [Purdue University, West Lafayette, IN 47907 (United States); Revankar, S. [Purdue University, West Lafayette, IN 47907 (United States); POSTECH, Pohang (Korea, Republic of)

    2013-11-15

    The passive containment condenser system (PCCS) in an ESBWR reactor consists of vertical tube bundle submerged in a large pool of water. The condensation model for the PCCS in a thermalhydraulics code RELAP5/MOD3.3 consists of the default Nusselt model and an alternate condensation model from UCB condensation correlation. An assessment of the PCCS condensation model in RELAP5/MOD3.3 was carried out using experiments conducted on a single tube and tube bundle PCCS tests at Purdue University. The experimental conditions were simulated with the default and the alternate condensation models in the REALP5/MOD3.3 beta version of the code. The default model and the UCB model (alternate model) give quite different results on condensation heat transfer for the PCCS. The default model predicts complete condensation well whereas the UCB model predicts the through flow condensation well. Based on this study it was found that none of the models in REALP5 can predict complete condensation as well as the through flow condensation well.

  5. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  6. Ghost condensate and generalized second law

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2009-01-01

    Dubovsky and Sibiryakov recently proposed a scenario in which particles of different species propagate with different speeds due to their direct couplings to ghost condensate. It was argued that this extended version of ghost condensate allows a gedanken experiment leading to violation of the generalized second law. However, in the original ghost condensate scenario, difference in propagation speeds is suppressed by M 2 /M Pl 2 , where M is the order parameter of spontaneous Lorentz breaking and M Pl is the Planck scale. In this case the energy transfer necessary for the gedanken experiment is so slow that the timescale of decrease of entropy, if any, is always longer than the Jeans timescale of ghost condensate. Hence the generalized second law is not violated by the gedanken experiment in the original ghost condensate scenario. This conclusion trivially extends to gauged ghost condensation by taking into account accretion of gauged ghost condensate into a black hole.

  7. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  8. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds.

    Science.gov (United States)

    Kumano, Takuto; Takizawa, Yuko; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    One of the nitrile-synthesizing enzymes, β-cyano-L-alanine synthase, catalyzes β-cyano-L-alanine (β-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the β-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of β-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.

  9. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  10. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  11. Pion condensation and neutron star dynamics

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1983-01-01

    The question of formation of pion condensate via a phase transition in nuclear matter, especially in the core of neutron stars is reviewed. The possible mechanisms and the theoretical restrictions of pion condensation are summarized. The effects of ultradense equation of state and density jumps on the possible condensation phase transition are investigated. The possibilities of observation of condensation process are described. (D.Gy.)

  12. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  13. Design and modelling of enzyme/poly-pyrrole modified electrodes for bio-catalyzed electro-synthesis processes

    International Nuclear Information System (INIS)

    Gros, Pierre

    1996-01-01

    This research thesis reports a study which aims at developing, analyzing and integrating an electrode-enzyme interface within an electro-enzymatic reactor to develop electrochemical biosensors. The adopted method comprises a confinement of the enzyme at the electrode surface by means of an electro-formed poly-pyrrole film. The author reports an experimental and theoretical study of the coupling between electrochemical reaction, enzymatic reaction and matter transfer in the polymer in order to better understand the operation of so-modified electrodes. Different parameters have an influence on the reaction rate. A numerical model (validated by experiments) allows the identification of the reaction limiting stages. A new elaboration protocol allows the polymer permeability to be increased. The interface is first applied to the reduction of the NAD coenzyme, and the process is also applied to the production of gluconic acid [fr

  14. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  15. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  16. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Directory of Open Access Journals (Sweden)

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  18. Optimal design of condenser weight

    International Nuclear Information System (INIS)

    Zheng Jing; Yan Changqi; Wang Jianjun

    2011-01-01

    The condenser is an important component in nuclear power plants, which dimension and weight will effect the economical performance and the arrangement of the nuclear power plants. In this paper, the calculation model is established according to the design experience. The corresponding codes are also developed, and the sensitivity of design parameters which influence the condenser weight is analyzed. The present design optimization of the condenser, taking the weight minimization as the objective, is carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme, and also verify the feasibility of the complex-genetic algorithm. (authors)

  19. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination.

    Science.gov (United States)

    Hyster, Todd K; Farwell, Christopher C; Buller, Andrew R; McIntosh, John A; Arnold, Frances H

    2014-11-05

    We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benzylic C-H bonds and the other favoring homo-benzylic C-H bonds. The two variants provide nearly identical kinetic isotope effect values (2.8-3.0), suggesting that C-H abstraction is rate-limiting. The 2.66-Å crystal structure of the most active enzyme suggests that the engineered active site can preorganize the substrate for reactivity. We hypothesize that the enzyme controls regioselectivity through localization of a single C-H bond close to the iron nitrenoid.

  20. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.

    Science.gov (United States)

    Bhat, Javaid Y; Thieulin-Pardo, Gabriel; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO 2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO 2 molecule and binding of a Mg 2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

  1. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  2. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone

    NARCIS (Netherlands)

    Alvarez, M.G.; Frey, A.M.; Bitter, J.H.; Segarra, A.M.; Jong, de K.P.; Medina, F.

    2013-01-01

    Bulk and carbon nanofiber supported MgAl hydrotalcites have been investigated as solid base catalysts for the synthesis of glycerol carbonate and dicarbonate and for the self-condensation of acetone. The supported materials exhibited a 300 times higher activity compared to bulk activated

  3. Iron-Dependent Enzyme Catalyzes the Initial Step in Biodegradation of N-Nitroglycine by Variovorax sp. Strain JS1663.

    Science.gov (United States)

    Mahan, Kristina M; Zheng, Hangping; Fida, Tekle T; Parry, Ronald J; Graham, David E; Spain, Jim C

    2017-08-01

    Nitramines are key constituents of most of the explosives currently in use and consequently contaminate soil and groundwater at many military facilities around the world. Toxicity from nitramine contamination poses a health risk to plants and animals. Thus, understanding how nitramines are biodegraded is critical to environmental remediation. The biodegradation of synthetic nitramine compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has been studied for decades, but little is known about the catabolism of naturally produced nitramine compounds. In this study, we report the isolation of a soil bacterium, Variovorax sp. strain JS1663, that degrades N -nitroglycine (NNG), a naturally produced nitramine, and the key enzyme involved in its catabolism. Variovorax sp. JS1663 is a Gram-negative, non-spore-forming motile bacterium isolated from activated sludge based on its ability to use NNG as a sole growth substrate under aerobic conditions. A single gene ( nnlA ) encodes an iron-dependent enzyme that releases nitrite from NNG through a proposed β-elimination reaction. Bioinformatics analysis of the amino acid sequence of NNG lyase identified a PAS (Per-Arnt-Sim) domain. PAS domains can be associated with heme cofactors and function as signal sensors in signaling proteins. This is the first instance of a PAS domain present in a denitration enzyme. The NNG biodegradation pathway should provide the basis for the identification of other enzymes that cleave the N-N bond and facilitate the development of enzymes to cleave similar bonds in RDX, nitroguanidine, and other nitramine explosives. IMPORTANCE The production of antibiotics and other allelopathic chemicals is a major aspect of chemical ecology. The biodegradation of such chemicals can play an important ecological role in mitigating or eliminating the effects of such compounds. N -Nitroglycine (NNG) is produced by the Gram-positive filamentous soil bacterium Streptomyces noursei This study reports the

  4. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    Science.gov (United States)

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  5. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  6. Preparation and Characterization of Enzyme Compartments in UV-Cured Polyurethane-Based Materials and Their Application in Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Diana Uhrich

    2017-11-01

    Full Text Available The preparation and characterization of UV-cured polyurethane-based materials for the mild inclusion immobilization of enzymes was investigated. Full curing of the polymer precursor/enzyme solution mixture was realized by a short irradiation with UV-light at ambient temperatures. The included aqueous enzyme solution remains highly dispersed in the polymer material with an even size distribution throughout the polymer material. The presented concept provides stable enzyme compartments which were applied for an alcohol dehydrogenase-catalyzed reduction reaction in organic solvents. Cofactor regeneration was achieved by a substrate-coupled approach via 2-propanol or an enzyme-coupled approach by a glucose dehydrogenase. This reaction concept can also be used for a simultaneous application of contrary biocatalytic reaction conditions within an enzymatic cascade reaction. Independent polymer-based reaction compartments were provided for two incompatible enzymatic reaction systems (alcohol dehydrogenase and hydroxynitrile lyase, while the relevant reactants diffuse between the applied compartments.

  7. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  8. Transient direct-contact condensation on liquid droplets

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature

  9. Mechanism-based Enzyme Inactivators of Phytosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    W. David Nes

    2004-03-01

    Full Text Available Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT, the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal or post-cycloartenol (plant pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.

  10. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  11. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  12. Computations for a condenser. Experimental results

    International Nuclear Information System (INIS)

    Walden, Jean.

    1975-01-01

    Computations for condensers are presented with experimental results. The computations are concerned with the steam flux at the condenser input, and inside the tube bundle. Experimental results are given for the flux inside the condenser sleeve and the flow passing through the tube bundle [fr

  13. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  14. Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Wucka, Paul R.; Lyons, Thomas W.

    2006-01-01

    A detailed investigation of the clay-catalyzed condensation of sesamol and other phenols with 3-methyl-2-butenal to give methylenedioxyprecocene (MDP) and other chromenes is presented. The clay-catalyzed microwave-assisted condensation of sesamol with 3-methyl-2-butenal is appropriate for incorporation into undergraduate organic laboratory…

  15. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  16. Comparison of condensation correlations in CATHARE for modelling isolation condenser experiment

    International Nuclear Information System (INIS)

    Sorjonen, J.; Kalli, H.

    1996-01-01

    CATHARE is a thermal-hydraulic computer code developed at the Centre d'Etudes Nucleaires de Grenoble (CENG) for nuclear power plant safety analysis. Behaviour of a new Cathare condensation correlation have been studied. The code has been applied to Isolation Condenser (IC) experiment conducted in PIPER-ONE facility. PIPER-ONE simulates a General Electric BWR-6 with volume and height scaling ratios 1/2200 and 1/1, respectively. The facility is installed at Dipartimento di Costruzioni Meccaniche e Nucleari of Pisa University. The facility was equipped with an once-through heat exchanger immersed in a pool of ambient temperature water, installed roughly 10 m above the core, in the aim to reproduce qualitatively the phenomenologies expected for Isolation Condenser in the Simplified BWR (SBWR). Experiment PO-IC-02 included two subsequent power levels with initial pressure of 5.1 MPa. The IC was active during the whole experiment except in the time period between the two different power levels. A previous calculation of above mentioned experiment by Cathare2 V1.3E showed some lacks in the condensation correlation of the code. A new correlation has been developed in Centre d'Etudes Nucleaires de Grenoble (CENG). The new calculation of the PO-IC-02 experiment by Cathare2 Vl.3U 1 with the new correlation gave results consistent with the experiment in the condensing zone of the IC. Also the overall pressure trend was reproduced with estimated heat losses to the environment. A comparison with previously obtained Relap5/Mod3. 1 results is also shown in the present document. (author) (18 refs.)

  17. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  18. 46 CFR 56.50-35 - Condensate pumps.

    Science.gov (United States)

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be mechanically... suction from the condenser and a discharge to the feed tank, it may be accepted as an independent...

  19. D-glucose-6-phosphate dehydrogenase (Entner-Doudoroff enzyme) from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Lessmann, D.; Schimz, K.L.; Kurz, G.

    1975-01-01

    The existence of two different D-glucose-6-phosphate dehydrogenases in Pseudomonas fluorescens has been demonstrated. Based on their different specificity and their different metabolic regulation one enzyme is appointed to the Entner-Doudoroff pathway and the other to the hexose monophosphate pathway. A procedure is described for the isolation of that D-glucose-6-phosphate dehydrogenase which forms part of the Entner-Doudoroff pathway (Entner-Doudoroff enzyme). A 950-fold purification was achieved with an overall yield of 44%. The final preparation, having a specific activity of about 300μmol NADH formed per min per mg protein, was shown to be homogeneous. The molecular weight of the Entner-Doudoroff enzyme has been determined to be 220,000 by gel permeation chromatography, and that of the other enzyme (Zwischenferment) has been shown to be 265,000. The pI of the Entner-Doudoroff enzyme has been shown to be 5.24 and that of the Zwischenferment 4.27. The Entner-Doudoroff enzyme is stable in the range of pH 6 to 10.5 and shows its maximal acivity at pH 8.9. The Entner-Doudoroff enzyme showed specificity for NAD + as well as for NADP + and exhibited homotropic effects for D-glucose 6-phosphate. It is inhibited by ATP which acts as a negative allosteric effector. Other nucleoside triphosphates as well as ADP are also inhibitory. The enzyme catalyzes the transfer of the axial hydrogen at carbon-1 of β-D-glucopyranose 6-phosphate to the si face of carbon-4 of the nicotinamide ring and must be classified as B-side stereospecific dehydrogenase. (orig.) [de

  20. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    Science.gov (United States)

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed

  1. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    Science.gov (United States)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  2. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase .

    Science.gov (United States)

    Hall, Richard S; Agarwal, Rakhi; Hitchcock, Daniel; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Raushel, Frank M

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes

  3. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  4. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wen [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li, Xiaowei, E-mail: lixiaowei@tsinghua.edu.cn [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wu, Xinxin [Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael L. [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-02-15

    Highlights: • Gas mixture convective condensation in vertical tubes were simulated using FLUENT code. • The simulation results matched well with experimental data. • The detailed velocity field and species distribution were investigated. • The suction factors predicted by CFD models were compared with the classical correlations. • The effects of air and helium on steam condensation were compared. - Abstract: Steam condensation is degraded when non-condensable gases are present. Convective condensation of steam–air mixture and steam–helium mixture in vertical tubes were simulated using the CFD code FLUENT. The condensation process was modeled by defining source terms for the mass, momentum, species and energy conservation equations. Several cases with various steam mass fractions were simulated, the results matched well with the experimental data. Detailed velocity field and species distribution were investigated. The radial velocity was clearly represented, and the suction effect was modeled, which needs to be accounted for when using the heat and mass transfer analogy theory. The Nusselt and Sherwood numbers predicted by CFD models were compared with the classical correlations, and the suction effects were analyzed. The suction effect is proportional to steam mass fraction, while the suction factor is little affected by the Reynolds number. For forced convection flow in this work, the buoyant force can be neglected, so the larger diffusion coefficient of steam–helium mixture would improve the steam condensation compared to steam–air mixture. The condensation mass fluxes of steam–helium mixture and steam–air mixture are almost the same at relatively high steam inlet molar fraction (≥90%).

  5. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  6. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    Science.gov (United States)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  7. Enzymatic Hydrolysis of Wheat Arabinoxylan by a Recombinant "Minimal" Enzyme Cocktail Containing beta-Xylosidase and Novel endo-1,4-beta-Xylanase and alpha-L-Arabinofuranosidase Activities

    DEFF Research Database (Denmark)

    Sørensen, Hanne R.; Pedersen, Sven; Jørgensen, Christel T.

    2007-01-01

    24 h at pH 5, 50 degrees C. A 10%:40%:50% mixture of Abf II, Abf III, and beta-xyl released 56 mg of arabinose and 91 mg of xylose per gram of vinasse dry matter after 24 h at pH 5, 50 degrees C. The optimal dosages of the "minimal" enzyme cocktails were determined to be 0.4, 0.3, and 0.2 g enzyme......This study describes the identification of the key enzyme activities required in a "minimal" enzyme cocktail able to catalyze hydrolysis of water-soluble and water-insoluble wheat arabinoxylan and whole vinasse, a fermentation effluent resulting from industrial ethanol manufacture from wheat...

  8. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    Science.gov (United States)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  9. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives.

    Science.gov (United States)

    Xin, Xiaodong; He, Junguo; Li, Lin; Qiu, Wei

    2018-02-01

    This study investigated acidogenic and microbiological perspectives in the anaerobic fermentation (AF) of waste activated sludge (WAS) pre-hydrolyzed by enzymes catalysis. The enzymes catalysis boosted WAS biodegradability dramatically with nearly 8500 mg/L soluble chemical oxygen demand (SCOD) increase just within 4 h. The volatile fatty acids (VFAs) in the acidogenesis were accumulated effectively with over 3200 mg COD/L in 12 d, which reached 0.687 kWh/kg VSS electricity conversion efficiency (2.5 times higher than the control test). The fermentation process favored the compression of fermentative sludge with the distribution spread index (DSI) rising. The core populations of bacteria and archaea shifting enlarged the dissimilarity of communities at different fermentation stages. Increase of community diversity contributed to VFAs accumulation stability. Moreover, the intermediate bacterial community evenness favored VFAs accumulation potentially. The enzymes catalysis might be a promising solution for strengthening VFAs accumulation in the WAS fermentation with boosting the electricity conversion potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An experimental study of high pressure steam condensation in a vertical tube of passive secondary condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [KAIST, Taejon (Korea, Republic of)

    1998-07-01

    To investigate the physical parameters of PSCS (Passive Secondary Condensation System) which is a passive residual heat removal system of CP-1300, the high pressure condensation experiments are performed in a small scale experimental facility. The experimental parameters are the local heat flux and the transfer coefficient and the pressure drop in a condensation heat trasnfer. The film condensation heat transfer coefficients in a vertical tube are calculated from the measured wall temperature difference and compared with the analytical models. A new analytical condensation model is developed based on the annular film flow model. The present model gives marginally better results than those from the Shah model in comparison with the experimental data in the database. Also, experimental data are compared with the results of the RELAP5/MOD3.2 thermal hydraulic code. The RELAP5/MOD3.2 underpredicts the condensation heat transfer coefficients of the present experiment by 50 %.

  11. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  12. Design analysis of a Helium re-condenser

    Science.gov (United States)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  13. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  14. Fluegas condensation of domestic fuels. Kotimaisten polttoaineiden savukaasulauhdutus

    Energy Technology Data Exchange (ETDEWEB)

    Kankkunen, A; Fagerholm, N E

    1988-01-01

    The suitability of domestic fuel for condensation heat recovery was studied. With the developed computer program, enthalpies of flue gas as function of temperature were computed and also the theoretical advandages aquired by condensation were compared with different fuels. The maximal advantages of condensation were 39 % with wooden chips and 31 % with peat. The domestic fuels were found to be useful for condensation heat recovery because of the high water content and the high dewpoint of flu egas. Condensation was found to have a purifying effect on flue gases. It was found experimentaly that 30 % the sulfur of the peat dissolved to the condensed liquid. The composition of condensed liquid of peat- and wooden chip flue gases was studied to find out the corrosion and enviromental effects. The risk of corrosion to metallic heat exhanger was concluded from the compositio of peat condensat. Chip condensate was found to be almost neutral. Normally the condensate liquids were fit for sewering without aftertreatment. Heat transfer coefficient from flue gases to the wall of the condenser was measured to be 150-170 W/Km{sup 2}. Heat transfer coefficients were three times higher compared to condensing heat transfer.

  15. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  16. The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function

    DEFF Research Database (Denmark)

    Rowland, Paul; Bjørnberg, Olof; Nielsen, Finn S.

    1998-01-01

    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA......) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex...

  17. Analysis of the enzyme network involved in cattle milk production using graph theory.

    Science.gov (United States)

    Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan

    2015-06-01

    Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.

  18. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    Science.gov (United States)

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  19. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    Science.gov (United States)

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Emergency condensator for BWR type reactor

    International Nuclear Information System (INIS)

    Ubakai, Yoichi; Narumi, Yuichi; Sakata, Yuji.

    1992-01-01

    An emergency condensator is constituted with heat transfer pipes, a steam chamber, an upper pipe plate, a lower pipe plate and a condensate chamber. The upper pipe plate is secured by supports, and a steam pipe is connected to the upper pipe plate. A condensate pipeline and a incondensible gas vent pipe are disposed to the condensate chamber. Taking thermal expansion of the steam pipes and thermal expansion of the heat transfer pipes into consideration, the heat transfer pipe is made as an L-shaped pipe having a vertical portion and a horizontal portion so as to absorb each of the thermal expansion smoothly. The L-shaped heat transfer pipes are constituted as a bundle of pipes having the end portions thereof secured to the upper pipe plate and the lower pipe plate. The emergency condensator is disposed in a emergency condensator pool chamber. Cooling water in contact with the outer side of the L-shaped heat transfer pipes is the pool water in the pool chamber, and the condensator chamber is disposed in concrete walls of the pool chamber. With such a constitution, stress due to thermal expansion of the heat transfer pipes is mitigated, and heat transfer performance, earth quake resistance and maintenancability are improved. (I.N.)

  1. Experimental investigation of non-condensable gases effect on operation of VVER steam generator in condensation mode

    International Nuclear Information System (INIS)

    Efanov, A. D.; Kalyakin, S. G.; Morozov, A. V.; Remizov, O. V.; Tsyganok, A. A.; Generalov, V. N.; Berkovich, V. M.; Taranov, G. S.

    2008-01-01

    To provide the safety in new Russian NPP designs, protection passive systems which don't depend upon human errors are widely used. In terms of safety, the design of NPP of new generation (NPP-2006) falls into the class of advanced NPPs. In the event of an beyond design basis accident with the rupture of the reactor primary circuit and accompanied by the loss of ac sources, the use of passive safety systems are provided for necessary core cooling. Among these is passive heat removal system (PHRS). In the case of leakage in the primary circuit this system ensures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam coming to SG piping from the reactor. As a result, the condensate from steam generators arrives at the core providing its additional cooling. The SG condensation capacity can be adversely affected by the presence of non-condensable gases in the primary circuit of the reactor. Their main sources are nitrogen arriving at the circuit, as hydro accumulators actuate, products of radiolysis of water and air drawn in from the containment through the pipeline rupture. The accumulation of non-condensable gases in SG piping can result in degradation of its condensation capacity to the extent that condensation completely terminates. In this case, the core cooling conditions may be impaired. To experimental investigation of the condensation mode of operation of WER steam generator, a large scale HA2M-SG test rig was constructed at the SSC RF IPPE. The test rig incorporates: buffer tank, equipped by steam supply system; SG model with volumetric-power scale is 1:46; PHRS heat exchanger imitator, cooling by process water. The rig main equipment connected by pipelines and equipped by valves. The elevations of the main equipment correspond to those of reactor project. The rig maximum operating parameters: steam pressure - 1.6 MPa, temperature - 200 Celsius degrees. Experiments at the HA2M-SG test rig have been

  2. Trial watch – inhibiting PARP enzymes for anticancer therapy

    Science.gov (United States)

    Sistigu, Antonella; Manic, Gwenola; Obrist, Florine; Vitale, Ilio

    2016-01-01

    ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients. PMID:27308587

  3. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  4. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    Science.gov (United States)

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  5. Titanium application to power plant condensers

    International Nuclear Information System (INIS)

    Itoh, H.

    1987-01-01

    Recently, the growth of operating performance and construction plan of titanium-tubed condensers in thermal and unclear power plants has been very impressive. High-quality, thinner welded titanium tubes used for cooling tubes, matching design specifications of condensers, have been stably supplied through mass production. It now can be said that various technical problems for titanium-tubed condensers have been solved, but data on operating performance in large-scale commercial plants are still scarce, and site-by-site information needs be exchanged more frequently and on a larger scale. Projects to replace existing condenser cooling tubes with those of corrosion-resistant titanium have been actively furthered, with the only remaining barrier to full employment being cost effectiveness. It is hoped that condenser and tube manufacturers will conduct more joint value analyses

  6. Bose Condensate in He II

    International Nuclear Information System (INIS)

    Svensson, E.C.

    1984-01-01

    The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described

  7. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current...... of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM−1 cm−2), low detection limit (25 nM), and fast response time (t95% ∼ 3 s...

  8. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis.

    Directory of Open Access Journals (Sweden)

    Valerio Ferrario

    Full Text Available A new bioinformatic methodology was developed founded on the Unsupervised Pattern Cognition Analysis of GRID-based BioGPS descriptors (Global Positioning System in Biological Space. The procedure relies entirely on three-dimensional structure analysis of enzymes and does not stem from sequence or structure alignment. The BioGPS descriptors account for chemical, geometrical and physical-chemical features of enzymes and are able to describe comprehensively the active site of enzymes in terms of "pre-organized environment" able to stabilize the transition state of a given reaction. The efficiency of this new bioinformatic strategy was demonstrated by the consistent clustering of four different Ser hydrolases classes, which are characterized by the same active site organization but able to catalyze different reactions. The method was validated by considering, as a case study, the engineering of amidase activity into the scaffold of a lipase. The BioGPS tool predicted correctly the properties of lipase variants, as demonstrated by the projection of mutants inside the BioGPS "roadmap".

  9. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  10. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Two bifunctional enzymes from the marine protist Thraustochytrium roseum: biochemical characterization of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase activity catalyzing wax ester and triacylglycerol synthesis.

    Science.gov (United States)

    Zhang, Nannan; Mao, Zejing; Luo, Ling; Wan, Xia; Huang, Fenghong; Gong, Yangmin

    2017-01-01

    Triacylglycerols (TAGs) and wax esters (WEs) are important neutral lipids which serve as energy reservoir in some plants and microorganisms. In recent years, these biologically produced neutral lipids have been regarded as potential alternative energy sources for biofuel production because of the increased interest on developing renewable and environmentally benign alternatives for fossil fuels. In bacteria, the final step in TAG and WE biosynthetic pathway is catalyzed by wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT). This bifunctional WS/DGAT enzyme is also a key enzyme in biotechnological production of liquid WE via engineering of plants and microorganisms. To date, knowledge about this class of biologically and biotechnologically important enzymes is mainly from biochemical characterization of WS/DGATs from Arabidopsis, jojoba and some bacteria that can synthesize both TAGs and WEs intracellularly, whereas little is known about WS/DGATs from eukaryotic microorganisms. Here, we report the identification and characterization of two bifunctional WS/DGAT enzymes (designated TrWSD4 and TrWSD5) from the marine protist Thraustochytrium roseum . Both TrWSD4 and TrWSD5 comprise a WS-like acyl-CoA acyltransferase domain and the recombinant proteins purified from Escherichia coli Rosetta (DE3) have substantial WS and lower DGAT activity. They exhibit WS activity towards various-chain-length saturated and polyunsaturated acyl-CoAs and fatty alcohols ranging from C 10 to C 18 . TrWSD4 displays WS activity with the lowest K m value of 0.14 μM and the highest k cat / K m value of 1.46 × 10 5  M -1  s -1 for lauroyl-CoA (C 12:0 ) in the presence of 100 μM hexadecanol, while TrWSD5 exhibits WS activity with the lowest K m value of 0.96 μM and the highest k cat / K m value of 9.83 × 10 4  M -1  s -1 for decanoyl-CoA (C 10:0 ) under the same reaction condition. Both WS/DGAT enzymes have the highest WS activity at 37 and 47

  12. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.

    Science.gov (United States)

    Wongnate, Thanyaporn; Chaiyen, Pimchai

    2013-07-01

    Enzymes in the glucose-methanol-choline (GMC) oxidoreductase superfamily catalyze the oxidation of an alcohol moiety to the corresponding aldehyde. In this review, the current understanding of the sugar oxidation mechanism in the reaction of pyranose 2-oxidase (P2O) is highlighted and compared with that of other enzymes in the GMC family for which structural and mechanistic information is available, including glucose oxidase, choline oxidase, cholesterol oxidase, cellobiose dehydrogenase, aryl-alcohol oxidase, and pyridoxine 4-oxidase. Other enzymes in the family that have been newly discovered or for which less information is available are also discussed. A large primary kinetic isotope effect was observed for the flavin reduction when 2-d-D-glucose was used as a substrate, but no solvent kinetic isotope effect was detected for the flavin reduction step. The reaction of P2O is consistent with a hydride transfer mechanism in which there is stepwise formation of d-glucose alkoxide prior to the hydride transfer. Site-directed mutagenesis of P2O and pH-dependence studies indicated that His548 is a catalytic base that facilitates the deprotonation of C2-OH in D-glucose. This finding agrees with the current mechanistic model for aryl-alcohol oxidase, glucose oxidase, cellobiose dehydrogenase, methanol oxidase, and pyridoxine 4-oxidase, but is different from that of cholesterol oxidase and choline oxidase. Although all of the GMC enzymes share similar structural folding and use the hydride transfer mechanism for flavin reduction, they appear to have subtle differences in the fine-tuned details of how they catalyze substrate oxidation. © 2013 The Authors Journal compilation © 2013 FEBS.

  13. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  14. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  15. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  16. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  17. Dual approaches for defects condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rougemont, Romulo; Grigorio, Leonardo de Souza; Wotzasek, Clovis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Guimaraes, Marcelo Santos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2009-07-01

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  18. Development of balanced downflow type surface condensers, (2)

    International Nuclear Information System (INIS)

    Tomida, Akira; Oshima, Yoshikuni; Okochi, Isao; Izumi, Kenkichi.

    1976-01-01

    As the size of the condensers for power generation plants grew large, the new balanced downflow type condenser was developed and completed on the basis of the experiment on steam flow according to the two-dimensional flow model, the analysis of the performance in a tube nest with a computer, and the studies on the effect of outside liquid film and the reheating deaeration of condensate. When the balanced downflow type condensers were adopted for actual plants, the construction, strength and production method were examined, and the reliability of the new condenser was confirmed by the thermal characteristic experiment with the model similar to the actual machine. The condenser comprises a condenser body, supporting plates, cooling tubes, tube plates, water chambers, and reinforcements, and the cooling tubes are arranged so as to exchange heat effectively. The arrangement of tubes is divided into three regions, namely radiation portion, densely arranged portion, and air cooling portion. In the balanced downflow type condensers, the dilution by utilizing condensate is provided against ammonia attack. The apparatuses for the thermal characteristic experiment and the experimental results, and the results of the performance test on the actual balanced downflow type condenser are reported. (Kako, I.)

  19. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology.

    Science.gov (United States)

    Nde, Divine Bup; Astete, Carlos; Boldor, Dorin

    2015-12-01

    Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration-EC, temperature-T, added water content-AWC, and reaction time-RT. Biodiesel yields were quantified by (1)H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC = 7.19 %, T = 45.7 °C, AWC = 8.43 %, RT = 25.08 h; and shea oil EC = 4.43 %, T = 45.65 °C, AWC = 6.21 % and RT = 25.08 h. Validation experiments of these optimum conditions gave ME yields of 98.1 ± 1.0, 98.5 ± 1.6 and 99.3 ± 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.

  20. Effect of disulfide and sulfhydryl reagents on abortive and productive elongation catalyzed by ''Escheridia coli'' RNA polymerase

    International Nuclear Information System (INIS)

    Radlowski, M.; Job, D.

    1994-01-01

    The effect of disulfide and sulfhydryl reagents on the rate of abortive and productive elongation has been studied using ''Escherichia coli'' RNA polymerase holoenzyme and poly[d(A-T)] as template. In the presence of UTP as a single substrate and UpA as a primer, the enzyme catalyzed efficiently the synthesis of the trinucleotide product UpApU. Incubation of RNA polymerase with 1 mM 2-mercaptoethanol resulted in a 5-fold increase of the rate of UpApU synthesis. In contrast, incubation of the enzyme with 1 mM 5,5'-dithio-bis(2-nitrobenzoic) acid resulted in a 6-fold decrease of the rate of abortive elongation. Determination of the steady state kinetic constants associated with UpApU synthesis disclosed that the disulfide and sulfhydryl reagents mainly affected the rate of UpApU release from the ternary transcription complexes and therefore influenced the stability of such complexes. (author). 15 refs, 1 fig., 1 tab

  1. A Study on Condensation Heat Transfer at the Exterior Surface of S.A.M. Coated Titanium Tube Using in Steam Condensers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung-Gu; Lee, Sang-Hyup; Ji, Dae-Yun; Park, Hyun-Gyu; Lee, Kwon-Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    Condensation occurs when the temperature of a steam is reduced below its saturation temperature. There exist two forms of condensation on cooling surface: dropwise, and film condensations. Usually, dropwise condensation has a better heat transfer performance than film condensation, but it has limit of short period. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas exist, the condensation heat transfer coefficient is decreased. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes in 70 kPa vacuum condition respectively. Most of power plants use sea water as coolant, so the surface of metal tubes could be corroded by the coolant. We had researched an experimental study related to condensation heat transfer on surface modified titanium tube. Our experimental facility was designed to show how two kinds of tube's heat transfer performances are different in a same condition. We changed the range of saturation pressure and coolant flow rate to observe tube's performance change. When saturation pressure and coolant flow rate increase, overall heat transfer coefficients were increased. When residue of non-condensable gases was decreased, the overall heat transfer coefficients were increased. S.A.M. coated tube's overall heat transfer coefficients were lower than those of bare tube, because the droplets didn't have a tendency of frequently falling down.

  2. Fermion condensation and gapped domain walls in topological orders

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)

    2017-03-31

    We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.

  3. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    Science.gov (United States)

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  4. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  5. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  6. [Study of ATP-independent stages of reaction catalyzed by phage T4 RNA-ligase].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1986-01-01

    The isotope exchange between [5'-32P]pAP and A(5')ppAp catalyzed by enzyme was shown not to take place in the absence of the acceptor; i. e. the necessity of the acceptor presence during the second step of the process was demonstrated. The isotope exchange reaction between [5'32P]pAp and (pA)5p was studied. It was demonstrated that acceptor (pA)4, slightly whereas the acceptor (pU)4 completely inhibits the isotope reaction. The isotope reaction exchange between [5'-32P]pAp and (pU)4pAp does not take place. The question of existence of adenylated donor elimination mechanism in the presence of "poor" acceptors is considered on the basis of the data obtained.

  7. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    Science.gov (United States)

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the

  8. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  10. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    Science.gov (United States)

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  11. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.

    Science.gov (United States)

    Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J

    2017-06-01

    Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.

  12. Quality factors to consider in condensate selection

    Energy Technology Data Exchange (ETDEWEB)

    Lywood, B. [Crude Quality Inc., Edmonton, AB (Canada)

    2009-07-01

    Many factors must be considered when assessing the feasibility of using condensates as a diluent for bitumen or heavy crude production blending. In addition to commercial issues, the effect of condensate quality is a key consideration. In general, condensate quality refers to density and viscosity. However, valuation decisions could be enhanced through the expansion of quality definitions and understanding. This presentation focused on the parameters that are important in choosing a diluent grade product. It also reviewed pipeline and industry specifications and provided additional information regarding general properties for bitumen and condensate compatibility; sampling and quality testing needs; and existing sources of information regarding condensate quality. tabs., figs.

  13. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  14. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Marie Stiborová

    2014-06-01

    Full Text Available This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI, to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(PH:quinone oxidoreductase (NQO1 and cytochromes P450 (CYP 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs and sulfotransferases (SULTs to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals. For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.

  15. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Science.gov (United States)

    Stiborová, Marie; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2014-01-01

    This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction. PMID:24918288

  16. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    Science.gov (United States)

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  17. Reversible tetramerization of human TK1 to the high catalytic efficient form is induced by pyrophosphate, in addition to tripolyphosphates, or high enzyme concentration

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte

    2009-01-01

    of ATP is necessary for tetramerisation and how the reaction velocity is influenced by the enzyme concentration. The results show that only two or three of the phosphate groups of ATP are necessary for tetramerisation, and that kinetics and tetramerisation are closely related. Furthermore, enzyme...... concentration was found to have a pivotal effect on catalytic efficiency.......Thymidine kinase (TK1) is a key enzyme in the salvage pathway of deoxyribonucleotide metabolism catalyzing the first step in the synthesis of dTTP by the transfer of a gamma-phosphate group from a nucleoside triphosphate to the 5´-hydroxyl group of thymidine forming dTMP. Human TK1 is cytosolic...

  18. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  19. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  20. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  1. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  2. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  3. Condensation heat transfer coefficient of air-cooled condensing heat exchanger of emergency cooldown tank in long-term passive cooling system

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In

    2017-01-01

    For the design purpose of air-cooled condensing heat exchanger of emergency cooldown tank, average condensation heat transfer coefficient inside a circular tube was reduced by a thermal sizing program using the experimental data of Kim et al. It was compared to the existing condensation heat transfer correlations. Moreover, a sensitivity analysis of both inside condensation and outside air natural convection correlations was performed. Although condensation heat transfer did not play a great role to design over 10 3 W/m 2 /K, the improved Shah's correlation gives the best prediction for the design. Consequently, air natural convection coefficient significantly affects the design of air-cooled condensing heat exchanger. (author)

  4. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  5. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  6. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  7. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  8. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  9. Advanced Low Energy Enzyme Catalyzed Solvent for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zaks, Alex [Akermin Inc., St. Louis, MO (United States); Reardon, John [Akermin Inc., St. Louis, MO (United States)

    2013-09-30

    A proof-of-concept biocatalyst enhanced solvent process was developed and demonstrated in an integrated bench-scale system using coal post combustion flue gas. The biocatalyst was deployed as a coating on M500X structured packing. Rate enhancement was evaluated using a non-volatile and non-toxic 20 wt% potassium carbonate solution. Greater than 500-fold volumetric scale-up from laboratory to bench scale was demonstrated in this project. Key technical achievements included: 10-fold mass transfer enhancement demonstrated in laboratory testing relative to blank potassium carbonate at 45°C; ~ 7-fold enhancement over blank in bench-scale field testing at National Carbon Capture Center; aerosol emissions were below detection limits (< 0.8 ppm); 90% capture was demonstrated at ~19.5 Nm3/hr (dry basis); and ~ 80% CO2 capture was demonstrated at ~ 30 Nm3/hr (dry basis) for more than 2800-hrs on flue gas with minimal detectible decline in activity. The regeneration energy requirement was 3.5 GJ/t CO2 for this solvent, which was below the target of <2.1 GJ/t CO2. Bench unit testing revealed kinetic limitations in the un-catalyzed stripper at around 85°C, but process modeling based on bench unit data showed that equivalent work of less than 300 kWh/t CO2 including all CO2 compression can be achieved at lower temperature stripping conditions. Cost analysis showed that 20% potassium carbonate in a basic solvent flow sheet with biocatalyst coated packing has economic performance comparable to the reference NETL Case-12, 30% MEA. A detailed techno-economic analysis indicated that addition of catalyst in the stripper could reduce the cost of capture by ~6% and cost of avoided CO2 by ~10% below reference NETL Case-12. Based on these results, a directional plan was identified to reduce the cost of CO2 capture in future work.

  10. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  11. Bose-Einstein condensation of light: general theory.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  12. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  13. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  15. Vortex sorter for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Whyte, Graeme; Veitch, John; Courtial, Johannes; Oehberg, Patrik

    2004-01-01

    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modeled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of two-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing

  16. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  17. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  18. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  19. A Computational Tale of Two Enzymes: Glycerol Dehydration With or Without B12.

    Science.gov (United States)

    Kovačević, Borislav; Barić, Danijela; Babic, Darko; Bilić, Luka; Hanževački, Marko; Sandala, Gregory M; Radom, Leo; Smith, David M

    2018-06-12

    We present a series of QM/MM calculations aimed at understanding the mechanism of the biological dehydration of glycerol. Strikingly and unusually, this process is catalyzed by two different radical enzymes, one of which is a coenzyme-B 12 - dependent enzyme and the other which is a coenzyme-B 12 - independent enzyme. We show that glycerol dehydration in the presence of the coenzyme-B 12 -dependent enzyme proceeds via a 1,2-OH shift, which benefits from a significant catalytic reduction in the barrier. In contrast, the same reaction in the presence of the coenzyme-B 12 -independent enzyme is unlikely to involve the 1,2-OH shift; instead, a strong preference for direct loss of water from a radical intermediate is indicated. We show that this preference and, ultimately the evolution of such enzymes, is strongly linked with the reactivities of the species responsible for abstracting a hydrogen atom from the substrate. It appears that the hydrogen re-abstraction step involving the product-related radical is fundamental to the mechanistic preference. The unconventional 1,2-OH shift seems to be required to generate a product-related radical of sufficient reactivity to cleave the relatively inactive C-H bond arising from the B 12 cofactor. In the absence of B 12 , it is the relatively weak S-H bond of a cysteine residue that must be homolyzed. Such a transformation is much less demanding and its inclusion apparently enables a simpler overall dehydration mechanism.

  20. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  1. 21 CFR 886.1380 - Diagnostic condensing lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a procedure...

  2. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    Science.gov (United States)

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  3. The dynamics of Affleck-Dine condensate collapse

    International Nuclear Information System (INIS)

    Enqvist, Kari; McDonald, John

    2000-01-01

    In the MSSM, cosmological scalar field condensates formed along flat directions of the scalar potential (Affleck-Dine condensates) are typically unstable with respect to formation of Q-balls, a type of non-topological soliton. We consider the dynamical evolution of the Affleck-Dine condensate in the MSSM. We discuss the creation and linear growth, in F- and D-term inflation models, of the quantum seed perturbations which in the non-linear regime catalyse the collapse of the condensate to non-topological soliton lumps. We study numerically the evolution of the collapsing condensate lumps and show that the solitons initially formed are not in general Q-balls, but Q-axitons, a pseudo-breather which can have very different properties from Q-balls of the same charge. We calculate the energy and charge radiated from a spherically symmetric condensate lump as it evolves into a Q-axiton. We also discuss the implications for baryogenesis and dark matter

  4. Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-catalyzed Direct Electron Transfer, Preprint

    National Research Council Canada - National Science Library

    Invitski, Dmitri; Artyuskova, Kateryna; Rincon, Rosalba A; Atanassov, Plamen; Luckarift, Heather R; Johnson, Glenn R

    2007-01-01

    This work demonstrates a new approach for building bio-inorganic interfaces by integrating biomimetically-derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes...

  5. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    Science.gov (United States)

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  6. A study on passive containment cooling condensers in SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen; C. N.

    2001-01-01

    The passive containment cooling condensers (PCCC) are the crucial part of several new reactor designs, like European Simplified Boiling Water Reactor (ESBWR) and the SBWR. In a hypothetical accident, the pressurised steam non-condensable mixture from drywell is condensed in PCCCs, and condensate is returned to reactor vessel while non-condensable is vented through wet well. In this study, in order to examine the performance of PCCCs, condensation with presence of noncondensable is investigated. Condensation with different noncondensable types and conditions is studied on a PCCC model, which is developed by using RELAP5 Mod3.2 computer code

  7. Nitrogen levels and yeast viability during ethanol fermentation of grain sorghum containing condensed tannins

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, J T; NeSmith, C

    1988-01-01

    Selected varieties of sorghum, Sorghum bicolor (L.) Moench, give high crop yields and they also return to favorable energy balance in terms of energy calories produced per cultural energy invested. The brown, condensed-tannin, bird- and mold-resistant varieties illustrate these advantages, but their nutritional value and ability to support the expected rate of ethanol fermentation is significantly lower than that of non-brown sorghums. It has been previously shown that the addition of nitrogen to brown sorghum mash supports a high rate of fermentative metabolism without removing the tannins, and suggested that the basis for the inhibition of ethanol fermentation was nitrogen starvation of the yeast cells. In this investigation, it is demonstrated that the addition of protease enzyme to mash results in an increase in amino nitrogen sufficient to support accelerated rates of ethanol fermentation by yeast cells. Thus, the hypothesis commonly cited in the literature that the presumed inhibitor, condensed tannins, function to reduce fermentative metabolism solely via the binding and precipitation of proteins is rejected.

  8. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [ 3 H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [ 3 H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  9. Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-05-01

    Full Text Available Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP enzyme activities in human liver microsomes were evaluated using liquid chromatography–tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4’-hydroxylation with a Ki value of 16.3 μM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4’-hydroxylation (Ki, 3.7 μM; kinact, 0.102 min−1, CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 μM; kinact, 0.082 min−1, and CYP3A4-catalyzed midazolam 1’-hydroxylation (Ki, 23.0 μM; kinact, 0.050 min−1 in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1’-hydroxylation at 100 μM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 μM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 μM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 μM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates.

  10. Glycolysis of poly (3-hydroxybutyrate) catalyzed by an enzyme system; Glicolise do poli(3-hidroxibutirato) por via enzimatica

    Energy Technology Data Exchange (ETDEWEB)

    Campos, T.F.; Mano, V., E-mail: mano@ufsj.edu.b [Universidade Federal de Sao Joao del Rei (UFSJ), MG (Brazil). Dept. de Ciencias Naturais

    2010-07-01

    In this work we report the studies of PHB glycolysis catalyzed by lipase Amano PS (Pseudomonas cepacia) in the presence of 1,2-ethanediol (ethylene glycol). The reactions were performed in toluene:dichloroethane 3:1 (v/v) at 60 deg C, varying reaction time and concentration of ethylene glycol. PHB and the products of glycolysis (polyols) were characterized by FTIR, {sup 1}H-NMR, and TG. The FTIR spectra of polyols showed no significant change compared to the spectrum of PHB. The {sup 1}H-NMR spectra of the products of glycolysis showed signs of interest between 3 and 4.7 ppm, related to the ethylene glycol protons inserted in the polymer chain. By analyzing the thermograms we observed that the polyols are more thermally stable than PHB. (author)

  11. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

    Science.gov (United States)

    Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily

    2015-11-24

    Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.

  12. Coherence and chaos in condensed matter

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs

  13. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  14. Trapping of intermediates with substrate analog HBOCoA in the polymerizations catalyzed by class III polyhydroxybutyrate (PHB) synthase from Allochromatium vinosum.

    Science.gov (United States)

    Chen, Chao; Cao, Ruikai; Shrestha, Ruben; Ward, Christina; Katz, Benjamin B; Fischer, Christopher J; Tomich, John M; Li, Ping

    2015-05-15

    Polyhydroxybutyrate (PHB) synthases (PhaCs) catalyze the formation of biodegradable PHB polymers that are considered as an ideal alternative to petroleum-based plastics. To provide strong evidence for the preferred mechanistic model involving covalent and noncovalent intermediates, a substrate analog HBOCoA was synthesized chemoenzymatically. Substitution of sulfur in the native substrate HBCoA with an oxygen in HBOCoA enabled detection of (HB)nOCoA (n = 2-6) intermediates when the polymerization was catalyzed by wild-type (wt-)PhaECAv at 5.84 h(-1). This extremely slow rate is due to thermodynamically unfavorable steps that involve the formation of enzyme-bound PHB species (thioesters) from corresponding CoA oxoesters. Synthesized standards (HB)nOCoA (n = 2-3) were found to undergo both reacylation and hydrolysis catalyzed by the synthase. Distribution of the hydrolysis products highlights the importance of the penultimate ester group as previously suggested. Importantly, the reaction between primed synthase [(3)H]-sT-PhaECAv and HBOCoA yielded [(3)H]-sTet-O-CoA at a rate constant faster than 17.4 s(-1), which represents the first example that a substrate analog undergoes PHB chain elongation at a rate close to that of the native substrate (65.0 s(-1)). Therefore, for the first time with a wt-synthase, strong evidence was obtained to support our favored PHB chain elongation model.

  15. Crystallographic Study of Peptidoglycan Biosynthesis Enzyme MurD: Domain Movement Revisited.

    Directory of Open Access Journals (Sweden)

    Roman Šink

    Full Text Available The biosynthetic pathway of peptidoglycan, an essential component of bacterial cell wall, is a well-recognized target for antibiotic development. Peptidoglycan precursors are synthesized in the bacterial cytosol by various enzymes including the ATP-hydrolyzing Mur ligases, which catalyze the stepwise addition of amino acids to a UDP-MurNAc precursor to yield UDP-MurNAc-pentapeptide. MurD catalyzes the addition of D-glutamic acid to UDP-MurNAc-L-Ala in the presence of ATP; structural and biochemical studies have suggested the binding of the substrates with an ordered kinetic mechanism in which ligand binding inevitably closes the active site. In this work, we challenge this assumption by reporting the crystal structures of intermediate forms of MurD either in the absence of ligands or in the presence of small molecules. A detailed analysis provides insight into the events that lead to the closure of MurD and reveals that minor structural modifications contribute to major overall conformation alterations. These novel insights will be instrumental in the development of new potential antibiotics designed to target the peptidoglycan biosynthetic pathway.

  16. Mammalian folylpoly-γ-glutamate synthetase. 1. Purification and general properties of the hog liver enzyme

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of M/sub r/ 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K + was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the K/sub m/ value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied

  17. Bacterial Glycosyltransferases: Challenges and opportunities of a highly diverse enzyme class toward tailoring natural products

    Directory of Open Access Journals (Sweden)

    Jochen eSchmid

    2016-02-01

    Full Text Available The enzyme subclass of glycosyltransferases (EC 2.4 currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition glycosyltransferases also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial glycosyltransferases show a higher sequence similarity in comparison to mammalian ones. Even when most glycosyltransferases are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial glycosyltransferases, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.

  18. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Tran, Dang-Thuan; Lin, Yi-Jan; Chen, Ching-Lung; Chang, Jo-Shu

    2014-01-01

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min −1 , whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  19. The phase transition to an inhomogeneous condensate state

    International Nuclear Information System (INIS)

    Voskresensky, D.N.

    1984-01-01

    The Lagrangian (free energy) of the model with a complex scalar order parameter in which the phase transition to an inhomogeneous condensate state exists is constructed in the coordinate representation. In the case of condensation of charged particles (for example paired electrons) interaction with the electromagnetic field is included. The excitation spectrum in the presence of the condensate is found. The oscillations are strongly anisotropic. It is shown that superfluidity is absent for an uncharged system but that the charged one has the property of superconductivity. The important role of thermal fluctuations is demonstrated. They drastically change the behaviour of the condensate system. The condensation in a finite system is considered. A study is carried out for the behaviour of an inhomogeneous condensate in magnetic field. It is shown that the inhomogeneous condensate is a type II superconductor with Ginzburg-Landau parameter kappa >> 1, but that the structure of the mixed state of the system is unusual - consisting of plane layers of the normal phase, when Hsub(c1)< H< H'sub(c2). The distribution of condensate in the strong magnetic field H'sub(c2)< H< Hsub(c2) is also studied. (Auth.)

  20. Deepak Condenser Model (DeCoM)

    Science.gov (United States)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.