WorldWideScience

Sample records for concurrent multiscale simulation

  1. A concurrent multiscale micromorphic molecular dynamics

    International Nuclear Information System (INIS)

    Li, Shaofan; Tong, Qi

    2015-01-01

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation

  2. Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu-Hang, E-mail: yuhang_tang@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Kudo, Shuhei, E-mail: shuhei-kudo@outlook.jp [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 (Japan); Bian, Xin, E-mail: xin_bian@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Li, Zhen, E-mail: zhen_li@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI (United States); Collaboratory on Mathematics for Mesoscopic Modeling of Materials, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-09-15

    Graphical abstract: - Abstract: Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data sampler concept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM)

  3. Multiscale simulation of protein hydration using the SWINGER dynamical clustering algorithm

    NARCIS (Netherlands)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    To perform computationally efficient concurrent multiscale simulations of biological macromolecules in solution, where the all-atom (AT) models are coupled to supramolecular coarse-grained (SCG) solvent models, previous studies resorted to a modified AT water models, such as the bundled-SPC models,

  4. The Multiscale Material Point Method for Simulating Transient Responses

    Science.gov (United States)

    Chen, Zhen; Su, Yu-Chen; Zhang, Hetao; Jiang, Shan; Sewell, Thomas

    2015-06-01

    To effectively simulate multiscale transient responses such as impact and penetration without invoking master/slave treatment, the multiscale material point method (Multi-MPM) is being developed in which molecular dynamics at nanoscale and dissipative particle dynamics at mesoscale might be concurrently handled within the framework of the original MPM at microscale (continuum level). The proposed numerical scheme for concurrently linking different scales is described in this paper with simple examples for demonstration. It is shown from the preliminary study that the mapping and re-mapping procedure used in the original MPM could coarse-grain the information at fine scale and that the proposed interfacial scheme could provide a smooth link between different scales. Since the original MPM is an extension from computational fluid dynamics to solid dynamics, the proposed Multi-MPM might also become robust for dealing with multiphase interactions involving failure evolution. This work is supported in part by DTRA and NSFC.

  5. The Adaptive Multi-scale Simulation Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, William R. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  6. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    Science.gov (United States)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  7. Adaptive resolution simulation of supramolecular water : The concurrent making, breaking, and remaking of water bundles

    NARCIS (Netherlands)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    The adaptive resolution scheme (AdResS) is a multiscale molecular dynamics simulation approach that can concurrently couple atomistic (AT) and coarse-grained (CG) resolution regions, i.e., the molecules can freely adapt their resolution according to their current position in the system. Coupling to

  8. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  10. Deductive multiscale simulation using order parameters

    Science.gov (United States)

    Ortoleva, Peter J.

    2017-05-16

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  11. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Science.gov (United States)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  12. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  13. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    Energy Technology Data Exchange (ETDEWEB)

    Emery, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coffin, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robbins, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Field, Richard V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeremy Yoo, Yung Suk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kacher, Josh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins with a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.

  14. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Thomas [California Inst. of Technology (CalTech), Pasadena, CA (United States); Efendiev, Yalchin [Stanford Univ., CA (United States); Tchelepi, Hamdi [Texas A & M Univ., College Station, TX (United States); Durlofsky, Louis [Stanford Univ., CA (United States)

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  15. Multiscale simulation of molecular processes in cellular environments.

    Science.gov (United States)

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  16. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  17. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  18. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  19. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    Science.gov (United States)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  20. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  1. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  2. Multi-scale simulation for homogenization of cement media

    International Nuclear Information System (INIS)

    Abballe, T.

    2011-01-01

    To solve diffusion problems on cement media, two scales must be taken into account: a fine scale, which describes the micrometers wide microstructures present in the media, and a work scale, which is usually a few meters long. Direct numerical simulations are almost impossible because of the huge computational resources (memory, CPU time) required to assess both scales at the same time. To overcome this problem, we present in this thesis multi-scale resolution methods using both Finite Volumes and Finite Elements, along with their efficient implementations. More precisely, we developed a multi-scale simulation tool which uses the SALOME platform to mesh domains and post-process data, and the parallel calculation code MPCube to solve problems. This SALOME/MPCube tool can solve automatically and efficiently multi-scale simulations. Parallel structure of computer clusters can be use to dispatch the more time-consuming tasks. We optimized most functions to account for cement media specificities. We presents numerical experiments on various cement media samples, e.g. mortar and cement paste. From these results, we manage to compute a numerical effective diffusivity of our cement media and to reconstruct a fine scale solution. (author) [fr

  3. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  4. Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy

    Science.gov (United States)

    Gur, Sourav

    (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.

  5. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    Science.gov (United States)

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  6. A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media

    Science.gov (United States)

    Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.

    2017-12-01

    Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.

  7. Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Mijatovic, Nenad; Træholt, Chresten

    2011-01-01

    This work presents a method to simulate the electromagnetic properties of superconductors with high aspect ratio such as the commercially available second generation superconducting YBCO tapes. The method is based on a multiscale representation for both thickness and width of the superconducting...... at considerable lower computational time. Several test cases were simulated including transport current, externally applied magnetic field and a combination of both. The results are in good agreement with recently published numerical simulations. The computational time to solve the present multiscale approach...

  8. Efficient Integration of Coupled Electrical-chemical Systems in Multiscale Neuronal Simulations

    Directory of Open Access Journals (Sweden)

    Ekaterina Brocke

    2016-09-01

    Full Text Available Multiscale modeling and simulations in neuroscience is gaining scientific attention due to its growing importance and unexplored capabilities. For instance, it can help to acquire better understanding of biological phenomena that have important features at multiple scales of time and space. This includes synaptic plasticity, memory formation and modulation, homeostasis. There are several ways to organize multiscale simulations depending on the scientific problem and the system to be modeled. One of the possibilities is to simulate different components of a multiscale system simultaneously and exchange data when required. The latter may become a challenging task for several reasons. One of them is that the components of a multiscale system usually span different spatial and temporal scales, such that rigorous analysis of possible coupling solutions is required. For certain classes of problems a number of coupling mechanisms have been proposed and successfully used. However, a strict mathematical theory is missing in many cases. Recent work in the field has not so far investigated artifacts that may arise during coupled integration of different approximation methods. Moreover, the coupling of widely used numerical fixed step size solvers may lead to unexpected inefficiency. In this paper we address the question of possible numerical artifacts that can arise during the integration of a coupled system. We develop an efficient strategy to couple the components of a multiscale test system. We introduce an efficient coupling method based on the second-order backward differentiation formula numerical approximation. The method uses an adaptive step size integration with an error estimation proposed by Skelboe (2000. The method shows a significant advantage over conventional fixed step size solvers used for similar problems. We explore different coupling strategies that define the organization of computations between system components. We study the

  9. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  10. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  11. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  12. A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wiersema, David John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Lundquist, Katherine A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chow, Fotini Katapodes [Univ. of California, Berkeley, CA (United States)

    2016-09-29

    With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscale simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.

  13. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  14. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.

    2009-01-01

    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions...

  15. Multiscale Computing with the Multiscale Modeling Library and Runtime Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Groen, D.; Ben Belgacem, M.; Kurowski, K.; Hoekstra, A.G.

    2013-01-01

    We introduce a software tool to simulate multiscale models: the Multiscale Coupling Library and Environment 2 (MUSCLE 2). MUSCLE 2 is a component-based modeling tool inspired by the multiscale modeling and simulation framework, with an easy-to-use API which supports Java, C++, C, and Fortran. We

  16. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  17. Distributed multiscale computing

    NARCIS (Netherlands)

    Borgdorff, J.

    2014-01-01

    Multiscale models combine knowledge, data, and hypotheses from different scales. Simulating a multiscale model often requires extensive computation. This thesis evaluates distributing these computations, an approach termed distributed multiscale computing (DMC). First, the process of multiscale

  18. Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen Chong; Zhang, Chi; Yang, Zhigang [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Zhao, Ji Jun [State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian (China)

    2017-04-15

    One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7–9 wt.%Cr) RAFM steels in a condition characterized by 0.1–5 dpa (or 0 dpa) and a temperature range of 25–500°C.

  19. Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.

    Science.gov (United States)

    Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner

    2016-01-01

    Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

  20. Adaptive Multiscale Finite Element Method for Subsurface Flow Simulation

    NARCIS (Netherlands)

    Van Esch, J.M.

    2010-01-01

    Natural geological formations generally show multiscale structural and functional heterogeneity evolving over many orders of magnitude in space and time. In subsurface hydrological simulations the geological model focuses on the structural hierarchy of physical sub units and the flow model addresses

  1. Fast 2D Simulation of Superconductors: a Multiscale Approach

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2009-01-01

    This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a single thin...

  2. Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media

    KAUST Repository

    Li, Jun; Brown, Donald; Calo, Victor M.; Efendiev, Yalchin R.; Illiev, Oleg

    2013-01-01

    .g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce

  3. A multiscale quantum mechanics/electromagnetics method for device simulations.

    Science.gov (United States)

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  4. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  5. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  6. A constrained approach to multiscale stochastic simulation of chemically reacting systems

    KAUST Repository

    Cotter, Simon L.; Zygalakis, Konstantinos C.; Kevrekidis, Ioannis G.; Erban, Radek

    2011-01-01

    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address

  7. Growth of nitrogen-doped graphene on copper: Multiscale simulations

    Science.gov (United States)

    Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.

    2016-02-01

    We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.

  8. Self-consistent clustering analysis: an efficient multiscale scheme for inelastic heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Bessa, M. A.; Liu, W.K.

    2017-10-25

    A predictive computational theory is shown for modeling complex, hierarchical materials ranging from metal alloys to polymer nanocomposites. The theory can capture complex mechanisms such as plasticity and failure that span across multiple length scales. This general multiscale material modeling theory relies on sound principles of mathematics and mechanics, and a cutting-edge reduced order modeling method named self-consistent clustering analysis (SCA) [Zeliang Liu, M.A. Bessa, Wing Kam Liu, “Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials,” Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341]. SCA reduces by several orders of magnitude the computational cost of micromechanical and concurrent multiscale simulations, while retaining the microstructure information. This remarkable increase in efficiency is achieved with a data-driven clustering method. Computationally expensive operations are performed in the so-called offline stage, where degrees of freedom (DOFs) are agglomerated into clusters. The interaction tensor of these clusters is computed. In the online or predictive stage, the Lippmann-Schwinger integral equation is solved cluster-wise using a self-consistent scheme to ensure solution accuracy and avoid path dependence. To construct a concurrent multiscale model, this scheme is applied at each material point in a macroscale structure, replacing a conventional constitutive model with the average response computed from the microscale model using just the SCA online stage. A regularized damage theory is incorporated in the microscale that avoids the mesh and RVE size dependence that commonly plagues microscale damage calculations. The SCA method is illustrated with two cases: a carbon fiber reinforced polymer (CFRP) structure with the concurrent multiscale model and an application to fatigue prediction for additively manufactured metals. For the CFRP problem, a speed up estimated to be about

  9. A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition

    International Nuclear Information System (INIS)

    Zheng Zheming; Stephens, Ryan M.; Braatz, Richard D.; Alkire, Richard C.; Petzold, Linda R.

    2008-01-01

    A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient

  10. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    Science.gov (United States)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  11. A constrained approach to multiscale stochastic simulation of chemically reacting systems

    KAUST Repository

    Cotter, Simon L.

    2011-01-01

    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.

  12. Multiscale computing in the exascale era

    NARCIS (Netherlands)

    Alowayyed, S.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    We expect that multiscale simulations will be one of the main high performance computing workloads in the exascale era. We propose multiscale computing patterns as a generic vehicle to realise load balanced, fault tolerant and energy aware high performance multiscale computing. Multiscale computing

  13. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  14. Fast spot-based multiscale simulations of granular drainage

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.

    2009-05-22

    We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.

  15. Three-dimensional direct numerical simulation of electromagnetically driven multiscale shallow layer flows: Numerical modeling and physical properties

    Science.gov (United States)

    Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel

    2008-12-01

    Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and

  16. A Framework for Parallel Numerical Simulations on Multi-Scale Geometries

    KAUST Repository

    Varduhn, Vasco

    2012-06-01

    In this paper, an approach on performing numerical multi-scale simulations on fine detailed geometries is presented. In particular, the focus lies on the generation of sufficient fine mesh representations, whereas a resolution of dozens of millions of voxels is inevitable in order to sufficiently represent the geometry. Furthermore, the propagation of boundary conditions is investigated by using simulation results on the coarser simulation scale as input boundary conditions on the next finer scale. Finally, the applicability of our approach is shown on a two-phase simulation for flooding scenarios in urban structures running from a city wide scale to a fine detailed in-door scale on feature rich building geometries. © 2012 IEEE.

  17. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  18. Multiscale Simulation of Breaking Wave Impacts

    DEFF Research Database (Denmark)

    Lindberg, Ole

    compare reasonably well. The incompressible and inviscid ALE-WLS model is coupled with the potential flow model of Engsig-Karup et al. [2009], to perform multiscale calculation of breaking wave impacts on a vertical breakwater. The potential flow model provides accurate calculation of the wave...... with a potential flow model to provide multiscale calculation of forces from breaking wave impacts on structures....

  19. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    Science.gov (United States)

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  20. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    Science.gov (United States)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For

  1. Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction

    KAUST Repository

    Ghasemi, Mohammadreza

    2015-02-23

    In this paper, we present a global-local model reduction for fast multiscale reservoir simulations in highly heterogeneous porous media with applications to optimization and history matching. Our proposed approach identifies a low dimensional structure of the solution space. We introduce an auxiliary variable (the velocity field) in our model reduction that allows achieving a high degree of model reduction. The latter is due to the fact that the velocity field is conservative for any low-order reduced model in our framework. Because a typical global model reduction based on POD is a Galerkin finite element method, and thus it can not guarantee local mass conservation. This can be observed in numerical simulations that use finite volume based approaches. Discrete Empirical Interpolation Method (DEIM) is used to approximate the nonlinear functions of fine-grid functions in Newton iterations. This approach allows achieving the computational cost that is independent of the fine grid dimension. POD snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3) inexpensive global POD operations in a small dimensional spaces on a coarse grid. By balancing the errors of the global and local reduced-order models, our new methodology can provide an error bound in simulations. Our numerical results, utilizing a two-phase immiscible flow, show a substantial speed-up and we compare our results to the standard POD-DEIM in finite volume setup.

  2. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  3. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Science.gov (United States)

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  4. Parallel multiscale simulations of a brain aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Leopold [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich 52425 (Germany); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  5. Parallel multiscale simulations of a brain aneurysm

    International Nuclear Information System (INIS)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2013-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  6. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric; Efendiev, Yalchin R.; Leung, Wing; Ren, Jun

    2015-01-01

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  7. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  8. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  9. Simulating multi-scale oceanic processes around Taiwan on unstructured grids

    Science.gov (United States)

    Yu, Hao-Cheng; Zhang, Yinglong J.; Yu, Jason C. S.; Terng, C.; Sun, Weiling; Ye, Fei; Wang, Harry V.; Wang, Zhengui; Huang, Hai

    2017-11-01

    We validate a 3D unstructured-grid (UG) model for simulating multi-scale processes as occurred in Northwestern Pacific around Taiwan using recently developed new techniques (Zhang et al., Ocean Modeling, 102, 64-81, 2016) that require no bathymetry smoothing even for this region with prevalent steep bottom slopes and many islands. The focus is on short-term forecast for several months instead of long-term variability. Compared with satellite products, the errors for the simulated Sea-surface Height (SSH) and Sea-surface Temperature (SST) are similar to a reference data-assimilated global model. In the nearshore region, comparison with 34 tide gauges located around Taiwan indicates an average RMSE of 13 cm for the tidal elevation. The average RMSE for SST at 6 coastal buoys is 1.2 °C. The mean transport and eddy kinetic energy compare reasonably with previously published values and the reference model used to provide boundary and initial conditions. The model suggests ∼2-day interruption of Kuroshio east of Taiwan during a typhoon period. The effect of tidal mixing is shown to be significant nearshore. The multi-scale model is easily extendable to target regions of interest due to its UG framework and a flexible vertical gridding system, which is shown to be superior to terrain-following coordinates.

  10. Toward multi-scale simulation of reconnection phenomena in space plasma

    Science.gov (United States)

    Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.

    2013-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We

  11. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  12. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    Science.gov (United States)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  13. MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Rami Zewail

    2017-08-01

    Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.

  14. Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media

    KAUST Repository

    Li, Jun

    2013-01-01

    A lattice Boltzmann method (LBM) for flow simulations in highly heterogeneous porous media at both pore and Darcy scales is proposed in the paper. In the pore scale simulations, flow of two phases (e.g., oil and gas) or two immiscible fluids (e.g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce the computational complexity of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with the averaged results obtained using fine grid.

  15. Screening wells by multi-scale grids for multi-stage Markov Chain Monte Carlo simulation

    DEFF Research Database (Denmark)

    Akbari, Hani; Engsig-Karup, Allan Peter

    2018-01-01

    /production wells, aiming at accurate breakthrough capturing as well as above mentioned efficiency goals. However this short time simulation needs fine-scale structure of the geological model around wells and running a fine-scale model is not as cheap as necessary for screening steps. On the other hand applying...... it on a coarse-scale model declines important data around wells and causes inaccurate results, particularly accurate breakthrough capturing which is important for prediction applications. Therefore we propose a multi-scale grid which preserves the fine-scale model around wells (as well as high permeable regions...... and fractures) and coarsens rest of the field and keeps efficiency and accuracy for the screening well stage and coarse-scale simulation, as well. A discrete wavelet transform is used as a powerful tool to generate the desired unstructured multi-scale grid efficiently. Finally an accepted proposal on coarse...

  16. Multiscale Data Assimilation for Large-Eddy Simulations

    Science.gov (United States)

    Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.

  17. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  18. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  19. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  20. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    NARCIS (Netherlands)

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  1. Multiscale simulation of neutron induced damage in tritium breeding blankets with different spectral shifters

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee; Joo, Han Gyu, E-mail: joohan@snu.ac.kr

    2013-10-15

    Highlights: • A multiscale defect simulation system tailored for neutron damage estimation is introduced. • The new recoil spectrum code can use the most recent ENDF-B/VII nuclear data. • The high energy cascades are broken into subcascades using the INCAS model. • OKMC simulation provides data for shear stress estimation using dislocation dynamics formula. • Demonstration is made with a fusion blanket design having different spectral shifters. -- Abstract: A multiscale material defect simulation established to evaluate neutron induced damages on metals is applied to an estimation of material degradation in helium cooled molten lithium blankets in which four different spectral shifter materials are examined as a means of maximizing the tritium breeding ratio through proper shaping of the neutron spectrum. The multiscale system consists of a Monte Carlo neutron transport code, a recoil spectrum generation code, a molecular dynamics code, a high energy cascade breakup model, an object kinetic Monte Carlo code, and a simple formula as the shear stress estimator. The average recoil energy of the primary knock-on atoms, the total concentration of the defects, average defect sizes, and the increase in shear stress after a certain irradiation time are calculated for each spectral shifter. Among the four proposed materials of B4C, Be, Graphite and TiC, B4C reveals the best shielding performance in terms of neutron radiation hardening. The result for the increase in shear stress after 100 days of irradiation indicates that the increased shear stress is 1.5 GPa for B4C which is about 40% less than that of the worst one, the graphite spectral shifter. The other damage indicators show consistent trends.

  2. A nuclear training simulator implementing a capability for multiple, concurrent-training sessions

    International Nuclear Information System (INIS)

    Groeneveld, B.J.; Nannister, D.G.; Estes, K.R.; Johnsen, M.R.

    1996-01-01

    The Advanced Test Reactor (ATR) Simulator at the Test Reactor Area of the Idaho National Engineering Laboratory (INEL) has recently been upgraded to reflect plant installation of a distributed control system (DCS). The ATR Simulator re-design implements traditional needs for software extensibility and plant installation prototyping, but the driving force behind its new design was an instruction requirement for multiple, concurrent-training sessions. Support is provided for up to three concurrent, independent or interacting, training sessions of reactor, balance of plant, and experiment loop operators. This capability has been achieved by modifying the existing design to consistently apply client-server, parent-child, and peer-to-peer processing technologies, and then to encapsulate concurrency software into all interfaces. When the resulting component-oriented design is linked with build and runtime flexibility in a distributed computing environment, traditional needs for extensibility and parallel software and scenario development are satisfied with minimal additional effort. Sensible configuration management practices coupled with the ability to perform piecewise system builds also greatly facilitate prototyping of plant changes prior to installation

  3. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Zhang, Lei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, 100190, Beijing (China); He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Li, Shengtai [Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Wang, Xin, E-mail: jshept@gmail.com [School of Space and Environment, Beihang University, 100191 Beijing (China)

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.

  4. Multiscale Cancer Modeling

    Science.gov (United States)

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  5. On a multiscale approach for filter efficiency simulations

    KAUST Repository

    Iliev, Oleg

    2014-07-01

    Filtration in general, and the dead end depth filtration of solid particles out of fluid in particular, is intrinsic multiscale problem. The deposition (capturing of particles) essentially depends on local velocity, on microgeometry (pore scale geometry) of the filtering medium and on the diameter distribution of the particles. The deposited (captured) particles change the microstructure of the porous media what leads to change of permeability. The changed permeability directly influences the velocity field and pressure distribution inside the filter element. To close the loop, we mention that the velocity influences the transport and deposition of particles. In certain cases one can evaluate the filtration efficiency considering only microscale or only macroscale models, but in general an accurate prediction of the filtration efficiency requires multiscale models and algorithms. This paper discusses the single scale and the multiscale models, and presents a fractional time step discretization algorithm for the multiscale problem. The velocity within the filter element is computed at macroscale, and is used as input for the solution of microscale problems at selected locations of the porous medium. The microscale problem is solved with respect to transport and capturing of individual particles, and its solution is postprocessed to provide permeability values for macroscale computations. Results from computational experiments with an oil filter are presented and discussed.

  6. Multiscale analysis and computation for flows in heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Efendiev, Yalchin [Texas A & M Univ., College Station, TX (United States); Hou, T. Y. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Durlofsky, L. J. [Stanford Univ., CA (United States); Tchelepi, H. [Stanford Univ., CA (United States)

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  7. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    Science.gov (United States)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  8. COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION

    Directory of Open Access Journals (Sweden)

    M. Breunig

    2017-09-01

    Full Text Available Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  9. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  10. Reducing the computational requirements for simulating tunnel fires by combining multiscale modelling and multiple processor calculation

    DEFF Research Database (Denmark)

    Vermesi, Izabella; Rein, Guillermo; Colella, Francesco

    2017-01-01

    Multiscale modelling of tunnel fires that uses a coupled 3D (fire area) and 1D (the rest of the tunnel) model is seen as the solution to the numerical problem of the large domains associated with long tunnels. The present study demonstrates the feasibility of the implementation of this method...... in FDS version 6.0, a widely used fire-specific, open source CFD software. Furthermore, it compares the reduction in simulation time given by multiscale modelling with the one given by the use of multiple processor calculation. This was done using a 1200m long tunnel with a rectangular cross......-section as a demonstration case. The multiscale implementation consisted of placing a 30MW fire in the centre of a 400m long 3D domain, along with two 400m long 1D ducts on each side of it, that were again bounded by two nodes each. A fixed volume flow was defined in the upstream duct and the two models were coupled...

  11. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  12. A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows

    Energy Technology Data Exchange (ETDEWEB)

    James, Sutherland [University of Utah

    2018-04-12

    Abstract In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the curse of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.

  13. Multi-Scale Initial Conditions For Cosmological Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Oliver; /KIPAC, Menlo Park; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  14. Multiscale approach to the physics of radiation damage with ions

    International Nuclear Information System (INIS)

    Surdutovich, E.; Solov'yov, A.

    2014-01-01

    The multiscale approach to the assessment of bio-damage resulting upon irradiation of biological media with ions is reviewed, explained and compared to other approaches. The processes of ion propagation in the medium concurrent with ionization and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and develop an approach to the quantitative assessment of biological damage as a result of irradiation with ions. Presently, physical and chemical effects are included in the scenario while the biological effects such as DNA repair are only mentioned. This paper explains the scenario of radiation damage with ions, overviews its major parts, and applies the multiscale approach to different experimental conditions. On the basis of this experience, the recipe for application of the multiscale approach is formulated. The recipe leads to the calculation of relative biological effectiveness. (authors)

  15. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  16. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  17. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  18. Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys

    Science.gov (United States)

    Sun, Weihua; Zhang, Chuan; Klarner, Andrew D.; Cao, Weisheng; Luo, Alan A.

    The precipitation kinetics and microtructure in Mg-Sn binary and Mg-Al-Sn ternary alloys are simulated using PanPrecipitation coupled with Mg thermodynamic database and a newly established mobility database of the Mg-Al-Sn ternary system. Both Mg2Sn and Mg17Al12 precipitates are considered in this work. The obtained kinetic parameters for these two precipitates can be used in the simulation of both individual and concurrent precipitations of Mg17Al12 and Mg2Sn in Mg-Al-Sn alloys. The simulated microstructure evolution, such as the particle size and number density, are in agreement with experimental data.

  19. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  20. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    Science.gov (United States)

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  1. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  2. From the direct numerical simulation to system codes-perspective for the multi-scale analysis of LWR thermal hydraulics

    International Nuclear Information System (INIS)

    Bestion, D.

    2010-01-01

    A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given

  3. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  4. A general concurrent algorithm for plasma particle-in-cell simulation codes

    International Nuclear Information System (INIS)

    Liewer, P.C.; Decyk, V.K.

    1989-01-01

    We have developed a new algorithm for implementing plasma particle-in-cell (PIC) simulation codes on concurrent processors with distributed memory. This algorithm, named the general concurrent PIC algorithm (GCPIC), has been used to implement an electrostatic PIC code on the 33-node JPL Mark III Hypercube parallel computer. To decompose at PIC code using the GCPIC algorithm, the physical domain of the particle simulation is divided into sub-domains, equal in number to the number of processors, such that all sub-domains have roughly equal numbers of particles. For problems with non-uniform particle densities, these sub-domains will be of unequal physical size. Each processor is assigned a sub-domain and is responsible for updating the particles in its sub-domain. This algorithm has led to a a very efficient parallel implementation of a well-benchmarked 1-dimensional PIC code. The dominant portion of the code, updating the particle positions and velocities, is nearly 100% efficient when the number of particles is increased linearly with the number of hypercube processors used so that the number of particles per processor is constant. For example, the increase in time spent updating particles in going from a problem with 11,264 particles run on 1 processor to 360,448 particles on 32 processors was only 3% (parallel efficiency of 97%). Although implemented on a hypercube concurrent computer, this algorithm should also be efficient for PIC codes on other parallel architectures and for large PIC codes on sequential computers where part of the data must reside on external disks. copyright 1989 Academic Press, Inc

  5. Multiscale equation-free algorithms for molecular dynamics

    Science.gov (United States)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  6. Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation

    International Nuclear Information System (INIS)

    Sen, Oishik; Davis, Sean; Jacobs, Gustaaf; Udaykumar, H.S.

    2015-01-01

    The effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. This is done with the express purpose of using metamodels to bridge scales between micro- and macro-scale models in a multi-scale multimaterial simulation. The rate of convergence of the error when used to reconstruct hypersurfaces of known functions is studied. For sufficiently large number of training points, Stochastic Collocation methods generally converge faster than the other metamodeling techniques, while the DKG method converges faster when the number of input points is less than 100 in a two-dimensional parameter space. Because the input points correspond to computationally expensive micro/meso-scale computations, the DKG is favored for bridging scales in a multi-scale solver

  7. Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage from theory to engineering to practice

    CERN Document Server

    Franco, Alejandro A; Bessler, Wolfgang G

    2015-01-01

    This book reviews the use of innovative physical multiscale modeling methods to deeply understand the electrochemical mechanisms and numerically simulate the structure and properties of electrochemical devices for energy storage and conversion.

  8. Automata and concurrency

    Energy Technology Data Exchange (ETDEWEB)

    Priese, L

    1983-07-01

    The author presents a precise notion of a realization (or simulation) of one concurrent system by another, and studies the relations of modular concurrent systems and non-persistent (i.e. With conflicts) concurrent systems in an automata theoretical style. He introduces a conception of realization that obeys three requirements: it allows for proper hierarchies in certain classes of concurrent systems; it allows for normal-form theorems, and the standard constructions of the literature remain realizations in formal concept; and it clarifies some counterintuitive examples. Further, although this realization conception is developed to translate the computational aspects of concurrent systems, it also gives a formal tool for the handling of synchronization problems. 38 references.

  9. An approach to multiscale modelling with graph grammars.

    Science.gov (United States)

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  10. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  11. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  12. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  13. Simulation of left atrial function using a multi-scale model of the cardiovascular system.

    Directory of Open Access Journals (Sweden)

    Antoine Pironet

    Full Text Available During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.

  14. Hybrid continuum–molecular modelling of multiscale internal gas flows

    International Nuclear Information System (INIS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-01-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case

  15. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  16. Adaptive resolution simulation of salt solutions

    International Nuclear Information System (INIS)

    Bevc, Staš; Praprotnik, Matej; Junghans, Christoph; Kremer, Kurt

    2013-01-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water–water and water–ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt. (paper)

  17. Development and application of a multiscale model for the magnetic fusion edge plasma region

    International Nuclear Information System (INIS)

    Hasenbeck, Felix Martin Michael

    2016-01-01

    Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport

  18. Development and application of a multiscale model for the magnetic fusion edge plasma region

    Energy Technology Data Exchange (ETDEWEB)

    Hasenbeck, Felix Martin Michael

    2016-07-01

    Plasma edge particle and energy transport perpendicular to the magnetic field plays a decisive role for the performance and lifetime of a magnetic fusion reactor. For the particles, classical and neoclassical theories underestimate the associated radial transport by at least an order of magnitude. Drift fluid models, including mesoscale processes on scales down to tenths of millimeters and microseconds, account for the experimentally found level of radial transport; however, numerical simulations for typical reactor scales (of the order of seconds and centimeters) are computationally very expensive. Large scale code simulations are less costly but usually lack an adequate model for the radial transport. The multiscale model presented in this work aims at improving the description of radial particle transport in large scale codes by including the effects of averaged local drift fluid dynamics on the macroscale profiles. The multiscale balances are derived from a generic multiscale model for a fluid, using the Braginskii closure for a collisional, magnetized plasma, and the assumptions of the B2 code model (macroscale balances) and the model of the local version of the drift fluid code ATTEMPT (mesoscale balances). A combined concurrent-sequential coupling procedure is developed for the implementation of the multiscale model within a coupled code system. An algorithm for the determination of statistically stationary states and adequate averaging intervals for the mesoscale data is outlined and tested, proving that it works consistently and efficiently. The general relation between mesoscale and macroscale dynamics is investigated exemplarily by means of a passive scalar system. While mesoscale processes are convective in this system, earlier studies for small Kubo numbers K<<1 have shown that the macroscale behavior is diffusive. In this work it is demonstrated by numerical experiments that also in the regime of large Kubo numbers K<<1 the macroscale transport

  19. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.; Kou, J.; Yu, B.

    2011-01-01

    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  20. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-27

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  1. Multiscale analysis of structure development in expanded starch snacks

    Science.gov (United States)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  2. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  3. Multiscale modelling in immunology: a review.

    Science.gov (United States)

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Multiscale correlations in highly resolved Large Eddy Simulations

    Science.gov (United States)

    Biferale, Luca; Buzzicotti, Michele; Linkmann, Moritz

    2017-11-01

    Understanding multiscale turbulent statistics is one of the key challenges for many modern applied and fundamental problems in fluid dynamics. One of the main obstacles is the existence of anomalously strong non Gaussian fluctuations, which become more and more important with increasing Reynolds number. In order to assess the performance of LES models in reproducing these extreme events with reasonable accuracy, it is helpful to further understand the statistical properties of the coupling between the resolved and the subgrid scales. We present analytical and numerical results focussing on the multiscale correlations between the subgrid stress and the resolved velocity field obtained both from LES and filtered DNS data. Furthermore, a comparison is carried out between LES and DNS results concerning the scaling behaviour of higher-order structure functions using both Smagorinsky or self-similar Fourier sub-grid models. ERC AdG Grant No 339032 NewTURB.

  5. Modeling Urban Collaborative Growth Dynamics Using a Multiscale Simulation Model for the Wuhan Urban Agglomeration Area, China

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2018-05-01

    Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.

  6. Unified Modeling Language description of the object-oriented multi-scale adaptive finite element method for Step-and-Flash Imprint Lithography Simulations

    International Nuclear Information System (INIS)

    Paszynski, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David

    2010-01-01

    In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.

  7. Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon, Jr.

    2014-01-01

    3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro–micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement....... Multiscale composites with exfoliated nanoreinforcement and aligned nanoplatelets ensure the better fatigue resistance than those with intercalated/clustered and randomly oriented nanoreinforcement....

  8. Computational approach on PEB process in EUV resist: multi-scale simulation

    Science.gov (United States)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2017-03-01

    For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.

  9. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  10. Towards an integrated multiscale simulation of turbulent clouds on PetaScale computers

    International Nuclear Information System (INIS)

    Wang Lianping; Ayala, Orlando; Parishani, Hossein; Gao, Guang R; Kambhamettu, Chandra; Li Xiaoming; Rossi, Louis; Orozco, Daniel; Torres, Claudio; Grabowski, Wojciech W; Wyszogrodzki, Andrzej A; Piotrowski, Zbigniew

    2011-01-01

    The development of precipitating warm clouds is affected by several effects of small-scale air turbulence including enhancement of droplet-droplet collision rate by turbulence, entrainment and mixing at the cloud edges, and coupling of mechanical and thermal energies at various scales. Large-scale computation is a viable research tool for quantifying these multiscale processes. Specifically, top-down large-eddy simulations (LES) of shallow convective clouds typically resolve scales of turbulent energy-containing eddies while the effects of turbulent cascade toward viscous dissipation are parameterized. Bottom-up hybrid direct numerical simulations (HDNS) of cloud microphysical processes resolve fully the dissipation-range flow scales but only partially the inertial subrange scales. it is desirable to systematically decrease the grid length in LES and increase the domain size in HDNS so that they can be better integrated to address the full range of scales and their coupling. In this paper, we discuss computational issues and physical modeling questions in expanding the ranges of scales realizable in LES and HDNS, and in bridging LES and HDNS. We review our on-going efforts in transforming our simulation codes towards PetaScale computing, in improving physical representations in LES and HDNS, and in developing better methods to analyze and interpret the simulation results.

  11. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  12. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  13. A multiscale numerical algorithm for heat transfer simulation between multidimensional CFD and monodimensional system codes

    Science.gov (United States)

    Chierici, A.; Chirco, L.; Da Vià, R.; Manservisi, S.; Scardovelli, R.

    2017-11-01

    Nowadays the rapidly-increasing computational power allows scientists and engineers to perform numerical simulations of complex systems that can involve many scales and several different physical phenomena. In order to perform such simulations, two main strategies can be adopted: one may develop a new numerical code where all the physical phenomena of interest are modelled or one may couple existing validated codes. With the latter option, the creation of a huge and complex numerical code is avoided but efficient methods for data exchange are required since the performance of the simulation is highly influenced by its coupling techniques. In this work we propose a new algorithm that can be used for volume and/or boundary coupling purposes for both multiscale and multiphysics numerical simulations. The proposed algorithm is used for a multiscale simulation involving several CFD domains and monodimensional loops. We adopt the overlapping domain strategy, so the entire flow domain is simulated with the system code. We correct the system code solution by matching averaged inlet and outlet fields located at the boundaries of the CFD domains that overlap parts of the monodimensional loop. In particular we correct pressure losses and enthalpy values with source-sink terms that are imposed in the system code equations. The 1D-CFD coupling is a defective one since the CFD code requires point-wise values on the coupling interfaces and the system code provides only averaged quantities. In particular we impose, as inlet boundary conditions for the CFD domains, the mass flux and the mean enthalpy that are calculated by the system code. With this method the mass balance is preserved at every time step of the simulation. The coupling between consecutive CFD domains is not a defective one since with the proposed algorithm we can interpolate the field solutions on the boundary interfaces. We use the MED data structure as the base structure where all the field operations are

  14. The LEAP™ Gesture Interface Device and Take-Home Laparoscopic Simulators: A Study of Construct and Concurrent Validity.

    Science.gov (United States)

    Partridge, Roland W; Brown, Fraser S; Brennan, Paul M; Hennessey, Iain A M; Hughes, Mark A

    2016-02-01

    To assess the potential of the LEAP™ infrared motion tracking device to map laparoscopic instrument movement in a simulated environment. Simulator training is optimized when augmented by objective performance feedback. We explore the potential LEAP has to provide this in a way compatible with affordable take-home simulators. LEAP and the previously validated InsTrac visual tracking tool mapped expert and novice performances of a standardized simulated laparoscopic task. Ability to distinguish between the 2 groups (construct validity) and correlation between techniques (concurrent validity) were the primary outcome measures. Forty-three expert and 38 novice performances demonstrated significant differences in LEAP-derived metrics for instrument path distance (P device is able to track the movement of hands using instruments in a laparoscopic box simulator. Construct validity is demonstrated by its ability to distinguish novice from expert performances. Only time and instrument path distance demonstrated concurrent validity with an existing tracking method however. A number of limitations to the tracking method used by LEAP have been identified. These need to be addressed before it can be considered an alternative to visual tracking for the delivery of objective performance metrics in take-home laparoscopic simulators. © The Author(s) 2015.

  15. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    Science.gov (United States)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and

  16. Multi-scale multi-physics computational chemistry simulation based on ultra-accelerated quantum chemical molecular dynamics method for structural materials in boiling water reactor

    International Nuclear Information System (INIS)

    Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu

    2014-01-01

    In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for

  17. A Multiscale Simulation Method and Its Application to Determine the Mechanical Behavior of Heterogeneous Geomaterials

    Directory of Open Access Journals (Sweden)

    Shengwei Li

    2017-01-01

    Full Text Available To study the micro/mesomechanical behaviors of heterogeneous geomaterials, a multiscale simulation method that combines molecular simulation at the microscale, a mesoscale analysis of polished slices, and finite element numerical simulation is proposed. By processing the mesostructure images obtained from analyzing the polished slices of heterogeneous geomaterials and mapping them onto finite element meshes, a numerical model that more accurately reflects the mesostructures of heterogeneous geomaterials was established by combining the results with the microscale mechanical properties of geomaterials obtained from the molecular simulation. This model was then used to analyze the mechanical behaviors of heterogeneous materials. Because kernstone is a typical heterogeneous material that comprises many types of mineral crystals, it was used for the micro/mesoscale mechanical behavior analysis in this paper using the proposed method. The results suggest that the proposed method can be used to accurately and effectively study the mechanical behaviors of heterogeneous geomaterials at the micro/mesoscales.

  18. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2006-02-01

    Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users

  19. Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction

    KAUST Repository

    Ghasemi, Mohammadreza; Yang, Yanfang; Gildin, Eduardo; Efendiev, Yalchin R.; Calo, Victor M.

    2015-01-01

    snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3

  20. The Feasibility of Multiscale Modeling of Tunnel Fires Using FDS 6

    DEFF Research Database (Denmark)

    Vermesi, Izabella; Colella, Francesco; Rein, Guillermo

    2014-01-01

    The HVAC component of FDS 6 was used to divide a 1.2km tunnel into a 3D near fire area and a 1D area further away from the fire in order to investigate the feasibility of multiscale modeling of tunnel fires with this new feature in FDS. The two sub-models were coupled directly. The results were...... compared with reference works on multiscale modeling and the outcome is considered positive, with a deviation of less than 5% in magnitude of relevant parameters, yet with a significant reduction of the simulation runtime. As such, the multiscale method is deemed feasible for simulating tunnel fires in FDS......6. However, the simplifications that are made in this work require further investigation in order to take full advantage of the potential of this computational method. INTRODUCTION Multiscale modeling for tunnel flows and fires has previously been studied using RANS general purpose CFD software...

  1. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    Science.gov (United States)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  2. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  3. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  4. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    International Nuclear Information System (INIS)

    Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-01-01

    of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth. - Highlights: • A hybrid method for stochastic multi-scale models of cells populations that extends existing hybrid methods for reaction–diffusion system. • Our analysis unveils non-trivial macroscopic effects triggered by noise at the level of structuring variables. • Our hybrid method hugely speeds up age-structured SSA simulations while preserving stochastic effects.

  5. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  6. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    Kyu Cho, Hyoung; Cho, Yun Je; Yoon, Han Young

    2014-01-01

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code

  7. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  8. Multiscale Modeling of Poromechanics in Geologic Media

    Science.gov (United States)

    Castelletto, N.; Hajibeygi, H.; Klevtsov, S.; Tchelepi, H.

    2017-12-01

    We describe a hybrid MultiScale Finite Element-Finite Volume (h-MSFE-FV) framework for the simulation of single-phase Darcy flow through deformable porous media that exhibit highly heterogeneous poromechanical properties over a wide range of length scales. In such systems, high resolution characterizations are a key requirement to obtain reliable modeling predictions and motivate the development of multiscale solution strategies to cope with the computational burden. A coupled two-field fine-scale mixed FE-FV discretization of the governing equations, namely conservation laws of linear momentum and mass, is first implemented based on a displacement-pressure formulation. After imposing a coarse-scale grid on the given fine-scale problem, for the MSFE displacement stage, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. Such MSFE stage is then coupled with the MSFV method for flow, in which a dual-coarse grid is introduced to obtain approximate but conservative multiscale solutions. Robustness and accuracy of the proposed multiscale framework is demonstrated using a variety of challenging test problems.

  9. Multiscale numerical simulations of magnetoconvection at low magnetic Prandtl and Rossby numbers.

    Science.gov (United States)

    Maffei, S.; Calkins, M. A.; Julien, K. A.; Marti, P.

    2017-12-01

    The dynamics of the Earth's outer core is characterized by low values of the Rossby (Ro), Ekman and magnetic Prandtl numbers. These values indicate the large spectra of temporal and spatial scales that need to be accounted for in realistic numerical simulations of the system. Current direct numerical simulation are not capable of reaching this extreme regime, suggesting that a new class of models is required to account for the rich dynamics expected in the natural system. Here we present results from a quasi-geostrophic, multiscale model based on the scale separation implied by the low Ro typical of rapidly rotating systems. We investigate a plane layer geometry where convection is driven by an imposed temperature gradient and the hydrodynamic equations are modified by a large scale magnetic field. Analytical investigation shows that at values of thermal and magnetic Prandtl numbers relevant for liquid metals, the energetic requirements for the onset of convection is not significantly altered even in the presence of strong magnetic fields. Results from strongly forced nonlinear numerical simulations show the presence of an inverse cascade, typical of 2-D turbulence, when no or weak magnetic field is applied. For higher values of the magnetic field the inverse cascade is quenched.

  10. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    Science.gov (United States)

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  11. Toward the multiscale nature of stress corrosion cracking

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2018-02-01

    Full Text Available This article reviews the multiscale nature of stress corrosion cracking (SCC observed by high-resolution characterizations in austenite stainless steels and Ni-base superalloys in light water reactors (including boiling water reactors, pressurized water reactors, and supercritical water reactors with related opinions. A new statistical summary and comparison of observed degradation phenomena at different length scales is included. The intrinsic causes of this multiscale nature of SCC are discussed based on existing evidence and related opinions, ranging from materials theory to practical processing technologies. Questions of interest are then discussed to improve bottom-up understanding of the intrinsic causes. Last, a multiscale modeling and simulation methodology is proposed as a promising interdisciplinary solution to understand the intrinsic causes of the multiscale nature of SCC in light water reactors, based on a review of related supporting application evidence.

  12. Multi-resolution and multi-scale simulation of the thermal hydraulics in fast neutron reactor assemblies

    International Nuclear Information System (INIS)

    Angeli, P.-E.

    2011-01-01

    The present work is devoted to a multi-scale numerical simulation of an assembly of fast neutron reactor. In spite of the rapid growth of the computer power, the fine complete CFD of a such system remains out of reach in a context of research and development. After the determination of the thermalhydraulic behaviour of the assembly at the macroscopic scale, we propose to carry out a local reconstruction of the fine scale information. The complete approach will require a much lower CPU time than the CFD of the entire structure. The macro-scale description is obtained using either the volume averaging formalism in porous media, or an alternative modeling historically developed for the study of fast neutron reactor assemblies. It provides some information used as constraint of a down-scaling problem, through a penalization technique of the local conservation equations. This problem lean on the periodic nature of the structure by integrating periodic boundary conditions for the required microscale fields or their spatial deviation. After validating the methodologies on some model applications, we undertake to perform them on 'industrial' configurations which demonstrate the viability of this multi-scale approach. (author) [fr

  13. Multi-scale imaging and elastic simulation of carbonates

    Science.gov (United States)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  14. Multi-scale approach in numerical reservoir simulation; Uma abordagem multiescala na simulacao numerica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Solange da Silva

    1998-07-01

    Advances in petroleum reservoir descriptions have provided an amount of data that can not be handled directly during numerical simulations. This detailed geological information must be incorporated into a coarser model during multiphase fluid flow simulations by means of some upscaling technique. the most used approach is the pseudo relative permeabilities and the more widely used is the Kyte and Berry method (1975). In this work, it is proposed a multi-scale computational model for multiphase flow that implicitly treats the upscaling without using pseudo functions. By solving a sequence of local problems on subdomains of the refined scale it is possible to achieve results with a coarser grid without expensive computations of a fine grid model. The main advantage of this new procedure is to treat the upscaling step implicitly in the solution process, overcoming some practical difficulties related the use of traditional pseudo functions. results of bidimensional two phase flow simulations considering homogeneous porous media are presented. Some examples compare the results of this approach and the commercial upscaling program PSEUDO, a module of the reservoir simulation software ECLIPSE. (author)

  15. MATHEMATICAL SIMULATION OF CONCURRENT TWO-SIDED LENS PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Kozeruk

    2015-01-01

    Full Text Available The purpose of the paper is to modernize technology for obtaining high-accuracy lenses with fine centre. Presently their operating surfaces are fixed  to an accessory with the help of adhesive substance that leads to elastic deformation in glass and causes local errors in lens parts.A mathematical model for concurrent two-sided processing of high-accuracy optical parts with spherical surfaces has been developed in the paper. The paper presents analytical expressions that permit to calculate sliding speed at any point on the processed spherical surface depending on type and value of technological equipment settings. Calculation of parameter Q = Pv in a diametric section of the convexo-concave lens has been carried out while using these expressions together with functional dependence of pressure on contact zone еarea of tool and part bedding surfaces.Theoretical and experimental investigations have been carried out with the purpose to study changes in Q parameter according to the processed lens surface for various setting parameters of the technological equipment and their optimum values ensuring preferential stock removal in the central or boundary part zone or uniform distribution of the removal along the whole processed surface have been determined in the paper.The paper proposes a machine tool scheme for concurrent two-sided grinding and polishing of lenses while fixing their side (cylindrical surface. Machine tool kinematics makes it possible flexibly and within wide limits to change its setting parameters  that significantly facilitates the control of form-building process of parts with highly-precise spherical surfaces.Methodology for investigations presupposes the following: mathematical simulation of highly-precise spherical surface form-building process under conditions of forced closing, execution of numerical and experimental studies.  

  16. Multiscale phenomenology of the cosmic web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2010-01-01

    We analyse the structure and connectivity of the distinct morphologies that define the cosmic web. With the help of our multiscale morphology filter (MMF), we dissect the matter distribution of a cosmological Lambda cold dark matter N-body computer simulation into cluster, filaments and walls. The

  17. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  18. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Hou, Thomasyizhao

    2013-01-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  19. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.

    2013-10-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  20. Integrated multiscale biomaterials experiment and modelling: a perspective

    Science.gov (United States)

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  1. A rate-dependent multi-scale crack model for concrete

    NARCIS (Netherlands)

    Karamnejad, A.; Nguyen, V.P.; Sluys, L.J.

    2013-01-01

    A multi-scale numerical approach for modeling cracking in heterogeneous quasi-brittle materials under dynamic loading is presented. In the model, a discontinuous crack model is used at macro-scale to simulate fracture and a gradient-enhanced damage model has been used at meso-scale to simulate

  2. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    Science.gov (United States)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  3. A concurrent visualization system for large-scale unsteady simulations. Parallel vector performance on an NEC SX-4

    International Nuclear Information System (INIS)

    Takei, Toshifumi; Doi, Shun; Matsumoto, Hideki; Muramatsu, Kazuhiro

    2000-01-01

    We have developed a concurrent visualization system RVSLIB (Real-time Visual Simulation Library). This paper shows the effectiveness of the system when it is applied to large-scale unsteady simulations, for which the conventional post-processing approach may no longer work, on high-performance parallel vector supercomputers. The system performs almost all of the visualization tasks on a computation server and uses compressed visualized image data for efficient communication between the server and the user terminal. We have introduced several techniques, including vectorization and parallelization, into the system to minimize the computational costs of the visualization tools. The performance of RVSLIB was evaluated by using an actual CFD code on an NEC SX-4. The computational time increase due to the concurrent visualization was at most 3% for a smaller (1.6 million) grid and less than 1% for a larger (6.2 million) one. (author)

  4. Advanced computational workflow for the multi-scale modeling of the bone metabolic processes.

    Science.gov (United States)

    Dao, Tien Tuan

    2017-06-01

    Multi-scale modeling of the musculoskeletal system plays an essential role in the deep understanding of complex mechanisms underlying the biological phenomena and processes such as bone metabolic processes. Current multi-scale models suffer from the isolation of sub-models at each anatomical scale. The objective of this present work was to develop a new fully integrated computational workflow for simulating bone metabolic processes at multi-scale levels. Organ-level model employs multi-body dynamics to estimate body boundary and loading conditions from body kinematics. Tissue-level model uses finite element method to estimate the tissue deformation and mechanical loading under body loading conditions. Finally, cell-level model includes bone remodeling mechanism through an agent-based simulation under tissue loading. A case study on the bone remodeling process located on the human jaw was performed and presented. The developed multi-scale model of the human jaw was validated using the literature-based data at each anatomical level. Simulation outcomes fall within the literature-based ranges of values for estimated muscle force, tissue loading and cell dynamics during bone remodeling process. This study opens perspectives for accurately simulating bone metabolic processes using a fully integrated computational workflow leading to a better understanding of the musculoskeletal system function from multiple length scales as well as to provide new informative data for clinical decision support and industrial applications.

  5. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  6. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  7. Data refinement for true concurrency

    Directory of Open Access Journals (Sweden)

    Brijesh Dongol

    2013-05-01

    Full Text Available The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components modify and observe the system state with fine-grained atomicity. Many systems (e.g., multi-core processors, real-time controllers also exhibit truly concurrent behaviour, where multiple events can occur simultaneously. This paper presents data refinement defined in terms of an interval-based framework, which includes high-level operators that capture non-deterministic expression evaluation. By modifying the type of an interval, our theory may be specialised to cover data refinement of both discrete and continuous systems. We present an interval-based encoding of forward simulation, then prove that our forward simulation rule is sound with respect to our data refinement definition. A number of rules for decomposing forward simulation proofs over both sequential and parallel composition are developed.

  8. Multiscale simulations of the early stages of the growth of graphene on copper

    Science.gov (United States)

    Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.

    2015-07-01

    We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.

  9. Modeling and Simulation of Electromutagenic Processes for Multiscale Modification of Concrete

    Directory of Open Access Journals (Sweden)

    Daniela S. Mainardi

    2009-04-01

    Full Text Available Concrete contains numerous pores that allow degradation when chloride ions migrate through these paths and make contact with the steel reinforcement in a structure. Chlorides come mainly from the sea or de-icing salts. To keep the reinforcement from being exposed to chlorides, it is possible to electrokinetically force nanoparticles into the pores, blocking access. This procedure is called electrokinetic nanoparticle treatment. When the particles used are reactive in nature, the process becomes both structural and chemical in nature. We use the term electromutagenic processing to describe such extensive electrochemical remodeling. Filling the pores in a block of concrete with solid materials or nanoparticles tends to improve the strength significantly. In this paper, results obtained from modeling and simulation were aimed at multi-scale porosity reduction of concrete. Since nanoparticles and pores were modeled with spheres and cylinders having different sizes, the results were compared with traditional sphere packing problems in mathematics. There were significant differences observed related to the sizes of spheres and allowable boundary conditions. From traditional sphere packing analysis the highest porosity reduction anticipated was 74%. In contrast, the highest pore reduction obtained in this work was approximately 50%, which matched results from actual electrokinetic nanoparticle treatments. This work also compared the analytical and simulation methods used for several sizes of nanoparticles and pores.

  10. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  11. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  12. Data fusion of multi-scale representations for structural damage detection

    Science.gov (United States)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  13. Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)

    2016-07-07

    For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.

  14. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    Energy Technology Data Exchange (ETDEWEB)

    Zabaras, Nicolas J. [Cornell Univ., Ithaca, NY (United States)

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  15. Multiscale Modeling in the Clinic: Drug Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  16. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  17. Computational design and multiscale modeling of a nanoactuator using DNA actuation

    International Nuclear Information System (INIS)

    Hamdi, Mustapha

    2009-01-01

    Developments in the field of nano-biodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  18. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    Science.gov (United States)

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  19. L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rhodes, T.L.; Doyle, E.J.; Hillesheim, J.C.; Peebles, W.A.; Schmitz, L.; Holland, C.; Smith, S.P.; Burrell, K.H.; Candy, J.; DeBoo, J.C.; Kinsey, J.E.; Petty, C.C.; Prater, R.; Staebler, G.M.; Waltz, R.E.; White, A.E.; McKee, G.R.; Mikkelsen, D.; Parker, S.; Chen, Y.

    2011-01-01

    A series of carefully designed experiments on DIII-D have taken advantage of a broad set of turbulence and profile diagnostics to rigorously test gyrokinetic turbulence simulations. In this paper the goals, tools and experiments performed in these validation studies are reviewed and specific examples presented. It is found that predictions of transport and fluctuation levels in the mid-core region (0.4 < ρ < 0.75) are in better agreement with experiment than those in the outer region (ρ ≥ 0.75) where edge coupling effects may become increasingly important and multiscale simulations may also be necessary. Validation studies such as these are crucial in developing confidence in a first-principles based predictive capability for ITER.

  20. Multiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Marquis Crose

    2017-02-01

    Full Text Available This work focuses on the development of a multiscale computational fluid dynamics (CFD simulation framework with application to plasma-enhanced chemical vapor deposition of thin film solar cells. A macroscopic, CFD model is proposed which is capable of accurately reproducing plasma chemistry and transport phenomena within a 2D axisymmetric reactor geometry. Additionally, the complex interactions that take place on the surface of a-Si:H thin films are coupled with the CFD simulation using a novel kinetic Monte Carlo scheme which describes the thin film growth, leading to a multiscale CFD model. Due to the significant computational challenges imposed by this multiscale CFD model, a parallel computation strategy is presented which allows for reduced processing time via the discretization of both the gas-phase mesh and microscopic thin film growth processes. Finally, the multiscale CFD model has been applied to the PECVD process at industrially relevant operating conditions revealing non-uniformities greater than 20% in the growth rate of amorphous silicon films across the radius of the wafer.

  1. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    Science.gov (United States)

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  2. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    Science.gov (United States)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  3. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  4. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  5. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youping

    2017-10-10

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such as showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.

  6. Multiscale Lyapunov exponent for 2-microlocal functions

    International Nuclear Information System (INIS)

    Dhifaoui, Zouhaier; Kortas, Hedi; Ammou, Samir Ben

    2009-01-01

    The Lyapunov exponent is an important indicator of chaotic dynamics. Using wavelet analysis, we define a multiscale representation of this exponent which we demonstrate the scale-wise dependence for functions belonging to C x 0 s,s ' spaces. An empirical study involving simulated processes and financial time series corroborates the theoretical findings.

  7. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  8. Introduction and application of the multiscale coefficient of variation analysis.

    Science.gov (United States)

    Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh

    2017-10-01

    Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.

  9. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of

  10. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Mishev, IIya

    2009-01-01

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information

  11. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.

    2013-01-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  12. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  13. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  14. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  15. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  16. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    Science.gov (United States)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  17. Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary.

    Science.gov (United States)

    Yang, Shengfeng; Chen, Youping

    2015-03-08

    In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.

  18. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  19. Multivariate multiscale entropy of financial markets

    Science.gov (United States)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  20. Predictive Maturity of Multi-Scale Simulation Models for Fuel Performance

    International Nuclear Information System (INIS)

    Atamturktur, Sez; Unal, Cetin; Hemez, Francois; Williams, Brian; Tome, Carlos

    2015-01-01

    The project proposed to provide a Predictive Maturity Framework with its companion metrics that (1) introduce a formalized, quantitative means to communicate information between interested parties, (2) provide scientifically dependable means to claim completion of Validation and Uncertainty Quantification (VU) activities, and (3) guide the decision makers in the allocation of Nuclear Energy's resources for code development and physical experiments. The project team proposed to develop this framework based on two complimentary criteria: (1) the extent of experimental evidence available for the calibration of simulation models and (2) the sophistication of the physics incorporated in simulation models. The proposed framework is capable of quantifying the interaction between the required number of physical experiments and degree of physics sophistication. The project team has developed this framework and implemented it with a multi-scale model for simulating creep of a core reactor cladding. The multi-scale model is composed of the viscoplastic self-consistent (VPSC) code at the meso-scale, which represents the visco-plastic behavior and changing properties of a highly anisotropic material and a Finite Element (FE) code at the macro-scale to represent the elastic behavior and apply the loading. The framework developed takes advantage of the transparency provided by partitioned analysis, where independent constituent codes are coupled in an iterative manner. This transparency allows model developers to better understand and remedy the source of biases and uncertainties, whether they stem from the constituents or the coupling interface by exploiting separate-effect experiments conducted within the constituent domain and integral-effect experiments conducted within the full-system domain. The project team has implemented this procedure with the multi- scale VPSC-FE model and demonstrated its ability to improve the predictive capability of the model. Within this

  1. Predictive Maturity of Multi-Scale Simulation Models for Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sez [Clemson Univ., SC (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-16

    The project proposed to provide a Predictive Maturity Framework with its companion metrics that (1) introduce a formalized, quantitative means to communicate information between interested parties, (2) provide scientifically dependable means to claim completion of Validation and Uncertainty Quantification (VU) activities, and (3) guide the decision makers in the allocation of Nuclear Energy’s resources for code development and physical experiments. The project team proposed to develop this framework based on two complimentary criteria: (1) the extent of experimental evidence available for the calibration of simulation models and (2) the sophistication of the physics incorporated in simulation models. The proposed framework is capable of quantifying the interaction between the required number of physical experiments and degree of physics sophistication. The project team has developed this framework and implemented it with a multi-scale model for simulating creep of a core reactor cladding. The multi-scale model is composed of the viscoplastic self-consistent (VPSC) code at the meso-scale, which represents the visco-plastic behavior and changing properties of a highly anisotropic material and a Finite Element (FE) code at the macro-scale to represent the elastic behavior and apply the loading. The framework developed takes advantage of the transparency provided by partitioned analysis, where independent constituent codes are coupled in an iterative manner. This transparency allows model developers to better understand and remedy the source of biases and uncertainties, whether they stem from the constituents or the coupling interface by exploiting separate-effect experiments conducted within the constituent domain and integral-effect experiments conducted within the full-system domain. The project team has implemented this procedure with the multi- scale VPSC-FE model and demonstrated its ability to improve the predictive capability of the model. Within this

  2. A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

    KAUST Repository

    Efendiev, Yalchin R.

    2014-03-11

    In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461–1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.

  3. Multiscale Modeling of Composites: Toward Virtual Testing … and Beyond

    Science.gov (United States)

    LLorca, J.; González, C.; Molina-Aldareguía, J. M.; Lópes, C. S.

    2013-02-01

    Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separation of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical simulations of the mechanical behavior of composite coupons and small components are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.

  4. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  5. Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design

    International Nuclear Information System (INIS)

    Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.

    2010-01-01

    This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and

  6. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  7. Multi-scale window specification over streaming trajectories

    Directory of Open Access Journals (Sweden)

    Kostas Patroumpas

    2013-12-01

    Full Text Available Enormous amounts of positional information are collected by monitoring applications in domains such as fleet management, cargo transport, wildlife protection, etc. With the advent of modern location-based services, processing such data mostly focuses on providing real-time response to a variety of user requests in continuous and scalable fashion. An important class of such queries concerns evolving trajectories that continuously trace the streaming locations of moving objects, like GPS-equipped vehicles, commodities with RFID's, people with smartphones etc. In this work, we propose an advanced windowing operator that enables online, incremental examination of recent motion paths at multiple resolutions for numerous point entities. When applied against incoming positions, this window can abstract trajectories at coarser representations towards the past, while retaining progressively finer features closer to the present. We explain the semantics of such multi-scale sliding windows through parameterized functions that reflect the sequential nature of trajectories and can effectively capture their spatiotemporal properties. Such window specification goes beyond its usual role for non-blocking processing of multiple concurrent queries. Actually, it can offer concrete subsequences from each trajectory, thus preserving continuity in time and contiguity in space along the respective segments. Further, we suggest language extensions in order to express characteristic spatiotemporal queries using windows. Finally, we discuss algorithms for nested maintenance of multi-scale windows and evaluate their efficiency against streaming positional data, offering empirical evidence of their benefits to online trajectory processing.

  8. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  9. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  10. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    Science.gov (United States)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  11. Numerical Simulation of Early Age Cracking of Reinforced Concrete Bridge Decks with a Full-3D Multiscale and Multi-Chemo-Physical Integrated Analysis

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2018-03-01

    Full Text Available In November 2011, the Japanese government resolved to build “Revival Roads” in the Tohoku region to accelerate the recovery from the Great East Japan Earthquake of March 2011. Because the Tohoku region experiences such cold and snowy weather in winter, complex degradation from a combination of frost damage, chloride attack from de-icing agents, alkali–silica reaction, cracking and fatigue is anticipated. Thus, to enhance the durability performance of road structures, particularly reinforced concrete (RC bridge decks, multiple countermeasures are proposed: a low water-to-cement ratio in the mix, mineral admixtures such as ground granulated blast furnace slag and/or fly ash to mitigate the risks of chloride attack and alkali–silica reaction, anticorrosion rebar and 6% entrained air for frost damage. It should be noted here that such high durability specifications may conversely increase the risk of early age cracking caused by temperature and shrinkage due to the large amounts of cement and the use of mineral admixtures. Against this background, this paper presents a numerical simulation of early age deformation and cracking of RC bridge decks with full 3D multiscale and multi-chemo-physical integrated analysis. First, a multiscale constitutive model of solidifying cementitious materials is briefly introduced based on systematic knowledge coupling microscopic thermodynamic phenomena and microscopic structural mechanics. With the aim to assess the early age thermal and shrinkage-induced cracks on real bridge deck, the study began with extensive model validations by applying the multiscale and multi-physical integrated analysis system to small specimens and mock-up RC bridge deck specimens. Then, through the application of the current computational system, factors that affect the generation and propagation of early age thermal and shrinkage-induced cracks are identified via experimental validation and full-scale numerical simulation on real

  12. A multiscale method for modeling high-aspect-ratio micro/nano flows

    Science.gov (United States)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  13. Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method

    Science.gov (United States)

    Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.

    2017-10-01

    The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.

  14. Multiscale Retinex

    Directory of Open Access Journals (Sweden)

    Ana Belén Petro

    2014-04-01

    Full Text Available While the retinex theory aimed at explaining human color perception, its derivations have led to efficient algorithms enhancing local image contrast, thus permitting among other features, to "see in the shadows". Among these derived algorithms, Multiscale Retinex is probably the most successful center-surround image filter. In this paper, we offer an analysis and implementation of Multiscale Retinex. We point out and resolve some ambiguities of the method. In particular, we show that the important color correction final step of the method can be seriously improved. This analysis permits to come up with an automatic implementation of Multiscale Retinex which is as faithful as possible to the one described in the original paper. Overall, this implementation delivers excellent results and confirms the validity of Multiscale Retinex for image color restoration and contrast enhancement. Nevertheless, while the method parameters can be fixed, we show that a crucial choice must be left to the user, depending on the lightning condition of the image: the method must either be applied to each color independently if a color balance is required, or to the luminance only if the goal is to achieve local contrast enhancement. Thus, we propose two slightly different algorithms to deal with both cases.

  15. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  16. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  18. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  19. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    Science.gov (United States)

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  20. Multiscale modelling of DNA mechanics

    International Nuclear Information System (INIS)

    Dršata, Tomáš; Lankaš, Filip

    2015-01-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed. (topical review)

  1. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations.

    Science.gov (United States)

    Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö

    2017-07-21

    In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.

  2. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  3. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.; Presho, Michael

    2015-01-01

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  4. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.

    2015-09-02

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  5. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.

  6. The Caltech Concurrent Computation Program - Project description

    Science.gov (United States)

    Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.

    1985-01-01

    The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.

  7. Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Kurowski, K.; Ben Belgacem, M.; Chopard, B.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    2014-01-01

    We present the Multiscale Coupling Library and Environment: MUSCLE 2. This multiscale component-based execution environment has a simple to use Java, C++, C, Python and Fortran API, compatible with MPI, OpenMP and threading codes. We demonstrate its local and distributed computing capabilities and

  8. Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

    Science.gov (United States)

    Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack

    2018-01-01

    Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost

  9. A Concurrent Distributed System for Aircraft Tactical Decision Generation

    Science.gov (United States)

    McManus, John W.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of a concurrent version of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS) program, a second generation TDG, is presented. Concurrent computing environments and programming approaches are discussed and the design and performance of a prototype concurrent TDG system are presented.

  10. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    Science.gov (United States)

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  11. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  12. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  13. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    Science.gov (United States)

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over

  14. A multiscale approach to Brownian motors

    International Nuclear Information System (INIS)

    Pavliotis, G.A.

    2005-01-01

    The problem of Brownian motion in a periodic potential, under the influence of external forcing, which is either random or periodic in time, is studied in this Letter. Multiscale techniques are used to derive general formulae for the steady state particle current and the effective diffusion tensor. These formulae are then applied to calculate the effective diffusion coefficient for a Brownian particle in a periodic potential driven simultaneously by additive Gaussian white and colored noise. Our theoretical findings are supported by numerical simulations

  15. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NARCIS (Netherlands)

    Vijaykumar, A.; Ouldridge, T.E.; ten Wolde, P.R.; Bolhuis, P.G.

    2017-01-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic

  16. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  17. Fast online generalized multiscale finite element method using constraint energy minimization

    Science.gov (United States)

    Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat

    2018-02-01

    Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.

  18. Multi-scale modeling with cellular automata: The complex automata approach

    NARCIS (Netherlands)

    Hoekstra, A.G.; Falcone, J.-L.; Caiazzo, A.; Chopard, B.

    2008-01-01

    Cellular Automata are commonly used to describe complex natural phenomena. In many cases it is required to capture the multi-scale nature of these phenomena. A single Cellular Automata model may not be able to efficiently simulate a wide range of spatial and temporal scales. It is our goal to

  19. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    Science.gov (United States)

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  20. Partnership duration, concurrency, and HIV in sub-Saharan Africa.

    Science.gov (United States)

    Sawers, Larry; Isaac, Alan

    2017-07-01

    A widely accepted explanation for the exceptionally high HIV prevalence in sub-Saharan Africa is the practice of long-term overlapping heterosexual partnering. This article shows that long-duration concurrent partnering can be protective against HIV transmission rather than promoting it. Monogamous partnering prevents sexual transmission to anyone outside the partnership and, in an initially concordant-seronegative partnership, prevents sexual acquisition of HIV by either partner. Those protections against transmission and acquisition last as long as the partnership persists without new outside partnerships. Correspondingly, these two protective effects characterise polygynous partnerships, whether or not the polygyny is formal or informal, until a partner initiates a new partnership. Stable and exclusive unions of any size protect against HIV transmission, and more durable unions provide a longer protective effect. Survey research provides little information on partnership duration in sub-Saharan Africa and sheds no light on the interaction of duration, concurrency, and HIV. This article shows how assumptions about partnership duration in individual-based sexual-network models affect the contours of simulated HIV epidemics. Longer mean partnership duration slows the pace at which simulated epidemics grow. With plausible assumptions about partnership duration and at levels of concurrency found in the region, simulated HIV epidemics grow slowly or not at all. Those results are consistent with the hypothesis that long-duration partnering is protective against HIV and inconsistent with the hypothesis that long-term concurrency drives the HIV epidemics in sub-Saharan Africa.

  1. Multiscale System Theory

    Science.gov (United States)

    1990-02-21

    LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several

  2. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  3. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  4. Towards distributed multiscale computing for the VPH

    NARCIS (Netherlands)

    Hoekstra, A.G.; Coveney, P.

    2010-01-01

    Multiscale modeling is fundamental to the Virtual Physiological Human (VPH) initiative. Most detailed three-dimensional multiscale models lead to prohibitive computational demands. As a possible solution we present MAPPER, a computational science infrastructure for Distributed Multiscale Computing

  5. A distributed multiscale computation of a tightly coupled model using the Multiscale Modeling Language

    NARCIS (Netherlands)

    Borgdorff, J.; Bona-Casas, C.; Mamonski, M.; Kurowski, K.; Piontek, T.; Bosak, B.; Rycerz, K.; Ciepiela, E.; Gubala, T.; Harezlak, D.; Bubak, M.; Lorenz, E.; Hoekstra, A.G.

    2012-01-01

    Nature is observed at all scales; with multiscale modeling, scientists bring together several scales for a holistic analysis of a phenomenon. The models on these different scales may require significant but also heterogeneous computational resources, creating the need for distributed multiscale

  6. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  7. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  8. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    Science.gov (United States)

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  9. The Cea multi-scale and multi-physics simulation project for nuclear applications

    International Nuclear Information System (INIS)

    Ledermann, P.; Chauliac, C.; Thomas, J.B.

    2005-01-01

    Full text of publication follows. Today numerical modelling is everywhere recognized as an essential tool of capitalization, integration and share of knowledge. For this reason, it becomes the central tool of research. Until now, the Cea developed a set of scientific software allowing to model, in each situation, the operation of whole or part of a nuclear installation and these codes are largely used in nuclear industry. However, for the future, it is essential to aim for a better accuracy, a better control of uncertainties and better performance in computing times. The objective is to obtain validated models allowing accurate predictive calculations for actual complex nuclear problems such as fuel behaviour in accidental situation. This demands to master a large and interactive set of phenomena ranging from nuclear reaction to heat transfer. To this end, Cea, with industrial partners (EDF, Framatome-ANP, ANDRA) has designed an integrated platform of calculation, devoted to the study of nuclear systems, and intended at the same time for industries and scientists. The development of this platform is under way with the start in 2005 of the integrated project NURESIM, with 18 European partners. Improvement is coming not only through a multi-scale description of all phenomena but also through an innovative design approach requiring deep functional analysis which is upstream from the development of the simulation platform itself. In addition, the studies of future nuclear systems are increasingly multidisciplinary (simultaneous modelling of core physics, thermal-hydraulics and fuel behaviour). These multi-physics and multi-scale aspects make mandatory to pay very careful attention to software architecture issues. A global platform is thus developed integrating dedicated specialized platforms: DESCARTES for core physics, NEPTUNE for thermal-hydraulics, PLEIADES for fuel behaviour, SINERGY for materials behaviour under irradiation, ALLIANCES for the performance

  10. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik; Hughes, Thomas Jr R; Calo, Victor M.

    2012-01-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  11. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  12. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  13. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  14. An Intensional Concurrent Faithful Encoding of Turing Machines

    Directory of Open Access Journals (Sweden)

    Thomas Given-Wilson

    2014-10-01

    Full Text Available The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.

  15. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D., E-mail: sumption.3@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Bong, H.J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Lim, H. [Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)

    2017-01-02

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  16. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    International Nuclear Information System (INIS)

    Kim, H.S.; Sumption, M.D.; Bong, H.J.; Lim, H.; Collings, E.W.

    2017-01-01

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  17. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of

  18. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  19. Interactive aircraft cabin testbed for stress-free air travel system experiment: an innovative concurrent design approach

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    In this paper, a study of the concurrent engineering design for the environmental friendly low cost aircraft cabin simulator is presented. The study describes the used of concurrent design technique in the design activity. The simulator is a testbed that was designed and built for research on

  20. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    International Nuclear Information System (INIS)

    Tang Shaojie; Tang Xiangyang

    2012-01-01

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation of interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of “salt-and-pepper” noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain

  1. A multiscale analytical approach for bone remodeling simulations : linking scales from collagen to trabeculae

    NARCIS (Netherlands)

    Colloca, M.; Blanchard, R.; Hellmich, C.; Ito, K.; Rietbergen, van B.

    2014-01-01

    Bone is a dynamic and hierarchical porous material whose spatial and temporal mechanical properties can vary considerably due to differences in its microstructure and due to remodeling. Hence, a multiscale analytical approach, which combines bone structural information at multiple scales to the

  2. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.

    Science.gov (United States)

    Gao, Hui-Min; Liu, Hong; Qian, Hu-Jun; Jiao, Gui-Sheng; Lu, Zhong-Yuan

    2018-01-17

    We have developed a multiscale model that combines first-principles methods with atomistic and mesoscopic simulations to explore the molecular structures and packing density of the ligands present on the gold nanoparticle (AuNP) surface, as well as the adsorption/exchange reaction kinetics of cetyltrimethylammonium bromide (CTAB)/PEG-SH ligands on different facets of gold, namely, Au(111), Au(100), and Au(110). Our model predicts that on clean gold surfaces, CTAB adsorption is diffusion limited. Specifically, CTAB has the preferentially higher adsorption rate and coverage density on Au(100) and Au(110) surfaces, forming a more compact layer with respect to that on the Au(111) surface, which could result in greater growth of gold nanoparticles along the (111) direction. As opposed to CTAB adsorption, the exchange reaction between PEG-SH with CTAB shows no selectivity to different crystal faces, and the reaction process follows Langmuir diffusion kinetics. Kinetic analysis reveals that, in water, the exchange reaction is zeroth order with respect to the concentration of an incoming PEG-SH, indicative of a dissociative exchange mechanism. The observed rate constant decreases exponentially with the PEG-SH chain length, consistent with a diffusion process for the free PEG-SH in water. In particular, we show that the exchange efficiency increases as the chain rigidness and size of the incoming ligand and/or steric bulk of the initial protecting ligand shell are decreased. Our objectives are to provide a model to assess the kinetics and thermodynamics of the adsorption/exchange reaction process, and we expect that these findings will have important implications for routine surface characterization of AuNPs.

  3. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2017-12-01

    We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

  4. Concurrency meets probability: theory and practice (abstract)

    NARCIS (Netherlands)

    Katoen, Joost P.

    Treating random phenomena in concurrency theory has a long tradition. Petri nets [18, 10] and process algebras [14] have been extended with probabilities. The same applies to behavioural semantics such as strong and weak (bi)simulation [1], and testing pre-orders [5]. Beautiful connections between

  5. Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media

    KAUST Repository

    Chung, Eric T.

    2014-11-13

    Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to their complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the generalized multiscale finite element method (GMsFEM) (see [Y. Efendiev, J. Galvis, and T. Hou, J. Comput. Phys., 251 (2012), pp. 116--135]). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block, where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To the best of knowledge, this is the first time that multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix and, consequently, results in fast computations in an explicit time discretization. Our methods\\' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods\\' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods\\' accuracy.

  6. On multiscale moving contact line theory.

    Science.gov (United States)

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  7. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  8. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  9. Bridging scales through multiscale modeling: A case study on Protein Kinase A

    Directory of Open Access Journals (Sweden)

    Sophia P Hirakis

    2015-09-01

    Full Text Available The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM, subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.

  10. Simulating Nationwide Pandemics: Applying the Multi-scale Epidemiologic Simulation and Analysis System to Human Infectious Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dombroski, M; Melius, C; Edmunds, T; Banks, L E; Bates, T; Wheeler, R

    2008-09-24

    This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to human epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future

  11. Multi-scale approximation of Vlasov equation

    International Nuclear Information System (INIS)

    Mouton, A.

    2009-09-01

    One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite

  12. Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin

    2010-01-01

    In this paper, we study multiscale methods for high-contrast elliptic problems where the media properties change dramatically. The disparity in the media properties (also referred to as high contrast in the paper) introduces an additional scale that needs to be resolved in multiscale simulations. First, we present a construction that uses an integral equation to represent the highcontrast component of the solution. This representation involves solving an integral equation along the interface where the coefficients are discontinuous. The integral representation suggests some multiscale approaches that are discussed in the paper. One of these approaches entails the use of interface functions in addition to multiscale basis functions representing the heterogeneities without high contrast. In this paper, we propose an approximation for the solution of the integral equation using the interface problems in reduced-contrast media. Reduced-contrast media are obtained by lowering the variance of the coefficients. We also propose a similar approach for the solution of the elliptic equation without using an integral representation. This approach is simpler to use in the computations because it does not involve setting up integral equations. The main idea of this approach is to approximate the solution of the high-contrast problem by the solutions of the problems formulated in reduced-contrast media. In this approach, a rapidly converging sequence is proposed where only problems with lower contrast are solved. It was shown that this sequence possesses the convergence rate that is inversely proportional to the reduced contrast. This approximation allows choosing the reduced-contrast problem based on the coarse-mesh size as discussed in this paper. We present a simple application of this approach to homogenization of elliptic equations with high-contrast coefficients. The presented approaches are limited to the cases where there are sharp changes in the contrast (i.e., the high

  13. Multi-scale MHD analysis of heliotron plasma in change of background field

    International Nuclear Information System (INIS)

    Ichiguchi, K.; Sakakibara, S.; Ohdachi, S.; Carreras, B.A.

    2012-11-01

    A partial collapse observed in the Large Helical Device (LHD) experiments shifting the magnetic axis inwardly with a real time control of the background field is analyzed with a magnetohydrodynamics (MHD) numerical simulation. The simulation is carried out with a multi-scale simulation scheme. In the simulation, the equilibrium also evolves including the change of the pressure and the rotational transform due to the perturbation dynamics. The simulation result agrees with the experiments qualitatively, which shows that the mechanism is attributed to the destabilization of an infernal-like mode. The destabilization is caused by the change of the background field through the enhancement of the magnetic hill. (author)

  14. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The

  15. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  16. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.

    Directory of Open Access Journals (Sweden)

    Scott C Sibole

    Full Text Available Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method's generalized nature also allows for substitution of any macro

  17. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Science.gov (United States)

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro

  18. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  19. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  20. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Matouš, Karel, E-mail: kmatous@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Geers, Marc G.D.; Kouznetsova, Varvara G. [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Gillman, Andrew [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  1. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    Science.gov (United States)

    Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  2. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    International Nuclear Information System (INIS)

    Matouš, Karel; Geers, Marc G.D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-01-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  3. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    Directory of Open Access Journals (Sweden)

    Helgi Adalsteinsson

    2008-01-01

    Full Text Available Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.

  4. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  5. Multi-Scale Modelling of the Gamma Radiolysis of Nitrate Solutions

    OpenAIRE

    Horne, Gregory; Donoclift, Thomas; Sims, Howard E.; M. Orr, Robin; Pimblott, Simon

    2016-01-01

    A multi-scale modelling approach has been developed for the extended timescale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages; radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modelling. The first three components model...

  6. Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems

    Science.gov (United States)

    Zhao, Lei

    Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that

  7. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  8. Measuring and modelling concurrency

    Science.gov (United States)

    Sawers, Larry

    2013-01-01

    This article explores three critical topics discussed in the recent debate over concurrency (overlapping sexual partnerships): measurement of the prevalence of concurrency, mathematical modelling of concurrency and HIV epidemic dynamics, and measuring the correlation between HIV and concurrency. The focus of the article is the concurrency hypothesis – the proposition that presumed high prevalence of concurrency explains sub-Saharan Africa's exceptionally high HIV prevalence. Recent surveys using improved questionnaire design show reported concurrency ranging from 0.8% to 7.6% in the region. Even after adjusting for plausible levels of reporting errors, appropriately parameterized sexual network models of HIV epidemics do not generate sustainable epidemic trajectories (avoid epidemic extinction) at levels of concurrency found in recent surveys in sub-Saharan Africa. Efforts to support the concurrency hypothesis with a statistical correlation between HIV incidence and concurrency prevalence are not yet successful. Two decades of efforts to find evidence in support of the concurrency hypothesis have failed to build a convincing case. PMID:23406964

  9. Managing Asynchronous Data in ATLAS's Concurrent Framework

    CERN Document Server

    Baines, John; The ATLAS collaboration

    2016-01-01

    In order to be able to make effective use of emerging hardware, where the amount of memory available to any CPU is rapidly decreasing as the core count continues to rise, ATLAS has begun a migration to a concurrent, multi-threaded software framework, known as AthenaMT. Significant progress has been made in implementing AthenaMT - we can currently run realistic Geant4 simulations on massively concurrent machines. the migration of realistic prototypes of reconstruction workflows is more difficult, given the large amounts of legacy code and the complexity and challenges of reconstruction software. These types of workflows, however, are the types that will most benefit from the memory reduction features of a multi-threaded framework. One of the challenges that we will report on in this paper is the re-design and implementation of several key asynchronous technologies whose behaviour is radically different in a concurrent environment than in a serial one, namely the management of Conditions data and the Detector D...

  10. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  11. PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, Kamal; Esmaeili-Sanjavanmareh, Mansour [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-05-15

    PCTRAN capability to simulate a large break loss of coolant accident concurrent with the loss of offsite power in Bushehr Nuclear Power Plant is enhanced and investigated. Following the correction of the accident scenario for Bushehr nuclear power plant in PCTRAN, simulation results are compared with the final safety assessment report of that plant. As a result, the primary loop thermal hydraulics parameters including pressure, total flow rates, leakage flow rates and reactor power are in a good agreement with the reference data. Hot and cold leg temperature variations have the same trends as reference data but have a maximum of 80 C disagreement at the transient initiation. The reason for this disagreement is explained and its adjustment is discussed. Improvements of PCTRAN simulator are mainly due to enhancing user control for atmospheric steam dump valve, containment pressure and emergency core cooling systems which are thoroughly described in this paper.

  12. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  13. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.

    2015-09-08

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  14. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  15. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  16. Integrated Multiscale Latent Variable Regression and Application to Distillation Columns

    Directory of Open Access Journals (Sweden)

    Muddu Madakyaru

    2013-01-01

    Full Text Available Proper control of distillation columns requires estimating some key variables that are challenging to measure online (such as compositions, which are usually estimated using inferential models. Commonly used inferential models include latent variable regression (LVR techniques, such as principal component regression (PCR, partial least squares (PLS, and regularized canonical correlation analysis (RCCA. Unfortunately, measured practical data are usually contaminated with errors, which degrade the prediction abilities of inferential models. Therefore, noisy measurements need to be filtered to enhance the prediction accuracy of these models. Multiscale filtering has been shown to be a powerful feature extraction tool. In this work, the advantages of multiscale filtering are utilized to enhance the prediction accuracy of LVR models by developing an integrated multiscale LVR (IMSLVR modeling algorithm that integrates modeling and feature extraction. The idea behind the IMSLVR modeling algorithm is to filter the process data at different decomposition levels, model the filtered data from each level, and then select the LVR model that optimizes a model selection criterion. The performance of the developed IMSLVR algorithm is illustrated using three examples, one using synthetic data, one using simulated distillation column data, and one using experimental packed bed distillation column data. All examples clearly demonstrate the effectiveness of the IMSLVR algorithm over the conventional methods.

  17. Multiscale modeling of radiation effects in nuclear reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Most problems in irradiated materials originate from the atomic collision of high-energy particles and lattice atoms. This collision leads to displacement cascades through the energy transfer reaction and causes various types of defects such as vacancies, interstitials, and clusters. The behavior of the point defects created in the displacement cascades is important because these defects play a major role in a microstructural evolution and further affect the changes in material properties. Rapid advances have been made in the computational capabilities for a realistic simulation of complex physical phenomena, such as irradiation and aging effects. At the same time, progress has been made in understanding the effect of radiation in metals, especially iron-based alloys. In this work, we present some of our ongoing work in this area, which illustrates a multiscale modeling for evaluating a microstructural evolution and mechanical property changes during irradiation. Multiscale modeling approaches are briefly presented here in the following order: nuclear interaction, atomic-level interaction, atomistic modeling, microstructural evolution modeling and mechanical property modeling. This is one of many possible methods for classifying techniques. The effort in developing physical multiscale models applied to radiation damage has been focused on a single crystal or single-grain materials.

  18. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    Science.gov (United States)

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  19. Improved anomaly detection using multi-scale PLS and generalized likelihood ratio test

    KAUST Repository

    Madakyaru, Muddu

    2017-02-16

    Process monitoring has a central role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. In this paper, a statistical approach that exploit the advantages of multiscale PLS models (MSPLS) and those of a generalized likelihood ratio (GLR) test to better detect anomalies is proposed. Specifically, to consider the multivariate and multi-scale nature of process dynamics, a MSPLS algorithm combining PLS and wavelet analysis is used as modeling framework. Then, GLR hypothesis testing is applied using the uncorrelated residuals obtained from MSPLS model to improve the anomaly detection abilities of these latent variable based fault detection methods even further. Applications to a simulated distillation column data are used to evaluate the proposed MSPLS-GLR algorithm.

  20. Improved anomaly detection using multi-scale PLS and generalized likelihood ratio test

    KAUST Repository

    Madakyaru, Muddu; Harrou, Fouzi; Sun, Ying

    2017-01-01

    Process monitoring has a central role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. In this paper, a statistical approach that exploit the advantages of multiscale PLS models (MSPLS) and those of a generalized likelihood ratio (GLR) test to better detect anomalies is proposed. Specifically, to consider the multivariate and multi-scale nature of process dynamics, a MSPLS algorithm combining PLS and wavelet analysis is used as modeling framework. Then, GLR hypothesis testing is applied using the uncorrelated residuals obtained from MSPLS model to improve the anomaly detection abilities of these latent variable based fault detection methods even further. Applications to a simulated distillation column data are used to evaluate the proposed MSPLS-GLR algorithm.

  1. A mathematical framework for multiscale science and engineering: the variational multiscale method and interscale transfer operators

    International Nuclear Information System (INIS)

    Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John

    2004-01-01

    Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

  2. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    Science.gov (United States)

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the

  3. Multiscale Simulation and Modeling of Multilayer Heteroepitactic Growth of C60 on Pentacene.

    Science.gov (United States)

    Acevedo, Yaset M; Cantrell, Rebecca A; Berard, Philip G; Koch, Donald L; Clancy, Paulette

    2016-03-29

    We apply multiscale methods to describe the strained growth of multiple layers of C60 on a thin film of pentacene. We study this growth in the presence of a monolayer pentacene step to compare our simulations to recent experimental studies by Breuer and Witte of submonolayer growth in the presence of monolayer steps. The molecular-level details of this organic semiconductor interface have ramifications on the macroscale structural and electronic behavior of this system and allow us to describe several unexplained experimental observations for this system. The growth of a C60 thin film on a pentacene surface is complicated by the differing crystal habits of the two component species, leading to heteroepitactical growth. In order to probe this growth, we use three computational methods that offer different approaches to coarse-graining the system and differing degrees of computational efficiency. We present a new, efficient reaction-diffusion continuum model for 2D systems whose results compare well with mesoscale kinetic Monte Carlo (KMC) results for submonolayer growth. KMC extends our ability to simulate multiple layers but requires a library of predefined rates for event transitions. Coarse-grained molecular dynamics (CGMD) circumvents KMC's need for predefined lattices, allowing defects and grain boundaries to provide a more realistic thin film morphology. For multilayer growth, in this particularly suitable candidate for coarse-graining, CGMD is a preferable approach to KMC. Combining the results from these three methods, we show that the lattice strain induced by heteroepitactical growth promotes 3D growth and the creation of defects in the first monolayer. The CGMD results are consistent with experimental results on the same system by Conrad et al. and by Breuer and Witte in which C60 aggregates change from a 2D structure at low temperature to 3D clusters along the pentacene step edges at higher temperatures.

  4. A Multiscale Finite Element Model Validation Method of Composite Cable-Stayed Bridge Based on Structural Health Monitoring System

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2015-01-01

    Full Text Available A two-step response surface method for multiscale finite element model (FEM updating and validation is presented with respect to Guanhe Bridge, a composite cable-stayed bridge in the National Highway number G15, in China. Firstly, the state equations of both multiscale and single-scale FEM are established based on the basic equation in structural dynamic mechanics to update the multiscale coupling parameters and structural parameters. Secondly, based on the measured data from the structural health monitoring (SHM system, a Monte Carlo simulation is employed to analyze the uncertainty quantification and transmission, where the uncertainties of the multiscale FEM and measured data were considered. The results indicate that the relative errors between the calculated and measured frequencies are less than 2%, and the overlap ratio indexes of each modal frequency are larger than 80% without the average absolute value of relative errors. These demonstrate that the proposed method can be applied to validate the multiscale FEM, and the validated FEM can reflect the current conditions of the real bridge; thus it can be used as the basis for bridge health monitoring, damage prognosis (DP, and safety prognosis (SP.

  5. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  6. Multiscale modeling of polyisoprene on graphite

    International Nuclear Information System (INIS)

    Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.

    2014-01-01

    The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail

  7. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)

    2017-07-14

    The goal of UWM’s portion of the Multiscale project was to develop a unified cloud parameterization that could simulate all cloud types --- including stratocumulus, shallow cumulus, and deep cumulus --- using the single equation set implemented in CLUBB. An advantage of a unified parameterization methodology is that it avoids the difficult task of interfacing different cloud parameterizations for different cloud types. To interface CLUBB’s clouds to the microphysics, a Monte Carlo interface, SILHS, was further developed.

  8. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    Science.gov (United States)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  9. Multi-scale path planning for reduced environmental impact of aviation

    Science.gov (United States)

    Campbell, Scot Edward

    A future air traffic management system capable of rerouting aircraft trajectories in real-time in response to transient and evolving events would result in increased aircraft efficiency, better utilization of the airspace, and decreased environmental impact. Mixed-integer linear programming (MILP) is used within a receding horizon framework to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of convective weather, and seek a minimum fuel solution. Areas conducive to persistent contrail formation and areas of convective weather occur at disparate temporal and spatial scales, and thereby require the receding horizon controller to be adaptable to multi-scale events. In response, a novel adaptable receding horizon controller was developed to account for multi-scale disturbances, as well as generate trajectories using both a penalty function approach for obstacle penetration and hard obstacle avoidance constraints. A realistic aircraft fuel burn model based on aircraft data and engine performance simulations is used to form the cost function in the MILP optimization. The performance of the receding horizon algorithm is tested through simulation. A scalability analysis of the algorithm is conducted to ensure the tractability of the path planner. The adaptable receding horizon algorithm is shown to successfully negotiate multi-scale environments with performance exceeding static receding horizon solutions. The path planner is applied to realistic scenarios involving real atmospheric data. A single flight example for persistent contrail mitigation shows that fuel burn increases 1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 100% of persistent contrails are avoided. Persistent contrail mitigating trajectories are generated for multiple days of data, and the research shows that 58% of persistent contrails are avoided with a 0.48% increase in fuel consumption when averaged over a year.

  10. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    International Nuclear Information System (INIS)

    Ashour-Abdalla, Maha

    2011-01-01

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  11. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  12. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  13. Fast Decentralized Averaging via Multi-scale Gossip

    Science.gov (United States)

    Tsianos, Konstantinos I.; Rabbat, Michael G.

    We are interested in the problem of computing the average consensus in a distributed fashion on random geometric graphs. We describe a new algorithm called Multi-scale Gossip which employs a hierarchical decomposition of the graph to partition the computation into tractable sub-problems. Using only pairwise messages of fixed size that travel at most O(n^{1/3}) hops, our algorithm is robust and has communication cost of O(n loglogn logɛ - 1) transmissions, which is order-optimal up to the logarithmic factor in n. Simulated experiments verify the good expected performance on graphs of many thousands of nodes.

  14. Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    2015-01-01

    Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.

  15. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem

  16. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian

    2009-10-02

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.

  17. Multiscale modeling of θ' precipitation in Al-Cu binary alloys

    International Nuclear Information System (INIS)

    Vaithyanathan, V.; Wolverton, C.; Chen, L.Q.

    2004-01-01

    We present a multiscale model for studying the growth and coarsening of θ' precipitates in Al-Cu alloys. Our approach utilizes a novel combination of the mesoscale phase-field method with atomistic approaches such as first-principles total energy and linear response calculations, as well as a mixed-space cluster expansion coupled with Monte Carlo simulations. We give quantitative first-principles predictions of: (i) bulk energetics of the Al-Cu solid solution and θ ' precipitate phases, (ii) interfacial energies of the coherent and semi-coherent θ ' /Al interfaces, and (iii) stress-free misfit strains and coherency strain energies of the θ ' /Al system. These first-principles data comprise all the necessary energetic information to construct our phase-field model of microstructural evolution. Using our multiscale approach, we elucidate the effects of various energetic contributions on the equilibrium shape of θ ' precipitates, finding that both the elastic energy and interfacial energy anisotropy contributions play critical roles in determining the aspect ratio of θ ' precipitates. Additionally, we have performed a quantitative study of the morphology of two-dimensional multi-precipitate microstructures during growth and coarsening, and compared the calculated results with experimentally observed morphologies. Our multiscale first-principles/phase-field method is completely general and should therefore be applicable to a wide variety of problems in microstructural evolution

  18. All-Particle Multiscale Computation of Hypersonic Rarefied Flow

    Science.gov (United States)

    Jun, E.; Burt, J. M.; Boyd, I. D.

    2011-05-01

    This study examines a new hybrid particle scheme used as an alternative means of multiscale flow simulation. The hybrid particle scheme employs the direct simulation Monte Carlo (DSMC) method in rarefied flow regions and the low diffusion (LD) particle method in continuum flow regions. The numerical procedures of the low diffusion particle method are implemented within an existing DSMC algorithm. The performance of the LD-DSMC approach is assessed by studying Mach 10 nitrogen flow over a sphere with a global Knudsen number of 0.002. The hybrid scheme results show good overall agreement with results from standard DSMC and CFD computation. Subcell procedures are utilized to improve computational efficiency and reduce sensitivity to DSMC cell size in the hybrid scheme. This makes it possible to perform the LD-DSMC simulation on a much coarser mesh that leads to a significant reduction in computation time.

  19. A wavelet multiscale denoising algorithm for magnetic resonance (MR) images

    International Nuclear Information System (INIS)

    Yang, Xiaofeng; Fei, Baowei

    2011-01-01

    Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' into multiscales in order to effectively denoise the images. Based on the nature of Rician noise we estimate noise variance in different scales. For the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR images. Phantom, simulation brain MR images, and human brain MR images were used to validate our method. The experiment results show the superiority of the proposed scheme over the traditional methods. Our method can reduce Rician noise while preserving the key image details and features. The wavelet denoising method can have wide applications in MRI as well as other imaging modalities

  20. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    Science.gov (United States)

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  1. Multiscale Monte Carlo algorithms in statistical mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, P G

    1990-12-01

    Conventional Monte Carlo simulation algorithms for models in statistical mechanics and quantum field theory are afflicted by problems caused by their locality. They become highly inefficient if investigations of critical or nearly-critical systems, i.e., systems with important large scale phenomena, are undertaken. We present two types of multiscale approaches that alleveate problems of this kind: Stochastic cluster algorithms and multigrid Monte Carlo simulation algorithms. Another formidable computational problem in simulations of phenomenologically relevant field theories with fermions is the need for frequently inverting the Dirac operator. This inversion can be accelerated considerably by means of deterministic multigrid methods, very similar to the ones used for the numerical solution of differential equations. (orig.).

  2. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  3. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  4. Multiscale pore structure and its effect on gas transport in organic-rich shale

    Science.gov (United States)

    Wu, Tianhao; Li, Xiang; Zhao, Junliang; Zhang, Dongxiao

    2017-07-01

    A systematic investigation of multiscale pore structure in organic-rich shale by means of the combination of various imaging techniques is presented, including the state-of-the-art Helium-Ion-Microscope (HIM). The study achieves insight into the major features at each scale and suggests the affordable techniques for specific objectives from the aspects of resolution, dimension, and cost. The pores, which appear to be isolated, are connected by smaller pores resolved by higher-resolution imaging. This observation provides valuable information, from the microscopic perspective of pore structure, for understanding how gas accumulates and transports from where it is generated. A comprehensive workflow is proposed based on the characteristics acquired from the multiscale pore structure analysis to simulate the gas transport process. The simulations are completed with three levels: the microscopic mechanisms should be taken into consideration at level I; the spatial distribution features of organic matter, inorganic matter, and macropores constitute the major issue at level II; and the microfracture orientation and topological structure are dominant factors at level III. The results of apparent permeability from simulations agree well with the values acquired from experiments. By means of the workflow, the impact of various gas transport mechanisms at different scales can be investigated more individually and precisely than conventional experiments.

  5. Multi-scale Study of Pollutant Transport and Uptake in Compacted Bentonite

    OpenAIRE

    Bouchelaghem , Fatiha; Pusch , R.

    2018-01-01

    International audience; In a previous work, a multiscale model was developed in order to investigate the impact of cation exchange and surface complexation on the hydraulic conductivity of compacted bentonite. Simulation of lead nitrate percolation tests has displayed the strong connection between hydraulic conductivity increase and textural and structural evolutions at different scales. The present developments deal with the modeling of pollutant transport by advection, molecular diffusion w...

  6. Concurrent weighted logic

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2015-01-01

    We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these......-completeness results for this logic. To complete these proofs we involve advanced topological techniques from Model Theory....

  7. Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foiles, Stephen M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phinney, Leslie M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Piekos, Edward S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Specht, Paul Elliott [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wixom, Ryan R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In

  8. Efficient algorithms for multiscale modeling in porous media

    KAUST Repository

    Wheeler, Mary F.; Wildey, Tim; Xue, Guangri

    2010-01-01

    We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.

  9. Efficient algorithms for multiscale modeling in porous media

    KAUST Repository

    Wheeler, Mary F.

    2010-09-26

    We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.

  10. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2014-01-01

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters

  11. Model-to-model interface for multiscale materials modeling

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)

    2017-12-17

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.

  12. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Directory of Open Access Journals (Sweden)

    Ch. Stihl

    2016-12-01

    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  13. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    International Nuclear Information System (INIS)

    Wang Junsheng; Lee, Peter D.; Li Mei; Allison, John

    2010-01-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  14. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    Energy Technology Data Exchange (ETDEWEB)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish; Gandikota, Imtiaz; Savic, Vesna; Sun, Xin; Choi, Kyoo Sil; Hu, Xiaohua; Pourboghrat, F.; Park, Taejoon; Mapar, Aboozar; Kumar, Shavan; Ghassemi-Armaki, Hassan; Abu-Farha, Fadi

    2015-09-14

    Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.

  15. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Leung, Wing Tat

    2015-01-01

    In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  16. A EU simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis (NURESIM project)

    International Nuclear Information System (INIS)

    Chauliac, Christian; Bestion, Dominique; Crouzet, Nicolas; Aragones, Jose-Maria; Cacuci, Dan Gabriel; Weiss, Frank-Peter; Zimmermann, Martin A.

    2010-01-01

    The NURESIM project, the numerical simulation platform, is developed in the frame of the NURISP European Collaborative Project (FP7), which includes 22 organizations from 14 European countries. NURESIM intends to be a reference platform providing high quality software tools, physical models, generic functions and assessment results. The NURESIM platform provides an accurate representation of the physical phenomena by promoting and incorporating the latest advances in core physics, two-phase thermal-hydraulics and fuel modelling. It includes multi-scale and multi-physics features, especially for coupling core physics and thermal-hydraulics models for reactor safety. Easy coupling of the different codes and solvers is provided through the use of a common data structure and generic functions (e.g., for interpolation between non-conforming meshes). More generally, the platform includes generic pre-processing, post-processing and supervision functions through the open-source SALOME software, in order to make the codes more user-friendly. The platform also provides the informatics environment for testing and comparing different codes. The contribution summarizes the achievements and ongoing developments of the simulation platform in core physics, thermal-hydraulics, multi-physics, uncertainties and code integration

  17. Toward multiscale modelings of grain-fluid systems

    Science.gov (United States)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  18. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    OpenAIRE

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid mod...

  19. Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets

    Science.gov (United States)

    Zeng, Yayun; Wang, Jun; Xu, Kaixuan

    2017-04-01

    A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.

  20. Development of high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding

    Science.gov (United States)

    Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael

    2017-02-01

    Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.

  1. Characterizing Distributed Concurrent Engineering Teams: A Descriptive Framework for Aerospace Concurrent Engineering Design Teams

    Science.gov (United States)

    Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.

  2. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure...

  3. OBJECT-ORIENTED CHANGE DETECTION BASED ON MULTI-SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-06-01

    Full Text Available The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  4. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcó n, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R.

    2012-01-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  5. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  6. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  7. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  8. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    Science.gov (United States)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  9. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  10. Modelling concrete behaviour at early-age: multi-scale analysis and simulation of a massive disposal structure

    International Nuclear Information System (INIS)

    Honorio-De-Faria, Tulio

    2015-01-01

    The accurate prediction of the long and short-term behaviour of concrete structures in the nuclear domain is essential to ensure optimal performances (integrity, containment properties) during their service life. In the particular case of massive concrete structures, at early age the heat produced by hydration reactions cannot be evacuated fast enough so that high temperatures may be reached and the resulting gradients of temperature might lead to cracking according to the external and internal restraints to which the structures are subjected. The goals of this study are (1) to perform numerical simulations in order to describe and predict the thermo-chemo-mechanical behaviour at early-age of a massive concrete structure devoted to nuclear waste disposal on surface, and (2) to develop and apply up-scaling tools to estimate rigorously the key properties of concrete needed in an early-age analysis from the composition of the material. Firstly, a chemo-thermal analysis aims at determining the influence of convection, solar radiation, re-radiation and hydration heat on the thermal response of the structure. Practical recommendations regarding concreting temperatures are provided in order to limit the maximum temperature reached within the structure. Then, by means of a mechanical analysis, simplified and more complex (i.e. accounting for coupled creep and damage) modelling strategies are used to assess scenarios involving different boundary conditions defined from the previous chemo-thermal analysis. Secondly, a study accounting for the multi-scale character of concrete is performed. A simplified model of cement hydration kinetics is proposed. The evolution of the different phases at the cement paste level can be estimated. Then, analytical and numerical tools to upscale the ageing properties are presented and applied to estimate the mechanical and thermal properties of cement based materials. Finally, the input data used in the structural analysis are compared with

  11. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  12. Building Safe Concurrency Abstractions

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    2014-01-01

    Concurrent object-oriented programming in Beta is based on semaphores and coroutines and the ability to define high-level concurrency abstractions like monitors, and rendezvous-based communication, and their associated schedulers. The coroutine mechanism of SIMULA has been generalized into the no......Concurrent object-oriented programming in Beta is based on semaphores and coroutines and the ability to define high-level concurrency abstractions like monitors, and rendezvous-based communication, and their associated schedulers. The coroutine mechanism of SIMULA has been generalized...

  13. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Science.gov (United States)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  14. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)

    2014-01-15

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  15. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  16. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-scale semi-ideal magnetohydrodynamics of a tokamak plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya; Watanabe, Kunihiko.

    1995-09-01

    An analytical model of fast spatial flattening of the toroidal current density and q-profile at the nonlinear stage of (m = 1/n = 1) kink instability of a tokamak plasma is presented. The flattening is shown to be an essentially multi-scale phenomenon which is characterized by, at least, two magnetic Reynolds numbers. The ordinary one, R m , is related with a characteristic radial scale-length, while the other, R m * , corresponds to a characteristic scale-length of plasma inhomogeneity along the magnetic field line. In a highly conducting plasma inside the q = 1 magnetic surface, where q value does not much differ from unity, plasma evolution is governed by a multi-scale non-ideal dynamics characterized by two well-separated magnetic Reynolds numbers, R m and R m * ≡ (1 - q) R m , where R m * - O(1) and R m >> 1. This dynamics consistently explains two seemingly contradictory features recently observed in a numerical simulation [Watanabe et al., 1995]: i) the current profile (q-profile) is flattened in the magnetohydrodynamic time scale within the q = 1 rational surface; ii) the magnetic surface keeps its initial circular shape during this evolution. (author)

  18. Multi-scale high-performance fluid flow: Simulations through porous media

    KAUST Repository

    Perović, Nevena

    2016-08-03

    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy\\'s law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.

  19. Multi-scale high-performance fluid flow: Simulations through porous media

    KAUST Repository

    Perović, Nevena; Frisch, Jé rô me; Salama, Amgad; Sun, Shuyu; Rank, Ernst; Mundani, Ralf Peter

    2016-01-01

    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy's law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.

  20. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  1. Multi-Scale Scattering Transform in Music Similarity Measuring

    Science.gov (United States)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  2. Refined generalized multiscale entropy analysis for physiological signals

    Science.gov (United States)

    Liu, Yunxiao; Lin, Youfang; Wang, Jing; Shang, Pengjian

    2018-01-01

    Multiscale entropy analysis has become a prevalent complexity measurement and been successfully applied in various fields. However, it only takes into account the information of mean values (first moment) in coarse-graining procedure. Then generalized multiscale entropy (MSEn) considering higher moments to coarse-grain a time series was proposed and MSEσ2 has been implemented. However, the MSEσ2 sometimes may yield an imprecise estimation of entropy or undefined entropy, and reduce statistical reliability of sample entropy estimation as scale factor increases. For this purpose, we developed the refined model, RMSEσ2, to improve MSEσ2. Simulations on both white noise and 1 / f noise show that RMSEσ2 provides higher entropy reliability and reduces the occurrence of undefined entropy, especially suitable for short time series. Besides, we discuss the effect on RMSEσ2 analysis from outliers, data loss and other concepts in signal processing. We apply the proposed model to evaluate the complexity of heartbeat interval time series derived from healthy young and elderly subjects, patients with congestive heart failure and patients with atrial fibrillation respectively, compared to several popular complexity metrics. The results demonstrate that RMSEσ2 measured complexity (a) decreases with aging and diseases, and (b) gives significant discrimination between different physiological/pathological states, which may facilitate clinical application.

  3. What is at stake in multi-scale approaches

    International Nuclear Information System (INIS)

    Jamet, Didier

    2008-01-01

    Full text of publication follows: Multi-scale approaches amount to analyzing physical phenomena at small space and time scales in order to model their effects at larger scales. This approach is very general in physics and engineering; one of the best examples of success of this approach is certainly statistical physics that allows to recover classical thermodynamics and to determine the limits of application of classical thermodynamics. Getting access to small scale information aims at reducing the models' uncertainty but it has a cost: fine scale models may be more complex than larger scale models and their resolution may require the development of specific and possibly expensive methods, numerical simulation techniques and experiments. For instance, in applications related to nuclear engineering, the application of computational fluid dynamics instead of cruder models is a formidable engineering challenge because it requires resorting to high performance computing. Likewise, in two-phase flow modeling, the techniques of direct numerical simulation, where all the interfaces are tracked individually and where all turbulence scales are captured, are getting mature enough to be considered for averaged modeling purposes. However, resolving small scale problems is a necessary step but it is not sufficient in a multi-scale approach. An important modeling challenge is to determine how to treat small scale data in order to get relevant information for larger scale models. For some applications, such as single-phase turbulence or transfers in porous media, this up-scaling approach is known and is now used rather routinely. However, in two-phase flow modeling, the up-scaling approach is not as mature and specific issues must be addressed that raise fundamental questions. This will be discussed and illustrated. (author)

  4. Analyzing and designing object-oriented missile simulations with concurrency

    Science.gov (United States)

    Randorf, Jeffrey Allen

    2000-11-01

    A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling

  5. Multiscale methods in computational fluid and solid mechanics

    NARCIS (Netherlands)

    Borst, de R.; Hulshoff, S.J.; Lenz, S.; Munts, E.A.; Brummelen, van E.H.; Wall, W.; Wesseling, P.; Onate, E.; Periaux, J.

    2006-01-01

    First, an attempt is made towards gaining a more systematic understanding of recent progress in multiscale modelling in computational solid and fluid mechanics. Sub- sequently, the discussion is focused on variational multiscale methods for the compressible and incompressible Navier-Stokes

  6. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  7. Simulation of atmospheric oxidation capacity in Houston, Texas

    Science.gov (United States)

    Air quality model simulations are performed and evaluated for Houston using the Community Multiscale Air Quality (CMAQ) model. The simulations use two different emissions estimates: the EPA 2005 National Emissions Inventory (NEI) and the Texas Commission on Environmental Quality ...

  8. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  9. International Conference on Multiscale Methods and Partial Differential Equations.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hou

    2006-12-12

    The International Conference on Multiscale Methods and Partial Differential Equations (ICMMPDE for short) was held at IPAM, UCLA on August 26-27, 2005. The conference brought together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference provided a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications.

  10. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  11. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef; Ahn, Hyungtaek; Hughes, Thomas Jr R; Calo, Victor M.

    2013-01-01

    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  12. MesoBioNano Explorer-A Universal Program for Multiscale Computer Simulations of Complex Molecular Structure and Dynamics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Nikolaev, Pavel V.

    2012-01-01

    it significantly different from the existing codes, is its universality and applicability to the description of a broad range of problems involving different molecular systems. Most of the existing codes are developed for particular classes of molecular systems and do not permit multiscale approach while MBN...

  13. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    Science.gov (United States)

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  14. A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage

    Science.gov (United States)

    Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik

    2017-11-01

    A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.

  15. Multi-scale modeling of spin transport in organic semiconductors

    Science.gov (United States)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  16. Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-08-21

    In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed multiscale finite element methods and (2) a novel use of mixed multiscale finite element methods within multilevel Monte Carlo techniques to speed up the computations. The main idea of ensemble level multiscale methods is to construct local multiscale basis functions that can be used for any member of the ensemble. In this paper, we consider two ensemble level mixed multiscale finite element methods: (1) the no-local-solve-online ensemble level method (NLSO); and (2) the local-solve-online ensemble level method (LSO). The first approach was proposed in Aarnes and Efendiev (SIAM J. Sci. Comput. 30(5):2319-2339, 2008) while the second approach is new. Both mixed multiscale methods use a number of snapshots of the permeability media in generating multiscale basis functions. As a result, in the off-line stage, we construct multiple basis functions for each coarse region where basis functions correspond to different realizations. In the no-local-solve-online ensemble level method, one uses the whole set of precomputed basis functions to approximate the solution for an arbitrary realization. In the local-solve-online ensemble level method, one uses the precomputed functions to construct a multiscale basis for a particular realization. With this basis, the solution corresponding to this particular realization is approximated in LSO mixed multiscale finite element method (MsFEM). In both approaches, the accuracy of the method is related to the number of snapshots computed based on different realizations that one uses to precompute a multiscale basis. In this paper, ensemble level multiscale methods are used in multilevel Monte Carlo methods (Giles 2008a, Oper.Res. 56(3):607-617, b). In multilevel Monte Carlo methods, more accurate

  17. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.

    Science.gov (United States)

    Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L

    2008-06-01

    Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.

  18. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  19. 2D deblending using the multi-scale shaping scheme

    Science.gov (United States)

    Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan

    2018-01-01

    Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.

  20. Multiscale modeling for ferroelectric materials: identification of the phase-field model’s free energy for PZT from atomistic simulations

    International Nuclear Information System (INIS)

    Völker, Benjamin; Landis, Chad M; Kamlah, Marc

    2012-01-01

    Within a knowledge-based multiscale simulation approach for ferroelectric materials, the atomic level can be linked to the mesoscale by transferring results from first-principles calculations into a phase-field model. A recently presented routine (Völker et al 2011 Contin. Mech. Thermodyn. 23 435–51) for adjusting the Helmholtz free energy coefficients to intrinsic and extrinsic ferroelectric material properties obtained by DFT calculations and atomistic simulations was subject to certain limitations: caused by too small available degrees of freedom, an independent adjustment of the spontaneous strains and piezoelectric coefficients was not possible, and the elastic properties could only be considered in cubic instead of tetragonal symmetry. In this work we overcome such restrictions by expanding the formulation of the free energy function, i.e. by motivating and introducing new higher-order terms that have not appeared in the literature before. Subsequently we present an improved version of the adjustment procedure for the free energy coefficients that is solely based on input parameters from first-principles calculations performed by Marton and Elsässer, as documented in Völker et al (2011 Contin. Mech. Thermodyn. 23 435–51). Full sets of adjusted free energy coefficients for PbTiO 3 and tetragonal Pb(Zr,Ti)O 3 are presented, and the benefits of the newly introduced higher-order free energy terms are discussed. (paper)

  1. Probabilistic Simulation of Multi-Scale Composite Behavior

    Science.gov (United States)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  2. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  3. Channel's Concurrence and Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    LING Yin-Sheng

    2005-01-01

    Concurrence can measure the entanglement property of a system. If the channel is a pure state, positive concurrence state can afford the good performance in the teleportation process. If the channel ia a mixed state, positive concurrence state cannot assure the good performance in the teleportation. The conditions of the positive concurrence and the quantum teleportation in the Heisenberg spin ring is derived.

  4. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  5. A complete categorization of multiscale models of infectious disease systems.

    Science.gov (United States)

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  6. Multiscale information modelling for heart morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, T; Imms, R; Summers, R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough (United Kingdom); Schleich, J M, E-mail: T.Abdulla@lboro.ac.u [LTSI Signal and Image Processing Laboratory, University of Rennes 1, Rennes (France)

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  7. Multiscale information modelling for heart morphogenesis

    International Nuclear Information System (INIS)

    Abdulla, T; Imms, R; Summers, R; Schleich, J M

    2010-01-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  8. Multiscale coarse-graining of the protein energy landscape.

    Directory of Open Access Journals (Sweden)

    Ronald D Hills

    2010-06-01

    Full Text Available A variety of coarse-grained (CG models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.

  9. Multi-scale method for the resolution of the neutronic kinetics equations

    International Nuclear Information System (INIS)

    Chauvet, St.

    2008-10-01

    In this PhD thesis and in order to improve the time/precision ratio of the numerical simulation calculations, we investigate multi-scale techniques for the resolution of the reactor kinetics equations. We choose to focus on the mixed dual diffusion approximation and the quasi-static methods. We introduce a space dependency for the amplitude function which only depends on the time variable in the standard quasi-static context. With this new factorization, we develop two mixed dual problems which can be solved with Cea's solver MINOS. An algorithm is implemented, performing the resolution of these problems defined on different scales (for time and space). We name this approach: the Local Quasi-Static method. We present here this new multi-scale approach and its implementation. The inherent details of amplitude and shape treatments are discussed and justified. Results and performances, compared to MINOS, are studied. They illustrate the improvement on the time/precision ratio for kinetics calculations. Furthermore, we open some new possibilities to parallelize computations with MINOS. For the future, we also introduce some improvement tracks with adaptive scales. (author)

  10. Multiscale Representations Phase II

    National Research Council Canada - National Science Library

    Bar-Yam, Yaneer

    2004-01-01

    .... Multiscale analysis provides an analytic tool that can be applied to evaluating force capabilities as well as the relevance of designs for technological innovations to support force structures and their modernization...

  11. Coupled multiscale simulation and optimization in nanoelectronics

    CERN Document Server

    2015-01-01

    Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies, and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expe...

  12. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  13. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  14. A coupling method for a cardiovascular simulation model which includes the Kalman filter.

    Science.gov (United States)

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2012-01-01

    Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

  15. Multi-scale salient feature extraction on mesh models

    KAUST Repository

    Yang, Yongliang; Shen, ChaoHui

    2012-01-01

    We present a new method of extracting multi-scale salient features on meshes. It is based on robust estimation of curvature on multiple scales. The coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this multi-scale description of features accords with human perception and can be further used for several applications as feature classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for studying 3D shapes. © 2012 Springer-Verlag.

  16. Study on high density multi-scale calculation technique

    International Nuclear Information System (INIS)

    Sekiguchi, S.; Tanaka, Y.; Nakada, H.; Nishikawa, T.; Yamamoto, N.; Yokokawa, M.

    2004-01-01

    To understand degradation of nuclear materials under irradiation, it is essential to know as much about each phenomenon observed from multi-scale points of view; they are micro-scale in atomic-level, macro-level in structural scale and intermediate level. In this study for application to meso-scale materials (100A ∼ 2μm), computer technology approaching from micro- and macro-scales was developed including modeling and computer application using computational science and technology method. And environmental condition of grid technology for multi-scale calculation was prepared. The software and MD (molecular dynamics) stencil for verifying the multi-scale calculation were improved and their movement was confirmed. (A. Hishinuma)

  17. Adaptive multiscale processing for contrast enhancement

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  18. Multiscale Characterization of Structural Compositional and Textural Heterogeneity of Nano-porous Geomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-01

    The purpose of the project was to perform multiscale characterization of low permeability rocks to determine the effect of physical and chemical heterogeneity on the poromechanical and flow responses of shales and carbonate rocks with a broad range of physical and chemical heterogeneity . An integrated multiscale imaging of shale and carbonate rocks from nanometer to centimeter scales include s dual focused ion beam - scanning electron microscopy (FIB - SEM) , micro computed tomography (micro - CT) , optical and confocal microscopy, and 2D and 3D energy dispersive spectroscopy (EDS). In addition, mineralogical mapping and backscattered imaging with nanoindentation testing advanced the quantitative evaluat ion of the relationship between material heterogeneity and mechanical behavior. T he spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy were employed as inputs for brittle fracture simulations using a phase field model . Comparison of experimental and numerical simulations reveal ed that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, can yield improvements on the numerical prediction of the mesoscale fracture patterns and hence the macroscopic effective toughness. Overall, a comprehensive framework to evaluate the relationship between mechanical response and micro-lithofacial features can allow us to make more accurate prediction of reservoir performance by developing a multi - scale understanding of poromechanical response to coupled chemical and mechanical interactions for subsurface energy related activities.

  19. Multi-scale semi-ideal magnetohydrodynamics of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bazdenkov, S.; Sato, Tetsuya; Watanabe, Kunihiko

    1995-09-01

    An analytical model of fast spatial flattening of the toroidal current density and q-profile at the nonlinear stage of (m = 1/n = 1) kink instability of a tokamak plasma is presented. The flattening is shown to be an essentially multi-scale phenomenon which is characterized by, at least, two magnetic Reynolds numbers. The ordinary one, R{sub m}, is related with a characteristic radial scale-length, while the other, R{sub m}{sup *}, corresponds to a characteristic scale-length of plasma inhomogeneity along the magnetic field line. In a highly conducting plasma inside the q = 1 magnetic surface, where q value does not much differ from unity, plasma evolution is governed by a multi-scale non-ideal dynamics characterized by two well-separated magnetic Reynolds numbers, R{sub m} and R{sub m}{sup *} {identical_to} (1 - q) R{sub m}, where R{sub m}{sup *} - O(1) and R{sub m} >> 1. This dynamics consistently explains two seemingly contradictory features recently observed in a numerical simulation [Watanabe et al., 1995]: (i) the current profile (q-profile) is flattened in the magnetohydrodynamic time scale within the q = 1 rational surface; (ii) the magnetic surface keeps its initial circular shape during this evolution. (author).

  20. Multiscale high-order/low-order (HOLO) algorithms and applications

    International Nuclear Information System (INIS)

    Chacón, L.; Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W.; Willert, J.A.; Womeldorff, G.

    2017-01-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  1. Multiscale high-order/low-order (HOLO) algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, L., E-mail: chacon@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, G.; Knoll, D.A.; Newman, C.; Park, H.; Taitano, W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Willert, J.A. [Institute for Defense Analyses, Alexandria, VA 22311 (United States); Womeldorff, G. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  2. Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys

    International Nuclear Information System (INIS)

    Hamilton, R.W.; See, D.; Butler, S.; Lee, P.D.

    2003-01-01

    Macroscopic modeling of heat transfer and fluid flow is now routinely used for the prediction of macroscopic defects in castings, while microscopic models are used to investigate the effects of alloy changes on typical microstructures. By combining these two levels of modeling it is possible to simulate the casting process over a wider range of spatial and temporal scales. This paper presents a multiscale model where micromodels for dendrite arm spacing and microporosity are incorporated into a macromodel of heat transfer and in order to predict the as cast microstructure and prevalence of microscopic defects, specifically porosity. The approach is applied to aluminum alloy (L169) investment castings. The models are compared with results obtained by optical image analysis of prepared slices, and X-ray tomography of volume samples from the experiments. Multiscale modeling is shown to provide the designer with a useful tool to improve the properties of the final casting by testing how altering the casting process affects the final microstructure including porosity

  3. Multiscale Currents Observed by MMS in the Flow Braking Region

    Science.gov (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  4. Adaptive multiscale MCMC algorithm for uncertainty quantification in seismic parameter estimation

    KAUST Repository

    Tan, Xiaosi

    2014-08-05

    Formulating an inverse problem in a Bayesian framework has several major advantages (Sen and Stoffa, 1996). It allows finding multiple solutions subject to flexible a priori information and performing uncertainty quantification in the inverse problem. In this paper, we consider Bayesian inversion for the parameter estimation in seismic wave propagation. The Bayes\\' theorem allows writing the posterior distribution via the likelihood function and the prior distribution where the latter represents our prior knowledge about physical properties. One of the popular algorithms for sampling this posterior distribution is Markov chain Monte Carlo (MCMC), which involves making proposals and calculating their acceptance probabilities. However, for large-scale problems, MCMC is prohibitevely expensive as it requires many forward runs. In this paper, we propose a multilevel MCMC algorithm that employs multilevel forward simulations. Multilevel forward simulations are derived using Generalized Multiscale Finite Element Methods that we have proposed earlier (Efendiev et al., 2013a; Chung et al., 2013). Our overall Bayesian inversion approach provides a substantial speed-up both in the process of the sampling via preconditioning using approximate posteriors and the computation of the forward problems for different proposals by using the adaptive nature of multiscale methods. These aspects of the method are discussed n the paper. This paper is motivated by earlier work of M. Sen and his collaborators (Hong and Sen, 2007; Hong, 2008) who proposed the development of efficient MCMC techniques for seismic applications. In the paper, we present some preliminary numerical results.

  5. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  6. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    International Nuclear Information System (INIS)

    Shi Siqi; Zhao Yan; Wu Qu; Gao Jian; Liu Yue; Ju Wangwei; Ouyang Chuying; Xiao Ruijuan

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. (topical review)

  7. The effect of concurrent bandwidth feedback on learning the lane-keeping task in a driving simulator.

    Science.gov (United States)

    de Groot, Stefan; de Winter, Joost C F; López García, José Manuel; Mulder, Max; Wieringa, Peter A

    2011-02-01

    The aim of this study was to investigate whether concurrent bandwidth feedback improves learning of the lane-keeping task in a driving simulator. Previous research suggests that bandwidth feedback improves learning and that off-target feedback is superior to on-target feedback. This study aimed to extend these findings for the lane-keeping task. Participants without a driver's license drove five 8-min lane-keeping sessions in a driver training simulator: three practice sessions, an immediate retention session, and a delayed retention session I day later. There were four experimental groups (n=15 per group): (a) on-target, receiving seat vibrations when the center of the car was within 0.5 m of the lane center; (b) off-target, receiving seat vibrations when the center of the car was more than 0.5 m away from the lane center; (c) control, receiving no vibrations; and (d) realistic, receiving seat vibrations depending on engine speed. During retention, all groups were provided with the realistic vibrations. During practice, on-target and off-target groups had better lane-keeping performance than the nonaugmented groups, but this difference diminished in the retention phase. Furthermore, during late practice and retention, the off-target group outperformed the on-target group.The off-target group had a higher rate of steering reversal and higher steering entropy than the nonaugmented groups, whereas no clear group differences were found regarding mean speed, mental workload, or self-reported measures. Off-target feedback is superior to on-target feedback for learning the lane-keeping task. This research provides knowledge to researchers and designers of training systems about the value of feedback in simulator-based training of vehicular control.

  8. Multiscale KF Algorithm for Strong Fractional Noise Interference Suppression in Discrete-Time UWB Systems

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2011-01-01

    Full Text Available In order to suppress the interference of the strong fractional noise signal in discrete-time ultrawideband (UWB systems, this paper presents a new UWB multi-scale Kalman filter (KF algorithm for the interference suppression. This approach solves the problem of the narrowband interference (NBI as nonstationary fractional signal in UWB communication, which does not need to estimate any channel parameter. In this paper, the received sampled signal is transformed through multiscale wavelet to obtain a state transition equation and an observation equation based on the stationarity theory of wavelet coefficients in time domain. Then through the Kalman filter method, fractional signal of arbitrary scale is easily figured out. Finally, fractional noise interference is subtracted from the received signal. Performance analysis and computer simulations reveal that this algorithm is effective to reduce the strong fractional noise when the sampling rate is low.

  9. Multiscale Models for the Two-Stream Instability

    Science.gov (United States)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  10. Economic explanations for concurrent sourcing

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    2010-01-01

    Concurrent sourcing is a phenomenon where firms simultaneously make and buy the same good, i.e. they simultaneously use the governance modes of market and hierarchy. Though concurrent sourcing seems to be widespread, few studies of sourcing have focused on this phenomenon. This paper reviews...... different economic explanations for why firms use concurrent sourcing. The distinctive features of the explanations are compared, and it is discussed how they may serve as a springboard for research on concurrent sourcing. Managerial implications are also offered....

  11. Multiscale decomposition for heterogeneous land-atmosphere systems

    Science.gov (United States)

    Liu, Shaofeng; Shao, Yaping; Hintz, Michael; Lennartz-Sassinek, Sabine

    2015-02-01

    The land-atmosphere system is characterized by pronounced land surface heterogeneity and vigorous atmospheric turbulence both covering a wide range of scales. The multiscale surface heterogeneities and multiscale turbulent eddies interact nonlinearly with each other. Understanding these multiscale processes quantitatively is essential to the subgrid parameterizations for weather and climate models. In this paper, we propose a method for surface heterogeneity quantification and turbulence structure identification. The first part of the method is an orthogonal transform in the probability density function (PDF) domain, in contrast to the orthogonal wavelet transforms which are performed in the physical space. As the basis of the whole method, the orthogonal PDF transform (OPT) is used to asymptotically reconstruct the original signals by representing the signal values with multilevel approximations. The "patch" idea is then applied to these reconstructed fields in order to recognize areas at the land surface or in turbulent flows that are of the same characteristics. A patch here is a connected area with the same approximation. For each recognized patch, a length scale is then defined to build the energy spectrum. The OPT and related energy spectrum analysis, as a whole referred to as the orthogonal PDF decomposition (OPD), is applied to two-dimensional heterogeneous land surfaces and atmospheric turbulence fields for test. The results show that compared to the wavelet transforms, the OPD can reconstruct the original signal more effectively, and accordingly, its energy spectrum represents the signal's multiscale variation more accurately. The method we propose in this paper is of general nature and therefore can be of interest for problems of multiscale process description in other geophysical disciplines.

  12. Generalization of concurrence vectors

    International Nuclear Information System (INIS)

    Yu Changshui; Song Heshan

    2004-01-01

    In this Letter, based on the generalization of concurrence vectors for bipartite pure state with respect to employing tensor product of generators of the corresponding rotation groups, we generalize concurrence vectors to the case of mixed states; a new criterion of separability of multipartite pure states is given out, for which we define a concurrence vector; we generalize the vector to the case of multipartite mixed state and give out a good measure of free entanglement

  13. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    Science.gov (United States)

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  14. Generalized multiscale finite element methods for problems in perforated heterogeneous domains

    KAUST Repository

    Chung, Eric T.

    2015-06-08

    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere. © 2015 Taylor & Francis

  15. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  16. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  17. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  18. Multi codes and multi-scale analysis for void fraction prediction in hot channel for VVER-1000/V392

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Huu Tiep

    2015-01-01

    Recently, an approach of multi codes and multi-scale analysis is widely applied to study core thermal hydraulic behavior such as void fraction prediction. Better results are achieved by using multi codes or coupling codes such as PARCS and RELAP5. The advantage of multi-scale analysis is zooming of the interested part in the simulated domain for detail investigation. Therefore, in this study, the multi codes between MCNP5, RELAP5, CTF and also the multi-scale analysis based RELAP5 and CTF are applied to investigate void fraction in hot channel of VVER-1000/V392 reactor. Since VVER-1000/V392 reactor is a typical advanced reactor that can be considered as the base to develop later VVER-1200 reactor, then understanding core behavior in transient conditions is necessary in order to investigate VVER technology. It is shown that the item of near wall boiling, Γ w in RELAP5 proposed by Lahey mechanistic method may not give enough accuracy of void fraction prediction as smaller scale code as CTF. (author)

  19. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    Science.gov (United States)

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  20. Variational Multiscale error estimator for anisotropic adaptive fluid mechanic simulations: application to convection-diffusion problems

    OpenAIRE

    Bazile , Alban; Hachem , Elie; Larroya-Huguet , Juan-Carlos; Mesri , Youssef

    2018-01-01

    International audience; In this work, we present a new a posteriori error estimator based on the Variational Multiscale method for anisotropic adaptive fluid mechanics problems. The general idea is to combine the large scale error based on the solved part of the solution with the sub-mesh scale error based on the unresolved part of the solution. We compute the latter with two different methods: one using the stabilizing parameters and the other using bubble functions. We propose two different...

  1. Concurrency Control for Transactional Drago

    OpenAIRE

    Patiño-Martinez, Marta; Jiménez-Peris, Ricardo; Kienzle, Jörg; Arévalo, Sergio

    2002-01-01

    The granularity of concurrency control has a big impact on the performance of transactional systems. Concurrency control granu- larity and data granularity (data size) are usually the same. The e ect of this coupling is that if a coarse granularity is used, the overhead of data access (number of disk accesses) is reduced, but also the degree of concurrency. On the other hand, if a ne granularity is chosen to achieve a higher degree of concurrency (there are less con icts), the cost of data ac...

  2. Threaded cognition: an integrated theory of concurrent multitasking.

    Science.gov (United States)

    Salvucci, Dario D; Taatgen, Niels A

    2008-01-01

    The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual and motor resources). The theory specifies a parsimonious mechanism that allows for concurrent execution, resource acquisition, and resolution of resource conflicts, without the need for specialized executive processes. By instantiating this mechanism as a computational model, threaded cognition provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks. The authors illustrate the theory in model simulations of several representative domains ranging from simple laboratory tasks such as dual-choice tasks to complex real-world domains such as driving and driver distraction. (c) 2008 APA, all rights reserved

  3. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    International Nuclear Information System (INIS)

    Kovalenko, Andriy

    2014-01-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  4. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    Science.gov (United States)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  5. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  6. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Valencia Posso, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...... reflect the reactive interactions between concurrent constraint processes and their environment, as well as internal interactions between individual processes. Relationships between the suggested notions are studied, and they are all proved to be decidable for a substantial fragment of the calculus...

  7. Multiscale modelling of nanostructures

    International Nuclear Information System (INIS)

    Vvedensky, Dimitri D

    2004-01-01

    Most materials phenomena are manifestations of processes that are operative over a vast range of length and time scales. A complete understanding of the behaviour of materials thereby requires theoretical and computational tools that span the atomic-scale detail of first-principles methods and the more coarse-grained description provided by continuum equations. Recent efforts have focused on combining traditional methodologies-density functional theory, molecular dynamics, Monte Carlo methods and continuum descriptions-within a unified multiscale framework. This review covers the techniques that have been developed to model various aspects of materials behaviour with the ultimate aim of systematically coupling the atomistic to the continuum descriptions. The approaches described typically have been motivated by particular applications but can often be applied in wider contexts. The self-assembly of quantum dot ensembles will be used as a case study for the issues that arise and the methods used for all nanostructures. Although quantum dots can be obtained with all the standard growth methods and for a variety of material systems, their appearance is a quite selective process, involving the competition between equilibrium and kinetic effects, and the interplay between atomistic and long-range interactions. Most theoretical models have addressed particular aspects of the ordering kinetics of quantum dot ensembles, with far fewer attempts at a comprehensive synthesis of this inherently multiscale phenomenon. We conclude with an assessment of the current status of multiscale modelling strategies and highlight the main outstanding issues. (topical review)

  8. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    Science.gov (United States)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  9. Effect of Mesoscale and Multiscale Modeling on the Performance of Kevlar Woven Fabric Subjected to Ballistic Impact: A Numerical Study

    Science.gov (United States)

    Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang

    2013-12-01

    In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.

  10. Concurrent Engineering with IT-Tools for successful industrial products in a global market

    DEFF Research Database (Denmark)

    Conrad, Finn

    2003-01-01

    The paper presents and discusses research results concerning Concurrent Engineering with IT-Tools for Successful Industrial Products on a Global Market. Concurrent Engineering, often is called just ¿CE¿, that is a systematic approach to the integrated, concurrent design of products and related...... on the world market and the increasing global public demands, requirements and regulations for protection of the environment are both driving forces and challenges for improving the development of control and engineering design. There has always been an ongoing desire to develop and design systems to improve...... performance of products, productivity and efficiency of process operations. Smart use of simulation and modelling IT tools can improve many enterprises ability to compete and survive on the market. European Enterprises developing, designing and manufacturing hydraulic components and hydraulic systems...

  11. Multi-scale modeling for prediction of distributed cellular properties in response to substrate spatial gradients in a continuously run microreactor

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Krühne, Ulrich; Nopens, Ingmar

    2012-01-01

    microbioreactor is simulated. A multiscale model consisting of the coupling of a population balance model, a kinetic model and a flow model was developed in order to predict simultaneously local concentrations of substrate (glucose), product (ethanol) and biomass, as well as the local cell size distributions....

  12. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    Science.gov (United States)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  13. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  14. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    Science.gov (United States)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  15. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Palamidessi, Catuscia; Valencia, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...

  16. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    Directory of Open Access Journals (Sweden)

    Nguyen Trung Kien

    2017-01-01

    Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  17. Multiscale Modeling and Simulation of Material Processing

    Science.gov (United States)

    2006-07-01

    challenge is how to develop methods that permit simulation of a process with a fewer number of atoms (for e.g. 106 instead of 1014 atoms in a cube) or...rreula bakgrundmes to ea wih poblms n-here. In dynamic simulations, the mass and momentum volving rapidly varying stress, such as stress field near a...significant, as indicated by numerical examples that will follow. We next summarize the coupling scheme with the aid of flowchart Fig. 8. The material

  18. Refined composite multiscale weighted-permutation entropy of financial time series

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  19. Concurrent engineering: effective deployment strategies

    Directory of Open Access Journals (Sweden)

    Unny Menon

    1996-12-01

    Full Text Available This paper provides a comprehensive insight into current trends and developments in Concurrent Engineering for integrated development of products and processes with the goal of completing the entire cycle in a shorter time, at lower overall cost and with fewer engineering design changes after product release. The evolution and definition of Concurrent Engineering are addressed first, followed by a concise review of the following elements of the concurrent engineering approach to product development: Concept Development: The Front-End Process, identifying Customer Needs and Quality Function Deployment, Establishing Product Specifications, Concept Selection, Product Architecture, Design for Manufacturing, Effective Rapid Prototyping, and The Economics of Product Development. An outline of a computer-based tutorial developed by the authors and other graduate students funded by NASA ( accessible via the world-wide-web . is provided in this paper. A brief discussion of teamwork for successful concurrent engineering is included, t'ase histories of concurrent engineering implementation at North American and European companies are outlined with references to textbooks authored by Professor Menon and other writers. A comprehensive bibliography on concurrent engineering is included in the paper.

  20. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  1. Multiscale characteristics of mechanical and mineralogical heterogeneity using nanoindentation and Maps Mineralogy in Mancos Shale

    Science.gov (United States)

    Yoon, H.; Mook, W. M.; Dewers, T. A.

    2017-12-01

    Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by

  2. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    Science.gov (United States)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  3. Rethinking serializable multiversion concurrency control

    OpenAIRE

    Faleiro, Jose M.; Abadi, Daniel J.

    2014-01-01

    Multi-versioned database systems have the potential to significantly increase the amount of concurrency in transaction processing because they can avoid read-write conflicts. Unfortunately, the increase in concurrency usually comes at the cost of transaction serializability. If a database user requests full serializability, modern multi-versioned systems significantly constrain read-write concurrency among conflicting transactions and employ expensive synchronization patterns in their design....

  4. Efficient Computation of Multiscale Entropy over Short Biomedical Time Series Based on Linear State-Space Models

    Directory of Open Access Journals (Sweden)

    Luca Faes

    2017-01-01

    Full Text Available The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE and refined MSE (RMSE measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR stochastic processes. The method makes use of linear state-space (SS models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.

  5. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    Science.gov (United States)

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation

  6. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  7. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    Science.gov (United States)

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Impredicative concurrent abstract predicates

    DEFF Research Database (Denmark)

    Svendsen, Kasper; Birkedal, Lars

    2014-01-01

    We present impredicative concurrent abstract predicates { iCAP { a program logic for modular reasoning about concurrent, higher- order, reentrant, imperative code. Building on earlier work, iCAP uses protocols to reason about shared mutable state. A key novel feature of iCAP is the ability to dene...

  9. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  10. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  11. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme

    International Nuclear Information System (INIS)

    Tjahjanto, D D; Eisenlohr, P; Roters, F

    2015-01-01

    Multiscale modelling and simulation play an important role in sheet metal forming analysis, since the overall material responses at macroscopic engineering scales, e.g. formability and anisotropy, are strongly influenced by microstructural properties, such as grain size and crystal orientations (texture). In the present report, multiscale analysis on deep drawing of dual-phase steels is performed using an efficient grain cluster-based homogenization scheme.The homogenization scheme, called relaxed grain cluster (RGC), is based on a generalization of the grain cluster concept, where a (representative) volume element consists of p  ×  q  ×  r (hexahedral) grains. In this scheme, variation of the strain or deformation of individual grains is taken into account through the, so-called, interface relaxation, which is formulated within an energy minimization framework. An interfacial penalty term is introduced into the energy minimization framework in order to account for the effects of grain boundaries.The grain cluster-based homogenization scheme has been implemented and incorporated into the advanced material simulation platform DAMASK, which purposes to bridge the macroscale boundary value problems associated with deep drawing analysis to the micromechanical constitutive law, e.g. crystal plasticity model. Standard Lankford anisotropy tests are performed to validate the model parameters prior to the deep drawing analysis. Model predictions for the deep drawing simulations are analyzed and compared to the corresponding experimental data. The result shows that the predictions of the model are in a very good agreement with the experimental measurement. (paper)

  12. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  13. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    Science.gov (United States)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  14. Quantify entanglement by concurrence hierarchy

    OpenAIRE

    Fan, Heng; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    We define the concurrence hierarchy as d-1 independent invariants under local unitary transformations in d-level quantum system. The first one is the original concurrence defined by Wootters et al in 2-level quantum system and generalized to d-level pure quantum states case. We propose to use this concurrence hierarchy as measurement of entanglement. This measurement does not increase under local quantum operations and classical communication.

  15. Concurrent Models for Object Execution

    OpenAIRE

    Diertens, Bob

    2012-01-01

    In previous work we developed a framework of computational models for the concurrent execution of functions on different levels of abstraction. It shows that the traditional sequential execution of function is just a possible implementation of an abstract computational model that allows for the concurrent execution of functions. We use this framework as base for the development of abstract computational models that allow for the concurrent execution of objects.

  16. Fundamental Science-Based Simulation of Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  17. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  18. Managing Complexity of Control Software through Concurrency

    NARCIS (Netherlands)

    Hilderink, G.H.

    2005-01-01

    In this thesis, we are concerned with the development of concurrent software for embedded systems. The emphasis is on the development of control software. Embedded systems are concurrent systems whereby hardware and software communicate with the concurrent world. Concurrency is essential, which

  19. Concurrent design of an RTP chamber and advanced control system

    Energy Technology Data Exchange (ETDEWEB)

    Spence, P. [Sandia National Labs., Livermore, CA (United States); Schaper, C. [Microelectronics Control and Sensing, Inc., Mountain View, CA (United States); Kermani, A. [CVC Products, Inc., Fremont, CA (United States)

    1995-12-31

    A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.

  20. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  1. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  2. WE-D-BRE-04: Modeling Optimal Concurrent Chemotherapy Schedules

    International Nuclear Information System (INIS)

    Jeong, J; Deasy, J O

    2014-01-01

    Purpose: Concurrent chemo-radiation therapy (CCRT) has become a more common cancer treatment option with a better tumor control rate for several tumor sites, including head and neck and lung cancer. In this work, possible optimal chemotherapy schedules were investigated by implementing chemotherapy cell-kill into a tumor response model of RT. Methods: The chemotherapy effect has been added into a published model (Jeong et al., PMB (2013) 58:4897), in which the tumor response to RT can be simulated with the effects of hypoxia and proliferation. Based on the two-compartment pharmacokinetic model, the temporal concentration of chemotherapy agent was estimated. Log cell-kill was assumed and the cell-kill constant was estimated from the observed increase in local control due to concurrent chemotherapy. For a simplified two cycle CCRT regime, several different starting times and intervals were simulated with conventional RT regime (2Gy/fx, 5fx/wk). The effectiveness of CCRT was evaluated in terms of reduction in radiation dose required for 50% of control to find the optimal chemotherapy schedule. Results: Assuming the typical slope of dose response curve (γ50=2), the observed 10% increase in local control rate was evaluated to be equivalent to an extra RT dose of about 4 Gy, from which the cell-kill rate of chemotherapy was derived to be about 0.35. Best response was obtained when chemotherapy was started at about 3 weeks after RT began. As the interval between two cycles decreases, the efficacy of chemotherapy increases with broader range of optimal starting times. Conclusion: The effect of chemotherapy has been implemented into the resource-conservation tumor response model to investigate CCRT. The results suggest that the concurrent chemotherapy might be more effective when delayed for about 3 weeks, due to lower tumor burden and a larger fraction of proliferating cells after reoxygenation

  3. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  4. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  5. Multiscale integration schemes for jump-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  6. Simulation of the optical coating deposition

    Science.gov (United States)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  7. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-05-05

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.

  8. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wirth, B. D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. This allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to

  9. Nutritional strategies to support concurrent training.

    Science.gov (United States)

    Perez-Schindler, Joaquin; Hamilton, D Lee; Moore, Daniel R; Baar, Keith; Philp, Andrew

    2015-01-01

    Concurrent training (the combination of endurance exercise to resistance training) is a common practice for athletes looking to maximise strength and endurance. Over 20 years ago, it was first observed that performing endurance exercise after resistance exercise could have detrimental effects on strength gains. At the cellular level, specific protein candidates have been suggested to mediate this training interference; however, at present, the physiological reason(s) behind the concurrent training effect remain largely unknown. Even less is known regarding the optimal nutritional strategies to support concurrent training and whether unique nutritional approaches are needed to support endurance and resistance exercise during concurrent training approaches. In this review, we will discuss the importance of protein supplementation for both endurance and resistance training adaptation and highlight additional nutritional strategies that may support concurrent training. Finally, we will attempt to synergise current understanding of the interaction between physiological responses and nutritional approaches into practical recommendations for concurrent training.

  10. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    Science.gov (United States)

    2015-09-13

    thermo-fluid analysis of a ground vehicle and its tires ST-SI Computational Analysis of a Vertical - Axis Wind Turbine We have successfully...of a vertical - axis wind turbine . Multiscale Compressible-Flow Computation with Particle Tracking We have successfully tested the multiscale...Tezduyar, Spenser McIntyre, Nikolay Kostov, Ryan Kolesar, Casey Habluetzel. Space–time VMS computation of wind - turbine rotor and tower aerodynamics

  11. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Science.gov (United States)

    Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  12. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P., E-mail: andrew.kuprat@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Kabilan, S., E-mail: senthil.kabilan@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Carson, J.P., E-mail: james.carson@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Corley, R.A., E-mail: rick.corley@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Einstein, D.R., E-mail: daniel.einstein@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  13. A bidirectional coupling procedure applied to multiscale respiratory modeling

    International Nuclear Information System (INIS)

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2013-01-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  14. Multivariate and multiscale data assimilation in terrestrial systems: a review.

    Science.gov (United States)

    Montzka, Carsten; Pauwels, Valentijn R N; Franssen, Harrie-Jan Hendricks; Han, Xujun; Vereecken, Harry

    2012-11-26

    simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.

  15. Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

    Directory of Open Access Journals (Sweden)

    Harry Vereecken

    2012-11-01

    simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.

  16. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  17. A finite element framework for multiscale/multiphysics analysis of structures with complex microstructures

    Science.gov (United States)

    Varghese, Julian

    This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.

  18. A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems

    KAUST Repository

    Efendiev, Yalchin R.

    2015-08-01

    We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.

  19. Multiscale study on stochastic reconstructions of shale samples

    Science.gov (United States)

    Lili, J.; Lin, M.; Jiang, W. B.

    2016-12-01

    Shales are known to have multiscale pore systems, composed of macroscale fractures, micropores, and nanoscale pores within gas or oil-producing organic material. Also, shales are fissile and laminated, and the heterogeneity in horizontal is quite different from that in vertical. Stochastic reconstructions are extremely useful in situations where three-dimensional information is costly and time consuming. Thus the purpose of our paper is to reconstruct stochastically equiprobable 3D models containing information from several scales. In this paper, macroscale and microscale images of shale structure in the Lower Silurian Longmaxi are obtained by X-ray microtomography and nanoscale images are obtained by scanning electron microscopy. Each image is representative for all given scales and phases. Especially, the macroscale is four times coarser than the microscale, which in turn is four times lower in resolution than the nanoscale image. Secondly, the cross correlation-based simulation method (CCSIM) and the three-step sampling method are combined together to generate stochastic reconstructions for each scale. It is important to point out that the boundary points of pore and matrix are selected based on multiple-point connectivity function in the sampling process, and thus the characteristics of the reconstructed image can be controlled indirectly. Thirdly, all images with the same resolution are developed through downscaling and upscaling by interpolation, and then we merge multiscale categorical spatial data into a single 3D image with predefined resolution (the microscale image). 30 realizations using the given images and the proposed method are generated. The result reveals that the proposed method is capable of preserving the multiscale pore structure, both vertically and horizontally, which is necessary for accurate permeability prediction. The variogram curves and pore-size distribution for both original 3D sample and the generated 3D realizations are compared

  20. High performance multi-scale and multi-physics computation of nuclear power plant subjected to strong earthquake. An Overview

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei

    2010-01-01

    Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)

  1. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  2. Analysis of complex time series using refined composite multiscale entropy

    International Nuclear Information System (INIS)

    Wu, Shuen-De; Wu, Chiu-Wen; Lin, Shiou-Gwo; Lee, Kung-Yen; Peng, Chung-Kang

    2014-01-01

    Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.

  3. Concurrence of three Jaynes-Cummings systems

    Science.gov (United States)

    Qiang, Wen-Chao; Sun, Guo-Hua; Dong, Qian; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2018-04-01

    We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes-Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter θ , the concurrence of the global system may maintain unchanged in some time intervals.

  4. How does concurrent sourcing affect performance?

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    2010-01-01

    be modelled. The propositions and discussion offer researchers a starting-point for further research. Practical implications – The propositions that are developed suggest that managers should consider using concurrent sourcing when they face problems caused by volume uncertainty, technological uncertainty....../methodology/approach – Based on transaction cost, agency, neoclassical economic, knowledge-based, and resource-based theory, it is proposed to show how concurrent sourcing affects performance. Findings – The paper argues that concurrent sourcing improves performance when firms face a combination of volume uncertainty...... how concurrent sourcing affects performance of the market and the hierarchy....

  5. Acoustics of multiscale sorptive porous materials

    Science.gov (United States)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  6. Concurrent LISP and its interpreter

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K; Sugimoto, S; Ohno, Y

    1981-01-01

    In the research field of artificial intelligence many languages have been developed based on LISP, such as Planner, Conniver and so on. They have been developed to give users many useful facilities, especially for describing flexible control structures. Backtracking and coroutine facilities are typical ones introduced into these languages. Compared with backtracking and coroutine facilities, multi-process description facilities are considered to be a better alternative for writing well-structured programs. This paper describes concurrent LISP, a new concurrent programming language based on LISP. Concurrent LISP is designed to provide simple and flexible facilities for multi-process description without changing the original language features of LISP. This paper also describes the concurrent LISP interpreter which has been implemented on a FACOM M-200 at the Data Processing Center of Kyoto University. 19 references.

  7. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise.

    Science.gov (United States)

    Eddens, Lee; Browne, Sarah; Stevenson, Emma J; Sanderson, Brad; van Someren, Ken; Howatson, Glyn

    2017-07-01

    This study investigated the effect of protein supplementation on recovery following muscle-damaging exercise, which was induced with a concurrent exercise design. Twenty-four well-trained male cyclists were randomised to 3 independent groups receiving 20 g protein hydrolysate, iso-caloric carbohydrate, or low-calorific placebo supplementation, per serve. Supplement serves were provided twice daily, from the onset of the muscle-damaging exercise, for a total of 4 days and in addition to a controlled diet (6 g·kg -1 ·day -1 carbohydrate, 1.2 g·kg -1 ·day -1 protein, remainder from fat). Following the concurrent exercise session at time-point 0 h, comprising a simulated high-intensity road cycling trial and 100 drop-jumps, recovery of outcome measures was assessed at 24, 48, and 72 h. The concurrent exercise protocol was deemed to have caused exercise-induced muscle damage (EIMD), owing to time effects (p 0.05) were observed for any of the outcome measures. The present results indicate that protein supplementation does not attenuate any of the indirect indices of EIMD imposed by concurrent exercise, when employing great rigour around the provision of a quality habitual diet and the provision of appropriate supplemental controls.

  8. Multi-scale graph-cut algorithm for efficient water-fat separation.

    Science.gov (United States)

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore

    2010-01-01

    We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations o...... in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water.......We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations...... of the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our method...

  10. Multiscale phase inversion of seismic marine data

    KAUST Repository

    Fu, Lei

    2017-08-17

    We test the feasibility of applying multiscale phase inversion (MPI) to seismic marine data. To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. Results with synthetic data and field data from the Gulf of Mexico produce robust and accurate results if the model does not contain strong velocity contrasts such as salt-sediment interfaces.

  11. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  12. Multiscale analysis of damage using dual and primal domain decomposition techniques

    NARCIS (Netherlands)

    Lloberas-Valls, O.; Everdij, F.P.X.; Rixen, D.J.; Simone, A.; Sluys, L.J.

    2014-01-01

    In this contribution, dual and primal domain decomposition techniques are studied for the multiscale analysis of failure in quasi-brittle materials. The multiscale strategy essentially consists in decomposing the structure into a number of nonoverlapping domains and considering a refined spatial

  13. Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.

    Science.gov (United States)

    Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso

    2010-10-12

    Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.

  14. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    Science.gov (United States)

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  15. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    Science.gov (United States)

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  16. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    Science.gov (United States)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  17. Simulation and modelling of advanced Argentinian nuclear fuels

    International Nuclear Information System (INIS)

    Marino, A.; Losada, E.; Demarco, G.; Garces, J.; Marino, A.; Jaroszewicz, S.; Mosca, H.; Demarco, G.

    2011-01-01

    The BaCo code (Barra Combustible, Spanish expression for 'fuel rod') was developed to simulate the nuclear fuel rods behaviour under irradiation. The generation of nucleo electricity in Argentina is based on PHWR NPP and, as a consequence, BaCo is focused on PHWR fuels keeping full compatibility with PWR, WWER, among others type of fuels (commercial, experimental or prototypes). BaCo includes additional extensions for 3D calculations, statistical improvements, fuel design and batch analysis. Research on new fuels and cladding materials properties based on ab initio and multiscale modelling are currently under development to be included in BaCo simulations in order to be applied to Generation IV reactors. The ab initio and multiscale modelling can enhance the field of application of the code by including a strong physical basement covering the unavailable data needed for those improvements. (authors)

  18. Multiscale scenarios for nature futures

    CSIR Research Space (South Africa)

    Rosa, IMD

    2017-09-01

    Full Text Available & Evolution, vol. 1: 1416-1419 Multiscale scenarios for nature futures Rosa IMD Pereira HM Ferrier S Alkemade R Acosta LA Akcakaya HR den Belder E Fazel AM Fujimori S Sitas NE ABSTRACT: Targets for human development are increasingly...

  19. Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, Ioannis [Princeton Univ., NJ (United States)

    2017-03-22

    The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating the scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).

  20. A Reference Framework for Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Considering the diversity of methods and tools offered to concurrent engineering, the aspects playing important roles in the concurrent engineering c ontext have been pinpointed as being four core elements which are Activity, Meth od, Object and Information. Based on these four elements, a reference framework called AMOI is proposed to be the guideline for the systematic concurrent produc t design. Using the AMOI reference framework, concurrent product development sys tem can be structured into four function models (including the activity model, m ethod model, object model and information model) which are interconnected with e ach other.