WorldWideScience

Sample records for concrete pressure-vessel subjected

  1. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  2. Heat and mass transfer in a concrete pressure vessel

    International Nuclear Information System (INIS)

    Zangle, K.; Sadouki, H.; Wittmann, F.H.

    1989-01-01

    Pressure vessels of prestressed concrete for high temperature reactors are subjected to high mechanical and thermal stresses during the reactors normal working conditions and in particular accidental conditions. According to a large temperature gradient between the inner liner and the outer side of the thickwalled vessel, physical as well as chemical processes take place in concrete. Temperature and moisture content of concrete have a big influence on these processes. During the last years different investigations have been conducted in order to determine characteristic values of concrete under these conditions. At present the authors conduct a series of experiments on model vessels of prestressed concrete and a large number of small specimens. The aims of these tests can be briefly summarized as follows: experimental determination of transport coefficients for a numerical analysis; determination of chemical reactions under hydrothermal conditions and their significance for the risk of corrosion; determination of temperature and moisture distribution as a function of time; and determination of the strength development in the zones subjected to elevated temperatures

  3. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  4. Method of detecting construction faults in concrete pressure vessels

    International Nuclear Information System (INIS)

    Robertson, S.A.; Duhoux, M.; Dawance, G.; Carrie, C.; Morel, D.

    1976-01-01

    A major problem in the design and construction of concrete pressure vessels for nuclear power stations is the risk of excessive air leaks through the concrete itself, due to faulty construction. The 'sonic coring' method of non-destructive concrete testing has been used successfully in pile and diaphragm wall construction control for several years, and the potential use of this method to control the presence of faults in concrete pressure vessels is here described. (author)

  5. Prestressed concrete pressure vessels for nuclear reactors - 1973

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This standard deals with the design, construction, inspection and testing of prestressed concrete pressure vessels for nuclear reactors. Such pressure vessels serve the dual purpose of shielding and containing gas cooled nuclear reactors and are a form of civil engineering structure requiring particularly high integrity, and ensured leak tightness. (Metric)

  6. Cylindrical prestressed concrete pressure vessel for a nuclear power plant

    International Nuclear Information System (INIS)

    Horner, M.; Hodzic, A.; Haferkamp, D.

    1976-01-01

    A prestressed concrete pressure vessel for a HTGR is proposed which encloses, in addition to the reactor core, not only the heat-exchanging facilities but also the turbine unit. The reinforcement of the cylindrical concrete body is to be carried out with special care, it is provided for horizontal tendons, the prestressed concrete pressure vessel has a wire-winding device, while the longitudinal reinforcement is achieved by tendous guided in parallel to the vesses axes through the interspaces between the pods. (UWI) [de

  7. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Mayer, N.; Amberg, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel and a comparison of the distribution of temperature, strain and stress within the concrete member to the optimized statical predictions and the criterions of layout yield to an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed on the prototype vessel at Seibersdorf Research Center during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C/50 bar). (Author)

  8. In-service supervision of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Zemann, H.; Weissbacher, L.; Mayer, N.; Amberge, C.

    1985-01-01

    On-line measurements of the physical state of a prestressed concrete pressure vessel, and comparison with the design predictions of the distribution of temperature, strain and stress within the concrete member and the criteria of layout, provide an efficient and economical method of operating the vessel with a high potential of safety. The requirements of instrumentation and the comparison with static calculations are discussed with reference to the prototype vessel at Seibersdorf Research Centre during the phase of construction and prestressing, the phase of the first thermal treatment (stabilization), the pressure tests and under the operating conditions of a high temperature reactor (150 0 C, 50 bar). (author)

  9. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  10. Prestressed concrete pressure vessels for boiling water reactors

    International Nuclear Information System (INIS)

    Menon, S.

    1979-12-01

    Following a general description of the Scandinavian cooperative project on prestressed concrete pressure vessels for boiling water reactors, detailed discussion is given in four appendices of the following aspects: the verification programme of tests and studies, the development and testing of a liner venting system, a preliminary safety philosophy and comparative assessment of cold and hot liners. Vessel failure probability is briefly discussed and some figures presented. The pressure gradients in the vessel wall resulting from various stipulated linear cracks, with a liner venting system are presented graphically. (JIW)

  11. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    The TEMP-STRESS FEM represents an axisymmetric simulation of the reinforced concrete vessel to internal pressurization. The information shows the global deformation, the state of strain/stress within the containment vessel with respect to the imposed pressures. Thus, the location and progress of concrete cracking, the stretching of the liner and the reinforcing bars and final failure are indicated through the entire loading range. Equilibrium of the entire system is assured at definite loading increments. With the progress of concrete cracking, the resisting load is continuously transferred to the reinforcing bars and the liner. Thus, after the tensile strength is exceeded and the concrete stress is set to zero, the internal pressures are entirely resisted by the liner and the reserve strength of the reinforcing bars. The reinforcing bars are mechanically connected to each other by splices, the ultimate strength of which is less than that of the rebars themselves. The corresponding strain at this limiting stress is lower than the ultimate strain of the liner. Therefore, the specified ultimate strength of the splices limits the pressurization of the vessel. Furthermore, once any of the splices fail, then load is transferred to the adjacent members, causing their failure and general failure of the vessel. (orig./HP)

  12. An introduction to the analysis of multi-cavity prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Silva, M.C.A.T. da.

    1986-01-01

    The present work is a study of multi-cavity prestressed concrete pressure vessels (PCRV) for nuclear reactors. A review is made of the designs, analises and models of multi-cavity concrete pressure vessels. A preliminary evaluation of the NONSAP program for applications in complex three-dimensional structures such as a multi-cavity pressure vessel is also made. A model of a PCRV of a 1000 MW(e) high-temperature gas cooled reactor was selected for a three-dimensional analysis with the NONSAP program. The results obtained are compared with experimental data. (Author) [pt

  13. Rapid construction of concrete pressure vessels

    International Nuclear Information System (INIS)

    Limbert, D.; Weatherseed, D.C.

    1989-01-01

    This paper opens with a general description of the concrete pressure vessel followed by a more detailed examination of the critical elements of the construction, including choice of methods and plant which were selected to ensure its rapid construction. The pressure vessel construction cannot be treated in isolation, because it is very closely linked with its surrounding structures - namely the reactor hall which surrounds it and the charge hall which tops it, as will be seen in the context of this paper. Rate of progress of construction is not entirely in the civil contractor's hands because so many of the operations affecting the civil works are of a mechanical nature, hence a very close liaison and understanding amongst all contractors concerned was of the utmost importance. (author)

  14. Ultimate load analysis of prestressed concrete reactor pressure vessels considering a general material law

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1975-01-01

    A method of analysis is presented, by which progressive fracture processes in axisymmetric prestressed concrete pressure vessels during increasing internal pressure can be evaulated by means of a continuum calculation considering a general material law. Formulations used in the analysis concerning material behaviour are derived on one hand from appropriate results of testing small concrete specimens, and are on the other hand gained by parametric studies in order to solve questions still existing by recalulating fracture tests on concrete bodies with more complex states of stress. Due attention is focussed on investigating the behaviour of construction members subjected to high shear forces (end slabs.). (Auth.)

  15. The evolution and structural design of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Hannah, I.W.

    1978-01-01

    The introduction of the prestressed concrete pressure vessel to contain the main gas coolant circuit of nuclear reactors has marked a major step forward. This chapter traces the evolution and development of the PCPV, and lists the principal parameters adopted. Current design and loading standards are discussed in relation to the two main limit states of serviceability and safety. Prestressed concrete pressure vessel analysis has called for very extensive adaptation and expansion of conventional finite element and finite difference methods in order to deal with the elevated temperature of operation, together with extensive concrete testing at temperature and under multi-directional stressing. These new methods and extra data are being adopted in prestressed applications in other fields and may well prove to be of much wider significance than is presently appreciated. (author)

  16. UK regulatory aspects of prestressed concrete pressure vessels for gas-cooled reactor nuclear power stations

    International Nuclear Information System (INIS)

    Watson, P.S.

    1990-01-01

    Safety assessment principles for nuclear power plants and for nuclear chemical plants demand application of best proven techniques, recognised standards, adequacy margins, inspection and maintenance of all the components including prestressed concrete pressure vessels. In service inspection of prestressed concrete pressure vessels includes: concrete surface examination; anchorage inspection; tendon load check; tendon material examination; foundation settlement and tilt; log-term deformation; vessel temperature excursions; coolant loss; top cap deflection. Hartlepool and Heysham 1 power plants prestress shortfall problem is discussed. Main recommendations can be summarised as follows: at all pressure vessel stations prestress systems should be calibrated in a manner which results in all load bearing components being loaded in a representative manner; at all pressure vessel stations load measurements during calibration should be verified by a redundant and diverse system

  17. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references

  18. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  19. The need to pressure test prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Forgie, J.H.; Holland, J.A.

    1983-01-01

    In the period when PCRV were relatively unproven, proof pressure testing provided a useful demonstration of vessel integritiy and a confirmation of model testing and of analysis. No failures have occurred during concrete vessel tests in the UK or in the subsequent operational life of the vessels and much has been learned of their behaviour in service. The paper examines the advantages and disadvantages of proof testing PCRV in the light of the above increased knowledge of vessel performance. The paper draws attention to certain hypothetical loading cases that could be more onerous than the proof test and suggests that pressure testing could itself cause unnecessarily high loading to parts of the vessel. Always recognising the safety considerations and demonstrations of such are of prime importance, the authors suggest that a lower pressure level could be adopted without loss of original intent. In addition some ground rules are suggested as to cases where proof testing could be omitted. (orig./HP)

  20. A prestressed concrete pressure vessel for helium high temperature reactor system

    International Nuclear Information System (INIS)

    Horner, R.M.W.; Hodzic, A.

    1976-01-01

    A novel prestressed concrete pressure vessel has been developed to provide the primary containment for a fully integrated system comprising a high temperature nuclear reactor, three horizontally mounted helium turbines, associated heat exchangers and inter-connecting ducts. The design and analysis of the pressure vessel is described. Factors affecting the final choice of layout are discussed, and earlier development work seeking to resolve the conflicting requirements of the structural, mechanical, and system engineers outlined. Proposals to increase the present output of about 1000 MW of electrical power to over 3000 MW, by incorporating four turbines in a single pressure vessel are presented. (author)

  1. Cylindrical reinforced-concrete pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    Vaessen, F.

    1975-01-01

    The cylindrical pressure vessel has got a wall and an isolating layer composed of blocks of heat-resistant concrete or of ceramic material. The side of the isolating layer facing the interior of the presssure vessel is coated by a liner made of metallic material. In cold state and without internal pressure, the radius of this liner is smaller by a differential amount than that of the isolating layer. By means of radially displaceable fixing elements consisting of an anchoring tube and a holding tube inserted in it, the liner can be made to rest against the isolating layer. This occurs if the pressure vessel is brought to operational temperature. The anchoring tube is attached to the isolating layer whereas the displaceable holding tube is connected with the liner. The possible relative travelling distance of these two elements is equal to the difference of length of the two radii. In addition, the liner may consist of single parts connected with each other through compensating flanges. There may also be additional springs arranged between the isolating layer and the liner. (DG/PB) [de

  2. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Berg, S.; Loeseth, S.; Holand, I.

    1977-01-01

    A computational model for circular symmetric reinforced concrete shell problems is described. The model is based on the Finite Element Method. Non-linear stress-strain constitutive relations are used for the concrete, the reinforcement and for the liner. The reinforcement layers may be of different steel qualities. Each layer may be given a specified prestressing. This can be done at the beginning of the computations or the specific reinforcement layer can be considered inactive until a specified level of loading is reached. Thus, the prestressing procedure may also be analyzed in detail. Bond-slip effects are not accounted for. However, no bond may be assumed for prestressing cables by inserting special reinforcement elements. Several models of prestressed concrete reactor pressure vessels which have been tested up to rupture have been analysed. Analytical (numerical) models for reinforced concrete are also discussed on a more general basis. (Auth.)

  3. Reactors with pressure vessel in pre-stressed concrete

    International Nuclear Information System (INIS)

    Devillers, Christian; Lafore, Pierre

    1964-12-01

    After having proposed a general description of the evolution of the general design of reactors with a vessel in pre-stressed concrete, this report outlines the interest of this technical solution of a vessel in pre-stressed concrete with integrated exchangers, which is to replace steel vessel. This solution is presented as much safer. The authors discuss the various issues related to protection: inner and outer biological protection of the vessel, material protection (against heating, steel irradiation, Wigner effect, and moderator radiolytic corrosion). They report the application of calculation methods: calculation of vessel concrete heating, study of the intermediate zone in integrated reactors, neutron spectrum and flows in the core of a graphite pile

  4. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  5. State-of-the-art and prospets for designing and constraction of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Short review of reports submitted to the symposium on pressure vessels, which was conducted in Calgary (Canada), has been presented. New tendencies of designing of prestressed concrete pressure vessels (PCPV) for nuclear for nuclear reactors are noted. Construction of hot vessel liner is studied. A conclusion is drawn on prospects of PCPV creation

  6. Stress criteria for nuclear vessel concrete

    International Nuclear Information System (INIS)

    Costes, D.

    1975-01-01

    Concrete nuclear vessels are submitted to prestressing forces which limit tensile stresses in concrete when the vessel is under pressure with thermal gradients. Hence, the most severe conditions for concrete appear when the vessel is prestressed and not submitted to internal pressure. The triaxial states of stress in the concrete may be computed postulating elastic or other behavior and compared with safe limits obtained from rupture tests and fatigue tests. The first part of the paper, recalls experimental rupture results and the acceptability procedures currently used. Criteria founded on the lemniscoid surfaces are proposed, parameters for which are obtained by various tests and safety considerations. In the second part, rupture tests are reported on small, thick, cylindrical vessels submitted to external hydraulic pressure simulating prestressing forces. Materials used are plain concrete, microconcrete, marble and graphite. The strengths obtained are much higher than those which could be elastically computed, triaxial rupture states being provided by previous experiments. Such results may be due to a plastic stress redistribution before fracture and to stabilizing effects of stress gradients around the more stressed areas. Fatigue tests by external hydraulic loading are reported [fr

  7. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  8. The dynamic relaxation method in the structural analysis of concrete pressure vessels

    International Nuclear Information System (INIS)

    Davidson, I.; Assis Bastos, M.R. de; Camargo, P.B. de.

    1977-01-01

    The dynamic relaxation method, applied to 3 dimensional concrete structures, especially pressure vessels, is demonstrated. It utilizes the finite difference method and allows the growth of cracks to be followed up to the point of vessel rupture. A FORTRAN IV program is developed, which can also be utilized, with the necessary modifications, for other structure calculations [pt

  9. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    Several present and proposed gas-cooled reactors use concrete pressure vessels. In addition, concrete is almost universally used for the secondary containment structures of water-cooled reactors. Regulatory agencies must have means of assuring that these concrete structures perform their containment functions during normal operation and after extreme conditions of transient overpressure and high temperature. The NONSAP nonlinear structural analysis program has been extensively modified to provide one analytical means of assessing the safety of reinforced concrete pressure vessels and containments. Several structural analysis codes were studied to evaluate their ability to model the nonlinear static and dynamic behavior of three-dimensional structures. The NONSAP code was selected because of its availability and because of the ease with which it can be modified. In particular, the modular structure of this code allows ready addition of specialized material models. Major modifications have been the development of pre- and post-processors for mesh generation and graphics, the addition of an out-of-core solver, and the addition of constitutive models for reinforced concrete subject to either long-term or short-term loads. Emphasis was placed on development of a three-dimensional analysis capability

  10. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Connor, J.J.

    1975-01-01

    The numerical procedures for predicting the nonlinear behavior of a prestressed concrete reactor vessel over its design life are discussed. The numerical models are constructed by combining three-dimensional isoparametric finite elements which simulate the concrete, thin shell elements which simulate steel linear plates, and layers of reinforcement steel, and axial elements for discrete prestressing cables. Nonlinearity under compressive stress, multi-dimensional cracking, shrinkage and stress/temperature induced creep of concrete are considered in addition to the elasti-plastic behavior of the liner and reinforcing steel. Various failure theories for concrete have been proposed recently. Also, there are alternative strategies for solving the discrete system equations over the design life, accounting for test loads, pressure and temperature operational loads, creep unloading and abnormal loads. The proposed methods are reviewed, and a new formulation developed by the authors is described. A number of comparisons with experimental tests results and other numerical schemes are presented. These examples demonstrate the validity of the formulation and also provide valuable information concerning the cost and accuracy of the various solution strategies i.e., total vs. incremental loading and initial vs. tangent stiffness. Finally, the analysis of an actual PCRV is described. Stress contours and cracking patterns in the region of cutouts corresponding to operational pressure and temperature loads are illustrated. The effects of creep, unloading, and creep recovery are then shown. Lastly, a strategy for assessing the performance over its design life is discussed

  11. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  12. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  13. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  14. Minimum weight design of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Boes, R.

    1975-01-01

    A method of non-linear programming for the minimization of the volume of rotationally symmetric prestressed concrete reactor pressure vessels is presented. It is assumed that the inner shape, the loads and the degree of prestressing are prescribed, whereas the outer shape is to be detemined. Prestressing includes rotational and vertical tension. The objective function minimizes the weight of the PCRV. The constrained minimization problem is converted into an unconstrained problem by the addition of interior penalty functions to the objective function. The minimum is determined by the variable metric method (Davidson-Fletcher-Powell), using both values and derivatives of the modified objective function. The one-dimensional search is approximated by a method of Kund. Optimization variables are scaled. The method is applied to a pressure vessel like for THTR. It is found that the thickness of the cylindrical wall may be reduced considerably for the load cases considered in the optimization. The thickness of the cover is reduced slightly. The largest reduction in wall thickness occurs at the junction of wall and cover. (Auth.)

  15. Tests on model of a prestressed concrete nuclear pressure vessel with multiple cavities

    International Nuclear Information System (INIS)

    Favre, R.; Koprna, M.; Jaccoud, J.P.

    1977-01-01

    The prestressed concrete pressure vessel (prototype) is a cylinder having a diameter of 48 m and a height of 39 m. It has 25 vertical cavities (reactor, heat exchangers, heat recuperators) and 3 horizontal cavities (gas turbines of 500 kw). The cavities are closed by plugs, and their tightness is ensured by a steel lining. A model, on a scale of 1/20, made of microconcrete, was loaded in several cycles, by a uniform inner pressure in the cavities, increasing to the point of failure. The three successive stages were examined: stage of globally elastic behavior, cracking stage, ultimate stage. The behavior of the model is globally elastic up to an inner pressure of 120 to 130 kp/cm 2 , corresponding to about twice the maximum pressure of service, equal to 65 kp/cm 2 . The prestressed tendons at this stage show practically no stress increase. The first detectable cracks appear on the lateral side half-way up the model, as soon as the pressure exceeded 120 kp/cm 2 . From 150-165 kp/cm 2 , the cracking stage can be considered as achieved and the main crack pattern entirely formed. A horizontal crack continues in the middle of the barrel, as well as vertical cracks at each outer cavity. Beyond a pressure of 150-165 kp/cm 2 the ultimate stage begins. The strains of the stresses in the tendons grow more rapidly. The steel lining is highly solicited. Above about 210 kp/cm 2 the model behaves like a structure composed of a group of concrete blocks bound by the tendons and the lining. The failure (240 kp/cm 2 ) occurred through a mechanism of ejection and bending of the concrete ring at the periphery of the barrel of the vessel, which was solicited mainly in tension

  16. Experimental analysis of a nuclear reactor prestressed concrete pressure vessels model

    International Nuclear Information System (INIS)

    Vallin, C.

    1980-01-01

    A comprehensible analysis was made of the performance of each set of sensors used to measure the strain and displacement of a 1/20 scale Prestressed Concrete Pressure Vessel (PCPV) model tested at the Instituto de Pesquisas Energeticas e Nucleares (IPEN). Among the three Kinds of sensors used (strain gage, displacement transducers and load cells) the displacement transducers showed the best behavior. The displacemente transducers data was statistically analysed and a linear behavior of the model was observed during the first pressurizations tests. By means of a linear statistical correlation between experimental and expected theoretical data it was found that the model looses the linearity at a pressure between 110-125 atm. (Author) [pt

  17. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.

    2013-01-01

    This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and

  18. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch; Dawance, G; Marechal, J C [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  19. Experience of in-service surveillance and monitoring of prestressed concrete pressure vessels for nuclear reactors

    International Nuclear Information System (INIS)

    Irving, J.; Smith, J.R.; Eadie, D.McD.; Hornby, I.W.

    1976-01-01

    Details are given of the statutory requirements for the inspection of prestressed concrete pressure vessels in the United Kingdom, with particular emphasis on the prestressing system. The results of periodic examinations under the Licencing Conditions of the Oldbury and Wylfa vessels are presented and discussed in relation to design expectations and future requirements. Strain, moisture and temperature records obtained from the Oldbury PCPV's over a 10 year period are compared with prediction and new developments in vessel instrumentation are discussed. (author)

  20. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient; Comportement d'un caisson en beton precontraint soumis a un gradient de temperature eleve

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Bonvalet, Ch.; Dawance, G.; Marechal, J.C. [Centre Experimental de Recherches et d' Etudes du Batiment et des Travaux Publics (CEBTP), 76 - Harfleur (France)

    1965-07-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm{sup 2}; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The

  1. An international survey of in-service inspection experience with prestressed concrete pressure vessels and containments for nuclear reactors

    International Nuclear Information System (INIS)

    1982-04-01

    An international survey is presented of experience obtained from the in-service surveillance of prestressed concrete pressure vessels and containments for nuclear reactors. Some information on other prestressed concrete structures is also given. Experience has been gained during the working life of such structures in Western Europe and the USA over the years since 1967. For each country a summary is given of the nuclear programme, national standards and Codes of Practice, and the detailed in-service inspection programme. Reports are then given of the actual experience obtained from the inspection programme and the methods of measurement, examination and reporting employed in each country. A comprehensive bibliography of over 100 references is included. The appendices contain information on nuclear power stations which are operating, under construction or planned worldwide and which employ either prestressed concrete pressure vessels or containments. (U.K.)

  2. Overview of experimental results obtained under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Naus, D.J.

    1978-01-01

    Under the Prestressed Concrete Nuclear Pressure Vessel Development Program at the Oak Ridge National Laboratory, various aspects of Prestressed Concrete Pressure Vessels (PCPVs) are investigated and evaluated with respect to reliability, structural performance, constructability, and economy. Based upon identified needs, analytical and experimental investigations are conducted. Areas of interest include finite-element analysis development, materials and structural behavior tests, instrumentation evaluation and development, and structural model tests. Studies have been recently completed in the following areas: concrete embedment instrumentation systems for PCPVs, grouted-nongrouted prestressing systems, acoustic emission as a technique for structural integrity monitoring, and model tests of steam-generator cavity closure plugs for a Gas-Cooled Fast Reactor (GCFR). An overview of results is presented

  3. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  4. High temperature helium test rig with prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schmidl, H.

    1975-10-01

    The report gives a short description of the joint project prestressed concrete vessel-helium test station as there is the building up of the concrete structure, the system of instrumentation, the data processing, the development of the helium components as well as the testing programs. (author)

  5. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures

    International Nuclear Information System (INIS)

    Ichikawa, Y.; England, G.L.

    2004-01-01

    Prediction of moisture migration and pore pressure build-up in non-uniformly heated concrete is important for safe operation of concrete containment vessels in nuclear power reactors and for assessing the behaviour of fire-exposed concrete structures. (1) Changes in moisture content distribution in a concrete containment vessel during long-term operation should be investigated, since the durability and radiation shielding ability of concrete are strongly influenced by its moisture content. (2) The pressure build-up in a concrete containment vessel in a postulated accident should be evaluated in order to determine whether a venting system is necessary between liner and concrete to relieve the pore pressure. (3) When concrete is subjected to rapid heating during a fire, the concrete can suffer from spalling due to pressure build-up in the concrete pores. This paper presents a mathematical and computational model for predicting changes in temperature, moisture content and pore pressure in concrete at elevated temperatures. A pair of differential equations for one-dimensional heat and moisture transfer in concrete are derived from the conservation of energy and mass, and take into account the temperature-dependent release of gel water and chemically bound water due to dehydration. These equations are numerically solved by the finite difference method. In the numerical analysis, the pressure, density and dynamic viscosity of water in the concrete pores are calculated explicitly from a set of formulated equations. The numerical analysis results are compared with two different sets of experimental data: (a) long-term (531 days) moisture migration test under a steady-state temperature of 200 deg. C, and (b) short-term (114 min) pressure build-up test under transient heating. These experiments were performed to investigate the moisture migration and pressure build-up in the concrete wall of a reactor containment vessel at high temperatures. The former experiment simulated

  6. Design criteria for high-temperature-affected, metallic and ceramic components, and for the prestressed concrete reactor pressure vessel of future HTR systems. Final report. Vol. 1-4

    International Nuclear Information System (INIS)

    1988-08-01

    This work in five separate volumes reports on the elaboration of basic data for the formulation of design criteria for HTR components and is arranged into the four following subject areas : (1) safety-specific limiting conditions; (2) metallic components; (3) prestressed concrete reactor pressure vessels; (4) graphitic reactor internals. Under item 2, the mechanical and physical characteristics of the materials X20CrMoV 12 1, X10NiCrAlTi 32 20, and NiCr23Co12Mo are examined up to temperatures of 950deg C. Stress-strain rate laws are elaborated for description of the inelastic deformation behavior. The representation of the subject area reactor pressure vessels deals with four main topics: Prestressed concrete support structure, liner, vessel closures, thermal protection system. Quality-assurance classes are defined under item 4 for graphitic components and load levels for load categories. The material evaluation is discussed in detail (e.g. manufacturing monitoring from the raw material to the graphitization and manufacturing testing up to the acceptance test). In addition, the corrosion behavior and irradiation behavior of graphite is examined and rules for computation of stresses in irradiated and unirradiated graphitic components are elaborated. (MM) [de

  7. Material problems in accident analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1977-01-01

    Due to their very high energy absorption capability, as well as their inherent safety advantages, prestressed concrete reactor vessels are presently being keenly studied as the basic barrier to contain hypothetical core disruptive accidents in a fast breeder reactor. One problem investigated is the nonlinear constitutive behavior and failure criteria for concrete. Previously, a comprehensive theory, called endochronic theory, has been shown to satisfy all basic currently known features of test data. Nevertheless uncertainty still exists with regard to non-proportional loading paths, for which good test data are lacking at present. An extension of the endochronic theory which correlates best with general experimental evidence and includes fracturing terms is given, and a comparison with vertex-type hardening in plasticity is made. A second problem which must be analysed in accident situations is the high temperature shock on the concrete walls (due to liquid sodium, up to 850 0 C). Refining a previous crude formulation, a rational model for calculating moisture and heat transfer and pore pressures in concrete subjected to thermal shock is presented. In conclusion, a new design concept, in which the concrete vessel is completely dehydrated and kept hot throughout its service life in order to substantially improve its response to thermal shock as well as liquid sodium contact, is described. (Auth.)

  8. Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Yamada, Kazuie.

    1983-01-01

    Reactor containment vessels have been made of steel so far, but since it was decided to adopt a prestressed concrete vessel in the Tsuruga No. 2 plant of Japan Atomic Power Co., the construction of the containment vessels made of prestressed concrete and reinforced concrete has been studied by various electric power companies. However in Japan, there is no standard for the design and construction of concrete structures of this kind. In the standard of foreign countries used for reference, the basis of the stipulation concerning the aseismatic design of concrete containment vessels is not distinct. In this study, the clarification of the strength and deformation when RC vessels are subjected to seismic force only or to internal pressure and seismic force was aimed at, and the result of the loading test by one or two-direction in-plane forces on RC shell elements was examined. Based on this, the method of estimating the strength and deformation of RC shell elements was proposed. The orthogonal reinforcement was adopted, and the strength of shell elements was determined by the yielding of reinforcing bars. (Kako, I.)

  9. Crack analysis of multicavity prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Gallix, R.; Liu, T.C.; Lu, S.C.H.

    1975-01-01

    A new method to perform the crack analysis of non-axisymmetric, multicavity prestressed concrete reactor vessels (PCRV's) subjected to hypothetical overpressure by using an axisymmetric two-dimensional finite element computer code is presented. Concrete, steel liner, bonded reinforcing steel and prestressing steel elements are modeled. The limiting tensile strain criterion is adopted for concrete cracking. The steel elements are assumed to be elastic/perfectly plastic. Von Mises yield criterion and Prandtl-Reuss flow equations define the behavior of the liner in the range of plastic deformations. An orthotropic stress-strain constitutive law is utilized for cracked concrete elements. To account for the presence of penetrations and secondary cavities in the PCRV, a modified finite element model based on the concept of effective moduli is adopted. The pressure in these cavities is simulated by equivalent axisymmetric pressure distributions. In the analysis, the pressure is applied incrementally. For a given pressure, the displacements, strains, and stresses are computed. The state of strains or stresses is then examined against the cracking or yield criteria. If cracking or yield is indicated, the stiffness and load matrices for the cracked and yielding elements are recomputed and a new equilibrium is sought. This procedure is repeated until the desired convergence of the solution is achieved. The validity of the adopted approach utilizing the two-dimensional finite element method for overpressure analyses of non-axisymmetric PCRV's is demonstrated through comparisons with two multicavity PCRV scale models. A reliable and conservative estimate of PCRV behavior under overpressure is obtained

  10. Concrete containment vessels (CCV) for nuclear power plants, (1)

    International Nuclear Information System (INIS)

    Ibe, Yukimi; Kitajima, Masatake

    1977-01-01

    Containment vessels (CV) and the construction of concrete containment vessels (CCV) for nuclear power plants are described generally, and their use and techniques in foreign countries are illustrated, in connection with the introduction of CCV to Japanese nuclear power plants. The introduction deals with the construction plan of Japanese nuclear power plants, and with the difficulties in the steel CV for large scale construction. The investigations, tests and researches are not yet sufficient. The prompt establishment of safety supported by technical criteria, analytical methods and experiments is desired. The second part deals with the consideration for aseismatic design, construction, function and characteristics of CCV. The classification and currently employed CCV, which is mainly reinforced concrete containment vessels (RCCV), are described, and the typical CCV employed for BWR is illustrated. Further, the typical arrangement of reinforcing steels at the cylindrical portion and the dome portion of RCCV is illustrated. The third part deals with the present state of CCV abroad. A prestressed concrete containment vessel (PCCV) of Turkey Point power plant is illustrated as a typical example of CCV. The tests reported in the international meeting for the design, construction and operation of concrete pressure vessels and concrete containment vessels at York University in England in 1975 are reviewed. Typical examples of the design conditions, the size and form, and the construction procedure for PCCV and RCCV abroad are reviewed. (Iwakiri, K.)

  11. Monitoring of prestressed concrete pressure vessels. II. performance of selected concrete embedment strain meters under normal and extreme environmental conditions

    International Nuclear Information System (INIS)

    Naus, D.J.; Hurtt, C.C.

    1978-10-01

    Unique types of instrumentation are used in prestressed concrete pressure vessels (PCPVs) to measure strains, stresses, deflections, prestressing forces, moisture content, temperatures, and possibly cracking. Their primary purpose is to monitor these complex structures throughout their 20- to 30-year operating lifetime in order to provide continuing assurance of their reliability and safety. Numerous concrete embedment instrumentation systems are available commercially. Since this instrumentation is important in providing continuing assurance of satisfactory performance of PCPVs, the information provided must be reliable. Therefore, laboratory studies were conducted to evaluate the reliability of these commercially available instrumentation systems. This report, the second in a series related to instrumentation embedded in concrete, presents performance-reliability data for 13 types of selected concrete embedment strain meters which were subjected to a variety of loading environments, including unloaded, thermally loaded, simulated PCPV, and extreme environments. Although only a limited number of meters of each type were tested in any one test series, the composite results of the investigation indicate that the majority of these meters would not be able to provide reliable data throughout the 20- to 30-year anticipated operating life of a PCPV. Specific conclusions drawn from the study are: (1) Improved corrosion-resistant materials and sealing techniques should be developed for meters that are to be used in PCPV environments. (2) There is a need for the development of meters that are capable of surviving in concretes where temperatures in excess of 66 0 C are present for extended periods of time. (3) Research should be conducted on other measurement techniques, such as inductance, capacitance, and fluidics

  12. Effects of moisture migration on shrinkage, pore pressure and other concrete properties

    International Nuclear Information System (INIS)

    Chapman, D.A.; England, G.L.

    1977-01-01

    This work investigates the uniaxial migration of moisture in long, upright, limestone concrete cylinders, sealed at the base and sides, and open at the top. The design represents a section through a concrete pressure vessel wall. The cylinders are subjected to a sustained temperature difference between their ends, with maximum temperatures between 105 0 C and 200 0 C. Readings of pore pressure, water content and temperature are taken at various positions along the axis of the cylinders. In one cylinder, transverse and longitudinal shrinkage readings are also recorded. The results for the cylinders show that moisture migration is away from the hot face of the specimens causing reduction in both pore pressure and water content values in this region. The moisture migration creates a drying front which moves slowly up the specimens. The rate at which this drying front, moves is influenced by the base temperature, the magnitude of temperature and pressure gradients and the coefficient of permeability of the concrete. Samples taken from the hot side of the drying front show a considerable increase in the coefficient of permeability, and Scanning Electron Microscope photographs of the microstructure show both a break-up and reduction in size of the hydration products. The experiments reported indicate that when the hot inner face temperature of a concrete pressure vessel is increased above 100 0 C, the drying rate inside the wall increases considerably, However, it is unlikely pressure vessels of the size currently in use will ever completely dry out. (Auth.)

  13. Calculation of Prestressed Pressure Vessel Taking into Account the Concrete Temperature Inhomogeneity

    Science.gov (United States)

    Andreev, Vladimir

    2018-03-01

    The paper deals with the problem of determining the stress state of the pressure vessel (PV) with considering the concrete temperature inhomogeneity. Such structures are widely used in heat power engineering, for example, in nuclear power engineering. The structures of such buildings are quite complex and a comprehensive analysis of the stress state in them can be carried out either by numerical or experimental methods. However, a number of fundamental questions can be solved on the basis of simplified models, in particular, studies of the effect on the stressed state of the inhomogeneity caused by the temperature field.

  14. Process for producing curved surface of membrane rings for large containers, particulary for prestressed concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1977-01-01

    Membrane rings for large pressure vessels, particularly for prestressed-concrete pressure vessels, often have curved surfaces. The invention describes a process of producing these at site, which is particularly advantageous as the forming and installation of the vessel component coincide. According to the invention, the originally flat membrane ring is set in a predetermined position, is then pressed in sections by a forming tool (with a preformed support ring as opposite tool), and shaped. After this, the shaped parts are welded to the ring-shaped wall parts of the large vessel. The manufacture of single and double membrane rings arrangements is described. (HP) [de

  15. Nonlinear analysis of end slabs in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.

    1978-01-01

    A procedure for the nonlinear analysis of end slabs is prestressed concrete reactor vessels (PCRVs), based on the finite element method, is presented. The applicability of the procedure to the ultimate load analysis of small-scale models of the primary containment of nuclear reactors is shown. Material nonlinearity only is considered. The procedure utilizes the four-node linear quadrilateral isoparametric element with the choice of incorporating the nonconforming modes. This element is used for modeling the vessel as an axisymmetric solid. Concrete is assumed to be an isotropic material in the elastic range. The compressive stresses are judged according to a special form of the Mohr-Coulomb criterion. The nonlinear problem was solved using a generalized Newton-Raphson procedure. A detailed example problem of a pressure vessel with penetrations is presented. This is followed by a summary of the other cases studied. The solutions obtained match very closely the measured response of the test vessels under increasing internal pressure up to failure. The procedure is thus adequate for the assessment of the ultimate load behavior and failure of actual pressure vessels with a moderate demand on human and computational resources

  16. Design and construction of a prestressed concrete pressure vessel for a working pressure of 69N/mm2 (10,000 p.s.i)

    International Nuclear Information System (INIS)

    Dawson, P.

    1977-01-01

    Construction is nearing completion of a pressure vessel with a chamber 9.15 m (30 ft.) high and 3.05 m (10 ft.) internal diameter for hydraulic tests on marine components up to 69 N/mm 2 (10,000 p.s.i.) working pressure. The chamber comprises a steel cylinder, with independent end plates contained within a prestressed concrete structure. The cylinder is constructed in two halves, each consisting of three forged rings, 170 mm thick, shrink-fitted onto a 90 mm thick liner. It rests on a 100 mm thick bottom plate, provided with a band of hard-facing overlay on which the cylinder slides in response to changes of test medium pressure. Models to be tested within the chamber are hung from a removeable 150 mm thick top plate. A central elliptical hatch provides access into the chamber. Special sealing assemblies are fitted at the junction of the cylinder sections and between the cylinder and end plates. These seals are capable of accepting radial expansion of the cylinder and corresponding vertical movements at the upper seal arising from elastic movements of the enclosing structure. The top plate is restrained by a wire-wound prestressed concrete closure plug, itself located by twelve bifurcated inclined steel struts which transfer the load on the top plate into the concrete structure. The struts are retractable to allow removal of the closure plug and top plate. The enclosing concrete structure is 25 m (82 ft.) high and 11 m (36 ft.) diameter. It is vertically prestressed by 180 no. 540 Tonne tendons and circumferentially prestressed by 5 mm wire laid under tension in pre-cast concrete channels by the Taylor Woodrow Wire-Winding System. The structure was analysed, using limit state principles, by computerised elastic and non-elastic dynamic relaxation techniques. The results were evaluated against triaxial stress criteria established from relevant research work and experience obtained from nuclear prestressed concrete pressure vessels

  17. Experimental on moisture migration and pore pressure formation of concrete members subjected to high temperature

    International Nuclear Information System (INIS)

    Nagao, Kakuhiro; Nakane, Sunao

    1993-01-01

    The experimental studies concerning temperature, moisture migration, and pore pressure of mass concrete mock-up specimens heated up to high temperature at 110degC to 600degC, were performed, so as to correctly estimate the moisture migration behaviour of concrete members subjected to high temperature, which is considered significantly influenced on physical properties of concrete. As a results, it is confirmed that the moisture migration behavior of concrete members can be explained by temperature and pore pressure, and indicate the characteristics both sealed condition (dissipation of moisture is prevented) and unsealed condition (dissipation of moisture occur). (author)

  18. Prestressed concrete reactor vessel for the HHT-670 MW(e) demonstration plant. Pt.1. Design of the multi-cavity prestressed concrete reactor vessel with warm liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1979-01-01

    The design studies and tests described in this paper were undertaken as part of ''PROJECT HHT'', a German-Swiss joint effort for the development of high-temperature helium cooled reactors with direct-cycle turbine. The prestressed concrete reactor pressure vessel encloses the core of the reactor itself, the heat exchangers (coolers and recuperators), the helium turbine, the main helium circuit, all nuclear and thermal equipment, and auxiliary reactor cooling equipment. In order to make the liner accessible for inspection, no thermal insulation is provided between the coolant and the liner. The temperature of the helium in contact with the liner is limited to 200 0 C, under all normal operation conditions of the reactor. In the HHT reactor pressure vessel, the resisting structure is protected thermally by a layer of warm concrete between the liner and the structural prestressed concrete. The main features of this pressure vessel are the marked pressure differences in the cavities during normal operation, and the use of warm liner. The objectives of the reference design were chiefly related to the sizing up of the main structure, taking into account the modifications to be expected in the material characteristics as a result of the high temperatures developed

  19. Review of concrete properties for prestressed concrete pressure vesssels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1976-10-01

    The desire for increasing power output along with safety requirements has resulted in consideration of the prestressed concrete pressure vessel (PCPV) for most current nuclear reactor systems, as well as for the very-high-temperature reactor for process heat and as primary pressure vessels for coal conversion systems. Results are presented of a literature review to ascertain current knowledge regarding plain concrete properties under conditions imposed by a mass concrete structure such as PCRV. The effects of high temperature on such properties as strength, elasticity, and creep are discussed, as well as changes in thermal properties, multiaxial behavior, and the mechanisms thought to be responsible for the observed behavior. In addition, the effects of radiation and moisture migration are discussed. It is concluded that testing results found in the technical literature show much disagreement as to the effects of temperature on concrete properties. The variations in concrete mixtures, curing and testing procedures, age at loading, and moisture conditions during exposure and testing are some of the reasons for such disagreement. Test results must be limited, in most cases, to the materials and conditions of a given test rather than applied to such a general class of materials such as concrete. It is also concluded that sustained exposure of normal concretes to current PCRV operating conditions will not result in any significant loss of properties. However, lack of knowledge regarding effects of temperatures exceeding 100 0 C (212 0 F), moisture migration, and multiaxial behavior precludes a statement advocating operation beyond current design limits. The report includes recommendations for future research on concrete for PCPVs

  20. Prestressed concrete vessels suitable for helium high temperature reactors

    International Nuclear Information System (INIS)

    Lockett, G.E.; Kinkead, A.N.

    1967-02-01

    In considering prestressed concrete vessels for use with helium cooled high temperature reactors, a number of new problems arise and projected designs involve new approaches and new solutions. These reactors, having high coolant outlet temperature from the core and relatively high power densities, can be built into compact designs which permit usefully high working pressures. Consequently, steam generators and circulating units tend to be small. Although circuit activity can be kept quite low with coated particle fuels, designs which involve entry for subsequent repair are not favoured, and coupled with the preferred aim of using fully shop fabricated units within the designs with removable steam generators which involve no tube welding inside the vessel. A particular solution uses a number of slim cylindrical assemblies housed in the wall of the pressure vessel and this vessel design concept is presented. The use of helium requires very high sealing standards and one of the important requirements is a vessel design which permits leak testing during construction, so that a repair seal can be made to any faulty part in a liner seam. Very good demountable joint seals can be made without particular difficulty and Dragon experience is used to provide solutions which are suitable for prestressed concrete vessel penetrations. The concept layout is given of a vessel meeting these requirements; the basis of design is outlined and special features of importance discussed. (author)

  1. Automatic design of prestressed concrete vessels

    International Nuclear Information System (INIS)

    Sotomura, Kentaro; Murazumi, Yasuyuki

    1984-01-01

    Prestressed concrete appeared after high strnegth steel had been produced, therefore it has the history of only 40 years even in Europe where it was developed. High compressive force is given to concrete beforehand by high strength steel to resist tensile force. It is superior to ordinary steel in strength, economy, rust prevention, fire protection and workability, and it competes with ordinary steel in the fields of bridges, towers, water tanks, water pipes, barges, LPG and LNG tanks, reactor pressure vessels, reactor containment vessels and so on. The design of prestressed concrete containment vessels (PCCV) being constructed in Japan adopts the form of mounting a semi-spherical dome on a cylindrical wall of 43m inside diameter and about 1.5m thickness, and the steel pipe sheaths for inserting tendons are arranged in the wall. The Taisei Construction Co. has developed the PC-ADE system which enables the optimum design of PCCVs. The outline of the automatic design system, the design of tendon arrangement, the preparation of the data on the load for stress analysis, the stress analysis by axisymmetric finite element method and the calculation of cross sections are explained. Design is a creative activity, and in the design of PCCVs also, the intention of designers should be materialized when this program is utilized. (Kako, I.)

  2. Experimental study of the structural behavior of the reinforced concrete containment vessel beyond design pressure

    International Nuclear Information System (INIS)

    Oyamada, O.; Saito, H.; Muramatsu, Y.; Hasegawa, T.; Tanaka, N.

    1990-01-01

    The first Advanced Boiling Water Reactor (ABWR) including a reinforced concrete containment vessel (RCCV) is scheduled to be constructed in the 1990s, in Japan. As the RCCV is new to Japan, we performed a trial design, several series of fundamental experiments and partial/total model experiments. This paper presents a summary of the 'TOP SLAB EXPERIMENT' carried out as one of partial model experiments, in which the structural behavior of the RCCV was examined under internal pressure. (orig.)

  3. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  4. Prestressed concrete reactor vessel thermal cylinder model study

    International Nuclear Information System (INIS)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.

    1977-01-01

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a 1 / 6 -scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating

  5. Review of current practices and requirements for the inspection of prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Reimann, K.J.

    1980-12-01

    Code requirements for pre- and in-service inspection of prestressed concrete pressure vessels as utilized in gas-cooled reactors are reviewed and compared with practices and experiences during construction, commissioning, and operation of such reactors. The pre-service inspection relies heavily on embedded instrumentation for measurements of stresses, temperatures, and displacements. The same instrumentation is later used for in-service surveillance, which additionally includes visual examination of exposed surfaces, monitoring of tendon conditions, and measurement of tendon loads. Improvement of present monitoring instrumentation and/or techniques, rather than development of new in-service inspection methods, is recommended

  6. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  7. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Hyung Kui

    2015-01-01

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level

  8. Containers, particularly prestressed concrete pressure vessels for nuclear reactor plants

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.; Mitterbacher, P.

    1986-01-01

    Pressure and temperature changes act on the liner, which cause differential expansion between the liner and the prestressed concrete. So that there will be no overload or damage to the liner, its anchoring or the concrete structure, cutouts are provided in the concrete at deflection positions of the steel cladding, connections and penetrations. These cut-outs are filled with inserts made of elastic or plastic material. (DG) [de

  9. Comparison of elastic--plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1978-01-01

    The variable modulus-cracking model is capable of predicting the behavior of reinforced concrete structures (such as the reinforced plate under transverse pressure described previously) well into the range of nonlinear behavior including the prediction of the ultimate load. For unreinforced thick-walled concrete vessels under internal pressure the use of elastic--plastic concrete models in finite element codes enhances the apparent ductility of the vessels in contrast to variable modulus-cracking models that predict nearly instantaneous rupture whenever the tensile strength at the inner wall is exceeded. For unreinforced thick-walled end slabs representative of PCRV heads, the behavior predicted by finite element codes using variable modulus-cracking models is much stiffer in the nonlinear range than that observed experimentally. Although the shear type failures and crack patterns that are observed experimentally are predicted by such concrete models, the ultimate load carrying capacity and vessel-ductility are significantly underestimated. It appears that such models do not adequately model such features as aggregate interlock that could lead to an enhanced vessel reserve strength and ductility

  10. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  11. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  12. Tribology aspects of a pressure vessel closure subjected to pressure cycling

    International Nuclear Information System (INIS)

    George, A.F.; Williams, M.E.

    1988-04-01

    A repair method being considered for a steel pressure vessel is to cut away the faulty part leaving an unreinforced circular hole in the curved wall and cover it with a sealed plate placed inside. In order to investigate the structural properties of such a repair a large model vessel (6m by 2m) was tested under pressure (about 2.5 MPa) and pressure cycling. This cycling caused relative movements at the loaded interface between the lid and the vessel. A tribological examination of the rubbing surfaces was carried out. The tribological examination is described and a small supporting programme of laboratory scaling tests. It gives the results and attempts to interpret them with particular attention given to wear, fretting fatigue and scaling to plant conditions. (author)

  13. Effects of moisture migration on shrinkage, pore pressure and other concrete properties

    International Nuclear Information System (INIS)

    Chapman, D.A.; England, G.L.

    1977-01-01

    This work investigates the uniaxial migration of moisture in long, upright, limestone concrete cylinders, sealed at the base and sides, and open at the top. The design represents a section through a concrete pressure vessel wall. The cylinders are subjected to a sustained temperature difference between their ends, with maximum temperatures between 105 0 C and 200 0 C. Readings of pore pressure, water content and temperature are taken at various positions along the axis of the cylinders. In one cylinder transverse and longitudinal shrinkage readings are also recorded. The results for the cylinders show that moisture migration is away from the hot face of the specimens, causing reduction in both pore pressure and water content values in this region. The moisture migration creates a drying front which moves slowly up the specimens. Evaporation drying takes place from the unsealed end of the specimen. A drying front moves into the concrete and considerable weight loss is recorded as moisture escapes to the atmosphere. The rate of movement of the drying front is slower than that of the hot front and is proportional to the temperature difference between the top of the specimen and the surrounding atmosphere. In the shrinkage specimen, values of transverse and longitudinal shrinkage reflect the water content results. The specimen indicates that shrinkage occurs in a concrete pressure vessel, in the regions where moisture is lost. The restraint of the mass of concrete surrounding these regions sets up a three dimensional state of internal tensile stress. The areas into which the moisture migrates tend to swell, creating an internal stress situation, which is this

  14. The application of external vibration monitoring to reactors with concrete pressure vessels

    International Nuclear Information System (INIS)

    Hammill, W.J.

    1979-01-01

    The application of external vibration monitoring techniques to advanced gas cooled reactors (AGR) which have concrete pressure vessels is considered. A monitoring system for a particular AGR coolant circuit structure is developed, whose primary objective is to detect impacting of two components, although the detection of forced vibration response is also considered. Experimental results from instrumented components in the reactor and data from rig tests on full size units have been used together with a mathematical model of some elements of the transmission path in order to establish its dynamic characteristics and relate internal component vibration to externally measured signals. The application of external vibration monitoring to the external detection of the forced vibration response of an internal reactor assembly and the remote monitoring of circulator sound output is discussed. (author)

  15. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  16. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  17. Mark III Containment vessel/annulus concrete design

    International Nuclear Information System (INIS)

    Chang, P.S.; Moussa, M.M.

    1981-01-01

    Recently, engineers have been considering the significant dynamic impact of safety/relief valve (S/RV) discharge loads on the containment structures, safety equipment, and piping systems in BWR type reactors. For a plant in the construction stage, extensive modifications will be made to qualify these new loads. The lower portion of the containment vessel serves as a suppression pool pressure boundary and is designed to sustain the effects of postulated loss of coolant accidents, seismic occurrences, S/RV discharge loads, and other effects. Extremely high spectral peak accelerations of the free-standing steel containment vessel can be obtained during the air dearing process of the S/RV discharge. Parametric studies indicated that a substantial reduction in response can be obtained by increasing the stiffness of the steel containment vessel in the lover area. A concrete backing configuration in the suppression pool area of Mark III Containment is proposed in this paper. A composite action is assumed between the steel containment vessel shell and the concrete section. The system is physically separated from the shield building. This approach warrants an early erection of the shield building and a late installation of piping systems in the containment vessel suppression pool area. Finite element analyses are performed by using ASHSD2 and EASE2 computer codes. The results of the analyses have shown the proposed stress criteria are satisfied. The approach pressented is justified to be a workable system for a new plant design. (orig./HP)

  18. Innovations in prestressed concrete pressure vessel design

    International Nuclear Information System (INIS)

    Chow, P.Y.; Ngo, D.; Lin, T.Y.

    1979-01-01

    The study explored a new approach to the design of a high-pressure PCPV that accepts tension and tension cracks in the outer region of the PCPV. It examined the possibility of incorporating artificially-introduced preformed separations that pre-determined crack locations in the design as a method of controlling high tensile stresses generated by internal temperature and pressure. The results showed that the PCPV so designed was, in the extreme case of the DSV, approximately 70% cheaper than the 18 steel vessels of equivalent capacity it replaces. (orig.)

  19. Compilation of three-dimensional coordinates and specific data of the instrumentation of the prestressed concrete pressure vessel/high temperature helium test rig

    International Nuclear Information System (INIS)

    Klausinger, D.

    1977-04-01

    The positions of the thermoelements, strain gauges of various types, and of Gloetzl instruments installed by SGAE in the model vessel of the Common Project Prestressed Concrete Pressure Vessel/High Temperature Helium Test Rig are defined in cylindrical coordinates. The specific data of the instruments are given like configuration of multiple instruments; type, group and number of the instrument; number of cable and of channel; calibration factors; resistances of instruments and cables. (author)

  20. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  1. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  2. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte, R.; Marchand, J. D. [Bonnard et Gardel, Ingenieurs-Conseil, Lausanne (Switzerland)

    1981-01-15

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed.

  3. Safety assessment of a multicavity prestressed concrete reactor vessel with hot liner

    International Nuclear Information System (INIS)

    Lafitte, R.; Marchand, J.D.

    1981-01-01

    The prestressed concrete reactor vessel of the high temperature reactor with helium turbine project differs from those realized up to this day by the important number of cavities, by the different cavity pressures and by a liner in contact with hot gas. For the cases of operating conditions, the computations can be based on an identical pressure in all the cavities. The overdimensioning of the vessel which results is not a determining factor at this stage of the project. The possible loss of leaktightness of the liner can introduce gas pressure into the walls of the vessel. The great thickness of the walls makes it impossible to withstand the resulting forces with prestressing in offering sufficient safety factor against collapse. It is thus important to design a drainage network largely dimensioned. The warm liner appears at this stage of the project too highly stressed by fatigue at the singularity points (ducts between cavities, angles). A solution is proposed which limits the variations of thermal stresses by using a steel with low coefficient of thermal expansion. The cavity closures, which are numerous and some with large dimensions are an important aspect of the vessel safety. A solution of reinforced concrete shell with independent liner is proposed

  4. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  5. Study on prestressed concrete reactor vessel structures. II-5: Crack analysis by three dimensional finite elements method of 1/20 multicavity type PCRV subjected to internal pressure

    Science.gov (United States)

    1978-01-01

    A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.

  6. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  7. Instrumentation and testing of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Pace, D.W.; Klamerus, E.W.

    1997-01-01

    Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs

  8. Time varying stress in ligaments of perforated plates with reference to prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1978-01-01

    The work described herein relates to the prediction of stresses in materials which exhibit time varying strains with particular reference to the ligaments of perforated circular concrete slabs, subjected to long-term radial prestress and uniform elevated temperature. The perforations are reinforced with steel liners and arranged in a square central lattice symmetrical about two orthogonal axes. Special reference is made to the distribution of stress in the standpipe region of prestressed concrete cylindrical pressure or containment vessels for gas cooled reactors. In order to assess the stress distribution around the perforated zone of a circular slab, a method of analysis was developed by the author, based on the ''Equivalent Elastic Modulus'' of the perforated zone and the ''Effective Modulus Method'', utilizing experimental data obtained from tests performed on model specimens. The object of this paper is to extend the above method of analysis into the perforated region, and assess the long-term stresses in the ligaments. The proposed method is accomplished by an application of the Finite Element Method for the elastic plane stress case. Comparisons of experimental results and theoretical predictions by the proposed method, and other analytical methods are made for a series of perforated concrete slabs subjected to radial in-plane loading: 10,342 kN/m 2 (1,5000 psi), and uniform elevated temperature of 80 0 C. The investigation, though in general terms, could be applied to the perforated region of cylindrical pressure vessels for nuclear reactors. Finally the paper describes briefly in Appendix 3 a direct solution procedure for calculating time dependent stresses in concrete structures based on the principles of variational calculus. Analytical predictions obtained by the proposed method which is a step-by-step analysis, are compared with the variational principle method. (author)

  9. A comparison of elastic-plastic and variable modulus-cracking constitutive models for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Anderson, C.A.; Smith, P.D.

    1979-01-01

    Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)

  10. An overview of experimental results obtained under the prestressed concrete nuclear pressure vessel development program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Naus, D.J.

    1979-01-01

    Under the Prestressed Concrete Nuclear Pressure Development Program at the Oak Ridge National Laboratory, various aspects of Prestressed Concrete Pressure Vessels (PCPVs) are investigated with respect to reliability, structural performance, constructability, and economy. These investigations are conducted under the High-Temperature Gas-Cooled Reactor (HTGR) Program and the Gas-Cooled Fast Reactor (GCFR) Program. The objectives are to: (1) provide technical support to ongoing PCPV design activities, (2) contribute to the overall technological data base, and (3) provide independent review and evaluations. Specific areas of interest at present include finite-element analysis development, materials and structural behaviour tests, instrumentation evaluations and development, and structural model tests. The following provides an overview of both the HTGR and GCFR PCPV activities and a summary of recent experimental results

  11. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  12. Capacity assessment of concrete containment vessels subjected to aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Andonov, Anton, E-mail: anton.andonov@mottmac.com; Kostov, Marin; Iliev, Alexander

    2015-12-15

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  13. Capacity assessment of concrete containment vessels subjected to aircraft impact

    International Nuclear Information System (INIS)

    Andonov, Anton; Kostov, Marin; Iliev, Alexander

    2015-01-01

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  14. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  15. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  16. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  17. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  18. Design criteria for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1989-01-01

    The work concerned with the PCRVs has been focussed on topics which are not sufficiently covered by the usual codes with respect to the special structure of PCRVs and the special demands on it, and different investigations yielding a basis for such specific design criteria have been carried out. Only a couple of subjects being in the fore under the aspect of defining quality enlarging design criteria for PCRVs are outlined. The materials for the concrete to be used for the PCRVs are carefully selected. (DG)

  19. Closure system of a vessel made of prestressed concrete

    International Nuclear Information System (INIS)

    Audibert, Alain

    1974-01-01

    The present invention relates to removable plugs of prestressed concrete which can be fitted to every type of closed high pressure vessels and especially to the cylindrical vessels of nuclear reactors. The method involved permits the plug to be fitted to the vessel through both radial and axial prestress. In this purpose, said invention proposes removable prestress ribs fitted inside sheaths in the plug and extending throughout the upper part of the bearing surfaces of the plug, said ribs being regularly arranged along the generators of an hyperboloid of one sheet. Owing to this important feature, that is to say said inclination of the ribs in accordance with the generators of said hyperboloid, said rib inclination can be changed on requirement for each realization [fr

  20. Analytical investigation of multicavity prestressed concrete pressure vessels for elastic loading conditions

    International Nuclear Information System (INIS)

    Fanning, D.N.

    1978-09-01

    A three-dimensional finite-element analysis of a commercial high-temperature gas-cooled reactor (HTGR) was made using the finite-element code STATIC-SAP. Four loading conditions were analyzed elastically to evaluate the behavior of the concentric core prestressed concrete reactor vessel (PCRV) of the HTGR. The results of the analysis were evaluated in accordance with Section III, Division 2, of the ASME Code for Reactor Vessels and Containments. The calculated maximum stresses were found to be well within the Code-allowable values. The analysis was preceded by an evaluation of candidate computer codes using comparisons of experimental data with analytical results for the Ohbayashi-Gumi multicavity PCRV model. This vessel was chosen as a basis for comparison because of its geometrical similarity to the large multicavity PCRV and the anticipated availability of a complete set of the original experimental data. The three-dimensional finite-element codes NONSAP and STATIC-SAP were used for the analysis of the Ohbayashi-Gumi vessel

  1. Construction of reactor vessel bottom of prestressed reinforced concrete

    International Nuclear Information System (INIS)

    Sitnikov, M.I.; Metel'skij, V.P.

    1980-01-01

    Methods are described for building reactor vessel bottoms of prestressed reinforced concrete during NPPs construction in Great Britain, France, Germany (F.R.) and the USA. Schematic of operations performed in succession is presented. Considered are different versions of one of the methods for concreting a space under a facing by forcing concrete through a hole in the facing. The method provides tight sticking of the facing to the reactor vessel bottom concrete

  2. The characteristics of the prestressed concrete reactor vessel of the HHT demonstration plant

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1979-01-01

    The paper concentrates on the design studies of the HTGR prestressed concrete reactor vessel (PCRV) for the HHT Demonstration Plant. The multi-cavity reactor pressure vessel accommodates all components carrying primary gas, including heat exchangers and gas turbine. For reasons of economics and availability of the reactor plant, generic requirements are made for the PCRV. A short description of the power plant is also presented

  3. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  4. Safety of nuclear pressure vessels and its regulatory aspects in France

    Energy Technology Data Exchange (ETDEWEB)

    de Torquat, G; Queniart, D; Barrachin, B; Roche, R

    1979-01-01

    Having outlined the basic French regulations governing the safety of both pressure vessels and also of nuclear installations in general the particular safety regulations covering prestressed concrete vessels for nuclear reactors are considered. The regulations now being prepared to cover heat transfer systems of water reactors are detailed under sections headed; general provisions, sizing, and construction.

  5. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  6. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    International Nuclear Information System (INIS)

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock

  7. Thermal annealing of an embrittled reactor pressure vessel

    International Nuclear Information System (INIS)

    Mager, T.R.; Dragunov, Y.G.; Leitz, C.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 11 deals with thermal annealing of an embrittled reactor pressure vessel. Anneal procedures for vessels from both the US and the former USSR are mentioned schematically, wet anneals at lower temperature and dry anneals above RPV design temperatures are investigated. It is shown that heat treatment is a means of recovering mechanical properties which were degraded by neutron radiation exposure, thus assuring reactor pressure vessel compliance with regulatory requirements

  8. Transient thermal creep of nuclear reactor pressure vessel type concretes

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1983-01-01

    The immediate aim of the research was to study the transient thermal strain behaviour of four AGR type nuclear reactor concretes during first time heating in an unsealed condition to 600 deg. C. The work being also relevant to applications of fire exposed concrete structures. The programme was, however, expanded to serve a second more theoretical purpose, namely the further investigation of the strain development of unsealed concrete under constant, transient and cyclic thermal states in particular and the effect of elevated temperatures on concrete in general. The range of materials investigated included seven different concretes and three types of cement paste. Limestone, basalt, gravel and lightweight aggregates were employed as well as OPC and SRC cements. Cement replacements included pfa and slag. Test variables comprised two rates of heating (0.2 and 1 deg. C/minute), three initial moisture contents (moist as cast, air-dry and oven dry at 105 deg. C), two curing regimes (bulk of tests represented mass cured concrete), five stress levels (0, 10, 20, 30 and a few tests at 60% of the cold strength), two thermal cycles and levels of test temperature up to 720 deg. C. Supplementary, dilatometry, TGA and DTA tests were performed at CERL on individual samples of aggregate and cement paste which helped towards explaining the observed trends in the concretes. A simple formula was developed which relates the elastic thermal stresses generated from radial temperature gradients to the solution obtained from the transient heat conduction equation. Thermal stresses can, therefore, be minimized by reductions in the radius of the specimen and the rate of heating The results were confirmed by finite element analysis which indicate( tensile stresses in the central region and compressive stresses near the surf ace during heating which are reversed during cooling. It is shown that the temperature gradients, pore pressures and tensile thermal stresses during both heating and

  9. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  10. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  11. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng; Li, Hong Zhi [Dept. Structural Engineering, Tongji University, Shanghai (China)

    2017-08-15

    Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  12. Design and analysis of concrete reactor vessels: New developments, problems and trends

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1984-01-01

    This lecture reviews new developments in analysis and design of prestressed concrete reactor vessels (PCRV). After a brief assessment of the current status and experience, the advantages, disadvantages, and especially the safety features of PCRV, are discussed. Attention is then focused on the design of penetrations and openings, and on the design for high-temperature resistance - areas in which further developments are needed. Various possible designs for high-temperature exposure of concrete in a hypothetical accident are analyzed. Considered are not only PCRVs for gas-cooled reactors (GCR), but also guard vessels for liquid metal fast breeder reactors (LMFBR), for which designs mitigating the adverse effects of molten sodium, molten steel, and core melt are surveyed. Realistic analysis of the problems requires further development in the knowledge of material behavior and its mathematical modeling. Recent advances in the modeling of high-temperature response of concrete, including pore water transfer, pore pressure, creep and shrinkage are outlined. This is followed by a discussion of new developments in the analysis of cracking of concrete, where the need of switching from stress criteria to energy criteria for fracture is emphasized. The lecture concludes with a brief discussion of long-time behavior, the effect of aging, and probabilistic analysis of creep. (orig.)

  13. Analysis study on change of tendon behavior during pressurization process of Pre-stressed Concrete Containment Vessel

    International Nuclear Information System (INIS)

    Kashiwase, Takako; Nagasaka, Hideo

    1999-01-01

    NUPEC has been planning the ultimate strength test of Pre-stressed Concrete Containment Vessel (PCCV). The test model is 1/4 uniform scale model of Japan actual PCCV. It involves an equipment hatch, several penetrations and liner with T-anchors. The ancillary test for the PCCV test was conducted, in which friction coefficient of hoop tendon was evaluated by tensile force distribution using the same tendon as that of 1/4 PCCV model. Tendon will be in plastic region under internal pressure above 3.5 times design pressure (Pd) and surface characteristic of tendon and the resultant friction coefficient will be changed. In the present paper, tendon friction coefficient in the plastic region was obtained by evaluating plastic region data of tendon in the ancillary test. The validity of the obtained friction coefficient was confirmed by the tendon elongation data. In addition to the formally developed elastic region friction coefficient, the obtained plastic region correlation was incorporated into ABAQUS Ver. 5.6. The effect of tendon tensile force distribution change on structural behavior up to 3.8 Pd was evaluated. (author)

  14. Further fields of application for prestressed cast iron pressure vessels (PCIV)

    International Nuclear Information System (INIS)

    Guelicher, L.; Schilling, F.E.

    1977-01-01

    The redundancy of the prestressing system of prestressed structures as well as the clear separation of sealing and load-carrying functions of prestressed cast iron pressure vessels offer substantial advantages over conventional welded steel pressure vessels. Because of the temperature resistance of cast iron up to 400 0 C it is possible to build prestressed pressure vessels commercially as hot-working structures. The compressive strength of cast iron, which is 25 times as high as that of concrete allows for a very compact design of the PCIV. Further specific properties of the PCIV like pre-fabrication of the vessel in the production plant - made possible by a structure assembled from segments - short assembly periods at the construction site etc., may open more fields of application. - PCIV as pressurized storage tanks for the emergency shut down system in nuclear power stations. - PCIV as high pressure vessel for the chemical industry. - PCIV as energy storage. - PCIV for light water reactors. - PCIV as burst protection. It is concluded that the application of prestressed cast iron promises to be successful where either structures with large volumes and high pressures and/or temperatures are required or where aspects of safety allow for efficient use of prestressed structures. (Auth.)

  15. Behaviour of concrete containment under over-pressure conditions

    International Nuclear Information System (INIS)

    Atchison, R.J.; Asmis, G.J.K.; Campbell, F.R.

    1979-01-01

    The Atomic Energy Control Board of Canada initiated June, 1975, a major study of the behaviour of concrete containment under over-pressure conditions. Although extensive theoretical and experimental work has been carried out for thick-walled Prestressed Concrete Reactor Vessels (PCRV's), there is a want of information on the non-linear response of thin-walled structures typical of the CANDU, 600 MW(e) cylindrical/spherical, post-tensioned containment shells. The purpose of this paper is to provide an overview of the total program, to present the reasons behind the research contract, and the specification and implementation of the work. The results of the theoretical and experimental work and their implications with respect to Canadian Concrete Containment practice are discussed. This study is unique, and, as far as is known, has no world-wide precedence. (orig.)

  16. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  17. The instrumentation of the prestressed concrete vessel with hot liner at Seibersdorf Research Centre

    International Nuclear Information System (INIS)

    Zemann, H.

    1975-11-01

    The joint project ''Prestressed Concrete Pressure Vessel with Hot Liner'' at Seibersdorf Research Centre now is in the process of testing the PCPV both in construction and operation from the safety point of view. The physical state of the PCPV (modulus of elasticity, humidity of concrete, creeping, etc.) is brought to stable conditions by ''pre-aging''. In order to control this process of stabilisation, an extensive knowledge of the concrete and an elaborated instrumentation is a necessity. This paper presents a survey about the philosophy and the realisation of the instrumentation of the PCPV and the investigations we performed to interpret the measurements. (author)

  18. Analytical model for shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Abdulrahman, H.O.; Sozen, M.A.; Schnobrich, W.C.

    1979-04-01

    The results are presented of an investigation of the behavior and strength of flat end slabs of cylindrical prestressed concrete nuclear reactor vessels. The investigation included tests of ten small-scale pressure vessels and development of a nonlinear finite-element model to simulate the deformation response and strength of the end slabs. Because earlier experimental studies had shown that the flexural strength of the end slab could be calculated using intelligible procedures, the emphasis of this investigation was on shear strength

  19. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    International Nuclear Information System (INIS)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn, is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs

  20. Development of prestressed concrete containment vessels

    International Nuclear Information System (INIS)

    Yuji, Hideo; Kuniyoshi, Mutsumu; Nagata, Kaoru

    1983-01-01

    This paper presents a summary of evaluations for the selection of the structural and prestressing system type to be employed for the first domestic Prestressed Concrete Containment Vessel (PCCV) in Japan. This paper also discusses characteristic features in the design of the liner plate system provided on the PCCV inner surface to assure its leak-tight integrity. Prestressed concrete containment vessels so far constructed in foreign countries are to a considerable extent of different structural types, depending on differences in dome shapes, prestressing systems and number of buttresses. These differences are caused not only by differences in design philosophy and construction practices, but also by difference in the level of technology of the times when the individual containment vessels are being constructed. In the investigation reported herein, the most suitable types of PCCV and Prestressing Systems were determined as the results of an overall comparative evaluation of data and information obtained from PCCV's so far constructed from the design, construction and cost aspects, taking into consideration the seismic criteria, available technology, construction practices, regulations and technical standards in Japan. The function of the liner plate system requires the liner to have enough deformability so that the liner deformation can be consistent with the PCCV concrete deformation. Therefore, in the design of the liner plate system a method for evaluating liner deformability was employed, instead of the stress evaluation method which is widely used in the design of ordinary structures. (author)

  1. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.; D'Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The 'Concrete Benchmark' experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the 'Concrete Benchmark' experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs

  2. Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2017-08-01

    Full Text Available Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking and Limit State II (concrete crushing when the PGAs were in a range of 0.8–1.1g and 1.2–1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

  3. Stress analysis and review of a prestressed concrete reactor pressure vessel of a HTR 500-type

    International Nuclear Information System (INIS)

    Wang, T.J.; Altes, J.

    1988-12-01

    The main aim of this first step of analysis is to test the feasibility of the SMART-code for a complete calculation of PCRV's and to establish the control programs for the finite element analysis. Curved triangular, quadrilateral and membrane shell elements are used. The incremental model in the form of tangential stress-strain law has been chosen as the constitutive model for the concrete. The three parameter failure envelope is used as the failure model of the concrete. For the numerical solution the incremental initial iteration method with constant stiffness is utilized. The creep strain is treated as a liner functional of the stress history and dependent on temperature, humidity and aging. The calculation of the creep behaviour is carried out up to 7 years of operation using the model of SEKI and KAWASUMI. In this model the influence of temperature, humidity and the interaction between them is fully considered. The effects of interaction between temperature and creep with and without humidity's influence are studied and some interesting results are presented. The total creep curves vs time are gained, the deformations of nodal points after 7 years are 1.8 - 5.5 times larger then those of the initial elastic deformation after the first loading. Under the action of prestressing along most parts of the PCRV and under the service condition the main part of the PCRV are in compression. Due to increasing the loading over the operating pressure some parts are cracked and the material behaves nonlinearly. At a loading value of 3.25 times the operating pressure the whole transverse section is fully cracked. For the stage of prestressing, design operating pressure and design limit pressure the vessel behaves elastically. The global safety factory is 1.5 times larger than the design value of 2.25 that shows the conservative design. The analysis method and computer codes, which are used in this review, are confirmed efficiently. (orig./HP)

  4. The Use of Prestressed Concrete Vessels in the French Power Reactor Programme

    International Nuclear Information System (INIS)

    Conte, F.; Dambrine, C.; Gaussot, D.

    1963-01-01

    This paper deals with the use of pre-stressed concrete for the G2 and G3 reactors at Marcoule and for the EDF3 reactor now under construction at Chinon. The first two reactors have been operating at power since 1959 and 1960 respectively. Messrs. Conte and Dambrine discuss the problems that arose during construction of the vessels for G2 and G3 and also deal with the experience gained in operation - experience which suggests that they are extremely safe- Work on the EDF3 vessel, begun at Chinon in the second half of 1961, is still under way and should be finished towards the end of 1963. Mr. Gaussot discusses the reasons for choosing this type of vessel, the results of calculations and mock-up tests, and the problems presented by the construction itself. A number of studies have been devoted to the future prospects of prestressed concrete structures for reactors. It would seem that working pressures could be increased, if desired, and, in any case, that dimensions could be considerably enlarged, thus offering the chance of integral-type solutions. (author) [fr

  5. Thermal effects, creep and nonlinear responde of concrete reactor vessels

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1978-01-01

    A new mathematical model for prediction of pore pressure and moisture transfer in concrete heated well beyond 100 0 C is outlined. The salient features of the model are:(1) the hypothesis taht the pore space available to capillary water grows with increasing temperature as well as increasing pressure in excess of saturation pressure, and (2) the hypothesis that moisture permeability increases by two orders of magnitude when passing 100 0 C. Permaability below 100 0 C is controlled by migration of adsorbed water through gel-pore sized necks on passages through the material; these necks are lost above 100 0 C and viscosity then governs. The driving force of moisture transfer may be considered as the gradient of pore pressure, which is defined as pressure of vapor rather than liquid water if concrete is not saturated. Thermodynamic properties of water may be used to determine sorption isotherms in saturated concrete. The theory is the necessary first step in rationally predicting thermal stresses and deformations, and assessing the danger of explosive spalling. However, analysis of creep and nonlinear triaxial behavior is also needed for this purpose. A brief review of recent achievements in these subjects is also given. (Author)

  6. Special enclosure for a pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.; Wedellsborg, U.W.

    1993-01-01

    A pressure vessel enclosure is described comprising a primary pressure vessel, a first pressure vessel containment assembly adapted to enclose said primary pressure vessel and be spaced apart therefrom, a first upper pressure vessel jacket adapted to enclose the upper half of said first pressure vessel containment assembly and be spaced apart therefrom, said upper pressure vessel jacket having an upper rim and a lower rim, each of said rims connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, mean for connecting in a sealable relationship said upper rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, means for connecting in a sealable relationship said lower rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a first lower pressure vessel jacket adapted to enclose the lower half of said first pressure vessel containment assembly and be spaced apart therefrom, said lower pressure vessel jacket having an upper rim connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, and means for connecting in a sealable relationship said upper rim of said first lower pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a second upper pressure vessel jacket adapted to enclose said first upper pressure vessel jacket and be spaced apart therefrom, said second upper pressure vessel jacket having an upper rim and a lower rim, each of said rims adapted to slidably engage the outer surface of said first upper pressure vessel jacket, means for sealing said rims, a second lower pressure vessel jacket adapted to enclose said first lower pressure vessel jacket and be spaced apart therefrom

  7. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  8. Design criteria for prestressed concrete pressure vessels for high temperature reactors

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1991-01-01

    This paper summarizes the work on design criteria for concrete structures of Prestressed Concrete Reactor Vessels (PCRVs), which has been carried out since 1984 by a couple of competent institutions. After some basic considerations on the safety demands on PCRVs, especially their Prestressed Concrete Structure (PCS), and the consequences for an elevated level of quality to be ensured by the design criteria, an impression is given, first, by what means a higher quality standard is gained with respect to selection of materials and specification of material data in comparison to the usual building industry and what kind of criteria on this behalf should be fixed in a PCRV code. As a further quality increasing feature, the specific demands on design analysis as practised according to the present state of science and as to be treated within a code are discussed. This concerns analyses for steady state and transient temperatures as well as stress and strain analyses for service and ultimate load conditions. It is outlined to what degree calculation models should be detailed, which includes statements about admissible idealizations. As a central topic the question is discussed in what way the ultimate load capacity has to be evaluated, thereby presenting results of some investigations pointing out the conditions under which the design is determined by the different kinds of ultimate load conditions. Finally, some reflections on the demands on monitoring the PCS behaviour during its lifetime and on several questions still to be answered in this field are expressed. (orig.)

  9. Instrumentation of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Rightley, M.J.; Matsumoto, T.

    1995-01-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. At present, two tests are being planned: a test of a model of a steel containment vessel (SCV) that is representative of an improved, boiling water reactor (BWR) Mark II design; and a test of a model of a prestressed concrete containment vessel (PCCV). This paper discusses plans and the results of a preliminary investigation of the instrumentation of the PCCV model. The instrumentation suite for this model will consist of approximately 2000 channels of data to record displacements, strains in the reinforcing steel, prestressing tendons, concrete, steel liner and liner anchors, as well as pressure and temperature. The instrumentation is being designed to monitor the response of the model during prestressing operations, during Structural Integrity and Integrated Leak Rate testing, and during test to failure of the model. Particular emphasis has been placed on instrumentation of the prestressing system in order to understand the behavior of the prestressing strands at design and beyond design pressure levels. Current plans are to place load cells at both ends of one third of the tendons in addition to placing strain measurement devices along the length of selected tendons. Strain measurements will be made using conventional bonded foil resistance gages and a wire resistance gage, known as a open-quotes Tensmegclose quotes reg-sign gage, specifically designed for use with seven-wire strand. The results of preliminary tests of both types of gages, in the laboratory and in a simulated model configuration, are reported and plans for instrumentation of the model are discussed

  10. Factors affecting the integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1983-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, if certain postulated accidents, referred to as overcooling accidents, were to occur, the pressure vessel could be subjected to severe thermal shock while the pressure is substantial. As a result, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner-surface flaws prior to the vessel's normal end of life. A fracture-mechanics analysis for a typical postulated accident and also related thermal-shock experiments indicate that very shallow surface flaws that extend through the cladding into the base material could propagate. This is of particular concern because shallow flaws appear to be the most probable and presumably are the most difficult to detect

  11. Shear strength of end slabs of prestressed concrete nuclear reactor vessels

    International Nuclear Information System (INIS)

    Reins, J.D.; Quiros, J.L. Jr.; Schnobrich, W.C.; Sozen, M.A.

    1976-07-01

    The report summarizes the experimental and part of the analytical work carried out in connection with an investigation of the structural strength of prestressed concrete reactor vessels. The project is part of the Prestressed Concrete Reactor Vessel Program of the Oak Ridge National Laboratory sponsored by ERDA. The objective of the current phase of the work is to develop procedures to determine the shear strength of flat end slabs of reactor vessels with penetrations

  12. Ultimate load design and testing of a cylindrical prestressed concrete vessel

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1982-01-01

    The object of this research was to design, construct and test to failure a prestressed concrete pressure vessel model that could be used to investigate the behavior of a full scale structure underworking and ultimate load. The properties and the design of the model was based generally on full scale vessels already constructed to house the nuclear reactors used in atomic power stations. To design the model the ultimate load approach was adopted throughout. All load factors associated with the prestressing have been defined and kept to a minimum in order that the vessel's behavior may be predicted. The tests on the vessel were carried out first on the elastic range to observe its behavior at working load and then at the ultimate range to observe the modes of failure and compare the actual results in both cases with the predicted values. Although full agreement between observed results and predicted values was not obtained, the conclusions drawn from the study were useful for the design of full scale vessels. (author)

  13. Leakage of pressurized gases through unlined concrete containment structures

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.

    1983-01-01

    Eight reinforced concrete specimens were fabricated and subjected to tensile membrane forces and air pressure to study the air leakage characteristics in cracked reinforced concrete members. A mathematical expression for the rate of pressurized air flowing through an idealized crack is presented. The mathematical expression is refined by using the experimental data to describe the air flow rate through any given crack pattern. Graphical charts are also presented for the calculation of the air leakage rate through concrete cracks. The concept of equivalent crack width for a given crack pattern is introduced. The mathematical expression and graphical charts are modified to include this equivalent crack width concept. The proposed technique is applicable for the prediction of the leakage from concrete containment structures or any similar structures due to high internal pressure sufficient to initiate cracking. (orig.)

  14. Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyung Jin; Kim, Eun Kyum; Koh, Seung Kee [Kunsan Nat’l Univ., Kunsan (Korea, Republic of)

    2017-09-15

    Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

  15. Design and analysis of multicavity prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Goodpasture, D.W.; Burdette, E.G.; Callahan, J.P.

    1977-01-01

    During the past 25 years, a rather rapid evolution has taken place in the design and use of prestressed concrete reactor vessels (PCRVs). Initially the concrete vessel served as a one-to-one replacement for its steel counterpart. This was followed by the development of the integral design which led eventually to the more recent multicavity vessel concept. Although this evolution has seen problems in construction and operation, a state-of-the-art review which was recently conducted by the Oak Ridge National Laboratory indicated that the PCRV has proven to be a satisfactory and inherently safe type of vessel for containment of gas-cooled reactors from a purely functional standpoint. However, functionalism is not the only consideration in a demanding and highly competitive industry. A summary is presented of the important considerations in the design and analysis of multicavity PCRVs together with overall conclusions concerning the state of the art of these vessels

  16. The design of bonded reinforcement for thermal stresses in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    This paper deals with examples of thermal loadings where instationary growth of tensile zones and redistribution of stresses by cracking are of importance. Temperatures produce, in addition to prestressing and internal pressure, the most important stresses in a prestressed concrete reactor pressure vessel. Characteristic of thermal stresses is that they are influenced to a large extent by creep of concrete and that they influence stress redistributions by temperature dependent creep data. Computations show that during the first instationary heating process of the vessel stresses are reduced by creep effects to about fifty percent of the values of the stationary elastic case at the hot face. With a following cooling, creep effects are generally much less, so this case may produce tensile stresses on the internal face of the wall which lead to cracking of the concrete. Tensile stresses first occur due to the instationary growth of the temperature field in a narrow zone near the liner. If outside this zone compressive stresses exist due to prestressing then crack spreading is limited and restraint by the parts of the wall under compression causes crack distribution even without reinforcement in this zone. Growth of cracks with the instationary spreading of tensile zones according to temperature development was calculated. These calculations take into account discrete cracks, reinforcement and different assumptions for tensile strength. Reinforcement of small diameter near the surface has the best influence on crack spacing. Calculations show that for the stationary state of cooling the forces in the reinforcement may be as low as twenty to thirty percent of the tensile force not taking into account cracking of the concrete

  17. Radiation resistance of concrete of nuclear reactor vessel

    International Nuclear Information System (INIS)

    Belyakov, V.V.; Denisov, A.V.; Korenevskij, V.V.; Muzalevskij, L.P.; Dubrovskij, V.B.; Ivanov, D.A.; Nazarov, I.L.; Sashin, N.L.

    1992-01-01

    Results of calculational-experimental determination of radiation resistance for concrete bases on limestone gravel and quartz sand, which are the most perspective materials for manufacturing prestressed concrete of the VG-400 reactor vessel are considered. Material samples under investigation were irradiated in the channels of the IBR-2 research reactor for the purpose of the calcultional result verification

  18. Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure

    International Nuclear Information System (INIS)

    Roche, R.L.; Alix, M.

    1980-05-01

    Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design

  19. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  20. The 1500 MW fast breeder reactor the double envelope-vessel anchored in concrete

    International Nuclear Information System (INIS)

    Bolvin, M.

    1981-01-01

    This paper givers an account of EDF investigations to reduce the investment costs of the 1500 MW Fast Reactor (RNR 1500) without prejudice to the safety requirements. It deals with the double envelope-vessel, designed to minimize radiation consequences in the event of accidental leakage in the main vessel. In the Fast Reactors in operation (PHOENIX), under construction (CRYS-MALVILLE), and under project (NR 1500), the double envelope-steel vessel hangs down from the upper part of the reactor block, its weight being approximately 300 t. In the new design, the vessel is fixed into the concrete which supports the main vessel, by means of steel anchors. A thermal insulation isolates it from the main vessel. The installation of coils in the concrete, next to the lining, allows for water circulation to cool the concrete. (orig./GL)

  1. Method of producing the arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1976-01-01

    In producing arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels for nuclear power plants, it is of advantage to manufacture these directly on the construction site. According to the invention the, at first level, diaphragm ring is put on the predetermined place, sectionally pressed against and shaped by a shaping tool - with a profiled supporting ring as a counter-acting tool - and afterwards welded together with the annular wall sections of the large container along the shaped parts. The manufacture of single and double configurations of diaphragm rings is described. It is of advantage if shaping and mounting position coincide. (UWI) [de

  2. A structure for the protection of nuclear-reactor pressurized-vessels against rupture

    International Nuclear Information System (INIS)

    Marcellin, J.-P.; Aubert, Gilles

    1974-01-01

    Description is given of a structure for the protection of nuclear-reactor pressurized-vessels against rupture. Said structure comprises a pre-stressed concrete tank adapted to surround the tank side-wall and bottom, said tank being higher than said vessel, said tank being provided with ports for passing cooling fluid ducts therethrough, and a crown adapted to rest along the periphery of the reactor-cover and made integral therewith. This can be applied to reactors of the PWR type [fr

  3. Latest developments in prestressed concrete vessels for gas-cooled reactors

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1979-01-01

    This paper is an update of the design development of prestressed concrete vessels, commonly referred to as 'PCRVs' starting with the first single-cavity PCRV for the Fort St. Vrain Nuclear Generating Station to the latest multi-cavity PCRV configurations being utilized as the primary reactor vessels for both the High Temperature Gas-Cooled Reactor (HTGR) and the Gas-Cooled Fast Breeder Reactor (GCFR) in the U.S.A. The complexity of PCRV design varies not only due to the type of vessel configuration (single versus multi-cavity) but also on the application to the specific type of reactor concept. PCRV technology as applied to the Steam Cycle HTGR is fairly well established; however, some significant technical complexities are associated with PCRV design for the Gas Turbine HTGR and the GCFR. For the Gas Turbine HTGR, for instance, the fluid dynamics of the turbo-machinery cause multi-pressure conditions to exist in various portions of the power conversion loops during operation. This condition complicates the design approach and the proof test specification for the PCRV. The geometric configuration of the multi-cavity PCRV is also more complex due to the introduction of large horizontal cylindrical cavities (housing the turbo/machines for the Gas Turbine HTGR and circulators for the GCFR) in addition to the vertical cylindrical cavities for the core and heat exchangers. Because of this complex geometry, it becomes difficult to achieve an optimum prestressing arrangement for the PCRV. Other novel features of the multi-cavity PCRV resulting from the continuing design optimization effort are the incorporation of an asymmetric (offset core) configuration and the use of large vessel cavity/penetration concrete closures directly held down by prestressing tendons for both economic and safety reasons. (orig.)

  4. Design and construction of the prestressed concrete boiler closures for the Hartlepool and Heysham pressure vessels

    International Nuclear Information System (INIS)

    Crowder, R.; Howells, R.M.; Paton, A.A.

    1976-01-01

    At a relatively late stage in the station design, the boiler closures for the reactor vessels at Hartlepool and Heysham were changed from steel to prestressed concrete. This paper sets out the criteria which were finally evolved for the new style of closure and describes the way in which the prestressed concrete closure's parts were designed to satisfy these criteria. With both the civil and mechanical components of the closure having their own specific requirements, close co-operation was necessary between these disciplines to ensure that a compatible and practical closure design resulted. This close interrelationship has been carried through into the construction stage and a special concreting and prestressing factory has been built adjacent to the works of the mechanical component fabricator. This enabled an optimum manufacturing cycle to be followed and the important aspects of this are described in the paper. (author)

  5. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  6. Structural features and in-service inspection of the LTHR-200 pressure vessel

    International Nuclear Information System (INIS)

    Xiong Dunshi; He Shuyan; Liu Junjie; Yu Suyuan

    1993-01-01

    LTHR-200 is a low temperature district-heating reactor. It adopts double-shell design pressure vessel and metal containment. Because of the safety and structural features of the reactor, the in-service inspection of the pressure vessel can be simplified greatly. LTHR-200 is an integrated arrangement. Both its core components and the main heat exchangers are contained in the reactor pressure vessel. The coolant of the main loop is run by a full-power natural circulation and there need no main pumps and pipes. Thus, the reactor pressure vessel constitutes the pressure boundary of the reactor's main loop coolant. In regard to these features, a small-sized containment is designed for the reactor. The metal safety container with a small volume is placed closely around the reactor pressure vessel. Outside the metal containment, there is a large reinforced concrete construction for the reactor. Their main operation and design parameters are as follows: The pressure vessel: operation pressure = 2.4 MPa; design pressure = 3.0 MPa; design temperature = 250 deg C; 40 year fast neutron (E>1MeV) fluence in the belt-line region = < 10E16n/cm; internal diameter = 5000 mm; material SA516-70; shell thickness 65 mm; The metal containment: maximum operation pressure = 1.8 MPa; design pressure = 1.8 MPa; design temperature = 250 deg. C; upper internal diameter 7000 mm; lower internal diameter = 5600 mm; material = SA516-70; shell thickness, upper part = 80 mm; lower part = 50 mm. All penetrating pipes through the pressure vessel are located at the top penetration section of the shell. All the internal diameters of penetrating pipes are less than 50 mm. Inside and outside the metal containment wall respectively, isolating valves are connected to the reactor coolant pipe which passes through the containment. These two isolating valves use different driving methods. Every penetrating part of the reactor construction uses a proper form of structure according to safety requirements

  7. Characterizing the effects of elevated temperature on the air void pore structure of advanced gas-cooled reactor pressure vessel concrete using x-ray computed tomography

    Directory of Open Access Journals (Sweden)

    Withers P.J.

    2013-07-01

    Full Text Available X-ray computed tomography (X-ray CT has been applied to nondestructively characterise changes in the microstructure of a concrete used in the pressure vessel structure of Advanced Gas-cooled Reactors (AGR in the UK. Concrete specimens were conditioned at temperatures of 105 °C and 250 °C, to simulate the maximum thermal load expected to occur during a loss of coolant accident (LOCA. Following thermal treatment, these specimens along with an unconditioned control sample were characterised using micro-focus X-ray CT with a spatial resolution of 14.6 microns. The results indicate that the air void pore structure of the specimens experienced significant volume changes as a result of the increasing temperature. The increase in the porous volume was more prevalent at 250 °C. Alterations in air void size distributions were characterized with respect to the unconditioned control specimen. These findings appear to correlate with changes in the uni-axial compressive strength of the conditioned concrete.

  8. Review of analysis methods for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Dodge, W.G.; Bazant, Z.P.; Gallagher, R.H.

    1977-02-01

    Theoretical and practical aspects of analytical models and numerical procedures for detailed analysis of prestressed concrete reactor vessels are reviewed. Constitutive models and numerical algorithms for time-dependent and nonlinear response of concrete and various methods for modeling crack propagation are discussed. Published comparisons between experimental and theoretical results are used to assess the accuracy of these analytical methods

  9. BBRV post-tensioning systems as applied to reactor containments and prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Thorpe, W.; Speck, F.E.

    1976-01-01

    Nuclear containments and pressure vessels can be post-tensioned by using two basically different methods: tendons and winding. The fundamental differences between the two concepts are shown by introductory examples. A discussion of tendon units, usually lying in the range 4000 to 10,000 kN, is followed by a detailed presentation of the BBRV winding system. After giving a short comment to factors influencing the choice of a post-tensioning system the authors discuss specific aspects of some application groups: cable layout with containments and pressure vessels, conditions for a wrapped design, corrosion protection. (author)

  10. Pressure vessel design

    International Nuclear Information System (INIS)

    Annaratone, D.

    2007-01-01

    This book guides through general and fundamental problems of pressure vessel design. It moreover considers problems which seem to be of lower importance but which turn out to be crucial in the design phase. The basic approach is rigorously scientific with a complete theoretical development of the topics treated, but the analysis is always pushed so far as to offer concrete and precise calculation criteria that can be immediately applied to actual designs. This is accomplished through appropriate algorithms that lead to final equations or to characteristic parameters defined through mathematical equations. The first chapter describes how to achieve verification criteria, the second analyzes a few general problems, such as stresses of the membrane in revolution solids and edge effects. The third chapter deals with cylinders under pressure from the inside, while the fourth focuses on cylinders under pressure from the outside. The fifth chapter covers spheres, and the sixth is about all types of heads. Chapter seven discusses different components of particular shape as well as pipes, with special attention to flanges. The eighth chapter discusses the influence of holes, while the ninth is devoted to the influence of supports. Finally, chapter ten illustrates the fundamental criteria regarding fatigue analysis. Besides the unique approach to the entire work, original contributions can be found in most chapters, thanks to the author's numerous publications on the topic and to studies performed ad hoc for this book. (orig.)

  11. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  12. Stress analysis of liners for prestressed concrete reactor pressure vessels with regard to non-linear behaviour of liner material and of anchor-characteristics

    International Nuclear Information System (INIS)

    Oberpichler, R.; Schnellenbach, G.

    1975-01-01

    The thin liner attached by anchors like a membrane to the interior wall of a prestressed concrete reactor pressure vessel (PCRV) has to provide the leak-tightness of the vessel. Furthermore the liner may serve as internal shuttering for placing of concrete as well as a support for the cooling system. The two-dimensional behaviour of the liner is investigated with regard to non-linear anchor-characteristics and non-linear material behaviour of the liner. The analysis is based on a plane stress model under the assumption of a membrane state of the liner. Calculations are performed by the dynamic relaxation method. With the aid of available non-linear stress-strain diagrams, describing the post-buckling behaviour, individual panels are considered as buckled ones. The adjacent unbuckled panels are calculated on other non-linear diagrams. Strains and stresses in the liner and additional shear loads in the anchors can be calculated with arbitrary sizing and spacing of the anchors. With respect to the parameters they are easily controlled. Since actual loads on the liner are defined by the PCRV-behaviour, an economical and safe design is possible. Finally an extreme case is calculated to assess the maximum value of the shear-forces assuming zero post-buckling capacity for the buckled panel. (Auth.)

  13. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  14. Posttest analysis of a 1:4-scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Hessheimer, M.F.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, co-sponsored a Cooperative Containment Research Program at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. As part of the program, a prestressed concrete containment vessel (PCCV) model was subjected to a series of overpressurization tests at SNL beginning in July 2000 and culminating in a functional failure mode or Limit State Test (LST) in September 2000 and a Structural Failure Mode Test (SFMT) in November 2001. The PCCV model, uniformly scaled at 1:4, is representative of the containment structure of an actual Pressurized Water Reactor (PWR) plant (OHI-3) in Japan. The objectives of the pressurization tests were to obtain measurement of the structural response to pressure loading beyond design basis accident in order to validate analytical modeling, to find pressure capacity of the model, and to observe its failure mechanisms. This paper compares results of pretest analytical studies of the PCCV model to the PCCV high pressure test measurements and describes results of post-test analytical studies. These analyses have been performed by ANATECH Corp. under contract with Sandia National Laboratories. The post-test analysis represents the third phase of a comprehensive PCCV analysis effort. The first phase consisted of preliminary analyses to determine what finite element models would be necessary for the pretest prediction analyses, and the second phase consisted of the pretest prediction analyses. The principal objectives of the post-test analyses were: (1) to provide insights to improve the analytical methods for predicting the structural response and failure modes of a prestressed concrete containment, and (2) to evaluate by analysis any phenomena or failure mode observed during the test that had not been explicitly predicted by analysis. In addition to summarizing comparisons between measured

  15. Structural model testing for prestressed concrete pressure vessels: a study of grouted vs nongrouted posttensioned prestressing tendon systems

    International Nuclear Information System (INIS)

    Naus, D.J.

    1979-04-01

    Nongrouted tendons are predominantly used in this country as the prestressing system for prestressed concrete pressure vessels (PCPVs) because they are more easily surveyed to detect reductions in prestressing level and distress such as results from corrosion. Grouted tendon systems, however, offer advantages which may make them cost-effective for PCPV applications. Literature was reviewed to (1) provide insight on the behavior of grouted tendon system, (2) establish performance histories for structures utilizing grouted tendons, (3) examine corrosion protection procedures for prestressing tendons, (4) identify arguments for and against using grouted tendons, and (5) aid in the development of the experimental investigation. The experimental investigation was divided into four phases: (1) grouted-nongrouted tendon behavior, (2) evaluation of selected new material systems, (3) bench-scale corrosion studies, and (4) preliminary evaluation of acoustic emission techniques for monitoring grouted tendons in PCPVs. The groutability of large tendon systems was also investigated

  16. Non-linear analysis up to rupture of a model of a multi-cavity prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Rebora, B.; Uffer, F.; Zimmermann, T.

    1977-01-01

    Within the frame of a German-Swiss agreement concerning the project of a high-temperature nuclear plant (HHT), the Swiss Federal Institute for Reactor Research (EIR, in Wuerlingen) has developed an integrated variant of an helium-cooled high temperature reactor of 3x500 Mwe. A test on a model (1:20) of this prestressed concrete nuclear vessel with multiple cavities has been carried out under the supervision of 'Bonnard et Gardel ingenieurs-conseils SA (BG). The aim of this analysis is to determine the mechanism of ruin and ultimate load of the structure. In addition, comparison with the results of the test emphasizes the mathematical model with a view to its utilisation for the analysis of any prestressed concrete nuclear vessel. The principal interest of this paper is to show the accuracy of non-linear analysis of a complex massive structure with the test results and the evolution of the behaviour of the structure from the apparition of the first crack up to the ruin by rupture of the steel wires. (Auth.)

  17. Stress concentration factors for integral and pad reinforced nozzles in spherical pressure vessels subjected to radial load and moment

    International Nuclear Information System (INIS)

    Soliman, S.F.; Gill, S.S.

    1979-01-01

    Charts are presented giving the elastic stress concentration factors in spherical pressure vessels with pad and integral reinforcement for radial branches subjected to radial load and moment. The effect of all the geometrical parameters is discussed, including the limitations of thin shell theory on the validity of the results. (author)

  18. FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Entin Hartini

    2016-06-01

    Full Text Available ABSTRACT FRACTURE MECHANICS UNCERTAINTY ANALYSIS IN THE RELIABILITY ASSESSMENT OF THE REACTOR PRESSURE VESSEL: (2D SUBJECTED TO INTERNAL PRESSURE. The reactor pressure vessel (RPV is a pressure boundary in the PWR type reactor which serves to confine radioactive material during chain reaction process. The integrity of the RPV must be guaranteed either  in a normal operation or accident conditions. In analyzing the integrity of RPV, especially related to the crack behavior which can introduce break to the reactor pressure vessel, a fracture mechanic approach should be taken for this assessment. The uncertainty of input used in the assessment, such as mechanical properties and physical environment, becomes a reason that the assessment is not sufficient if it is perfomed only by deterministic approach. Therefore, the uncertainty approach should be applied. The aim of this study is to analize the uncertainty of fracture mechanics calculations in evaluating the reliability of PWR`s reactor pressure vessel. Random character of input quantity was generated using probabilistic principles and theories. Fracture mechanics analysis is solved by Finite Element Method (FEM with  MSC MARC software, while uncertainty input analysis is done based on probability density function with Latin Hypercube Sampling (LHS using python script. The output of MSC MARC is a J-integral value, which is converted into stress intensity factor for evaluating the reliability of RPV’s 2D. From the result of the calculation, it can be concluded that the SIF from  probabilistic method, reached the limit value of  fracture toughness earlier than SIF from  deterministic method.  The SIF generated by the probabilistic method is 105.240 MPa m0.5. Meanwhile, the SIF generated by deterministic method is 100.876 MPa m0.5. Keywords: Uncertainty analysis, fracture mechanics, LHS, FEM, reactor pressure vessels   ABSTRAK ANALISIS KETIDAKPASTIAN FRACTURE MECHANIC PADA EVALUASI KEANDALAN

  19. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  20. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  1. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  2. USER SPECIFICATIONS FOR PRESSURE VESSELS AND TECHNICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    K.S. Johnston

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Specifications translated from user requirements are prescribed in an attempt to capture and incorporate best practices with regards to the design, fabrication, testing, and operation of pressure vessels. The question as to whether these requirements affect the technical integrity of pressure vessels is often a subjective matter. This paper examines typical user requirement specifications against technical integrity of pressure vessels.
    The paper draws on a survey of a convenience sample of practising engineers in a diversified petrochemical company. When compared with failures on selected pressure vessels recorded by Phillips and Warwick, the respondent feedback confirms the user specifications that have the highest impact on technical integrity.

    AFRIKAANSE OPSOMMING: Gebruikersbehoeftes word saamgevat in spesifikasies wat lei tot goeie praktyk vir ontwerp, vervaarding, toetsing en bedryf van drukvate. Subjektiwiteit van die gebruikersbehoeftes mag soms die tegniese integriteit van ‘n drukvat beinvloed.
    Die navorsing maak by wyse van monsterneming gebruik van die kennis van ingenieurs wat werk in ‘n gediversifiseerde petrochemiese bedryf. Die terugvoering bevestig dat bogenoemde spesifikasies inderdaad die grootste invloed het op tegniese integriteit.

  3. Application of dynamic relaxation and finite elements methods for the structural analysis of a scale model of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Tamura, Masaru

    1979-01-01

    A stress and strain analysis was made of a scale model of a Prestressed Concrete Pressure Vessel for a Boiling Water Reactor. The aim of this work was to obtain an experimental verification of the calculation method actually used at IPEN. The 1/10 scale model was built and tested at the Instituto Sperimentale Modelli e Structture, ISMES, Italy. The dynamic relaxation program PV2-A and the finite element programs , FEAST-1 have been used. A comparative analysis of the final results was made. A preliminary analysis was made for a simplified monocavity model now under development at IPEN with the object of confirming the data and the calculation method used. (author)

  4. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  5. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  6. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  7. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  8. Plan on test to failure of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Takumi, K.; Nonaka, A.; Umeki, K.; Nagata, K.; Soejima, M.; Yamaura, Y.; Costello, J.F.; Riesemann, W.A. von.; Parks, M.B.; Horschel, D.S.

    1992-01-01

    A summary of the plans to test a prestressed concrete containment vessel (PCCV) model to failure is provided in this paper. The test will be conducted as a part of a joint research program between the Nuclear Power Engineering Corporation (NUPEC), the United States Nuclear Regulatory Commission (NRC), and Sandia National Laboratories (SNL). The containment model will be a scaled representation of a PCCV for a pressurized water reactor (PWR). During the test, the model will be slowly pressurized internally until failure of the containment pressure boundary occurs. The objectives of the test are to measure the failure pressure, to observe the mode of failure, and to record the containment structural response up to failure. Pre- and posttest analyses will be conducted to forecast and evaluate the test results. Based on these results, a validated method for evaluating the structural behavior of an actual PWR PCCV will be developed. The concepts to design the PCCV model are also described in the paper

  9. TEMP-STRESS analysis of a reinforced concrete vessel under internal pressure

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-01-01

    Prediction of the response of the Sandia National laboratory 1/6-scale reinforced concrete containment model test was obtained by Argonne National Laboratory (ANL) employing a computer program developed by ANL. The test model was internally pressurized to failure. The two-dimensional code TEMP-STRESS [1-5] has been developed at ANL for stress analysis of plane and axisymmetric 2-D reinforced structures under various thermal conditions. The program is applicable to a wide variety of nonlinear problems, and is utilized in the present study. The comparison of these pretest computations with test data on the containment model should be a good indication of the state of the code

  10. Development and investigation of the prestressed reinforced concrete vessels for the water cooled reactors in the FRG

    International Nuclear Information System (INIS)

    Medovikov, A.I.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Konevskij, V.N.

    1980-01-01

    An analysis of calculation results for characteristics of stress-strained state of reactor vessel made of prestressed reinforced concrete is presented. Experimental data obtained during the investigation into a model of reactor vessel top cover are given. Thermal shielding system both for boiling water and pressurized-water reactors has been considered and its working capacity has been evaluated. An analysis of experimental data show correctness of the method assumed for calculation of the reactor top cover which permits to exactly determine its stressed-strained state as well as the nature of crack propagation in the vessel and the structure supporting power. Ceramics is suggested to be used as a heat-insulating material

  11. Computations for the 1:5 model of the THTR pressure vessel compared with experimental results

    International Nuclear Information System (INIS)

    Stangenberg, F.

    1972-01-01

    In this report experimental results measured at the 1:5-model of the prestressed concrete pressure vessel of the THTR-nuclear power station Schmehausen in 1971, are compared with the results of axis-symmetrical computations. Linear-elastic computations were performed as well as approximate computations for overload pressures taking into consideration the influences of the load history (prestressing, temperature, creep) and the effects of the steel components. (orig.) [de

  12. Development of ultrasonic testing technique with the large transducer to inspect the containment vessel plates of nuclear power plant embedded in concrete

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Kurozumi, Yasuo; Kaneshima, Yoshiari

    2004-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. In order to establish ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely at the accessible point, experiments to detect artificial hollows simulating corrosion on a surface of a carbon steel plate mock-up covered with concrete simulating the embedded containment vessel plates were carried out with newly made ultrasonic transducers. We made newly low frequency (0.3 MHz and 0.5 MHz) surface shear horizontal (SH) wave transducers combined with three large active elements, which were equivalent to a 120mm width element. As a result of the experiments, the surface SH transducers could detect clearly the echo from the hollows with a depth of 9.5 mm and 19 mm at a distance of 1500mm from the transducers on the surface of the mock-up covered with concrete. Therefore, we evaluate that it is possible to detect the defects such as corrosion on the plates embedded in concrete with the newly made low frequency surface SH transducers with large elements. (author)

  13. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  14. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  15. Capacity of Prestressed Concrete Containment Vessels with Prestressing Loss

    International Nuclear Information System (INIS)

    SMITH, JEFFREY A.

    2001-01-01

    Reduced prestressing and degradation of prestressing tendons in concrete containment vessels were investigated using finite element analysis of a typical prestressed containment vessel. The containment was analyzed during a loss of coolant accident (LOCA) with varying levels of prestress loss and with reduced tendon area. It was found that when selected hoop prestressing tendons were completely removed (as if broken) or when the area of selected hoop tendons was reduced, there was a significant impact on the ultimate capacity of the containment vessel. However, when selected hoop prestressing tendons remained, but with complete loss of prestressing, the predicted ultimate capacity was not significantly affected for this specific loss of coolant accident. Concrete cracking occurred at much lower levels for all cases. For cases where selected vertical tendons were analyzed with reduced prestressing or degradation of the tendons, there also was not a significant impact on the ultimate load carrying capacity for the specific accident analyzed. For other loading scenarios (such as seismic loading) the loss of hoop prestressing with the tendons remaining could be more significant on the ultimate capacity of the containment vessel than found for the accident analyzed. A combination of loss of prestressing and degradation of the vertical tendons could also be more critical during other loading scenarios

  16. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  17. Pressure vessels and methods of sealing leaky tubes disposed in pressure vessels

    International Nuclear Information System (INIS)

    Larson, G.C.

    1980-01-01

    This invention relates to pressure vessels and to methods of sealing leaky tubes in them and is especially applicable to pressure vessels in the form of sheet-and-tube type heat exchangers constructed with a large number of relatively small diameter tubes grouped in a bundle. To seal off a leaky tube in such a heat exchanger an explosive activated plug in the form of a hollow metal body is used, inserted at each end of the tube to be sealed. Using the arrangement of pressure vessel and associated tube sheets and the explosive activated plug method of sealing a leaky tube as described in this invention it is claimed that distortion of the adjacent tubes and the tube sheets is reduced when the explosive activated plugs are detonated. (U.K.)

  18. Behavior of cracked concrete nuclear containment vessels during earthquakes

    International Nuclear Information System (INIS)

    Gergely, P.; Stanton, J.F.; White, R.N.

    1975-01-01

    When pressure builds up in a reinforced concrete nuclear containment shell, its cylindrical wall cracks vertically and horizontally at intervals of about five feet. If an earthquake occurs simultaneously with this pressurization, inertia forces are transmitted across the horizontal crack planes. The forces and deformations must be small enough to maintain the integrity of the steel liner. A typical containment shell has a radius of about 65 ft. and a wall thickness of about 4 ft. It is heavily reinforced with vertical, horizontal, and sometimes diagonal bars. A steel shell of about 3 / 8 in. thickness is attached to the concrete with anchors. The seismic shear forces are transmitted across the horizontal cracks by interface shear transfer (combination of shear friction and aggregate interlocking), by dowel action of the bars, and by diagonal bars if they are used. One important question in the design of such vessels is whether the diagonal bars are necessary. In the experimental portion of the current investigation several types of tests were conducted to study the load-slip characteristics of interface shear transfer under high intensity cyclic loading. In some cases external bars provided the clamping action of reinforcement, in more recent tests large diameter embedded bars were used. This presentation summarizes the analytical part of the investigation. A representative load-slip curve has been used in the analyses to assess the intensity of the stresses and deformations, and to study the importance of the variables as an aid in planning future tests

  19. Temperature Response in Hardened Concrete Subjected to Tropical Rainforest Environment

    Directory of Open Access Journals (Sweden)

    E. I. Egba

    2017-06-01

    Full Text Available The objective of this paper is to characterize concrete micro-environment temperature response to the natural climate of the tropical rainforest. The peculiar warmth, high humidity, and low pressure nature of the tropical rainforest necessitated the present study. Temperature probes were inserted into concrete specimens subjected to the sheltered and unsheltered environment to measure the micro-environment temperature of the concrete, and study the hysteresis characteristics in relation to the climate temperature. Some mathematical relationships for forecasting the internal temperature of concrete in the tropical rainforest environment were proposed and tested. The proposed relationships were found reliable. It was observed that the micro-environment temperature was lower at the crest, and higher at the trough than the climate environment temperature with a temperature difference of 1-3 oC. Also, temperature response in concrete for the unsheltered micro-environment was 1.85 times faster than the response in the sheltered micro-environment. The findings of the study may be used to assist the durability assessment of concrete.

  20. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  1. Prestressed concrete reactor vessels: review of design and failure criteria

    International Nuclear Information System (INIS)

    Endebrock, E.G.

    1975-03-01

    The design and failure criteria of prestressed concrete reactor vessels (PCRVs) are reviewed along with the analysis methods. The mechanical properties of concrete under multiaxial stresses are not adequately quantified or described to permit an accurate analysis of a PCRV. Structural analysis of PCRVs almost universally utilizes a finite element which encounters difficulties in numerical solution of the governing equations and in treatment of fractured elements. (U.S.)

  2. Pressure vessel integrity 1991

    International Nuclear Information System (INIS)

    Bhandari, S.; Doney, R.O.; McDonald, M.S.; Jones, D.P.; Wilson, W.K.; Pennell, W.E.

    1991-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on nuclear industry applications. The papers were prepared for technical sessions developed under the sponsorship of the ASME Pressure Vessels and Piping Division Committees for Codes and Standards, Computer Technology, Design and Analysis, and Materials Fabrication. They were presented at the 1991 Pressure Vessels and Piping Division Conference in San Diego, California, June 23-27. The primary objective of the sponsoring organization is to provide a forum for the dissemination and discussion of information on development and application of technology for the structural integrity assessment of pressure vessels and piping. This publication includes contributions from authors from Australia, France, Japan, Sweden, Switzerland, the United Kingdom, and the United States. The papers here are organized in six sections, each with a particular emphasis as indicated in the following section titles: Fracture Technology Status and Application Experience; Crack Initiation, Propagation and Arrest; Ductile Tearing; Constraint, Stress State, and Local-Brittle-Zones Effects; Computational Techniques for Fracture and Corrosion Fatigue; and Codes and Standards for Fatigue, Fracture and Erosion/Corrosion

  3. Ultimate pressure capacity of CANDU 6 containment structures

    International Nuclear Information System (INIS)

    Radulescu, J.P.; Pradolin, L.; Mamet, J.C.

    1997-01-01

    This paper summarizes the analytical work carried out and the results obtained when determining the ultimate pressure capacity (UPC) of the containment structures of CANDU 6 nuclear power plants. The purpose of the analysis work was to demonstrate that such containment structures are capable of meeting design requirements under the most severe accident conditions. For this concrete vessel subjected to internal pressure, the UPC was defined as the pressure causing through cracking in the concrete. The present paper deals with the overall behaviour of the containment. The presence of openings, penetrations and the ultimate pressure of the airlocks were considered separately. (author)

  4. Research and development of the prestressed concrete reactor vessel

    International Nuclear Information System (INIS)

    Shiozawa, Shoji; Omata, Ippei; Nakamura, Norio

    1975-01-01

    Compared with the steel reactor vessel, the prestressed concrete reactor vessel (PCRV) is said to be superior in safety and economy. One of the characteristics of the high temperature gas cooled reactor (HTGR) is the adoption of the PCRV instead of the steel reactor vessel to ensure safety. In order to improve safety characteristics, it is necessary for the PCRV to be provided with more reliable functions. When the multi-purpose HTGR or the gas cooled fast breeder reactor (GCFR) are realized in future, more severe conditions of technology will be imposed on the PCRV, and accordingly, technical developments are now increasingly required. IHI is now proceeding with the technical research and development on the PCRV, in which a basic study of its liner cooling system has already been completed. In this study applying a large cylindrical PCRV model, comparison was made between experimental data and analyses concerning the liner cooling system, and the results of analytical technique have been evaluated. The analytical technique established this time is applicable to the estimation of temperature distribution in the concrete of a large PCRV and also to the evaluation of the liner cooling system. (auth.)

  5. Design of the prestressed concrete reactor vessel for gas-cooled heating reactors

    International Nuclear Information System (INIS)

    Becker, G.; Notheisen, C.; Steffen, G.

    1987-01-01

    The GHR pebble bed reactor offers a simple, safe and economic possibility of heat generation. An essential component of this concept is the prestressed concrete reactor vessel. A system of cooling pipes welded to the outer surface of the liner is used to transfer the heat from the reactor to the intermediate circuit. The high safety of this vessel concept results from the clear separation of the functions of the individual components and from the design principle of the prestressed conncrete. The prestressed concrete structure is so designed that failure can be reliably ruled out under all operating and accident conditions. Even in the extremely improbable event of failure of all decay heat removal systems when decay heat and accumulated heat are transferred passively by natural convection only, the integrity of the vessel remains intact. For reasons of plant availability the liner and the liner cooling system shall be designed so as to ensure safe elimination of failure over the total operating life. The calculations which were peformed partly on the basis of extremely adverse assumption, also resulted in very low loads. The prestressed concrete vessel is prefabricated to the greatest possible extent. Thus a high quality and optimized fabrication technology can be achieved especially for the liner and the liner cooling system. (orig./HP)

  6. Analyses and testing of model prestressed concrete reactor vessels with built-in planes of weakness

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Fleischer, C.C.

    1990-01-01

    This paper describes the design, construction, analyses and testing of two small scale, single cavity prestressed concrete reactor vessel models, one without planes of weakness and one with planes of weakness immediately behind the cavity liner. This work was carried out to extend a previous study which had suggested the likely feasibility of constructing regions of prestressed concrete reactor vessels and biological shields, which become activated, using easily removable blocks, separated by a suitable membrane. The paper describes the results obtained and concludes that the planes of weakness concept could offer a means of facilitating the dismantling of activated regions of prestressed concrete reactor vessels, biological shields and similar types of structure. (author)

  7. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  8. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil

    2010-01-01

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  9. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  10. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  11. Three dimensional non-linear cracking analysis of prestressed concrete containment vessel

    International Nuclear Information System (INIS)

    Al-Obaid, Y.F.

    2001-01-01

    The paper gives full development of three-dimensional cracking matrices. These matrices are simulated in three-dimensional non-linear finite element analysis adopted for concrete containment vessels. The analysis includes a combination of conventional steel, the steel line r and prestressing tendons and the anisotropic stress-relations for concrete and concrete aggregate interlocking. The analysis is then extended and is linked to cracking analysis within the global finite element program OBAID. The analytical results compare well with those available from a model test. (author)

  12. Nuclear power plant pressure vessels. Control of piping

    International Nuclear Information System (INIS)

    2000-01-01

    The guide presents requirements for the pipework of nuclear facilities in Finland. According to the section 117 of the Finnish Nuclear Energy Degree (161/88), the Radiation and Nuclear Safety Authority of Finland (STUK) controls the pressure vessels of nuclear facilities in accordance with the Nuclear Energy Act (990/87) and, to the extent applicable in accordance with the Act of Pressure Vessels (98/73) and the rules and regulations issued by the virtue of these. In addition STUK is an inspecting authority of pressure vessels of nuclear facilities in accordance with the Pressure Vessel Degree (549/1973). According to the section of the Pressure Vessel Degree, a pressure vessel is a steam boiler, pressure container, pipework of other such appliance in which the pressure is above or may come to exceed the atmospheric pressure. Guide YVL 3.0 describes in general terms how STUK controls pressure vessels. STUK controls Safety Class 1, 2 and 3 piping as well as Class EYT (non-nuclear) and their support structures in accordance with this guide and applies the provisions of the Decision of the Ministry of Trade and Industry on piping (71/1975) issued by virtue of the Pressure Vessel Decree

  13. Parametric Study on Important Variables of Aircraft Impact to Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangshup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, to find the damage parameter, it is necessary to use many analysis cases and the time reduction. Thus, this paper uses a revised version of Riera's method. Using this method, the response has been found a Prestressed Concrete Containments Vessels (PCCVs) subject to impact loading, and the results of the velocity and mass of the important parameters have been analyzed. To find the response of the PCCVs subjected to aircraft impact load, it is made that a variable forcing functions depending on the velocity and fuel in the paper. The velocity variation affects more than fuel percentage, and we expect that the severe damage of the PCCVs with the same material properties is subject to aircraft impact load (more than 200m/s and 70%)

  14. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  15. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    For a company to maintain its competitive edge in today's global market every opportunity to gain an advantage must be exploited. Many companies are strategically focusing on improved utilization of existing equipment as well as regulatory compliance. Abbott Laboratories is no exception. Pharmaceutical companies such as Abbott Laboratories realize that reliability and availability of their production equipment is critical to be successful and competitive. Abbott Laboratories, like many of our competitors, is working to improve safety, minimize downtime and maximize the productivity and efficiency of key production equipment such as the pressure vessels utilized in our processes. The correct strategy in obtaining these objectives is to perform meaningful inspection with prioritization based on hazard analysis and risk. The inspection data gathered in Abbott Laboratories pressure vessel program allows informed decisions leading to improved process control. The results of the program are reduced risks to the corporation and employees when operating pressure retaining equipment. Accurate and meaningful inspection methods become the cornerstone of a program allowing proper preventative maintenance actions to occur. Successful preventative/predictive maintenance programs must utilize meaningful nondestructive evaluation techniques and inspection methods. Nondestructive examination methods require accurate useful tools that allow rapid inspection for the entire pressure vessel. Results from the examination must allow the owner to prove compliance of all applicable regulatory laws and codes. At Abbott Laboratories the use of advanced NDE techniques, primarily B-scan ultrasonics, has provided us with the proper tools allowing us to obtain our objectives. Abbott Laboratories uses B-scan ultrasonics utilizing a pulse echo pitch catch technique to provide essential data on our pressure vessels. Equipment downtime is reduced because the nondestructive examination usually takes

  16. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  17. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  18. Metallurgy of steels for PWR pressure vessels

    International Nuclear Information System (INIS)

    Kepka, M.; Mocek, J.; Barackova, L.

    1980-01-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)

  19. Metallurgy of steels for PWR pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)

    1980-09-01

    A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.

  20. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  1. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  2. Pretest round robin analysis of 1:4-scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Luk, V.K.; Klamerus, E.W.; Shibata, S.; Mitsugi, S.; Costello, J.F.

    2001-01-01

    The work reported herein represents, arguably, the state of the art in the numerical simulation of the response of a prestressed concrete containment vessel (PCCV) model to pressure loads up to failure. A significant expenditure of time and money on the part of the sponsors, contractors, and Round Robin participants was required to meet the objectives. While it is difficult to summarize the results of this extraordinary effort in a few paragraphs, the following observations are offered for the reader's consideration: almost half the participants used ABAQUS as the primary computational tool for performing the pretest analyses. The other participants used a variety of codes, most of which were developed ''in house''. (author)

  3. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  4. Stress analysis of R2 pressure vessel. Structural reliability benchmark exercise

    International Nuclear Information System (INIS)

    Vestergaard, N.

    1987-05-01

    The Structural Reliability Benchmark Exercise (SRBE) is sponsored by the EEC as part of the Reactor Safety Programme. The objectives of the SRBE are to evaluate and improve 1) inspection procedures, which use non-destructive methods to locate defects in pressure (reactor) vessels, as well as 2) analytical damage accumulation models, which predict the time to failure of vessels containing defects. In order to focus attention, an experimental presure vessel has been inspected, subjected fatigue loadings and subsequently analysed by several teams using methods of their choice. The present report contains the first part of the analytical damage accumulation analysis. The stress distributions in the welds of the experimental pressure vessel were determined. These stress distributions will be used to determine the driving forces of the damage accumulation models, which will be addressed in a future report. (author)

  5. Lay-out and construction of a pressure vessel built-up of cast steel segments for a pebble-bed high temperature reactor with a thermal power of 3000 MW

    International Nuclear Information System (INIS)

    Voigt, J.

    1978-03-01

    The prestressed cast vessel is an alternative to the prestressed concrete vessel for big high temperature reactors. In this report different cast steel vessel concepts for an HTR for generation of current with 3000 MW(th) are compared concerning their realization and economy. The most favourable variant serves as a base for the lay-out of the single vessel components as cast steel segments, bracing, cooling and outer sealing. Hereby the actual available possibilities of production and transport are considered. For the concept worked out possibilities of inspection and repair are suggested. A comparison of costs with adequate proposititons of the industry for a prestressed concrete and a cast iron pressure vessel investigates the economical competition. (orig.) [de

  6. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  7. To the problem of reinforced concrete reactor vessel design and calculation

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Artem'ev, V.P.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Paushkin, A.G.

    1980-01-01

    Modern methods for calculating reactor vessels of prestressed reinforced concrete are analyzed. It is shown that during the stage of technical and economical substantiation of reactor vessel structure for determining its stressed-deformed state engineering methods of calculation must be used, in particular, fragmentation method, method of rings and plates, and during the stages of contract and detail designs - method of finite elements and dynamic relaxation method. It is concluded that when solving cyclic symmetrical problems as well as asymmetrical problems, calculational algorithms for axis-symmetrical distributions of stresses in the vessel with provision for elastic properties of structural material may be used

  8. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi

    2015-03-01

    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  9. Stress categorization in nozzle to pressure vessel connections finite elements models

    International Nuclear Information System (INIS)

    Albuquerque, Levi Barcelos de

    1999-01-01

    The ASME Boiler and Pressure Vessel Code, Section III , is the most important code for nuclear pressure vessels design. Its design criteria were developed to preclude the various pressure vessel failure modes throughout the so-called 'Design by Analysis', some of them by imposing stress limits. Thus, failure modes such as plastic collapse, excessive plastic deformation and incremental plastic deformation under cyclic loading (ratchetting) may be avoided by limiting the so-called primary and secondary stresses. At the time 'Design by Analysis' was developed (early 60's) the main tool for pressure vessel design was the shell discontinuity analysis, in which the results were given in membrane and bending stress distributions along shell sections. From that time, the Finite Element Method (FEM) has had a growing use in pressure vessels design. In this case, the stress results are neither normally separated in membrane and bending stress nor classified in primary and secondary stresses. This process of stress separation and classification in Finite Element (FE) results is what is called stress categorization. In order to perform the stress categorization to check results from FE models against the ASME Code stress limits, mainly from 3D solid FE models, several research works have been conducted. This work is included in this effort. First, a description of the ASME Code design criteria is presented. After that, a brief description of how the FEM can be used in pressure vessel design is showed. Several studies found in the literature on stress categorization for pressure vessel FE models are reviewed and commented. Then, the analyses done in this work are presented in which some typical nozzle to pressure vessel connections subjected to internal pressure and concentrated loads were modeled with solid finite elements. The results from linear elastic and limit load analyses are compared to each other and also with the results obtained by formulae for simple shell

  10. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  11. Recent investigations and tests with the BBR winding system for circumferential prestressing of concrete vessels and containments

    International Nuclear Information System (INIS)

    Schuett, K.; Speck, F.E.

    1993-01-01

    Prestressed concrete pressure vessels for nuclear power stations need post-tensioning systems of large capacity. For the circumferential prestressing, the continuous winding of prestressing steel has several advantages when compared to the use of large numbers of single tendons. About 15 years ago Bureau BBR Ltd (Zuerich) developed the winding system SW 8500. The further development work interrupted at that time for lack of immediate applications was resumed 4 years ago by Bureau BBR together with SUSPA on the ground of new projects being evaluated

  12. Foundamental characteristics of layered pressure vessel

    International Nuclear Information System (INIS)

    Moriwaki, Yoshikazu; Fugino, Masayuki; Shimizu, Yasuhiro; Nakamura, Takeshi

    1978-01-01

    Pressure vessels become larger and the working pressure become higher with the remarkable development of petroleum, chemical, thermal power generation and atomic energy industries. Multi-layered pressure vessels can be manufactured cheaply without large installations, and large wall thickness can be made, therefore they are suitable for large pressure vessels. The stress and deformation behaviors of such vessels are very complex because of the effect of frictional force working between layers. In this study, the phenomena arising in multiple layers and the difference as compared with single wall were studied fundamentally as one step for analyzing multi-layered pressure vessels as a whole. Finite element technique was employed as the analyzing method, and the behavior of multiple layers was analyzed, regarding it as multiple contact problem. The behavior of multiple layers seems to appear conspicuously in case of bending load, therefore the basic characteristics regarding bending were examined. The evaluation of interfacial stiffness was carried out by experiment. The computer program for analyzing multiple contact problem was developed. In order to examine the validity of the program, comparison with the analytical solution heretofore and the result of calculation by finite element technique was carried out. Moreover, the experimental proof with multi-layered models was made. The frictional force between layers hardly contributes to the stiffness. (Kako, I.)

  13. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  14. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  15. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented

  16. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  17. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  18. Guidelines for pressure vessel safety assessment

    Science.gov (United States)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  19. Meeting 'Prestressed-concrete reactor pressure vessels', 13th and 14th october 1975, Berlin

    International Nuclear Information System (INIS)

    Schickert, G.

    1976-01-01

    Influence of radioactive radiation on the mechanical properties of concrete; behaviour of concrete in short-time testing under multiaxial mechanical stresses; behaviour of concrete in long-time testing under multiaxial mechanical stresses at higher temperatures; temperature stress of concrete; strength formation of concrete; steel fiber concrete. (LH) [de

  20. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  1. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  2. Results of reactor pressure vessels ISI

    International Nuclear Information System (INIS)

    Cepcek, S.

    1994-01-01

    To find out the possible influence of the annealing process to reactor pressure vessel integrity, a large in-service inspection programme has been implemented as an associated activity to reactor pressure vessel annealing. In this paper the approach to the RPV in-service inspection is shown. Also, the main results and conclusions following in-service inspection are presented. (author). 3 refs, 1 fig

  3. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  4. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  5. Reactor pressure vessel status report

    International Nuclear Information System (INIS)

    Strosnider, J.; Wichman, K.; Elliot, B.

    1994-12-01

    This report gives a brief description of the reactor pressure vessel (RPV), followed by a discussion of the radiation embrittlement of RPV beltline materials and the two indicators for measuring embrittlement, the end-of-license (EOL) reference temperature and the EOL upper-shelf energy. It also summarizes the GL 92-01 effort and presents, for all 37 boiling water reactor plants and 74 pressurized water reactor plants in the United States, the current status of compliance with regulatory requirements related to ensuring RPV integrity. The staff has evaluated the material data needed to predict neutron embrittlement of the reactor vessel beltline materials. These data will be stored in a computer database entitled the reactor vessel integrity database (RVID). This database will be updated annually to reflect the changes made by the licensees in future submittals and will be used by the NRC staff to assess the issues related to vessel structural integrity

  6. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  7. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  8. Experimental investigations concerning the suitability of channel systems for liner leak detection and drainage of a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Nickel, M.; Breitbach, G.; Altes, J.; Escherich, K.H.; Wolters, J.

    1985-02-01

    The iternal surfaces of prestressed concrete pressure vessels are fitted with a steel liner to preserve the gas tightness of the primary circuit. Because of the high quality manufacture and the loading conditions a linear failure can be practically excluded. However, if it is hypothetically assumed, that a leak develops during reactor operation, it may be difficult to determine the position of the leak, because the linear area is very large. For tightness surveillance and for venting channel systems installed in close proximity to the linear are suitable. The suitability of such channels for leak detection, localisation and venting was investigated experimentally. A concrete wall (length 2.5 m, height 2.0 m, thickness 0.5 m) was constructed, covered on one side with a steel liner. Behind the liner two different channel systems have been installed. For the simulation of leaks holes were drilled into the liner. The experimental programm contained the following measurements: determination of gas flow rates into the different leaks, distribution of leakage gas over the array of channels and determination of pressures into the concrete and immediately behind the liner. The experiments have shown, that channel arrays immediately adjacent to the liner are the most suitable systems for localisation and controlled exhaust of leakage gas. The suitability decreases, if the channels are set into the concrete somewhat distant from the liner. (orig.) [de

  9. Dismantling id the reactor pressure vessel insulation and dissecting of the MZFR reactor pressure vessel

    International Nuclear Information System (INIS)

    Loeb, Andreas; Stanke, Dieter; Thoma, Markus; Eisenmann, Beata; Prechtl, Erwin; Dehnke, Burckhard

    2008-01-01

    The MZFR reactor was decommissioned in 1984. The authors describe the dismantling of the reactor pressure vessel insulation that consists of asbestos containing mineral fiber wool. The appropriate remote handling and cutting tools had to be adapted with respect to the restrained space in the containment. The dismantling of the reactor pressure vessel has been completed, the dissected parts have been packaged into 200 containers for the final repository Konrad. During the total project time no reportable events and no damage to persons occurred.

  10. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  11. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    International Nuclear Information System (INIS)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    2015-01-01

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.

  12. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Science.gov (United States)

    2010-10-01

    ... that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure piping... tests conducted in accordance with this section shall be either hydrostatic tests or pneumatic tests. (1... times the maximum allowable working pressure. (2) When a pneumatic test is conducted on a pressure...

  13. Safety margin evaluation of pre-stressed concrete nuclear containment vessel model with BARC code ULCA

    International Nuclear Information System (INIS)

    Basha, S.M.; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: Ultimate load capacity assessment of nuclear containments has been a thrust research area for Indian pressurised heavy water reactor (PHWR) power programme. For containment safety assessment of Indian PHWRs a finite element code ULCA was developed at BARC, Trombay. This code has been extensively benchmarked with experimental results and for prediction of safety margins of Indian PHWRs. The present paper highlights the analysis results for prestressed concrete containment vessel (PCCV) tested at Sandia National Labs, USA in a round robin analysis activity co-sponsored by Nuclear Power Engineering Corporation (NUPEC), Japan and the U.S Nuclear Regulatory Commission (NRC). Three levels of failure pressure predictions namely the upper bound, the most probable and the lower bound (all with 90% confidence) were made as per the requirements of the round robin analysis activity. The most likely failure pressure is predicted to be in the range of 2.95 Pd to 3.15 Pd (Pd = design pressure of 0.39 MPa for the PCCV model) depending on the type of liners used in the construction of the PCCV model. The lower bound value of the ultimate pressure of 2.80 Pd and the upper bound of the ultimate pressure of 3.45 Pd are also predicted from the analysis. These limiting values depend on the assumptions of the analysis for simulating the concrete tendon interaction and the strain hardening characteristics of the steel members. The experimental test has been recently concluded at Sandia Laboratory and the peak pressure reached during the test is 3.3 Pd that is enveloped by our upper bound prediction of 3.45 Pd and is close to the predicted most likely pressure of 3.15 Pd

  14. Pressure vessel integrity and weld inspection procedure

    International Nuclear Information System (INIS)

    Solomon, K.A.; Okrent, D.; Kastenberg, W.E.

    1975-01-01

    The primary objective of this paper is to develop a simple methodology which, when coupled with existing observations on pressure vessel behavior, provides an inter-relation between pressure vessel integrity, and the parameters of the in-service inspection program, including inspection sample size, frequency and efficiency. A modified Markov process is employed and a computer code was written to obtain numerical results. The Markov process mathematically describes the following physical events. In a nuclear reactor pressure vessel weld, some defects may exist prior to the zeroth inspection (i.e., prior to vessel operation). During the zeroth inspection and repair processes, some of these defects are removed. During the first cycle of vessel operation, the existing defects may grow and some new defects may be generated. Those defects that are found at the first (and succeeding) inspection interval and warrant repair, are repaired. The above process continues through several operating cycles to the end of vessel life. During any inspection, only a portion of the welds may be inspected, and with less than perfect efficiency

  15. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1977-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction. (Auth.)

  16. Improvement of the calculation of the stress intensity factors for underclad and through-clad defects in a reactor pressure vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2008-01-01

    The analysis of the stability of a defect in a cladded reactor pressure vessel (RPV) of a nuclear pressure water reactor (PWR) subjected to pressurised thermal shock (PTS) is one main elements of the general safety demonstration. Recently, CEA proposed several improved analytical tools for the analysis of the PTS. First, an analytical solution for the vessel through-thickness temperature variation has been developed to deal with any fluid temperature, taking into account the possible presence of a cladding, in the case of an internal PTS. The associated thermal stress expression has been simplified and a complete linearised solution is given for the thermal loading and also for internal pressure, depending on the main vessel material and on the cladding properties. Finally, a complete compendium is also given for the elastic stresses intensity factor calculation. This paper proposes several improvements of the proposed analytical method to deal with a PTS in a PWR cladded vessel. A variable heat transfer coefficient is now taken into account based on an equivalent fluid temperature variation determination, associated with a constant heat transfer coefficient, to keep the same thermal exchange between the fluid and the inner skin of the vessel obtained with the initial data. A more accurate expression for the linearised stresses due to the internal pressure is given, and a possible effect of residual stresses due to the difference between the operating temperature and the stress-free temperature is also taken into account. Finally, an extension of the domain of definition of the influence functions for the elastic stress intensity factor calculation is given

  17. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  18. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  19. The use of acoustic monitoring to manage concrete structures in the nuclear industry

    International Nuclear Information System (INIS)

    Paulson, P.O.; Tozser, O.; Wit, M. de

    2003-01-01

    Concrete and steel are widely used in containment vessels within the nuclear industry. Both are excellent acoustic transmitters. In many structures tensioned wire elements are used within containment structures. However, tensioned wire can be vulnerable to corrosion. To reduce the probability of corrosion sophisticated protection systems are used. To confirm that the design strength is available through time, extensive inspection and maintenance regimes are implemented. These regimes include tests to confirm the condition of the post-tensioning, and pressure tests (leak tests) to verify the performance of vessel. This paper presents an acoustic monitoring technology which uses widely distributed sensors to detect and locate wire failures using the energy released at failure. The technology has been used on a range of structures including post-tensioned concrete bridges, suspension bridges, buildings, pre-cast concrete cylinder pipelines (PCCP) and prestressed concrete containment vessels (PCCV), where it has increased confidence in structures and reduced maintenance costs. Where the level of ambient noise is low then SoundPrint acoustic monitoring can detect concrete cracking. This has been shown in PCCP pipelines, on laboratory test structures and also in nuclear structures. The programme has shown that distributed sensors can locate internal cracking well before there is any external evidence. Several projects have been completed on nuclear vessels. The first has been completed on an Electricite de France (EDF) concrete test pressure vessel at Civaux in France. The second at the Sandia PCCV Test Vessel in Albuquerque, New Mexico, USA, which involved the testing of a steel lined concrete vessel. The third was on a PCCV in Maryland, USA. Acoustic monitoring is also able to monitor the deterioration of post-tensioned concrete structures as a result of seismic activity. Summary details of a case history are presented. (author)

  20. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  1. Pressurized wet digestion in open vessels (T11)

    International Nuclear Information System (INIS)

    Kettisch, P.; Maichin, P.; Zischka, M.; Knapp, G.

    2002-01-01

    Full text: Pressurized wet digestion in closed vessels, microwave assisted or with conventional conductive heating, is the most important sample preparation technique for digestion or leaching procedures in element analysis. In comparison to open vessel digestion closed vessel digestion methods have many advantages, but there is one disadvantage - complex and expensive vessel designs. A new technique - pressurized wet digestion in open vessels - combine the advantages of closed vessel sample digestion with the application of simple and cheap open vessels made of quartz or PFA. The vessels are placed in a high pressure Asher HPA, which is adapted with a Teflon liner and filled partly with water. The analytical results with 30 ml quartz vessels, 22 ml PFA vessels and 1.5 ml PIA auto sampler cups will be shown. In principle every dimensions of vessels can be used. The vessels are loaded with sample material (max. 1.5 g with quartz vessels, max. 0.5 g with PFA vessels and 50 mg with auto sampler cups) and digestion reagent. Afterwards the vessels are simply covered with PTFE stoppers and not sealed. The vessels are transferred into a special adapted HPA and digested at temperatures up to 270 o C. The digestion time is 90 min. and cooling down to room temperature 30 min. The analytical results of CRM's are within the certified values and no cross contamination and losses of volatile elements could be observed. (author)

  2. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.M.; Vaidyanathan, H.

    1996-02-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  3. Performance features of 22-cell, 19Ah single pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    1996-01-01

    Two 22-cells 19Ah Nickel-Hydrogen (Ni-H2) Single Pressure Vessel (SPV) Qual batteries, one each from EPI/Joplin and EPI/Butler, were designed and procured. The two batteries differ in the cell encapsulation technology, stack preload, and activation procedure. Both the Butler and Joplin batteries met the specified requirements when subjected to qualification testing and completed 2100 and 1300 LEO cycles respectively, with nominal performance. This paper discusses advantages, design features, testing procedures, and results of the two single pressure vessel Ni-H2 batteries.

  4. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  5. On the Adequacy of API 521 Relief-Valve Sizing Method for Gas-Filled Pressure Vessels Exposed to Fire

    Directory of Open Access Journals (Sweden)

    Anders Andreasen

    2018-03-01

    Full Text Available In this paper, the adequacy of the legacy API 521 guidance on pressure relief valve (PRV sizing for gas-filled vessels subjected to external fire is investigated. Multiple studies show that in many cases, the installation of a PRV offers little or no protection—therefore provides an unfounded sense of security. Often the vessel wall will be weakened by high temperatures, before the PRV relieving pressure is reached. In this article, a multiparameter study has been performed taking into consideration various vessel sizes, design pressures (implicitly vessel wall thickness, vessel operating pressure, fire type (pool fire or jet fire by applying the methodology presented in the Scandpower guideline. A transient thermomechanical response analysis has been carried out to accurately determine vessel rupture times. It is demonstrated that only vessels with relatively thick walls, as a result of high design pressures, benefit from the presence of a PRV, while for most cases no appreciable increase in the vessel survival time beyond the onset of relief is observed. For most of the cases studied, vessel rupture will occur before the relieving pressure of the PRV is reached.

  6. Pressure vessel rupture within a chamber: the pressure history on the chamber wall

    International Nuclear Information System (INIS)

    Baum, M.R.

    1989-04-01

    Generally there is a large number of pressure vessels containing high pressure gas on power stations and chemical plant. In many instances, particularly on power plant, these vessels are within the main building. If a pressure vessel were to fail, the surrounding structures would be exposed to blast loads and the forces resulting from jets of fluid issuing from the breached vessel. In the case where the vessel is in a relatively closed chamber there would also be a general overpressurisation of the chamber. At the design stage it is therefore essential to demonstrate that the plant could be safely shut down in the event of a pressure vessel failure, that is, it must be shown that the chamber will not collapse thus putting the building at risk or hazarding equipment essential for a safe shut down. Such an assessment requires the loads applied to the chamber walls, roof, etc. to be known. (author)

  7. Test of 6-in.-thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-01-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88 0 C (190 0 F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25 0 C (75 0 F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted

  8. A system for the thermal insulation of a pre-stressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    This invention concerns the thermal insulation of a pre-stressed concrete vessel for a pressurised water nuclear reactor, this vessel being fitted internally with a leak-proof metal lining. Two rings are placed at the lower and upper parts of the vessel respectively. The upper ring is closed with a cover. These rings differ in diameter, are fitted with a metal insulating and mark the limits of a chamber between the vaporisable fluid and the internal wall of the vessel. This chamber is filled with a fluid in the liquid phase up to the liquid/vapor interface level of the fluid and with a gas above that level, the covering of the rings forming a cold fluid liquid seal. Each ring is supported by the vessel. Leak-proof components take up the radial expansion of the rings [fr

  9. Temperature field in the bottom of concrete reactor vessel; Temperaturno polje u podu betonskog reaktorskog suda

    Energy Technology Data Exchange (ETDEWEB)

    Jovasevic, V; Tosic, D; Zaric, S; Maksimovic, Lj [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1969-07-01

    This paper contains detailed scheme of reactor bottom vessel made of concrete and the results of calculated relevant temperature distribution. Method applied for calculation is described taking into account all relevant factors and assuming that thermal conductivity of concrete is homogeneous and independent of temperature.

  10. Constitutive models for concrete and finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Anderson, C.A.

    1977-01-01

    Two constitutive models for concrete are discussed. For short-term loads, the orthotropic variable modulus model is described, and for long-term loads a viscoelastic model utilizing a Dirichlet series approximation for the creep compliance function is summarized. The orthotropic variable modulus model is demonstrated in an analysis of a PCRV head with penetrations. The viscoelastic model is illustrated with a simulation of a prestressed concrete cylinder subject to non-uniform temperatures

  11. Procurement of replacement pressure vessels for MURR

    International Nuclear Information System (INIS)

    Meyer, W.A. Jr.; Edwards, C.B. Jr.; McKibben, J.C.; Schoone, A.R.

    1989-01-01

    The University of Missouri Research Reactor Facility (MURR) located in Columbia, Missouri, is the highest powered, highest steady-state flux university research reactor in the United States. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-reflected, flux trap reactor. MURR has a compact core (0.033 m 3 ) composed of eight fuel elements of the materials test reactor type arranged as an annular right circular cylinder between the inner and outer aluminum pressure vessels. Conservative engineering judgment resulted in the decision in 1988 to purchase new inner and outer pressure vessels. This paper details the difficulties encountered in procuring replacements for aluminum pressure vessels built to standards that are no longer applicable in attempting to meet nuclear standards that are not applicable to nonferrous material

  12. The Combined Effects of Stress Concentration and Tensile Stresses from Autofrettage on the Life of Pressure Vessels

    Science.gov (United States)

    2017-02-01

    Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Thick walled pressure vessels are often...studies which will identify the cause of the reduced lives and propose corrective action. 15. SUBJECT TERMS Thick Walled Pressure Vessels...are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright information. 13. SUPPLEMENTARY NOTES

  13. Pressurization of Containment Vessels from Plutonium Oxide Contents

    International Nuclear Information System (INIS)

    Hensel, S.

    2012-01-01

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  14. Nuclear reactor pressure vessel flaw distribution development

    International Nuclear Information System (INIS)

    Kennedy, E.L.; Foulds, J.R.; Basin, S.L.

    1991-12-01

    Previous attempts to develop flaw distributions for probabilistic fracture mechanics analyses of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all PWR vessels. In contrast, this report describes (1) a new flaw distribution development analytic methodology that can be applied to the analysis of vessel-specific inservice inspection (ISI) data, and (2) results of the application of the methodology to the analysis of flaw data for each vessel case (ISI data on three PWR vessels and laboratory inspection data on sections of the Midland reactor vessel). Results of this study show significant variation among the flaw distributions derived from the various data sets analyzed, strongly suggesting than a vessel-specific flaw distribution (for vessel integrity prediction under pressurized thermal shock) is preferred over a ''generic'' distribution. In addition, quantitative inspection system flaw sizing accuracy requirements have been identified for developing a flaw distribution from vessel ISI data. The new flaw data analysis methodology also permits quantifying the reliability of the flaw distribution estimate. Included in the report are identified needs for further development of several aspects of ISI data acquisition and vessel integrity prediction practice

  15. Nuclear Power Plant Prestressed Concrete Containment Vessel Structure Monitoring during Integrated Leakage Rate Testing Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Jinke Li

    2017-04-01

    Full Text Available As the last barrier of nuclear reactor, prestressed concrete containment vessels (PCCVs play an important role in nuclear power plants (NPPs. To test the mechanical property of PCCV during the integrated leakage rate testing (ILRT, a fiber Bragg grating (FBG sensor was used to monitor concrete strain. In addition, a finite element method (FEM model was built to simulate the progress of the ILRT. The results showed that the strain monitored by FBG had the same trend compared to the inner pressure variation. The calculation results showed a similar trend compared with the monitoring results and provided much information about the locations in which the strain sensors should be installed. Therefore, it is confirmed that FBG sensors and FEM simulation are very useful in PCCV structure monitoring.

  16. Expanded Fermilab pressure vessel directory program

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect.

  17. Expanded Fermilab pressure vessel directory program

    International Nuclear Information System (INIS)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect

  18. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  19. Analysis and application of prestressed concrete reactor vessels for LMFBR containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Fistedis, S.H.; Bazant, Z.P.; Belytschko, T.B.

    1978-01-01

    An analytical model of a prestressed concrete reactor vessel (PCRV) for LMFBR and the associated finite element computer code, involving an explicit time integration procedure, is described. The model is axisymmetric and includes simulations of the tensile cracking of concrete, the reinforcement, and a prestressing capability. The tensile cracking of concrete and the steel reinforcement are both modeled as continuously distributed within the finite element. The stresses in the reinforcement and concrete are computed separately and combined to give an overall stress state of the composite material. Attention is given to the fact that cracks do not form instantaneously, but develop gradually. Thus, after crack initiation the normal stress is reduced to zero gradually as a function of time. Residual shear resistance of cracks due to aggregate interlock is also taken into account. Prestressing of the PCRV is modeled by special structural members which represent an averaged prestressing layer equivalent to an axisymmetric shell. The internal prestressing members are superimposed over the reinforced concrete body of the PCRV; they are permitted to stretch and slide in a predetermined path, simulating the actual tendons. The validity of the code is examined by comparison with experimental data. (Auth.)

  20. Experimental investigation of stresses and deformations of the model of a pod-boiler-prestressed concrete pressure vessel. Pt. 1

    International Nuclear Information System (INIS)

    Stoever, R.

    1973-01-01

    Investigations of elastic models are suitable to obtain independent values for stress states and deformations of thickwalled pressure vessels to check computer programs for three-dimensional elastic calculations. An elastic model of epoxy resin was constructed with the geometry of the pod boiler pressure vessel of the Hartlepool nuclear power station. With this model strains and deformations were measured for internal pressure. The stress states in the neighbourhood of the large vertical openings for the boiler pods and the horizontal gas ducts and at the junction of cylinder and plates were of special interest. Therefore most of the gauges were concentrated in these regions. A considerable number of strain gauges were embedded in the wall. The construction of the model is described in part one and results of the measurements are presented and discussed in part two of this report. (orig.) [de

  1. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  2. Ultrasound periodic inspections of reactor pressure vessels

    International Nuclear Information System (INIS)

    Haniger, L.

    1980-01-01

    Two versions are described of ultrasonic equipment for periodic inspections of reactor pressure vessels. One uses the principle of exchangeable programmators with solid-state logic while the other uses programmable logic with semiconductor memories. The equipment is to be used for inspections of welded joints on the upper part of the V-1 reactor pressure vessel. (L.O.)

  3. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  4. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  5. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  6. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  7. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1993-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  8. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  9. Study of the concrete tensile creep: application for the containment vessel of the nuclear power plants (PWR)

    International Nuclear Information System (INIS)

    Reviron, Nanthilde

    2009-01-01

    The aim of this work is to study experimentally and to conduct numerical simulations on the creep of concrete subjected to tensile stresses. The main purpose is to predict the behaviour of containment vessels of nuclear power plants (PWR) in the case of decennial test or accident. In order to satisfy to these industrial needs, it is necessary to characterize the behaviour of concrete under uniaxial tension. Thus, an important experimental study of tensile creep in concrete has been performed for different loading levels (50%, 70% and 90% of the tensile strength). In these tests, load was kept constant during 3 days. Several tests were performed: measurements of elastic properties and strength (in tension and in compression), monitoring of drying, shrinkage, basic creep and drying creep strains. Moreover, compressive creep tests were also performed and showed a difference with tensile creep. Furthermore, decrease of tensile strength and failure under tensile creep for large loading levels were observed. A numerical model has been proposed and developed in Cast3m finite element code. (author)

  10. Improvement to reactor vessel

    International Nuclear Information System (INIS)

    1974-01-01

    The vessel described includes a prestressed concrete vessel containing a chamber and a removable cover closing this chamber. The cover is in concrete and is kept in its closed position by main and auxiliary retainers, comprising fittings integral with the concrete of the vessel. The auxiliary retainers pass through the concrete of the cover. This improvement may be applied to BWR, PWR and LMFBR type reactor vessel [fr

  11. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  12. Burst pressure investigation of filament wound type IV composite pressure vessel

    Science.gov (United States)

    Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff

    2017-12-01

    Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.

  13. Firefighter's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  14. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.; Bryan, R.H.

    1976-08-01

    The test of intermediate test vessel V-7 was a crack-initiation fracture test of a 152-mm-thick (6-in.), 990-mm-OD (39-in.) vessel of ASTM A533, grade B, class 1 steel plate with a sharp outside surface flaw 457 mm (18 in.) long and about 135 mm (5.3 in.) deep. The vessel was heated to 91 0 C (196 0 F) and pressurized hydraulically until leakage through the flaw terminated the test at a peak pressure of 147 MPa (21,350 psi). Fracture toughness data obtained by testing precracked Charpy-V and compact-tension specimens machined from a prolongation of the cylindrical test shell were used in pretest analyses of the flawed vessel. The vessel, as expected, did not burst. Upon depressurization, the ruptured ligament closed so as to maintain static pressure without leakage at about 129 MPa

  15. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P H; Ahlstroem, P E; Pershagen, B

    1961-04-15

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D{sub 2}O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D{sub 2}O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960.

  16. Pressure Tube and Pressure Vessel Reactors; certain comparisons

    International Nuclear Information System (INIS)

    Margen, P.H.; Ahlstroem, P.E.; Pershagen, B.

    1961-04-01

    In a comparison between pressure tube and pressure vessel type reactors for pressurized D 2 O coolant and natural uranium, one can say that reactors of these two types having the same net electrical output, overall thermal efficiency, reflected core volume and fuel lattice have roughly the same capital cost. In these circumstances, the fuel burn-up obtainable has a significant influence on the relative economics. Comparisons of burn-up values made on this basis are presented in this report and the influence on the results of certain design assumptions are discussed. One of the comparisons included is based on the dimensions and ratings proposed for CANDU. Moderator temperature coefficients are compared and differences in kinetic behaviour which generally result in different design philosophies for the two types are mentioned, A comparison of different methods of obtaining flux flattening is presented. The influence of slight enrichment and other coolants, (boiling D 2 O and gases) on the comparison between pressure tube and pressure vessel designs is discussed and illustrated with comparative designs for 400 MW electrical output. This paper was presented at the EAES Enlarged Symposium on Heterogeneous Heavy Water Power Reactors, Mallorca, October 10 - 14, 1960

  17. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  18. Influence of Wind Pressure on the Carbonation of Concrete

    Directory of Open Access Journals (Sweden)

    Dujian Zou

    2015-07-01

    Full Text Available Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  19. Influence of Wind Pressure on the Carbonation of Concrete.

    Science.gov (United States)

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  20. Stress analysis of pressure vessels

    International Nuclear Information System (INIS)

    Kim, B.K.; Song, D.H.; Son, K.H.; Kim, K.S.; Park, K.B.; Song, H.K.; So, J.Y.

    1979-01-01

    This interim report contains the results of the effort to establish the stress report preparation capability under the research project ''Stress analysis of pressure vessels.'' 1978 was the first year in this effort to lay the foundation through the acquisition of SAP V structural analysis code and a graphic terminal system for improved efficiency of using such code. Software programming work was developed in pre- and post processing, such as graphic presentation of input FEM mesh geometry and output deformation or mode shope patterns, which was proven to be useful when using the FEM computer code. Also, a scheme to apply fracture mechanics concept was developed in fatigue analysis of pressure vessels. (author)

  1. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  2. KAPOOL experiments to simulate molten corium - sacrificial concrete interaction

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Tromm, W.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. In the planned European Pressurized Reactor (EPR) the core melt is retained in the reactor cavity for ∼ 1 h to pick up late melts after the failure of the reactor pressure vessel. The reactor cavity is protected by a layer of sacrificial concrete and closed by a melt gate at the bottom towards the spreading compartment. After erosion of the sacrificial concrete and melt-through of the gate the core melt should be distributed homogeneously into the spreading compartment. There the melt is cooled by flooding with water. The knowledge of the sacrificial concrete erosion phase in the reactor cavity is essential for the severe accident assessment. Several KAPOOL experiments have been performed to investigate the erosion of two possible compositions of sacrificial concretes using alumina-iron thermite melts as a simulant for the core melt. Erosion rates as a function of the melt temperature and the inhomogeneity of the melt front are presented in this paper. (authors)

  3. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  4. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  5. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    This paper discusses the development of a finite element code suitable for the safety analysis of prestressed concrete reactor vessels. The project has involved modification of a general purpose computer code to handle reinforced concrete structures as well as comparison of results obtained with the code against published experimental data. The NONSAP nonlinear structural analysis program was selected for the ease with which it can be modified to encompass problems peculiar to nuclear reactors. Pre- and post-processors have been developed for mesh generation and for graphical display of response variables. An out-of-core assembler and solver have been developed for the analysis of large three dimensional problems. The constitutive model for short term loads forms an orthotropic stress-strain relationship in which the concrete and the reinforcing steel are treated as a composite. The variation of stiffness and strength of concrete under multiaxial stress states is accounted for. Cracks are allowed to form at element integration points based on a three dimensional failure envelope in stress space. Composite tensile and shear properties across a crack are modified to account for bond degradation and for dowel action of the reinforcement. The constitutive law for creep is base on the expansion of the usual creep compliance function in the form of a Dirichlet exponential series. Empirical creep data are then fit to the Dirichlet series approximation by means of a least squares procedure. The incremental deformation process is subsequently reduced to a series of variable stiffness elasticity problems in which the past stress history is represented by a finite number of hidden material variables

  6. A new model for anisotropic damage in concrete and its application to the prediction of failure of some containment vessel

    International Nuclear Information System (INIS)

    Badel, P.-B.; Godard, V.; Leblond, J.-B.

    2005-01-01

    The aim of this paper is to propose a new model for damage in concrete structures which incorporates such complex features as damage anisotropy and asymmetry between tension and compression, while being expressed in a format well suited for numerical applications and involving a limited number of material parameters which can be determined from standard experiments. A crude version of the model involving a single tonsorial internal variable representing damage in tension, and a single material parameter, is presented first. The predictions of this simple model are satisfactory in simple tension, but not so in simple compression. As a remedy, various refinements are then introduced in a second version of the model involving an additional tonsorial or scalar internal variable representing damage in compression, and five additional material parameters. An example of determination of the model parameters using experimental stress-strain curves in simple tension and compression, plus failure envelopes in biaxial tension/compression, is presented next. The model is finally applied to the numerical prediction of the failure of some containment vessel subjected to some large internal pressure, with a comparison with calculations based on a simpler isotropic variant of the model using a single scalar damage variable. The results illustrate the relevance of models incorporating both asymmetry between tension and compression and anisotropy of damage for simulations of industrial concrete structures. (authors)

  7. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  8. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief Engineer...

  9. General design and main problems of a gas-heavy-water power reactor contained in a pressure vessel

    International Nuclear Information System (INIS)

    Roche, R.; Gaudez, J.C.

    1964-01-01

    In the framework of research carried out on a CO 2 -cooled power reactor moderated by heavy water, the so-called 'pressure vessel' solution involves the total integration of the core, of the primary circuit (exchanges and blowers) and of the fuel handling machine inside a single, strong, sealed vessel made of pre-stressed concrete. A vertical design has been chosen: the handling 'attic' is placed above the core, the exchanges being underneath. This solution makes it possible to standardize the type of reactor which is moderated by heavy-water or graphite and cooled by a downward stream of carbon dioxide gas; it has certain advantages and disadvantages with respect to the pressure tube solution and these are considered in detail in this report. Extrapolation presents in particular.problems due specifically to the heavy water (for example its cooling,its purification, the balancing of the pressures of the heavy water and of the gas, the assembling of the internal structures, the height of the attic, etc. (authors) [fr

  10. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    Science.gov (United States)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  11. Strength and stiffness of uniaxially tensioned reinforced concrete panels subjected to membrane shear. Technical report

    International Nuclear Information System (INIS)

    Hilmy, S.I.; White, R.N.; Gergely, P.

    1982-06-01

    This report presents experimental and analytical results on internal pressurization effects and seismic shear effects in a concrete containment vessel that is cracked by tension in one direction only. The experimental program, which was restricted to 6 in. thick flat specimens with two-way reinforcement, included establishment of (a) extensional stiffness for uniaxially tensioned specimens stressed to 0.6fy, and (b) shear strength and stiffness of these cracked specimens with tension levels ranging from 0 to 0.9fy; values were about 10 to 15 percent higher than in similar biaxially tensioned specimens. Eleven (11) specimens were tested (6 in monotonic shear and 5 in reversing cyclic shear)

  12. Analysis code for pressure in reactor containment vessel of ATR. CONPOL

    International Nuclear Information System (INIS)

    1997-08-01

    For the evaluation of the pressure and temperature in containment vessels in the events which are classified in the abnormal change of pressure, atmosphere and others in reactor containment vessels in accident among the safety evaluation events of the ATR, the analysis code for the pressure in reactor containment vessels CONPOL is used. In this report, the functions of the analysis code and the analysis model are shown. By using this analysis code, the rise of the pressure and temperature in a containment vessel is evaluated when loss of coolant accident occurs, and high temperature, high pressure coolant flows into it. This code possesses the functions of computing blow-down quantity and heat dissipation from reactor cooling facility, steam condensing heat transfer to containment vessel walls, and the cooling effect by containment vessel spray system. As for the analysis techniques, the models of reactor cooling system, containment vessel and steam discharge pool, and the computation models for the pressure and temperature in containment vessels, wall surface temperature, condensing heat transfer, spray condensation and blow-down are explained. The experimental analysis of the evaluation of the pressure and temperature in containment vessels at the time of loss of coolant accident is reported. (K.I.)

  13. Use of Master Curve technology for assessing shallow flaws in a reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, Bennett Richard; Taylor, Nigel

    2006-01-01

    In the NESC-IV project an experimental/analytical program was performed to develop validated analysis methods for transferring fracture toughness data to shallow flaws in reactor pressure vessels subject to biaxial loading in the lower-transition temperature region. Within this scope an extensive range of fracture tests was performed on material removed from a production-quality reactor pressure vessel. The Master Curve analysis of this data is reported and its application to the assessment of the project feature tests on large beam test pieces.

  14. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  15. Deformation of cylindrical vessel and the effect of barrel on deformation under inpulsive pressure of high explosive

    International Nuclear Information System (INIS)

    Iikura, Shoichi; Yashizawa, Hiroyasu; Sasanuma, Katsumi.

    1982-01-01

    According to the research performed so far, the result that the amount of deformation due to impulsive pressure was able to be evaluated by the impulse of impulsive pressure waves has been obtained. The analysis treating impulsive pressure waves as plane waves has been made frequently, but the analysis in which impulsive pressure waves must be treated as spherical waves, or the analysis of a vessel with a barrel (internal cylinder) is complex and difficult. In this report, the results of element test, which was carried out in the Oita Works, Asahi Chemical Industry Co., Ltd., in 1973 by the Power Reactor and Nuclear Fuel Development Corp. as the impact resistance test for fast breeder reactors, are rearranged and investigated. The specimens were the cylindrical vessels with upper and lower flanges, and 10 vessels and 9 kinds of barrels were made. Water was used as the pressure medium. The residual deformation and dynamic strain of the vessels and the wave form of pressure waves were measured. The deformation of cylindrical vessels subjected to the impulsive pressure from a point pressure source was able to be evaluated by the impulse distribution in normal direction. The maximum amount of deformation depended on the total plate thickness of barrels. (Kako, I.)

  16. In-service ultrasonic inspection of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Prepechal, J.; Sulc, J.

    1982-01-01

    Ultrasonic tests of pressure vessels for WWER 440 reactors, type 213 V, are carried out partly manually and partly by test equipment. The inner surface of the pressure vessel is tested using device REACTORTEST TRC which is fully mobile. The outer surface of the cylindrical parts and bottoms of the body is tested using handling equipment permanently in-built under the pressure vessel and dismountable testing heads. A set of these heads may be used for two reactor units. The testing equipment REACTORTEST TRC is equipped with a TRC 800 ultrasound device. The equipment for testing the outer surface of the vessel operates with the UDAR 16 ultrasound apparatus to which may be simultaneously connected 10 ultrasound probes and six probes for acoustic feedback. The whole system of ultrasonic tests makes possible a first-rate and reliable volume control of the whole pressure vessel and all points where cracks may originate and grow. (Z.M.)

  17. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  18. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  19. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  20. Nuclear reactor pressure vessel-specific flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.

    1992-01-01

    Vessel integrity predictions performed through fracture mechanics analysis of a pressurized thermal shock event have been shown to be significantly sensitive to the overall flaw distribution input. It has also been shown that modem vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. Throughout the program, new insight was obtained into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. For example, the potential application of a vessel-specific flaw distribution now provides at least one method by which a vessel-specific reference flaw size applicable to pressure-temperature limit curves determination can be estimated. This paper will discuss the development and application of the methodology and the impact to future vessel integrity analyses

  1. Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends

    International Nuclear Information System (INIS)

    Zhang, Q.; Wang, Z.W.; Tang, C.Y.; Hu, D.P.; Liu, P.Q.; Xia, L.Z.

    2012-01-01

    Limited work has been reported on determining the thermo-mechanical stresses in a multilayered composite pressure vessel when the influence of its closed ends is considered. In this study, an analytical solution was derived for determining the stress distribution of a multilayered composite pressure vessel subjected to an internal fluid pressure and a thermal load, based on thermo-elasticity theory. In the solution, a pseudo extrusion pressure was proposed to emulate the effect of the closed ends of the pressure vessel. To validate the analytical solution, the stress distribution of the pressure vessel was also computed using finite element (FE) method. It was found that the analytical results were in good agreement with the computational ones, and the effect of thermal load on the stress distribution was discussed in detail. The proposed analytical solution provides an exact means to design multilayered composite pressure vessels. Highlights: ► The thermal-mechanical stress was derived for a multilayered pressure vessel. ► A new pseudo extrusion pressure was proposed to emulate the effect of closed ends. ► The analytical results are in good agreement with the computational ones using FEM. ► The solution provides an exact way to design the multilayered pressure vessel.

  2. Numerical modeling and experimental validation of seismic uplift pressure variations in cracked concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Javanmardi, F.; Leger, P. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Civil, Mining and Geological Engineering; Tinawi, R. [Quebec Univ., Montreal, PQ (Canada)

    2004-07-01

    Concrete dams could sustain cracking and damage during maximum design earthquakes (MDE). Dam safety guidelines are established so that dams maintain a stable condition following MDE oscillatory motions. In this study, a theoretical model was developed to calculate the uplift pressure variations along concrete cracks with moving walls. The proposed model was verified using experimental crack test data. The model was applied in a finite element computer program for dynamic analysis of gravity dams considering hydro-mechanical water-crack coupling. An analysis of a typical 90 metre dam subjected to low and high frequency sinusoidal accelerations demonstrated that water can penetrate into part of a seismically initiated crack. Pressure tends to develop in a region close to the crack mouth, therefore detrimental effects for the global dam stability are unlikely to occur. The study showed that the seismic uplift force during the heel crack opening mode is small compared to the dam weight. This preliminary study suggests that the critical sliding safety factors (SSF) of the dam against downstream sliding could be computed by considering zero uplift pressure in the crack region subjected to tensile opening. 14 refs., 1 tab., 7 figs.

  3. Simulation of the behavior of pressurized underwater concrete

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Heniegal

    2015-06-01

    Full Text Available Under-Water Concrete (UWC contains Anti-Washout Admixtures (AWA (0.0%, 0.2%, 0.3%, 0.4% and 0.5% by weight of cement with cement contents (400, 450, 500 and 550 kg/m3. All concrete mix contains silica fume and high-range water reducing (15% and 4% respectively by weight of cement. The fine to steel slag coarse aggregate was 1:1. The concrete mix was tested for slump, slump flow, compressive strength and washout resistance using two test methods based on different principles. The first method is the plunge test CRDC61 which is widely used in North America, and the second method is the pressurized air tube which has been manufactured for this research and developed to simulate the effect of water pressure on washout resistance of underwater mix. The results of compressive strength test were compared to concrete cast underwater with that cast in air. Test results indicated that the use of an AWA facilitates the production of UWC mix with the added benefit of lower washout resistance. New technique of simulating pressurized UWC is reliable for detecting UWC properties. Adding AWA (0.3–0.5% by weight of cement makes all mix acceptable according to Japanese Society of Civil Engineers.

  4. Seals for sealing a pressure vessel such as a nuclear reactor vessel or the like

    International Nuclear Information System (INIS)

    Bruns, H.J.; Huelsermann, K.H.

    1975-01-01

    A description is given of seals for sealing a pressure vessel such as a nuclear reactor vessel, steam boiler vessel, or any other vessel which is desirably sealed against pressure of the type including a housing and a housing closure that present opposed vertical sealing surfaces which define the sides of a channel. The seals of the present invention comprise at least one sealing member disposed in the channel, having at least one stop face, a base portion and two shank portions extending from the base portion to form a groove-like recess. The shank portions are provided with sealing surfaces arranged to mate with the opposed vertical pressure vessel sealing surfaces. A shank-spreading wedge element also disposed in the channel has at least one stop face and is engaged in the groove-like recess with the sealing member and wedge element stop face adjacent to each other

  5. Design optimization of a thin walled pressure vessel

    International Nuclear Information System (INIS)

    Sadiq, S.

    2001-01-01

    Design evaluation of a pressure vessel is not only to build confidence on its integrity but also to reduce structural weight and enhance the performance of the structure. Pressure vessel, e.g., a rocket motor not only has to withstand the high operating temperatures but it must also be able to survive the internal pressures and external aerodynamic forces and bending stresses during its operation in flight. A research program was devised to study the stresses, which are generated in a thin walled pressure vessel during actual operation and its simulation with cold testing technique, i.e., by means of hydrostatic testing employing electrical resistance strain gauges on the external surface of the cylinder. The objective of the research was to uphold the performance of the vessel by reducing its thickness from 6.09 to 5.5 mm (which of course reduces the safety factor margin from 1.8 to 1.5); thereby curtailing the overall structural weight and maintaining the efficiency of the vessel itself during its live operation. The techniques employed were hydrostatic testing, data acquisition system for obtaining data on strains from the electrical resistance strain gauges and later employing V on Mises yield criterion empirical relation to computer the stresses in hoop and longitudinal directions. (author)

  6. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1) Marine...

  7. Fracture risk assessment for the pressurized water reactor pressure vessel under pressurized thermal shock events

    International Nuclear Information System (INIS)

    Chou, Hsoung-Wei; Huang, Chin-Cheng

    2016-01-01

    Highlight: • The PTS loading conditions consistent with the USNRC's new PTS rule are applied as the loading condition for a Taiwan domestic PWR. • The state-of-the-art PFM technique is employed to analyze a reactor pressure vessel. • Novel flaw model and embrittlement correlation are considered in the study. • The RT-based regression formula of NUREG-1874 was also utilized to evaluate the failure risks of RPV. • For slightly embrittled RPV, the SO-1 type PTSs play more important role than other types of PTS. - Abstract: The fracture risk of the pressurized water reactor pressure vessel of a Taiwan domestic nuclear power plant has been evaluated according to the technical basis of the U.S.NRC's new pressurized thermal shock (PTS) screening criteria. The ORNL's FAVOR code and the PNNL's flaw models were employed to perform the probabilistic fracture mechanics analysis associated with plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule were applied as the loading conditions. Besides, an RT-based regression formula derived by the U.S.NRC was also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR pressure vessel has sufficient structural margin for the PTS attack until either the current license expiration dates or during the proposed extended operation periods.

  8. Examination of VVER-1000 Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Markulin, K.

    2008-01-01

    The increasing demand of a higher level of safety in the operation of the nuclear power plants requires the utilisation of more precise automated equipment to perform in-service inspections. That has been achieved by technological advances in computer technology, in robotics, in examination probe technology with the development of the advanced inspection technique and has also been due to the considerable and varied experience gained in the performance of such inspections. In-service inspection of reactor pressure vessel, especially Russian-designed WWER-1000 presents one of the most important and extensive examination of nuclear power plants primary circuit components. Such examination demand high standards of inspection technology, quality and continual innovation in the field of non-destructive testing advanced technology. A remote underwater contact ultrasonic technique is employed for the examination of the base metal of vessel and reactor welds, whence eddy current method is applied for clad surface examinations. Visual testing is used for examination of the vessel interior. The movement of inspection probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with inspection systems. The successful performance of reactor pressure vessel is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen non-destructive techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state-of-the-art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. This paper presents advanced approach in the reactor pressure vessel in-service inspections and it is especially developed for WWER-1000 nuclear power plants.(author)

  9. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  10. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  11. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  12. Eddy current testing of composite pressure vessels

    Science.gov (United States)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  13. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1985-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (orig./PW)

  14. Pressurized water reactor with reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1980-01-01

    The pressure vessel has a cylindrical jacket with a domed floor. A guide is arranged on the domed floor to even out the flow in the core. It consists of a cylindrical jacket, whose lower end has slots and fins. These fins are welded to the domed floor. (DG) [de

  15. Seismic analysis of a reinforced concrete containment vessel model

    International Nuclear Information System (INIS)

    Randy, James J.; Cherry, Jeffery L.; Rashid, Yusef R.; Chokshi, Nilesh

    2000-01-01

    Pre-and post-test analytical predictions of the dynamic behavior of a 1:10 scale model Reinforced Concrete Containment Vessel are presented. This model, designed and constructed by the Nuclear Power Engineering Corp., was subjected to seismic simulation tests using the high-performance shaking table at the Tadotsu Engineering Laboratory in Japan. A group of tests representing design-level and beyond-design-level ground motions were first conducted to verify design safety margins. These were followed by a series of tests in which progressively larger base motions were applied until structural failure was induced. The analysis was performed by ANATECH Corp. and Sandia National Laboratories for the US Nuclear Regulatory Commission, employing state-of-the-art finite-element software specifically developed for concrete structures. Three-dimensional time-history analyses were performed, first as pre-test blind predictions to evaluate the general capabilities of the analytical methods, and second as post-test validation of the methods and interpretation of the test result. The input data consisted of acceleration time histories for the horizontal, vertical and rotational (rocking) components, as measured by accelerometers mounted on the structure's basemat. The response data consisted of acceleration and displacement records for various points on the structure, as well as time-history records of strain gages mounted on the reinforcement. This paper reports on work in progress and presents pre-test predictions and post-test comparisons to measured data for tests simulating maximum design basis and extreme design basis earthquakes. The pre-test analyses predict the failure earthquake of the test structure to have an energy level in the range of four to five times the energy level of the safe shutdown earthquake. The post-test calculations completed so far show good agreement with measured data

  16. Spalling of concrete subjected to blast loading

    Directory of Open Access Journals (Sweden)

    Foglar M.

    2013-09-01

    Full Text Available This paper presents outcomes of the blast field tests of FRC and reinforced concrete specimens, which were performed in cooperation with the Czech Army corps and Police of the Czech Republic in the military training area Boletice. The numerical evaluation of the experiments focused on the spalling of concrete subjected to blast loading started after the first set of the tests, took almost 3 years and required further small-scale experiments performed in the labs of the Czech Technical University.

  17. Stress analysis and evaluation of a rectangular pressure vessel

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel

  18. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  19. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  20. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bary, B.; Carpentier, O. [CEA Saclay, DEN/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Ranc, G. [CEA VALRHO, DEN/DTEC/L2EC/LCEC, F-30207 Bagnols Sur Ceze, (France); Durand, S. [CEA Saclay, DEN/DM2S/SEMT/LM2S, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    This study focuses on the concrete behavior subjected to moderate temperatures, with a particular emphasis on the transient thermo-hydric stage. A simplified coupled thermo-hydro-mechanical model is developed with the assumption that the gaseous phase is composed uniquely of vapor. Estimations of the mechanical parameters, Biot coefficient and permeability as a function of damage and saturation degree are provided by applying effective-medium approximation schemes. The isotherm adsorption curves are supposed to depend upon both temperature and crack-induced porosity. The effects of damage and parameters linked to transfer (in particular the adsorption curves) on the concrete structure response in the transient phase of heating are then investigated and evaluated. To this aim, the model is applied to the simulation of concrete cylinders with height and diameter of 0.80 m subjected to heating rates of 0.1 and 10 degrees C/min up to 160 degrees C. The numerical results are analyzed, commented and compared with experimental ones in terms of water mass loss, temperatures and gas pressures evolutions. A numerical study indicates that some parameters have a greater influence on the results than others, and that certain coupling terms in the mass conservation equation of water may be neglected. (authors)

  1. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  2. Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force

    International Nuclear Information System (INIS)

    Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.

    2003-01-01

    Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force

  3. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    International Nuclear Information System (INIS)

    Li, D D; Jiang, J; Zhao, Z; Yi, W S; Lan, G

    2013-01-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system

  4. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  5. Assessment of Ultimate Load Capacity for Pre-Stressed Concrete Containment Vessel Model of PWR Design With BARC Code ULCA

    International Nuclear Information System (INIS)

    Basha, S.M.; Singh, R.K.; Patnaik, R.; Ramanujam, S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Ultimate load capacity assessment of nuclear containments has been a thrust research area for Indian Pressurised Heavy Water Reactor (PHWR) power programme. For containment safety assessment of Indian PHWRs a finite element code ULCA was developed at BARC, Trombay. This code has been extensively benchmarked with experimental results. The present paper highlights the analysis results for Prestressed Concrete Containment Vessel (PCCV) tested at Sandia National Labs, USA in a Round Robin analysis activity co-sponsored by Nuclear Power Engineering Corporation (NUPEC), Japan and the U.S Nuclear Regulatory Commission (NRC). Three levels of failure pressure predictions namely the upper bound, the most probable and the lower bound (all with 90% confidence) were made as per the requirements of the round robin analysis activity. The most likely failure pressure is predicted to be in the range of 2.95 Pd to 3.15 Pd (Pd= design pressure of 0.39 MPa for the PCCV model) depending on the type of liners used in the construction of the PCCV model. The lower bound value of the ultimate pressure of 2.80 Pd and the upper bound of the ultimate pressure of 3.45 Pd are also predicted from the analysis. These limiting values depend on the assumptions of the analysis for simulating the concrete-tendon interaction and the strain hardening characteristics of the steel members. The experimental test has been recently concluded at Sandia Laboratory and the peak pressure reached during the test is 3.3 Pd that is enveloped by our upper bound prediction of 3.45 Pd and is close to the predicted most likely pressure of 3.15 Pd. (authors)

  6. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    OpenAIRE

    Mohammed Alias Yusof; Norazman Norazman; Ariffin Ariffin; Fauzi Mohd Zain; Risby Risby; CP Ng

    2011-01-01

    This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC) subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0...

  7. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall...

  8. Steel fiber reinforced concrete subjected to elevated cyclic temperatures

    International Nuclear Information System (INIS)

    Yousif, R. A.; Rasheed, H. M.; Muhammad, H. A.

    1997-01-01

    The results from a series of tests on steel fiber reinforced concrete at elevated cyclic temperature are presented. The residual compressive strength and ultimate splitting tensile strength were nadir's on specimen ts with no fibers and with 0.5% and 1% plain steel fibers over a temperature range of 300-700 C. concrete was subjected to one, two or three cycles of heating and cooling. In general the exposure to temperature decreased the strength of concrete, although the number of heating cycles seems only to have a secondary effect. The results also show that the steel fiber reinforced concrete performs better than plain concrete. Two equations were suggested to predict the strength of concrete and the results show good agreement with the experimental values. . (authors). 10 refs., 1 tabs. 3 figs

  9. Calculation of anchor forces on penetration liners for the reactor vessel Schmehausen (Germany)

    International Nuclear Information System (INIS)

    Roennert, J.K.

    1976-01-01

    Penetrations through the walls of the single cavity PCPV Prestressed Concrete Pressure Vessel for the 300 MW(e) reactor are lined with steel penetration liners welded to the liner of the cavity. For gas-tightness of the system the penetrations are closed by covers. To secure their integration with the concrete, the liners are anchored to it by means of shear studs and/or angles. Being embedded in concrete, over the full width of the walls, the liners are exposed to lateral and longitudinal concrete deformations causing forces on the anchors. The axial blow-out force due to the pressure of the coolant on the closures must also be transferred through the anchors to the concrete. In the design of anchored penetration liners stress analyses are performed to determine anchor forces under different loading conditions and at several ages of the PCPV. The present paper deals with the mathematical estimation of the anchor forces on the basis of given concrete deformations, temperature of liners, and pressure in the vessel by the method of replacing the penetration liners and their anchors by a spring model with linear stiffness characteristics for both the liner and the anchors. An example of the computations on a digital computer is shown. (author)

  10. Development of an integrated prestressed-concrete pressure vessel for water-cooled reactors (SBB type 'STERN' (star) with supporting boiler)

    International Nuclear Information System (INIS)

    Jueptner, G.; Kumpf, H.; Molz, G.; Neunert, B.; Seidl, O.

    1976-01-01

    This report goes into the reasons for selecting a 'STERN' (star) vessel configuration for accommodating a complete primary circuit including PWR, this involving the grouping of cylindrical pressure vessels of independent design into a star-shaped configuration with the central vessel housing the reactor core in the middle. This arrangement was made possible by application of the DYWIDAG-radial prestressing process generating controlled annular prestressing using existing presses and by an organic coupling of individual vessels. The liner, heat insulating and cooling system required for each vessel comprises a so-called support boiler, i.e. a hot liner not handicapped by the disadvantages of other systems. The support boiler is placed in the and PCV and has flat floor and cover surfaces. Temperature constraints are reduced to specific design requirements by means of radial gap permitting precise adjustment in conjunction with an axial expanding element comprising a multilayer diaphragm which is supported in operation. A detailed description is given of the PCPV, the support boiler and the cover used in the center vessel as well as of their design, the assembly and construction work is described and a summary presented of the quantities and estimated prices involved. Due to the absence of steam raising facilities adapted to meet the star-shaped configuration requirements, a study of satellite vessels was dispensed with, the design of which is in full accord with that of the center vessel. One part of the report is concerned with the calculation of the center vessel. (orig./HP) [de

  11. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  12. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  13. 46 CFR 154.650 - Cargo tank and process pressure vessel welding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank and process pressure vessel welding. 154.650... Equipment Construction § 154.650 Cargo tank and process pressure vessel welding. (a) Cargo tank and process pressure vessel welding must meet Subpart 54.05 and Part 57 of this chapter. (b) Welding consumables used...

  14. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  15. Internal Friction of Pressure Vessel Steel Embrittlement

    International Nuclear Information System (INIS)

    Van Ouytsel, K.

    2001-01-01

    The contribution consists of an abstract of a PhD thesis. The thesis contains a literature study, a description of the construction details of a new inverted torsion pendulum. This device was designed to investigate pressure-vessel steels at high amplitudes (10 -4 to 10 -2 ) and over a wide temperature range (90-700K) at approximately 1 Hz in the irradiated condition. Results of measurements on a variety of reactor pressure vessel steels by means of the torsion penduli are reported and interpreted

  16. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  17. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...

  18. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  19. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  20. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  1. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Kwak, Hyo Gyong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jung, Rae Young; Noh, Sang Hoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-06-15

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

  2. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kwak, Hyo Gyong; Jung, Rae Young; Noh, Sang Hoon

    2016-01-01

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading

  3. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  4. Strength and deformational characteristics of three-way reinforced concrete containment models subjected to lateral forces

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Yamada, K.; Takahashi, T.

    1981-01-01

    With a view to investigating the earthquake resistance characteristics of reinforced concrete containments two cylindrical models with three-way system of bars were made and loaded laterally up to failure combined with or without internal pressures, simulating the conditions in which containments were subjected to earthquake forces at a simultaneous LOCA or at normal operation. The main conclusions obtained withing the limit of the experiments are as follows. (1) Stresses in reinforcements in three-way reinforced concrete plate elements can reasonably be estimated by the equations proposed by Baumann. It is, however, necessary to take into consideration the contributions of concrete between cracks to the deformation in order to accurately estimate the average strains in the plate elements, applying such a formula as CEB as reformed by the authors. (2) The strength capacity of three-way reinforced concrete containments against lateral forces combined with internal pressure is somewhat inferior to that of orthogonally reinforced one if compared on the condition that the volumetric reinforcement ratios are the same for the two cases of reinforcement arrangements. However, three-way reinforcement improves initial shear rigidity as well as ultimate horizontal deformability for lateral forces. (3) The ability for three-way reinforced concrete containment to absorb strain energy in the range of large deformations is superior to that of orthogonally reinforced one. The equivalent viscous damping coefficient for the former is markedly larger than that for the latter, especially at the increased deformational stages. These experimental evidences suggent that three-way system of reinforcement may constitute one of the prospective measures to improve the earthquake resistance of reinforced concrete containments. (orig./HP)

  5. Analysis of aging mechanism and management for HTR-PM reactor pressure vessel

    International Nuclear Information System (INIS)

    Sun Yunxue; Shao Jin

    2015-01-01

    Reactor pressure vessel is an important part of the reactor pressure boundary, its important degree ranks high in ageing management and life assessment of nuclear power plant. Carrying out systematic aging management to ensure reactor pressure vessel keeping enough safety margins and executing design functions is one of the key factors to guarantee security and stability operation for nuclear power plant during the whole lifetime and prolong life. This paper briefly introduces the structure and aging mechanism of reactor pressure vessel in pressurized water reactor nuclear power plant, and introduces the design principle and structure characteristics of HTR-PM. At the same time, this paper carries out preliminary analysis and exploration. and discusses aging management of HTR-PM reactor pressure vessel. Finally, the advice of carring out aging management for HTR-PM reactor pressure vessel is proposed. (authors)

  6. Leak detector for reactor pressure vessel

    International Nuclear Information System (INIS)

    Morimoto, Mikio.

    1991-01-01

    A branched pipe is disposed to a leak off pipeline led from a flange surface which connects the main body and the upper lid of a reactor pressure vessel. An exhaust pump is disposed to the branched pipe and a moisture gage is disposed on the side of the exhaustion and a dry air supplier is connected to the branched pipe. Upon conducting a pressure-proof leak test for the reactor pressure vessel, the exhaust pump is operated and an electromagnet valve disposed at the upstream of the dry air supplier is opened and closed repeatedly. The humidity of air sucked by the exhaust pump is detected by the moisture gage. If leaks should be caused in the joining surface of the flange, leaked water is diffused as steams. Accordingly, occurrence of leak can be detected instantly based on the comparison with the moisture level of the dry air as a standard. In this way, a leak test can be conducted reliably in a short period of time with no change of for the reactor pressure container itself. (I.N.)

  7. Inspecting nuclear pressure vessels: the conundrum of minimizing risk

    International Nuclear Information System (INIS)

    Oestberg, G.

    1992-01-01

    The probability of a sudden, massive release of radioactivity from a light-water nuclear reactor through a breach of the containment is assessed on the basis of statistical data which partly consist of subjective estimates. This breach refers to the existence of crack-like defects remaining after a non-destructive examination of the main pressure vessel surrounding the reactor core. Two studies have recently been made of such sources of information about the effectiveness of non-destructive examination of pressure vessels with respect to defects. The results of these studies indicate that the data used as input in the probabilistic calculations do not possess the reliability that might be assumed from the assessments. This type of failure should therefore no longer be considered a de minimis case. In the present review the overconfidence in the efficiency of non-destructive examination is discussed from psychological, sociological and political science points of view. It is concluded that ingrained professional assumptions and values seem to be the main reason for the trust in the technology of inspection. However, there are also psychological constraints that can be understood only in their social and political contexts. (author)

  8. Code boiler and pressure vessel life assessment

    International Nuclear Information System (INIS)

    Farr, J.R.

    1992-01-01

    In the United States of America and in Canada, laws and controls for determining life assessment for continued operation of equipment exist only for those pressure vessels built to Section III and evaluated according to Section XI. In this presentation, some of those considerations which are made in the USA and Canada for deciding on life or condition assessment of boilers and pressure vessels designed and constructed to other sections of the ASME Boiler and Pressure Vessel Code are reviewed. Life assessment or condition assesssment is essential in determining what is necessary for continued operation. With no ASME rules being adopted by laws or regulations, other than OSHA in the USA and similar environmental controls in Canada, to control life assessment for continued operation, the equipment owner must decide if assessment is to be done and how much to do. Some of those considerations are reviewed along with methods and procedures to make an assessment along with a discussion of where the ASME B and PV Code currently stands regarding continued operation. (orig.)

  9. Increase of cyclic durability of pressure vessels

    International Nuclear Information System (INIS)

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  10. Long-term properties of concrete in nuclear containment structures

    International Nuclear Information System (INIS)

    Field, S.N.; Bamforth, P.B.

    1991-01-01

    Over the last thirty years a large volume of testing has been carried out on concretes used in prestressed concrete pressure vessels and similar structures. The main aim of the work has been to provide the designers with a prediction method for elastic moduli and creep deformation which takes into account temperature and age at loading. This paper summarises and reviews the results from the six concretes tested by Taywood Engineering Ltd (T.E.L.), comparing mixes with and without PFA. (author)

  11. Pressure vessel and method therefor

    Science.gov (United States)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  12. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test

  13. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  14. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  15. Light Water Reactor-Pressure Vessel Surveillance project computer system

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1980-10-01

    A dedicated process control computer has been implemented for regulating the metallurgical Pressure Vessel Wall Benchmark Facility (PSF) at the Oak Ridge Research Reactor. The purpose of the PSF is to provide reliable standards and methods by which to judge the radiation damage to reactor pressure vessel specimens. Benchmark data gathered from the PSF will be used to improve and standardize procedures for assessing the remaining safe operating lifetime of aging reactors. The computer system controls the pressure vessel specimen environment in the presence of gamma heating so that in-vessel conditions are simulated. Instrumented irradiation capsules, in which the specimens are housed, contain temperature sensors and electrical heaters. The computer system regulates the amount of power delivered to the electrical heaters based on the temperature distribution within the capsules. Time-temperature profiles are recorded along with reactor conditions for later correlation with specimen metallurgical changes

  16. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  17. Multiple cell common pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    A multiple cell common pressure vessel (CPV) nickel hydrogen battery was developed that offers significant weight, volume, cost, and interfacing advantages over the conventional individual pressure vessel (IPV) nickel hydrogen configuration that is currently used for aerospace applications. The baseline CPV design was successfully demonstrated though the testing of a 26 cell prototype, which completed over 7,000 44 percent depth of discharge LEO cycles. Two-cell boilerplate batteries have now exceeded 12,500 LEO cycles in ongoing laboratory tests. CPV batteries using both nominal 5 and 10 inch diameter vessels are currently available. The flexibility of the design allows these diameters to provide a broad capability for a variety of space applications.

  18. Device of connecting the metal sheet lining a concrete enclosure to a pipe opening inside the enclosure

    International Nuclear Information System (INIS)

    Petit, Guy.

    1975-01-01

    Said invention relates to a sealed device connecting a metal sheet anchored on the internal side of a concrete vessel containing a hot pressurized fluid, with a metallic pipe opening inside said vessel. It is intended for heat insulating structures so-called 'hot skin' used for the pressure vessels of some boiling water reactors. Said invention is intended for different types of said pipe such as: the penetrations for the inlets and outlets of the primary circuit, or anchoring cylindrical sheaths used as supports of components or other elements located inside said pressure vessel [fr

  19. Pressure vessel lid

    International Nuclear Information System (INIS)

    Schoening, J.; Elter, C.; Becker, G.; Pertiller, S.

    1986-01-01

    The invention concerns a lid for closing openings in reactor pressure vessels containing helium, which is made as a circular casting with hollow spaces and a flat floor and is set on the opening and kept down. It consists of helium-tight metal cast material with sufficient temperature resistance. There are at least two concentric heat resistant seals let into the bottom of the lid. The bottom is in immediate contact with the container atmosphere and has hollow spaces in its inside in the area opposite to the opening. (orig./HP) [de

  20. Acoustic emission measurements at the pressure vessel ZB2

    International Nuclear Information System (INIS)

    Tirbonod, B.; Hanacek, L.

    1990-01-01

    The work presented here is the Swiss contribution to the project 'Zwischenbehaelter 2 (ZB2)' hosted by the 'Bundesministerium fuer Forschung und Technologie' of the Federal Republic of Germany. One of the crack-like defects introduced at the inside surface of the thick-walled pressure vessel ZB2 was locally monitored by acoustic emission. The measurement system was broadband (0.5 - 5 MHz) and allowed a threedimensional location of the source. The vessel was subjected to different tests. Signals were recorded during the second series of hydrotests, fast pressure cycles and fatigue test at 50 C. About 1 signal per hydrotest or cycle was recorded. For the hydrotests the signals were recorded generally at loading in the intermediate range of pressure; the sources were located in the artificial defect. Recurrent and non recurrent signals were recorded during the fatigue test. At loading, signals were captured up to the maximum pressure and for the recurrent signals at well defined pressure ranges. All the sources (except one, located in the base material ahead of the artificial defect) were situated in the artificial defect. The pressure and location depended on the loading phase and on the cycle range. The measurements were discussed by describing the signals by measurement, signal and source parameters. The goal was to identify the source mechanism and to assess the growth of the defect. For the hydrotests the identification of the mechanism at loading remains open. For the fatigue test the source situated in the base material was attributed to a primary mechanism; this source could assess the growth of the defect on the basis of linear elastic fracture mechanics. A secondary mechanism was suggested for recurrent sources active at loading. For all the tests, the sources active at unloading were attributed to a secondary mechanism. (author)

  1. Manipulator for testing a top-opened reactor pressure vessel

    International Nuclear Information System (INIS)

    Bauer, R.; Kastl, H.

    1991-01-01

    The design is described of a manipulator to be inserted into the inside of reactor pressure vessels opened at the top. The main components of the manipulator include a fixed column protruding into the pressure vessel and a support which is slidable on the column and carries the bearing component for the measuring, testing, inspection and repair instruments. The device includes a driving equipment for the support as well as the power supply for the sets accommodated on the support, with the aim to reduce the failure rate of the manipulator as a whole, shorten the time necessary for its assembling and thus the time of staying in the reactor pressure vessel and, at the same time, make its maintenance and operation easier. (Z.S.). 13 figs

  2. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  3. Acoustic emission test on a 25mm thick mild steel pressure vessel with inserted defects

    International Nuclear Information System (INIS)

    Bentley, P.G.; Dawson, D.G.; Hanley, D.J.; Kirby, N.

    1976-12-01

    Acoustic emission measurements have been taken on an experimental mild steel vessel with 4 inserted defects ranging in severity up to 90% of through thickness. The vessel was subjected to a series of pressure excursions of increasing magnitude until failure occurred by extension of the largest inserted defect through the vessel wall. No acoustic emission was detected throughout any part of the tests which would indicate the presence of such serious defects or of impending failure. Measurements of acoustic emission from metallurgical specimens are included and the results of post test inspection using conventional NDT and metallographic techniques are reported. (author)

  4. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  5. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  6. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  7. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  8. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the...

  9. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  10. Safety of steel vessel Magnox pressure circuits

    International Nuclear Information System (INIS)

    Stokoe, T.Y.; Bolton, C.J.; Heffer, P.J.H.

    1991-01-01

    The maintenance of pressure circuit integrity is fundamental to nuclear safety at the steel vessel Magnox stations. To confirm continued pressure circuit integrity the CEGB, as part of the Long Term Safety Review, has carried out extensive assessment and inspection in recent years. The assessment methods and inspection techniques employed are based on the most modern available. Reactor pressure vessel integrity is confirmed by a combination of arguments including safety factors inferred from the successful pre-service overpressure test, leak-before-break analysis and probabilistic assessment. In the case of other parts of the pressure circuits that are more accessible, comprising the boiler shells and interconnecting gas duct work, in-service inspection is a major element of the safety substantiation. The assessment and inspection techniques and the materials property data have been underpinned for many years by extensive research and development programmes and in-reactor monitoring of representative samples has also been undertaken. The paper summarises the work carried out to demonstrate the long term integrity of the Magnox pressure circuits and provides examples of the results obtained. (author)

  11. The Assembly and Test of Pressure Vessel for Irradiation

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Youn, Young Jung; June, Hyung Kil; Ahn, Sung Ho; Lee, Kee Hong; Kim, Young Ki; Kennedy, Timothy C.

    2009-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts: the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature

  12. The Assembly and Test of Pressure Vessel for Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kook Nam; Lee, Jong Min; Youn, Young Jung; June, Hyung Kil; Ahn, Sung Ho; Lee, Kee Hong; Kim, Young Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kennedy, Timothy C. [Oregon State University, Corvallis (United States)

    2009-02-15

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts: the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.

  13. Test of 6-in.-thick pressure vessels. Series 3: intermediate test vessel V-7A under sustained loading

    International Nuclear Information System (INIS)

    Bryan, R.H.; Cate, T.M.; Holz, P.P.; King, T.A.; Merkle, J.G.; Robinson, G.C.; Smith, G.C.; Smith, J.E.; Whitman, G.D.

    1978-01-01

    HSST intermediate test vessel V-7 was repaired after being tested hydrostatically to leakage and was retested pneumatically as vessel V-7A. Except for the method of applying the load, the conditions in both tests were nearly identical. In each case, a sharp outside surface flaw 547 mm long (18 in.) by about 135 mm deep (5.3 in.) was prepared in the 152-mm-thick (6-in.) test cylinder of A533, grade B, class 1 steel. The inside surface of vessel V-7A was sealed in the region of the flaw by a thin metal patch so that pressure could be sustained after rupture. Vessel V-7A failed by rupture of the flaw ligament without burst, as expected. Rupture occurred at 144.3 MPa (20.92 ksi), after which pressure was sustained for 30 min without any indication of instability. The rupture pressure of vessel V-7A was about 2 percent less than that of vessel V-7

  14. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  15. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel and outer shell around the primary pressure vessel and acting as a protection for it against outside projectiles. A floor is provided internally dividing the outside shell into two upper and lower sections and an inside wall dividing the lower section into one part containing the primary pressure vessel and a second part, both made pressure tight with respect to each other and with the outside shell and forming with the latter a secondary means of containment [fr

  16. Problems in manufacturing and transport of pressure vessels of integral reactors

    International Nuclear Information System (INIS)

    Kralovec, J.

    1997-01-01

    Integral water-cooled reactors are typical with eliminating large-diameter primary pipes and placing primary components, i.e. steam generators and pressurizers in reactor vessels. This arrangement leads to reactor pressure vessels of large dimensions: diameters, heights and thick walls and subsequently to great weights. Thus, even medium power units have pressure vessels which are on the very limit of present manufacturing capabilities. Principal manufacturing and inspection operations as well as pertinent equipment are concerned: welding, cladding, heat treatment, machining, shop-handling, non-destructive testing, hydraulic pressure tests etc. Tile transport of such a large and heavy component makes a problem which effects its design as well as the selection of the plant site. Railway, road and ship are possible ways of transport each of them having its advantages and limitations. Specific features and limits of the manufacture and transport of large pressure vessels are discussed in the paper. (author)

  17. Effects of low upper shelf fracture toughness on reactor vessel integrity during pressurized thermal shock events

    International Nuclear Information System (INIS)

    Bamford, W.H.; Heinecke, C.C.; Balkey, K.R.

    1988-01-01

    For the past decade, significant attention has been focused on the subject of nuclear rector vessel integrity during pressurized thermal shock (PTS) events. The issue of low upper shelf fracture toughness at operating temperatures has been a consideration for some reactor vessel materials since the early 1970's. Deterministic and probabilistic fracture mechanics sensitivity studies have been completed to evaluate the interaction between the PTS and lower upper shelf toughness issues that result from neutron embrittlement of the critical beltline region materials. This paper presents the results of these studies to show the interdependency of these fracture considerations in certain instances and to identify parameters that need to be carefully treated in reactor vessel integrity evaluations for these subjects. This issue is of great importance to those vessels which have low upper shelf toughness, both for demonstrating safety during the original design life and in life extension assessments

  18. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed

  19. Weld evaluation on spherical pressure vessels using holographic interferometry

    International Nuclear Information System (INIS)

    Boyd, D.M.; Wilcox, W.W.

    1980-01-01

    Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections

  20. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  1. Light-water-reactor pressure-vessel surveillance dosimetry using solid-state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1983-07-01

    The accumulation of neutron dose by the pressure vessel of an operating nuclear power plant results in damage in the form of steel embrittlement. In order to ascertain the safe operating lifetime of the reactor pressure vessel, dosimetric measurements must be made to evaluate the neutron dose to the pressure vessel and relate this dose to the cumulative radiation damage. Advanced dosimetry techniques are being evaluated for surveillance of operating reactors. Solid-state track recorder (SSTR) techniques are included among these advanced dosimetry techniques. Described herein are low neutron fluence calibration and standardization measurements that are being carried out in pressure vessel mockup benchmark neutron fields in the USA, Belgium, and England. In addition, high fluence SSTR dosimetry capsules have been irradiated with metallurgical specimens in a pressure vessel mockup facility. The design and deployment of advances SSTR dosimetry capsules in operating power reactors are also described

  2. Analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de; Augusto, O.B.

    1985-01-01

    This work proposes a methodology for the structural analysis of high diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem, and the results are compared with results obtained by the finite element method. (Author) [pt

  3. Design, fabrication and quality assurance of pressure vessels

    International Nuclear Information System (INIS)

    Kimura, Ichiro; Miki, Masao; Yamazaki, Tsuneji; Tanaka, Yoshikazu; Sato, Misao

    1978-01-01

    The production facilities, design and manufacturing technologies, and quality assurance in the Toyo Works, Ehime Manufactory, Sumitomo Heavy Industries, Ltd., which manufactures pressure vessels, are described, and especially the actual example of non-destructive tests is shown. The Toyo Works was completed in April, 1973, to manufacture large structures such as pressure vessels, offshore structures and bridges. The total area of the site is 535,000 m 2 , that of factory buildings is 33,600 m 2 , and the outdoor assembling yard is 114,800 m 2 . The large dry dock and main installations such as 12,000 tf hydraulic press, an annealing furnace, a heat treating furnace, a quenching tank, a horizontal boring machine, 6 m vertical lathe, various welding machines, 8 MeV X-ray apparatus, sand blasting and pickling facilities, and two 160 t cranes for shipment are arranged so as to enable smooth flow of production. The standards for chemical pressure vessels in various countries are compared, and considerably high allowable stress is adopted in Europe. The design and stress analysis of pressure vessels are carried out in accordance with ASME Section 8, Div. 1 or Div. 2. As for the materials, attention must be paid to the change of properties due to heat and strain, temper brittleness, low temperature toughness and so on. The quality assurance system must be established to observe the requirements of standards. (Kako, I.)

  4. Babcock experience of automated ultrasonic non-destructive testing of PWR pressure vessels during manufacture

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.; Scruton, G.

    1990-01-01

    Major developments in ultrasonic techniques, equipment and systems for automated inspection have lead, over a period of about ten years, to the regular application of sophisticated computer-controlled systems during the manufacture of nuclear reactor pressure vessels. Ten years ago the use of procedures defined in a code such as ASME XI might have been considered sufficient, but it is now necessary, as was demonstrated by the results of the UKAEA defect detection trials and the PISC II trials, to apply more comprehensive arrays of probes and higher test sensitivities. The ultrasonic techniques selected are demonstrated to be adequate by modelling or test-block exercises, the automated systems applied are subject to stringent quality assurance testing, and very rigorous inspection procedures are used in conjunction with a high degree of automation to ensure reproducibility of inspection quality. The state-of-the-art in automated ultrasonic testing of pressure vessels by Babcock is described. Current developments by the company, including automated flaw recognition, integrated modelling of inspection capability, and the use of electronically scanned variable-angle probes are reviewed. Examples quoted include the automated ultrasonic inspections of the Sizewell B pressurized water reactor vessel. (author)

  5. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and appurtenances... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...

  6. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  7. Contribution for the improvement of pressurized thermal shock assessment methodologies in PWR pressure vessels

    International Nuclear Information System (INIS)

    Gomes, Paulo de Tarso Vida

    2005-01-01

    The structural integrity assessment of nuclear reactor pressure vessel, concerned to Pressurized Thermal Shock (PTS) accidents, became a necessity and has been investigated since the eighty's. The recognition of the importance of PTS assessment has led the international nuclear technology community to devote a considerable research effort directed to the complete integrity assessment process of the Reactor Pressure Vessels (VPR). Researchers in Europe, Japan and U.S.A. have concentrated efforts in the VPR structural and fracture analysis, conducting experiments to best understand how specific factors act on the behavior of discontinuities, under PTS loading conditions. The main goal of this work is to study de structural behavior of an 'in scale' PWR nuclear reactor pressure vessel model, containing actual discontinuities, under loading conditions generated by a pressurized thermal shock. To construct the pressure vessel model utilized in this research, the approach developed by Barroso (1995) and based on likelihood studies, related to thermal-hydraulic behavior during the PTS was employed. To achieve the objective of this research, a new methodology to generate cracks, with known geometry and localization in the vessel model wall was developed. Additionally, an hydraulic circuit, able to flood the vessel model, heated to 300 deg C, with 10 m 3 of water at 8 deg C, in 170 seconds, was built. Thermo-hydraulic calculations using RELAP5/M0D 3.2.2γ computational code were done, to estimate the temperature profiles during the cooling time. The resulting data subsidized the thermo-structural calculations that were accomplished using ANSYS 7.01 computational code, for both 2D and 3D models. So, the stress profiles obtained with these calculations were associated with fracture mechanics concepts, to assess the crack growth behavior in the VPR model wall. After the PTS test, the VPR model was submitted to destructive and non-destructive inspections. The results

  8. H.B. Robinson-2 pressure vessel benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I.; Kam, F.B.K.

    1998-02-01

    The H. B. Robinson Unit 2 Pressure Vessel Benchmark (HBR-2 benchmark) is described and analyzed in this report. Analysis of the HBR-2 benchmark can be used as partial fulfillment of the requirements for the qualification of the methodology for calculating neutron fluence in pressure vessels, as required by the U.S. Nuclear Regulatory Commission Regulatory Guide DG-1053, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. Section 1 of this report describes the HBR-2 benchmark and provides all the dimensions, material compositions, and neutron source data necessary for the analysis. The measured quantities, to be compared with the calculated values, are the specific activities at the end of fuel cycle 9. The characteristic feature of the HBR-2 benchmark is that it provides measurements on both sides of the pressure vessel: in the surveillance capsule attached to the thermal shield and in the reactor cavity. In section 2, the analysis of the HBR-2 benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed with three multigroup libraries based on ENDF/B-VI: BUGLE-93, SAILOR-95 and BUGLE-96. The average ratio of the calculated-to-measured specific activities (C/M) for the six dosimeters in the surveillance capsule was 0.90 {+-} 0.04 for all three libraries. The average C/Ms for the cavity dosimeters (without neptunium dosimeter) were 0.89 {+-} 0.10, 0.91 {+-} 0.10, and 0.90 {+-} 0.09 for the BUGLE-93, SAILOR-95 and BUGLE-96 libraries, respectively. It is expected that the agreement of the calculations with the measurements, similar to the agreement obtained in this research, should typically be observed when the discrete-ordinates method and ENDF/B-VI libraries are used for the HBR-2 benchmark analysis.

  9. Radioactive waste processing vessel

    International Nuclear Information System (INIS)

    Hayashi, Masaru; Suzuki, Osamu; Ishizaki, Kanjiro.

    1987-01-01

    Purpose: To obtain a vessel of a reduced weight and with no external leaching of radioactive materials. Constitution: The vessel main body is constituted, for example, with light weight concretes or foamed concretes, particularly, foamed concretes containing fine closed bubbles in the inside. Then, layers having dense texture made of synthetic resin such as polystylene, vinylchloride resin, etc. or metal plate such as stainless plate are integrally disposed to the inner surface of the vessel main body. The cover member also has the same structure. (Sekiya, K.)

  10. Welding in repair of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pilous, V.; Kovarik, R.

    1987-01-01

    Specific welding conditions are described in repair of the pressure vessels of nuclear reactors in operation and the effect is pointed out to of neutrons on changes in steel properties. Some of the special regulations are discussed to be observed in welding jobs. The welding methods are briefly described; the half-bead method is most frequently used. It is stressed that the defect must first be identified using a nondestructive method and the stages must be defined of the welding repair of the pressure vessel. (J.B.). 4 figs., 1 tab., 16 refs

  11. Problems in Pressure Vessel Design and Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, O [Uddeholms AB, Degerfors (Sweden); Nilson, Ragnar [AB Atomenergi, Nykoeping (Sweden)

    1963-05-15

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels.

  12. Problems in Pressure Vessel Design and Manufacture

    International Nuclear Information System (INIS)

    Hellstroem, O.; Nilson, Ragnar

    1963-05-01

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels

  13. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  14. Interpretation of strain measurements on nuclear pressure vessels

    International Nuclear Information System (INIS)

    Andersen, S.I.; Engbaek, P.

    1979-11-01

    Selected results from strain measurements on 4 nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzels, internal vessel structure and flange bolts. The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as detailed knowledge of the behaviour of the signal from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem to be the reason in other regions. (author)

  15. Renovation of the sealing planes of WWER-400 reactors pressure vessel

    International Nuclear Information System (INIS)

    Jablonicky, P.; Pilat, P.

    2007-01-01

    An article describes technical solution for renovation of the sealing planes of WWER-440 reactor's pressure vessel. Four nickel sealing rings placed in four concentric grooves are providing hermetic sealing between the vessel and the lid of this type of the reactor. Impeccable seal of the reactor's pressure vessel, where the fission reaction takes place, represents a basic security factor for safe electric energy production. Principle of renovation of the reactor's pressure vessel and lid sealing planes is based on mechanical enlargement of defective grooves and following cladding of the new material by TIG welding. Final step for renovation includes machining of new grooves according to geometrical and surface quality requirements (Authors)

  16. Structural analysis and evaluation for the design of pressure vessel

    International Nuclear Information System (INIS)

    Arai, K.; Uragami, K.; Funada, T.; Baba, K.; Kira, T.

    1977-01-01

    For the design of pressure vessel, the detailed structural analysis such as the fatigue analysis under operating conditions is required by ASME Code or Japanese regulation. Accordingly, it should be verified by the analysis that the design of the pressure vessel is in compliance with the stress limitation defined in the Code or the regulation. However, it was apparent that the analysis is very complicated and takes a lot of time to evaluate in accordance with the Code requirements. Thereupon we developed the computer program by which we can perform the stress analysis with correctness and comparatively in a short period of design work reflecting the calculation results on detailed drawings to be used for fabrication. The computer program is controlled in combination with the system of the design work and out put list of the program can be directly used for the stress analysis report which is issued to customers. In addition to the above computer program, we developed the specific three dimensional finite element computer program to make sure of the structural integrity of the vessel head and flanges which are most complex for the analysis compared with the stress distribution measured by strain gauges on the vessel head and flange. Besides the structural analysis, the fracture mechanics analysis for the purpose of preventing the pressure vessel from the brittle fracture during heat-up and cool-down operation is also important and thereby we showed herein that the pressure vessel is in safety against the brittle fracture for the specified operating conditions. As a result of the above-mentioned analysis, the pressure vessel is designed with safety from the stand-points of the structural intensity and the fracture mechanics. (auth.)

  17. Principles of design and construction for the top caps of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Hughes, A.N.; Bellwood, G.N.; Paton, A.A.

    1976-01-01

    The building of the top cap poses problems because of the number of penetrations to be cast therein. The fuel and control system routes need to be tightly specified and controlled so that during station life misalignments do not occur which interfere with the fuelling and control operations. The paper outlines the route requirements and illustrates how these affect the tolerances and movements which can be allowed at various stages of construction. Development work is discussed to show the necessity of resolving the different priorities of design, programme and overall pressure vessel construction requirements, so that the reactor build is not inhibited by the special demands of the top cap, and the integration of the monitoring and survey systems during the top cap build are explained. (author)

  18. Proof pressure tests of the PCPVs at Hinkley Point B and Hunterston B

    International Nuclear Information System (INIS)

    Eadie, D.McD.; Bell, D.J.

    1976-01-01

    The two PCPVs at Hinkley Point B were pressure tested in August 1973 and April 1974. The first vessel at Hunterston B was tested in December, 1973, and the second early in 1975. The vessels were pressurised up to 709 psig and, at various stages of pressurisation, readings were taken of external deflections, internal corner deflections and concrete strains. Surveys were taken of external concrete cracks and of crack gauges embedded in the concrete near the re-entrant corners. The external vessel deflections were measured optically using telescopes, targets and invar tapes. In some cases a recent design of manometric equipment was used to monitor the vertical deflections of the top slab during pressurisation and at proof pressure when access to the vessel was not possible for safety reasons. Internal concrete strains were measured using vibrating wire strain gauges. A brief description is given of the various measuring devices used. Deflection readings were also taken of some penetration primary closures. Summaries of the various recorded readings are given and compared with the design analyses. (author)

  19. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  20. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  1. Towards a new pressure vessel standard in the European Union

    International Nuclear Information System (INIS)

    Osweiller, F.

    1995-01-01

    Since 1990 the European Commission has been preparing a new Directive which will regulate the Pressure Equipment sector in the countries of the European Union. CEN Standards devoted to pressure vessels, piping, boilers, are currently being drawn up to complete and implement this Directive. This paper focuses on the European Unfired Pressure Vessel Standard (EPVS) which is in course of development under the responsibility of CEN/TC54. The main aspects of the Standard are outlined: general structure, materials, design, fabrication, inspection and testing. The link with the European Directive is explained in connection with regulatory aspects: conformity assessment, essential safety requirements, classes of vessels, notified bodies, EC mark, status of the standard

  2. Prestressed Concrete-Lined Pressure Tunnels : Towards Improved Safety and Economical Design

    NARCIS (Netherlands)

    Simanjuntak, Y.

    2015-01-01

    Pressure tunnels for hydropower plants are relatively expensive constructions, particularly when steel linings are used. Concrete linings can be economically attractive; however, their applicability is limited by the low tensile strength of concrete. Techniques to improve the bearing capacity of

  3. Design of pressure vessels. Part 1

    International Nuclear Information System (INIS)

    Grandemange, J.M.

    2008-01-01

    The equipments and loops of PWR reactors are basically pressure vessels. Their specificities concern the integrity warranties that must be implemented considering their importance for the reactors safety. Thus, stress is put on the exhaustiveness of the prevention of in-service degradation and on the safety scenarios considered. The second specificity concerns the possibility of activation of wear and corrosion products during their flow inside the reactor core. This second aspect leads to some constraints on the choice of the materials used and on the surface coating of the inside wall of big components of the primary circuit. The aim of this document is to develop the general approach adopted for the design of the pressure vessels of PWR fluid loops, and to stress more particularly on the nuclear particularities of these equipments. Some extensions of these rules to high temperature resistant materials (FBR-type reactors) are also evoked. Content: General considerations: design basis of pressure vessels, risk analysis and design conditions, ruining paths and safety coefficients; 2 - damage prevention for excessive deformation: definitions, criteria; 3 - prevention of the plastic instability damage: definition, criteria; 4 - buckling prevention: definition and mechanisms, rules and criteria; 5 - prevention of progressive deformation damage: definitions, plastic adaptation, plastic accommodation, progressive deformation; 6 - prevention of fatigue damage: definitions, general prevention approach, design fatigue curves, analytic approach, particular aspects, analysis of zones with geometrical singularity; 7 - prevention of sudden rupture damage: fragile rupture and ductile tear, general approach, analytic criteria, irradiation and aging effects; 8 - other potential damages; 9 - conclusion. (J.S.)

  4. Probabilistic assessment of pressure vessel and piping reliability

    International Nuclear Information System (INIS)

    Sundararajan, C.

    1986-01-01

    The paper presents a critical review of the state-of-the-art in probabilistic assessment of pressure vessel and piping reliability. First the differences in assessing the reliability directly from historical failure data and indirectly by a probabilistic analysis of the failure phenomenon are discussed and the advantages and disadvantages are pointed out. The rest of the paper deals with the latter approach of reliability assessment. Methods of probabilistic reliability assessment are described and major projects where these methods are applied for pressure vessel and piping problems are discussed. An extensive list of references is provided at the end of the paper

  5. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  6. Advanced Approach of Reactor Pressure Vessel In-service Inspection

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Pajnic, M.

    2006-01-01

    The most important task of every utility operating a nuclear power plant is the continuously keeping of the desired safety and reliability level. This is achieved by the performance of numerous inspections of the components, equipment and system of the nuclear power plant in operation and in particular during the scheduled maintenance periods at re-fueling time. Periodic non-destructive in-service inspections provide most relevant criteria of the integrity of primary circuit pressure components. The task is to reliably detect defects and realistically size and characterize them. One of most important and the most extensive examination is a reactor pressure vessel in-service inspection. That inspection demand high standards of technology and quality and continual innovation in the field of non-destructive testing (NDT) advanced technology as well as regarding reactor pressure vessel tool and control systems. A remote underwater contact ultrasonic technique is employed for the examination of the defined sections (reactor welds), whence eddy current method is applied for clad surface examinations. Visual inspection is used for examination of the vessel inner surface. The movement of probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with NDT systems. The successful performance is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen NDT techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state of the art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. The advanced approach as presented in this paper offer more flexibility of application (non-destructive tests, local grinding action as well as taking of boat samples

  7. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  8. An integrated CAD/CAM system for CNG pressure vessel manufactured by deep drawing and ironing operation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Hong; Kim, Chul; Choi, Jae Chan [Pusan National Univ., Pusan (Korea, Republic of)

    2004-06-01

    The fiber reinforced composite material is widely used in the multi-industrial field because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage proceeding to the sudden bursting which is generated by the pressure leakage condition. Therefore, pressure vessels using this composite material can be applied in the field such as defence industry and aerospace industry. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding of composite vessel subjected to internal pressure, the standard interpretation model is developed by using the ANSYS with AutoLISP and ANSYS APDL languages, general commercial software, which is verified as useful characteristic of the solution. Among the modules of the system, both the process planning module for carrying out the process planning of filament wound composite pressure vessel and the autofrettage process module for obtaining higher residual stress will minimize trial and error and reduce the period for developing new products. The system can serve as a valuable system for experts and as a dependable training aid for beginners.

  9. An integrated CAD/CAM system for CNG pressure vessel manufactured by deep drawing and ironing operation

    International Nuclear Information System (INIS)

    Park, Joon Hong; Kim, Chul; Choi, Jae Chan

    2004-01-01

    The fiber reinforced composite material is widely used in the multi-industrial field because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage proceeding to the sudden bursting which is generated by the pressure leakage condition. Therefore, pressure vessels using this composite material can be applied in the field such as defence industry and aerospace industry. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding of composite vessel subjected to internal pressure, the standard interpretation model is developed by using the ANSYS with AutoLISP and ANSYS APDL languages, general commercial software, which is verified as useful characteristic of the solution. Among the modules of the system, both the process planning module for carrying out the process planning of filament wound composite pressure vessel and the autofrettage process module for obtaining higher residual stress will minimize trial and error and reduce the period for developing new products. The system can serve as a valuable system for experts and as a dependable training aid for beginners

  10. Investigation of the failure of a reactor pressure vessel by plastic instability

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1994-01-01

    A possible consequence of a core meltdown accident in a pressurized water reactor is the failure of the reactor pressure vessel under high internal pressure. With the aid of the finite element program ABAQUS and using a material model of the thermo-plasticity for large deformation, the failure of the reactor pressure vessel due to plastic instability was examined. It was apparent from the finite element calculations that solely due to reduction in strength of the material, even for internal wall temperatures clearly below the core melt; of about 2000 C, the critical internal pressure can fall to values which are lower than the working pressure. With the aid of simplified geometry, a lower limit for the pressure at failure of the reactor pressure vessel can be calculated. (orig./HP) [de

  11. Ultrasonic stress evaluation through thickness of a stainless steel pressure vessel

    International Nuclear Information System (INIS)

    Javadi, Yashar; Pirzaman, Hamed Salimi; Raeisi, Mohammadreza Hadizadeh; Najafabadi, Mehdi Ahmadi

    2014-01-01

    This paper investigates ultrasonic method in stress measurement through thickness of a pressure vessel. Longitudinal critically refracted (L CR ) waves are employed to measure the welding residual stresses in a vessel constructed from austenitic stainless steel 304L. The acoustoelastic constant is measured through a hydro test to keep the pressure vessel intact. Hoop and axial residual stresses are evaluated by using different frequency range of ultrasonic transducers. The welding processes of vessel shell and caps are simulated by a 3D finite element (FE) model which is validated by hole-drilling method. The residual stresses calculated by FE simulation are then compared with those obtained from the ultrasonic measurement while a good agreement is observed. It is demonstrated that the residual stresses through thickness of the stainless steel pressure vessel can be evaluated by combining FE and L CR method (known as FEL CR method). - Highlights: • The main goal is ultrasonic evaluation of through thickness stresses. • Welding processes of a stainless steel pressure vessel are modelled by FE. • The hole-drilling method is used to validate the FE results. • Residual stresses are measured by four different series of ultrasonic transducers. • The comparison between ultrasonic and FE results show an acceptable agreement

  12. Computing radiation dose to reactor pressure vessel and internals

    International Nuclear Information System (INIS)

    1996-01-01

    Within the next twenty years many of the nuclear reactors currently in service will reach their design lifetime. One of the key factors affecting decisions on license extensions will be the ability to confidently predict the integrity of the reactor pressure vessel and core structural components which have been subjected to many years of cumulative radiation exposure. This report gives an overview of the most recent scientific literature and current methodologies for computational dosimetry in the OECD/NEA Member countries. Discussion is extended to consider some related issues of materials science, such as the metals, and limitations of the models in current use. Proposals are made for further work. (author)

  13. Nonlinear analysis of reinforced concrete structures subjected to high temperature and external load

    International Nuclear Information System (INIS)

    Sugawara, Y.; Goto, M.; Saito, K.; Suzuki, N.; Muto, A.; Ueda, M.

    1993-01-01

    A quarter of a century has passed since the finite element method was first applied to nonlinear problems concerning reinforced concrete structures, and the reliability of the analysis at ordinary temperature has been enhanced accordingly. By contrast, few studies have tried to deal with the nonlinear behavior of reinforced concrete structures subjected to high temperature and external loads simultaneously. It is generally known that the mechanical properties of concrete and steel are affected greatly by temperature. Therefore, in order to analyze the nonlinear behavior of reinforced concrete subjected to external loads at high temperature, it is necessary to construct constitutive models of the materials reflecting the influence of temperature. In this study, constitutive models of concrete and reinforcement that can express decreases in strength and stiffness at high temperature have been developed. A two-dimensional nonlinear finite element analysis program has been developed by use of these material models. The behavior of reinforced concrete beams subjected simultaneously to high temperature and shear forces were simulated using the developed analytical method. The results of the simulation agreed well with the experimental results, evidencing the validity of the developed material models and the finite element analysis program

  14. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  15. Reliability analysis of pipelines and pressure vessels at nuclear power plants

    International Nuclear Information System (INIS)

    Klemin, A.I.; Shiverskij, E.A.

    1979-01-01

    Reliability analysis of pipelines and pressure vessels at NPP is given. The main causes and failure mechanisms of these elements, the ways of reliability improvement and preventing of great damages are considered. The reliability estimation methods both according to the statistical operation data and under the conditions of absence of failure statistics are given. The main characteristics and actual reliability factors of pipelines and pressure vessels of three home NPP: the first in the world NPP, VK-50 and Beloyarsk NPP, are presented. From the start-up there were practically no failures of the pipelines and pressure vessels at the VK-50 pilot installation. The analysis of the operation experience of the first and second blocks of the Beloyarsk NPP, as well as the first in the world NPP, shows that the most part of failures of the pipelines and pressure vessels of these energy blocks with the channel reactors is connected with the coolant leakage at minority pipelines of a small diameter. The most part of failures at individual pipelines of the first and second blocks of the Beloyarsk NPP are connected with the leakages of stuffing boxes of switching off devices. It is noted that serious failures of large pipelines and pressure vessels at all home NPP under operation have not been observed

  16. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit

    2006-01-01

    PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...... for CRVE, and 0.67 +/- 0.05 microm for AVR. No significant influence on artery or vein diameters was found for gender, smoking, body mass index (BMI), total cholesterol, fasting blood glucose, or 2-hour oral glucose tolerance test values. CONCLUSIONS: In healthy young adults with normal blood pressure...

  17. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  18. Proposal of Ex-Vessel dosimetry for pressure vessel Atucha II

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Nuclear reactor dosimetry has the purpose of guarantee that changes in material mechanical properties of critical materials do not compromise the reactor safety. In PWR in which the top of the reactor vessel is open once a year, is possible to use Charpy specimens to measure the change in mechanical properties. Atucha II nuclear power plant is a reactor with on-line refueling so there is no access to the inside of the pressure vessel. Because of this, ex-vessel dosimetry must be performed and mechanical properties changes must be inferred from radiation damage estimations. This damage can be calculated using displacement per atom cross sections and a transport code such as MCNP. To increase results reliability it is proposed to make a neutron spectrum unfolding using activation dosimeters irradiated during one operation cycle of the power plant. In this work we present a dosimetry proposal for such end, made in base of unfolding procedures and experimental background. (author) [es

  19. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  20. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  1. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV

  2. Probabilistic approach to the analysis of reactor pressure vessel integrity during a pressurized thermal shock

    International Nuclear Information System (INIS)

    Adamec, P.

    2000-12-01

    Following a general summary of the issue, an overview of international experience (USA; Belgium, France, Germany, Russia, Spain, Sweden, The Netherlands, and the UK; and probabilistic PTS assessment for the reactor pressure vessel at Loviisa-1, Finland) is presented, and the applicable computer codes (VISA-II, OCA-P, FAVOR, ZERBERUS) are highlighted and their applicability to VVER type reactor pressure vessels is outlined. (P.A.)

  3. Recent experiences and problems in conducting pressure vessel surveillance examinations

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1979-01-01

    Each of the commercial power reactors in the U.S.A. has a pressure vessel surveillance program. The purpose of the programs is to monitor the effects of radiation on the mechanical properties on the steel pressure vessels. A program for a given reactor includes a series of irradiation capsules containing neutron dosimeters and mechanical property specimens. The capsules are periodically removed during the life of the reactor and evaluated. The surveillance capsule examinations conducted to date have been valuable in assessing the effects of radiation on pressure vessels. However, a number of problems have been observed in the course of capsule examinations which potentially could reduce the maximum value of the data obtained. These problems are related to specimen design and preparation, capsule design and preparation, capsule installation and removal, capsule disassembly, specimen testing and evaluation, program documentation, and quality assurance. Examples of problems encountered in the preceding areas are presented in the present paper, and recommendations are made for minimization or prevention of these problems in future programs. Included in the recommendations is that appropriate ASTM standards, ASME Boiler and Pressure Vessel Code sections, and NRC regulations provide the appropriate framework for prevention of problems

  4. A quantitative methodology for reactor vessel pressurized thermal shock decision making

    International Nuclear Information System (INIS)

    Ackerson, D.S.; Balkey, K.R.; Meyer, T.A.; Ofstun, R.P.; Rupprecht, S.D.; Sharp, D.R.

    1983-01-01

    The recent operating experience of the Pressurized Water Reactor (PWR) Industry has focused increasing attention on the issue of reactor vessel pressurized thermal shock (PTS). Previous reactor vessel integrity concerns have led to changes in vessel and plant system design and to operating procedures, and increased attention to the PTS issue is causing consideration of further modifications. Events such as excess feedwater, loss of normal feedwater, and steam generator tube rupture have led to significant primary system cooldowns. Each of these cooldown transients occurred concurrently with a relatively high primary system pressure. Considerations of these and other postulated cooldown events has drawn attention to the impact of operator action and control system effects on reactor vessel PTS. A methodology, which couples event sequence analysis with probabilistic fracture mechanics analyses, was developed to identify those events that are of primary concern for reactor vessel integrity. Operating experience is utilized to aid in defining the appropriate event sequences and event frequencies of occurrence for the evaluation. (orig./RW)

  5. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  6. East/west steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    Davies, M.; Kryukov, A.; Nikolaev, Y.; English, C.

    1997-01-01

    The report consist of three parts dealing with comparison of the irradiation behaviour of 'Eastern' and 'Western' steels, mechanisms of irradiation embrittlement and the role of compositional variations on the irradiation sensitivity of pressure vessels. Nickel, copper and phosphorus are the elements rendering the most essential influence on behaviour of pressure vessel steels under irradiation and subsequent thermal annealing. For WWER-440 reactor pressure vessel (RPV) steels in which nickel content does nor exceed 0.3% the main affecting factors are phosphorous and copper. For WWER-1000 RPV welds in which nickel content generally exceed 1.5% the role of nickel in radiation embrittlement is decisive. In 'Western' type steels main influencing elements are nickel and copper. The secondary role of phosphorus in radiation embrittlement of 'Western' steels is caused by lower relative content compared to 'Eastern' steels. The process of how copper, phosphorus and nickel contents affect the irradiation sensitivity of both types of steel seem to be similar. Some distinctions between the observed radiation effects is apparently caused by differences in the irradiation conditions and ratios of the contents of above mentioned elements in both types of steel. For 'Eastern' RPV steels the dependence of the recovery degree of irradiated steels due to postirradiation thermal annealing id obviously dependent on phosphorus contents and the influence of nickel contents on this process is detectable

  7. Irradiation embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Vacek, M.

    1975-01-01

    A Standard Research Programme on Irradiation Embrittlement of Pressure Vessel Steels was approved by the Coordinating Meeting on the 12th May 1972 at the Working Group on Engineering Aspects of Irradiation Embrittlement of Pressure Vessel Steels. This Working Group was set up by the International Atomic Energy Agency in Vienna. Seven countries with their research institutes agreed on doing irradiation experiments according to the approved programme on steel A533 B from the U.S. HSST Programme. The Czechoslovak contribution covering tensile and impact testing of non-irradiated steel and steel irradiated at 280degC to 1.3 x 10 23 n/m 2 (E above 1 MeV) is presented in this report. As an additional part the same set of experiments was carried out on two additional steels - A 542 and A 543, made in SKODA Works for comparison of their irradiation embrittlement and hardening with A533 B steel. (author)

  8. Pressure vessel inspection criteria based on fitness-for-purpose assessment

    International Nuclear Information System (INIS)

    Grover, J.L.; Cipolla, R.C.

    1985-01-01

    The paper on pressure vessel inspection investigates the methodology required to establish an inspection strategy consistent with fracture mechanics analysis, i.e. to define allowable flaw sizes based on location within the vessel. The methodology is demonstrated using a sample problem for a typical pressurised water reactor pressure vessel, and shows the impact of certain assumptions on the inspection strategy. The results indicate that the flaw size varies with the shape of the assumed residual stress field and the through-thickness location. Also in general, the fracture mechanics evaluation allows flaws much larger than are allowed by the inspection acceptance criteria. (UK)

  9. Fracture Failure of Reinforced Concrete Slabs Subjected to Blast Loading Using the Combined Finite-Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Z. M. Jaini

    Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.

  10. Strain Capacity of Reinforced Concrete Members Subjected to Uniaxial Tension

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Rasmussen, Annette Beedholm; Fisker, Jakob

    2017-01-01

    The aim of this paper is to set up a method to determine the strain capacity of tension bars of reinforced concrete (RC) subjected to pure tension. Due to the interaction between reinforcement and concrete and due to the presence of cracks, the stresses in both reinforcement and concrete...... are varying along the length of the tension bar. The strain capacity of the tension bar is seen as the average strain in the reinforcement at the load level corresponding to the ultimate stress capacity of the reinforcement at the cracks. The result of the approach is in overall good agreement when comparing...

  11. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  12. Correlation between hydrogen release and degradation of limestone concrete exposed to hot liquid sodium in inert atmosphere

    International Nuclear Information System (INIS)

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Ramesh, S.S.; Somayajulu, P.A.; Kannan, S.E.

    2005-01-01

    Full text of publication follows: Concrete is used as a structural material in a Fast Breeder Reactor (FBR) plant for the construction of its foundation, containment, radiation shield and equipment support structures. An accidental leakage of hot sodium on these civil structures can bring about thermo-chemical reactions, with concrete producing hydrogen gas and causing structural degradation. The concrete damage and hydrogen generation take place concurrently due to conduction of heat from sodium into the concrete and migration of steam / moisture in counter current direction towards sodium. In a series of experiments conducted with limestone concrete for two different types of design corresponding to composition and geometry, were exposed to liquid sodium (∼2 kg) at initial temperatures varying from 180 deg. C to 500 deg. C in an inerted test vessel (Capacity = 203 L). Immersion heater was employed to heat the sodium pool on the concrete cavity during the test period in some test runs. On-line continuous measurement of pressure, temperature, hydrogen gas and oxygen gas was carried out. Pre- and post- test nondestructive testing such as colour photography, spatial profiling of ultrasonic pulse velocity and measurement of dimensions were also conducted. Solid samples were collected from sodium debris by manual core drilling machine and from concrete block by hand held electric drilling machine. These samples were subjected to chemical analysis for the determination of free and bound water along with unburnt and burnt sodium. The hydrogen generation parameters such as average and peak release rate as well as release efficiency are derived from measured test variables. These test variables include temperature, pressure and hydrogen concentration in the argon atmosphere contained in the test vessel. The concrete degradation parameters encompass percentage reduction in ultrasonic pulse velocity, depth of physical and chemical dehydration and sodium penetration. These

  13. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  14. Performance of Hybrid Steel Fibers Reinforced Concrete Subjected to Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2013-01-01

    Full Text Available This paper presents the results of the experimental data and simulation on the performance of hybrid steel fiber reinforced concrete (HSFRC and also normal reinforced concrete (NRC subjected to air blast loading. HSFRC concrete mix consists of a combination of 70% long steel hook end fibre and also 30% of short steel hook end fibre with a volume fraction of 1.5% mix. A total of six concrete panels were subjected to air blast using plastic explosive (PE4 weighing 1 kg each at standoff distance of 0.3 meter. The parameters measured are mode of failure under static and blast loading and also peak overpressure that resulted from detonation using high speed data acquisition system. In addition to this simulation work using AUTODYN was carried out and validated using experimental data. The experimental results indicate that hybrid steel fiber reinforced concrete panel (HSFRC possesses excellent resistance to air blast loading as compared to normal reinforced concrete (NRC panel. The simulation results were also found to be close with experimental data. Therefore the results have been validated using experimental data.

  15. Prestressed concrete reactor vessel for the HHT-670 MW(e) demonstration plant. Pt.2. Three-dimensional analysis of the temperature and stress fields in a HHT vessel, including effects of the thermal creep

    International Nuclear Information System (INIS)

    Rodriguez, C.; Rebora, B.

    1979-01-01

    The thermal rheological calculation of the prestressed concrete reactor vessel for the HHT-670 MW(e) Demonstration Plant is presented in the paper. The main aim of this calculation is to evaluate the effects of the elevated temperature and various loads on the liner as well as on the hot concrete

  16. Consequence evaluation of hypothetical reactor pressure vessel support failure

    International Nuclear Information System (INIS)

    Lu, S.C.; Holman, G.S.; Lambert, H.E.

    1991-01-01

    This paper describes a consequence evaluation to address safety concerns raised by the radiation embrittlement of the reactor pressure vessel (RPV) supports for the Trojan nuclear power plant. The study comprises a structural evaluation and an effects evaluation and assumes that all four reactor vessel supports have completely lost the load carrying capability. The structural evaluation concludes that the Trojan reactor coolant loop (RCL) piping is capable of transferring loads to the steam generator (SG) supports and the reactor coolant pump (RCP) supports and that the SG supports and the RCP supports have sufficient design margins to accommodate additional loads transferred to them through the RCL piping. The effects evaluation, employing a systems analysis approach, investigates initiating events and the reliability of the engineered safeguard systems as the RPV is subject to movements caused by the RPV support failure. The evaluation identifies a number of areas for further investigation and concludes that a hypothetical failure of the Trojan RPV supports due to radiation embrittlement will not result in consequences of significant safety concerns. (author)

  17. Concrete benchmark experiment: ex-vessel LWR surveillance dosimetry; Experience ``Benchmark beton`` pour la dosimetrie hors cuve dans les reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H.; D`Hondt, P.; Oeyen, J.; Risch, P.; Bioux, P.

    1993-09-01

    The analysis of DOEL-1 in-vessel and ex-vessel neutron dosimetry, using the DOT 3.5 Sn code coupled with the VITAMIN-C cross-section library, showed the same C/E values for different detectors at the surveillance capsule and the ex-vessel cavity positions. These results seem to be in contradiction with those obtained in several Benchmark experiments (PCA, PSF, VENUS...) when using the same computational tools. Indeed a strong decreasing radial trend of the C/E was observed, partly explained by the overestimation of the iron inelastic scattering. The flat trend seen in DOEL-1 could be explained by compensating errors in the calculation such as the backscattering due to the concrete walls outside the cavity. The `Concrete Benchmark` experiment has been designed to judge the ability of this calculation methods to treat the backscattering. This paper describes the `Concrete Benchmark` experiment, the measured and computed neutron dosimetry results and their comparison. This preliminary analysis seems to indicate an overestimation of the backscattering effect in the calculations. (authors). 5 figs., 1 tab., 7 refs.

  18. Mathematical model for creep and thermal shrinkage of concrete at high temperature

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1983-01-01

    Based on the existing limited test data, it is possible to set up an approximate constitutive model for creep and shrinkage at temperatures above 100 0 C, up to about 400 0 C. The model presented here describes the effect of various constant temperatures on the creep rate and the rate of aging, similar effects of the specific water content, the creep increase caused by simultaneous changes in moisture content, the thermal volume changes as well as the volume changes caused by changes in moisture content (drying shrinkage or thermal shrinkage), and the effect of pore pressure produced by heating. Generalizations to time-variable stresses and multiaxial stresses are also given. The model should allow more realistic analysis of reactor vessels and containments for accident situations, of concrete structures subjected to fire, of vessels for coal gasification or liquefaction, etc. (orig.)

  19. In-service inspection program for the NCS-80 reactor pressure vessel

    International Nuclear Information System (INIS)

    Scharge, J.; Wehowsky, P.; Zeibig, H.

    1978-01-01

    The in-service inspection program of reactor pressure vessels is mainly based on the ultra-sonic method, visual checking of inner and outer surfaces as well as pressure and leak tests. The test procedure require a design of the pressure vessel suitable for the test methods and the possibility to remove the pressure vessel internals. For the outside inspection a gap of sufficient width is mandatory. The present status of the ultra-sonic method and of the inner and outer manipulators affords to conduct the in-service inspection program in form of automatic checkings. The in-service inspection program for NCS-80, the Nuclear Container-Ship design of 80,000 shp, is integrated in the refueling periods due to the request for a high availability of the ship and reactor plant

  20. Design Improvement of Double Pressure Vessel in the In-pile Test Section

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Heo, Sung-Ho; Joung, Chang-Young; Kim, Ka-Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To carry out an irradiation test of nuclear fuels, a nuclear fuel test rig should be fabricated and installed in the in-pile test section (IPS), which is installed in the reactor hall. While carrying out an irradiation test, sealing out coolant which passes through the test rig is one of the most important issues. In particular, although the double pressure vessel is assembled with the IPS head by two o-rings and six bolts, 15.5 MPa of highly pressurized coolant leaks through the gap between the vessel and IPS head. Because the temperature of the coolant in the test loop is 300 .deg. C , and the pool of HANARO is 40 .deg. C, the double pressure vessel is necessary to insulate them. Therefore, a new design to prevent the leakage of coolant needs to be developed. In this study, EB welding technique is considered to assemble the double pressure vessel and the IPS head, and their mechanical design is modified to enable the welding process. In this study, an improved design for sealing out the coolant at the pressure boundary between the double pressure vessel and the IPS head has been developed. An EB weld is applied to seal out the pressure boundary, and its sealing performance is verified by NDE, a cross section test, and a hydraulic pressure test. From the verification test results, the improved design can be used in fabricating the IPS for a nuclear fuel irradiation test.

  1. Initiation and arrest - two approaches to pressure vessel safety

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Stepanek, S.

    1976-01-01

    The safety analysis is described of the reactor pressure vessel related to brittle fracture based on the fracture mechanics theory using two different approximations, i.e., the Crack Arrest Temperature (CAT) or Nil Ductility Temperature (NDT), and fracture toughness. The variation of CAT with stress was determined for different steel specimens of 120 to 200 mm in thickness. A diagram is shown of CAT variation with stress allowing the determination of crack arrest temperature for all types of commonly used steels independently of the NDT initial value. The diagram also shows that the difference between fracture transition elastic (FTE) and NDT depends on the type of material and determines the value of the ΔTsub(sigma) factor typical of the safety coefficient. The so-called fracture toughness reference value Ksub(IR) is recommended for the computation of pressure vessel criticality. Also shown is a defect analysis diagram which may be used for the calculation of pressure vessel safety prior to and during operation and which may also be used in making the decision on what crack sizes are critical, what cracks may be arrested and what cracks are likely to expand. The diagram is also important for the fact that it is material-independent and may be employed for the estimates of pre-operational and operational inspections and for pressure vessel life prediction. It is generally applicable to materials of greater thickness in the region where the validity of linear elastic fracture mechanics is guaranteed. (J.P.)

  2. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    In order to assess the safety of pressure vessel nozzles, the analysis should take into account cracks. The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3 D cracks under arbitary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to only FEM program able to deal with the data handling problems of the substructuring technique. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. (Auth.)

  3. Helium leak testing of large pressure vessels or subassemblies

    International Nuclear Information System (INIS)

    Hopkins, J.S.; Valania, J.J.

    1977-01-01

    Specifications for pressure-vessel components [such as the intermediate heat exchangers (IHX)] for service in the liquid metal fast breeder reactor facilities require helium leak testing of pressure boundaries to very exacting standards. The experience of Foster Wheeler Energy Corporation (FWEC) in successfully leak-testing the IHX shells and bundle assemblies now installed in the Fast Flux Test Facility at Richland, WA is described. Vessels of a somewhat smaller size for the closed loop heat exchanger system in the Fast Flux Test Facility have also been fabricated and helium leak tested for integrity of the pressure boundary by FWEC. Specifications on future components call for helium leak testing of the tube to tubesheet welds of the intermediate heat exchangers

  4. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  5. A mathematical model for pressure-based organs behaving as biological pressure vessels.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Gauci, Marilyn; Gatt, Ruben; Sladden, David; Chetcuti, Stanley; Grima, Joseph N

    2018-04-26

    We introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics. Copyright © 2018. Published by Elsevier Ltd.

  6. Assessment of the integrity of WWER type reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1995-01-01

    Procedures are given for the assessment of the residual lifetime of reactor pressure vessels with respect to a sudden failure, the lifetime of vessels with defects disclosed during in-service inspections, and the fatigue or corrosion-mechanical lifetime. Also outlined are the ways of assessing the effects of major degradation mechanisms, i.e. radiation embrittlement, thermal aging, and fatigue damage, including the use of calculated values and experimental examination, by means of surveillance specimens in particular. All results of assessment performed so far indicate that the life of reactor pressure vessels at the Dukovany, Jaslovske Bohunice, and Temelin nuclear power plants is well secured. 7 figs., 3 refs

  7. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  8. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Takahashi, W.K.; Al-Qureshi, H.A.

    1982-01-01

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author) [pt

  9. Test of 6-inch-thick pressure vessels. Series 2. Intermediate test vessels V-3, V-4, and V-6

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Raftenberg, M.N.; Robinson, G.C.; Smith, J.E.

    1975-11-01

    The second series of intermediate vessel tests were crack initiation fracture tests of 6-in.-thick 39-in.-OD steel vessels with sharp surface flaws approximately 2 1 / 2 in. deep by 8 in. long in the longitudinal weld seams of the test cylinders. Fracture was initiated by means of hydraulic pressurization. One vessel was tested at each of three temperatures: 75, 130, and 190 0 F. Pretest analyses were made to predict the failure pressures and strains. Fracture toughness data obtained by equivalent-energy analysis of precracked Charpy-V tests and compact-tension specimen tests were used in the fracture analyses. The vessels behaved generally as had been expected. Posttest fracture analyses were also performed for each vessel. Detailed discussions of the fracture analysis methods developed in support of the vessel tests described are included. 34 references

  10. Milestones in pressure vessel technology

    International Nuclear Information System (INIS)

    Spence, J.; Nash, D.H.

    2004-01-01

    The progress of pressure vessel technology over the years has been influenced by many important events. This paper identifies a number of 'milestones' which have provided a stimulus to analysis methods, manufacturing, operational processes and new pressure equipment. The formation of a milestone itself along with its subsequent development is often critically dependent on the work of many individuals. It is postulated that such developments takes place in cycles, namely, an initial idea, followed sometimes by unexpected failures, which in turn stimulate analysis or investigation, and when confidence is established, followed finally by the emergence of codes ad standards. Starting from the industrial revolution, key milestones are traced through to the present day and beyond

  11. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  12. Elastoplastic analysis of surface cracks in pressure vessels using slip-line theory

    International Nuclear Information System (INIS)

    Keskinen, R.P.

    1983-01-01

    The paper considers the aspects of engineering application of SLF theory to long surface cracks in pressure vessels. Green's upper-bound SLF for a bend specimen with deep wedge-shaped notch of small flank angle is adopted to analyse the remaining ligament of the cracked section. The SLF involves only one unknown variable, i.e., the radius of a circular slip-line arc, which can be evaluated from the equilibrium condition across the ligament. The stress distribution across the ligament is easily computed by Hencky's theorem and the respective stress resultants produce the boundary conditions for the solution of the neighboring elastic material. The elastic solution readily yields the rotation of the crack edges, COA, and it in turn geometrically defines the applied CTOD. Comparison has proved their relation to the stress resultants identical with that following from the customary single plastic hinge model when Tresca's yield condition prevails and the tensile side plastic constraint factor of the hinge model is chosen as 1.7. The SLF approach is demonstrated for an internal circumferential surface crack subjected to thermal gradient and axial load representative of overpressurization and emergency cooling conditions of a pressure vessel. Analytical formulas relating COA and CTOD to applied loading are derived and CTOD-R curve based stable crack propagation is solved iteratively. Generic numerical results are presented for COA and CTOD under arbitrary loading combination. The risk of crack growth initiation appears to increase with the linear dimensions of the pressure vessel, but remains small for a chosen BWR application. For a long axial surface crack the approach agrees with a previous plastic hinge analysis by Ranta-Maunus et al. suggesting instability under certain combinations of thermal gradient and internal pressure. (orig./HP)

  13. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    Science.gov (United States)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  14. 9 CFR 91.26 - Concrete flooring.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000 psi...

  15. Pressurized water reactor with a reactor pressure vessel

    International Nuclear Information System (INIS)

    Werres, L.

    1979-01-01

    The core barrel is suspended from a flange by means of a grid. The coolant enters the barrel from below through the grid. In order to get a uniform flow over the reactor core there is provided for a guiding device below the grid. It consists of a cylindrical shell with borings uniformly distributed around the shell as well as fins on the inner surface of the shell and slots at the bottom facing the pressure vessel. (GL) [de

  16. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  17. Shear strength of end slabs of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Cheung, K.C.; Gotschall, H.L.; Liu, T.C.

    1975-01-01

    Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)

  18. Adjustable guide for a testing system for reactor pressure vessels

    International Nuclear Information System (INIS)

    Seifert, W.

    1980-01-01

    The device consisting of a guide rail and a manipulator is introduced into the gap between pressure vessel wall and biological shield by means of suspending wire drums and manipulator drums. For adjustment of the device an elbow telescope is used. The guide rail is fixed to the pressure vessel wall by means of electromagnets. The movements of the manipulator with respect to the guide rail are performed with the aid of a motor. (DG) [de

  19. Pressure vessels fabricated with high-strength wire and electroformed nickel

    Science.gov (United States)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  20. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  1. Reliability aspects of radiation damage in reactor pressure vessel mterials

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1985-01-01

    The service life estimate is a major factor in the evaluation of the operating reliability and safety of a nuclear reactor pressure vessel. The evaluation of the service life of the pressure vessel is based on a comparison of fracture toughness values with stress intensity factors. Notch toughness curves are used for the indirect determination of fracture toughness. The dominant degradation effect is radiation embrittlement. Factors having the greatest effect on the result are the properties of the starting material of the vessel and the impurity content, mainly the Cu and P content. The design life is affected by the evaluation of residual lifetime which is made by periodical nondestructive inspections and using surveillance samples. (M.D.)

  2. The 1978 first in-service inspection of the reactor pressure vessel of the second unit of the Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Pastor, D.; Busch, R.; Hildebrandt, E.; Redlich, K.H.

    1979-01-01

    The reactor pressure vessel and the primary coolant circuit of the second 440-MW(e) unit of the Greifswald nuclear power plant were subjected to an in-service inspection. Extent of the inspection, development and construction of a reactor inspection container as well as the nondestructive materials testing methods used are described. Further, problems of performing the inspection, such as needs of time and personnel and radiation exposure, are considered. Finally, it is stated that the reactor pressure vessel was in safe operating state. (author)

  3. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD`s language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  4. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  5. A prototype knowledge based system for pressure vessel design

    International Nuclear Information System (INIS)

    Gunnarsson, L.

    1991-01-01

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au)

  6. Final report for the 2nd Ex-Vessel Neutron Dosimetry Installations and Evaluations for Yonggwang Unit 2 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 2 pressure vessel beltline region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the beltline region of the pressure vessel. During Cycle 16 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 2 to provide continuous monitoring of the beltline region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  7. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  8. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Li, Nam Jin; Hong, Joon Wha

    2007-01-15

    This report describes a neutron fluence assessment performed for the Yonggwang Unit 1 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 16 of reactor operation, 2nd Ex-Vessel Neutron Dosimetry Program was instituted at Yonggwang Unit 1 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 16.

  9. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  10. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  11. U.S. and French approaches to reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Griesbach, T.J.; Buchalet, C.; Server, W.L.

    1990-01-01

    The effects of radiation embrittlement on the reactor pressure vessel must be considered for continued safe operation of nuclear power plants. The consequences of radiation embrittlement require detailed assessments of the margins of safety against brittle fracture of the vessel. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and U.S. Regulations often use conservative approaches for these assessments which can eventually lead to severe operational hardships for some plants. Taking a look at alternative integrity approaches, such as those demonstrated in France, could ultimately result in improved ASME Code and Regulatory limits. The French studies have shown the significance of performing proper in- service inspections to reliably show that no defects larger than a predetermined size (or class) exist in the inspected region of a vessel. The predetermined size is based upon previous studies on the types of manufacturing defects which can potentially exist in French vessels. Enhanced linear elastic and elastic-plastic fracture mechanics methodologies can be applied to evaluate such defects to assure that brittle fracture will not occur

  12. Safety of light-water reactor pressure vessels against brittle fracture

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    The results are surveyed of research by SKODA Trust into brittle failure resistance of materials for WWER type reactor pressure vessels and into pressure vessel operating safety. Conditions are discussed in detail decisive for initiation, propagation and arrest of brittle fracture. The tests on the Cr-Mo-V type steel showed high resistance of the steel to the formation and the propagation of brittle fracture. They also confirmed the high operating reliability and the required service life of the steel. (B.S.)

  13. Strain measurement in and analysis for hydraulic test of CPR1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Zhou Dan; Zhuang Dongzhen

    2013-01-01

    The strain measurement in hydraulic test of CPR1000 reactor pressure vessel performed in Dongfang Heavy Machinery Co., Ltd. is introduced. The detail test scheme and method was introduced and the measurement results of strain and stress was given. Meanwhile the finite element analysis was performed for the pressure vessel, which was generally matched with the measurement results. The reliability of strain measurement was verified and the high strength margin of vessel was shown, which would give a good reference value for the follow-up hydraulic tests and strength analysis of reactor pressure vessel. (authors)

  14. Effect of the type of mineral aggregate on the high-temperature creep of HTR-concrete

    International Nuclear Information System (INIS)

    Diederichs, U.; Becker, G.

    1989-01-01

    Within the scope of the research and development work for the prestressed concrete vessel of the HTR 500 High-Temperature Reactor mix design, manufacture as well as mechanical and thermal behavior of the concrete have been comprehensively studied. Of the concrete types analyzed, a basalt concrete showed extremely favorable high-temperature characteristics while a concrete with Rhine gravel was characterized by a good workability. These two types of concrete were subjected to numerous tests, whereby the testing procedures were strongly related to the anticipated combined stress, temperature and moisture conditions in the real structure

  15. Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel

    International Nuclear Information System (INIS)

    Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A.

    1993-08-01

    The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117

  16. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    Science.gov (United States)

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  17. Reactor Pressure Vessel P-T Limit Curve Round Robin

    Energy Technology Data Exchange (ETDEWEB)

    Jang, C.H.; Moon, H.R.; Jeong, I.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This report is the summary of the analysis results for the P-T Limit Curve construction which have been subjected to the round robin analysis. The purpose of the round robin is to compare the procedure and method used in various organizations to construct P-T limit curve to prevent brittle fracture of reactor pressure vessel of nuclear power plants. Each Participant used its own approach to construct the P-T limit curve and submitted the results, By analyzing the results, the reference procedure for the P-T limit curve could be established. This report include the results of the comparison of the procedure and method used by the participants, and sensitivity study of the key parameters. (author) 23 refs, 88 figs, 17 tabs.

  18. Development of ultrasonic testing technique with a large transducer to inspect the containment vessel plates embedded in concrete for corrosion on nuclear power plant (2)

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2005-01-01

    The containment vessel plates embedded in concrete on Pressurized Water Reactors are inaccessible to inspect directly. Therefore, it is advisable to prepare inspection technology to detect existence and a location of corrosion on the embedded plates indirectly. The purpose of this study is establishment of ultrasonic testing technique to be able to inspect the containment vessel plates embedded in concrete widely from the accessible point. Experiments to detect artificial hollows simulating corrosion and stud bolts which hold the mold of concrete on a surface of a carbon steel plate mock-up covered with concrete were carried out with newly made low frequency (0.3MHz and 0.5MHz) 90 degrees refraction angle shear horizontal (SH) wave transducers combined with three active elements, which were equivalent to a 120 mm width element. As the results: (1) The echoes from the artificial hollows with a depth of 19 mm and 9.5mm at a distance of 1.5 m and the stud bolts with a diameter of 8mm at a distance of 0.7 - 1.7m could be discriminated clearly. (2) The multiple echoes bouncing three times between the front side and the back side of the plate, which was equivalent to a distance of about 12m, could be discriminated. (3) A divergence angle and a -6dB divergence angle of the large element (combined three elements) transducer were about 7 degrees and about 3 degrees. (4) The echoes from the hollows with a depth of 9.5m could be detected at a distance of 3.6 m with a reflection at the side wall of the mock-up. (5) It was estimated that the maximum distance of detection of the echo from the stud bolt with a diameter of 8mm was about 2.9 ∼ 3.6 m. Therefore we evaluate that the large element transducer can propagate the SH wave to about a half of a distance to the bottom of the embedded containment vessel and it is possible to detect the defects such as corrosion to a distance of 3.6 m. (author)

  19. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    OpenAIRE

    Minho Yoon; Gyuyong Kim; Youngsun Kim; Taegyu Lee; Gyeongcheol Choe; Euichul Hwang; Jeongsoo Nam

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W?B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressi...

  20. Experiences with testing PCRV concrete and epoxy resin models

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Schnellenbach, G.

    1979-01-01

    A 1:5 scale model of a prestressed concrete pressure vessel was used to investigate its operating behaviour when only partially prestressed so as to allow cracking even under operating conditions. Further experimental work consisted in the building and testing of epoxy resin models to check the results of three-dimensional numerical calculations. Results show that a partially prestressed vessel will operate reliably and that deformations under both short and long-term internal pressure are essentially reversible. The results from the epoxy resin models show that building such models also with complicated geometries and with embedded strain gauges can be successfully carried out and that testing such models is a good tool for checking computer calculations

  1. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  2. Energy and impacts of pressure vessel explosions

    International Nuclear Information System (INIS)

    Kurttila, H.

    1999-01-01

    In this paper the explosion energy is considered to be same as the energy of pressure vessel discharge. This is the maximum energy which can be obtained from the process. The energy can be used or it can cause the violence of an explosion accident. (orig.)

  3. Study on the shear transfer of reinforced concrete at elevated temperature

    International Nuclear Information System (INIS)

    Ishida, Hiroaki; Kanazu, Tsutomu

    1989-01-01

    Reinforced concrete structures in nuclear power stations, such as a containment vessel and structural members supporting a reactor vessel, are designed assuming that they may be subjected to elevated temperature. In the design code, it is specified that the temperature of concrete must not exceed the limitation, and thermal effect shall be taken into account. In this study, the shearing test using Mattock type specimens was performed to investigate into the shear behavior of the reinforced concrete subjected to elevated temperature. The test parameters studied in this program were the reinforcement ratio in a shear plane, the compressive stress normal to a shear plane and temperature. The maximum shearing load of the specimens heated to 200 degC was about 10-20 % lower than that at normal temperature, but nearly equal to that of the specimens heated to 100 degC. The equation for evaluating the shearing strength ratio was proposed. The cracking width and slip at maximum shearing load increased as temperature rose. Up to 200 degC, the same relation existed between interface shear transfer rigidity and cracking width. (K.I.)

  4. Monitoring of prestressed concrete pressure vessels. 1. An overview of concrete embedment strain instrumentation and calibration test results for selected concrete embedment strain meters

    International Nuclear Information System (INIS)

    Naus, D.J.; Hurtt, C.C.

    1978-01-01

    The report presents results of calibration tests on strain meters. The approach was divided into two phases: (1) an overview of meter performance criteria for PCPV applications and techniques for strain measurements in concrete and (2) procurement of commercially available gages and their evaluation to assess the reliability of manufacturer-supplied calibration factors. Calibration test results for gages embedded in 15.2-cm-diam by 54-cm cylindrical concrete specimens indicated that calibration factors should be determined (verified) by embedding samples of the gages in test specimens fabricated using a representative mix and that further research should be conducted on other measurement techniques based on inductance, capacitance, semiconductors, and fluidic principles

  5. Application of fracture mechanics to fatigue in pressure vessels

    International Nuclear Information System (INIS)

    Ghavami, K.

    1982-01-01

    The methods of application of fracture mechanics to predict fatigue crack propagation in welded structures and pressure vessels are described with the following objectives: i) To identify the effect of different variables such as crack tip plasticity, free surface, finite plate thickness, stress concentration and type of the structure, on the magnitude of stress intensity factor K in Welded joint. ii) To demonstrate the use of fracture mechanics for analysing fatigue crack propagation data. iii) To show how a law of fatigue crack propagation based on fracure mechanics, may be used to predict fatigue behavior of welded structures such as pressure vessel. (Author) [pt

  6. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  7. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  8. A framework expert system for pressure vessels

    International Nuclear Information System (INIS)

    Wang, Y.C.; Qin, S.J.

    1989-01-01

    Expert systems, known as a powerful tool to those numerical problems accompanied with logical argumentation, are facing the era of extended application into the engineering fields beyond the classical scopes of diagnosis and consultation. With regard to pressure vessels design it seems that the most important task is to establish a general purpose frame based on a microcomputer skeleton system to meet the various requirements of different vessels. The authors have made an attempt to perform such a skeleton designated file, ESTOOL, in order to achieve the objectives of executing numerical calculation combined with logical reasoning, and attaining higher efficiency of rules searching process. It has been successfully patched to the design software package for jacketed vessel with stirring shaft. This paper presents the guiding concepts and basic structure of ESTOOL via knowledge acquisition subsystem and inference engine

  9. AE/flaw characterization for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1984-01-01

    This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization

  10. Single pressure vessel (SPV) nickel-hydrogen battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.; Grindstaff, B.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1995-07-01

    Single pressure vessel (SPV) technology combines an entire multi-cell nickel-hydrogen (NiH{sub 2}) space battery within a single pressure vessel. SPV technology has been developed to improve the performance (volume/mass) of the NiH{sub 2} system at the battery level and ultimately to reduce overall battery cost and increase system reliability. Three distinct SPV technologies are currently under development and in production. Eagle-Picher has license to the COMSAT Laboratories technology, as well as internally developed independent SPV technology. A third technology resulted from the acquisition of Johnson Controls NiH{sub 2} battery assets in June, 1994. SPV batteries are currently being produced in 25 ampere-hour (Ah), 35 Ah and 50 Ah configurations. The battery designs have an overall outside diameter of 10 inches (25.4 centimeters).

  11. New paradigm for prediction of radiation life-time of reactor pressure vessel

    International Nuclear Information System (INIS)

    Kotrechko, S.A.; Meshkov, Yu.Ya.; Neklyudov, I.M.; Revka, V.N.

    2011-01-01

    New paradigm for prediction of radiation life-time of reactor pressure vessel is presented. Equation for limiting state of reactor pressure vessel wall with crack-like defect is obtained. It is exhibited that the value of critical fluence Φ c may be determined not by shift of critical temperature of fracture of surveillance specimen, which is indirect characteristic, but by direct method, namely, by the condition of initiation of brittle fracture of irradiated metal ahead of a crack in RPV wall. Within the framework of engineering version of LA to fracture the technique for Φ c ascertainment is developed. Prediction of Φ c for WWER pressure vessels demonstrates potentialities of this technique.

  12. Chloride Transport in OPC Concrete Subjected to the Freeze and Thaw Damage

    Directory of Open Access Journals (Sweden)

    Ki Yong Ann

    2017-01-01

    Full Text Available To predict the durability of a concrete structure under the coupling degradation consisting of the frosting and chloride attack, microstructural analysis of the concrete pore structure should be accompanied. In this study, the correlation between the pore structure and chloride migration for OPC concrete was evaluated at the different cement content in the concrete mix accounting for 300, 350, and 400 kg/m3 at 0.45 of a free water cement ratio. The influence of frosting damage on the rate of chloride transport was assessed by testing with concrete specimens subjected to a rapid freezing and thawing cyclic environment. As a result, it was found that chloride transport was accelerated by frost damage, which was more influential at the lower cement content. The microscopic examination of the pore structure showed that the freezing environment increased the volume of the large capillary pore in the concrete matrix.

  13. A determination of the benefits of annealing irradiated pressure vessel weldments

    International Nuclear Information System (INIS)

    Lott, R.G.; Mager, T.R.

    1988-01-01

    The long-term benefit of annealing an irradiated reactor pressure vessel steel may be described in terms of a benefit factor, B. The benefit factor compares the mechanical properties of an annealed and reirradiated specimen with an equivalent specimen having no intermediate anneal. The benefit factor was determined using a series of microhardness specimens prepared from nuclear pressure vessel surveillance program materials. These specimens were annealed and then reirradiated in a test reactor. There was an obvious long-term benefit in the specimens annealed at 450 0 C. The long-term benefit was less obvious at 400 0 C and no significant benefit was noted at 350 0 C. The benefit factor may also be used as the basis of a surveillance program for an annealed pressure vessel. A strategy for such a surveillance program is described. (author)

  14. A model for structural analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A. de.

    1987-01-01

    Due to the recent Brazilian advances in the nuclear technology area, it has been necessary the development of design and analysis methods for pressurized water reactor components, also as other components of a nuclear plant. This work proposes a methodology for the structural analysis of large diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem. A computer program is shown, and the given results (displacements and stresses) are compared with results obtained by the finite element method. Although developed for nuclear reactor pressure vessel calculations, the program is more general, being possible its use for the analysis of any structure composed by shells of revolution. (author)

  15. Nickel hydrogen multicell common pressure vessel battery development update

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1992-01-01

    The technology background and design qualification of the multicell common pressure vessel nickel hydrogen battery are described. The results of full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass spectroscopy vessel leak detection are reviewed and 12.7 cm qualification and 25.4 cm design adaptation are discussed.

  16. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  17. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  18. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  19. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

    Science.gov (United States)

    Tsaplin, A. I.; Bochkarev, S. V.

    2016-01-01

    Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

  20. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.