WorldWideScience

Sample records for concrete mixing

  1. 1.5. The concrete mix properties

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Different properties of concrete mix, including connectivity, mobility and water demand were considered in this work. The steps of water demand of concrete mix obtained from Portland cement, sand and gravel are presented in this work. The classification of concrete mixes is presented as well.

  2. Automation of production of concrete mix

    Directory of Open Access Journals (Sweden)

    Popello Egor

    2017-01-01

    Full Text Available Computer-aided design of concrete leads to a reduction in terms of production, the exclusion of product deficiencies, improve the quality of manufactured products. This approach allows to produce the concrete to exact physical and mechanical characteristics, which makes the design more reliable and economical. The software package will allow: to reduce the settlement time in the design of concrete mixture, to improve the efficiency of the staff of the laboratory building, to improve the quality of the concrete mix due to higher accuracy of calculations, to apply a flexible approach to the design of concrete mixture in question of introducing new chemical additives and their characteristics.

  3. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  4. Effect of prolonged mixing time on concrete properties

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Sidek, H.A.A.; Wahab, Z.A.

    2009-01-01

    The correlation between workability, compressive strength and mixing time of fresh concrete has been studied. The concrete samples used in the study are normal concrete of grade 30. The mix design of the concrete samples was estimated using software called Calcrete. Three concrete cubes of 150 mm size were cast immediately after mixing. The same grade of concrete was prepared with the mixing time of 30 minutes to 5 hours. All of the concrete samples were cured for 28 days under room temperature before they were compressed using a compression machine. Result shows that the compressive strength of concrete decreases when mixing time is increased. (author)

  5. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  6. Mixed materials for concrete. Concrete yo konwazai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kono, K [Tokushima Univ., Tokushima (Japan). Faculty of Engineering

    1994-07-05

    The materials except cement, water and aggregate added into the cement paste, mortar or concrete before the execution of smashing are called mixed materials. The mixed materials are indispensable to the concrete for improving the quality of the fresh concrete as well as the hardened concrete; providing the characteristics suitable for the operation; and increasing the economy. In this paper, the main mixed materials including fly ash, which is the by-product in coal thermoelectric power station; silica fume; micropowder of slag in blast furnace; expansive materials and so on are described summarily. Especially, silica fume is the by-product, which are the super micro-powders with the average size around 0.1 micrometer, collected by the dust-collector from the waste gas generated during the manufacture in the electric furnace of ferrosilicon, which is an alloy iron, or silicon metal used as the deacidificating and desulfurizing agents in the steel production. But the most part thereof is depended on the import since the domestic output is low. 38 refs., 19 figs., 6 tabs.

  7. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  8. prediction of concrete mix cost using modified regression theory

    African Journals Online (AJOL)

    Kambula

    2013-07-02

    Jul 2, 2013 ... one can predict the cost per cubic meter of concrete if the mix ratios are given. The model can also give possible mix ratios for a specified cost. Statistical tool was used to verify the adequacy of this model. The concrete cost analysis is based on the current market prices of concrete constituent materials.

  9. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  10. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  11. MIX DESIGN FOR OIL-PALM-BOILER CLINKER (OPBC) CONCRETE

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    concrete and mix design methods as used for lightweight concrete were employed to obtain the target compressive strength at 28-day and was found to be lower than the target strength for. OPBC concrete. ... the OPBC as renewable resource can be high potential as an ..... PhD Thesis, Universiti Malaysia Sabah,. Sabah ...

  12. Prediction of Concrete Mix Cost Using Modified Regression Theory ...

    African Journals Online (AJOL)

    The cost of concrete production which largely depends on the cost of the constituent materials, affects the overall cost of construction. In this paper, a model based on modified regression theory is formulated to optimise concrete mix cost (in Naira). Using the model, one can predict the cost per cubic meter of concrete if the ...

  13. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  14. Properties of concrete mixed with sand frozen by liquid nitrogen

    International Nuclear Information System (INIS)

    Negami, Yoshiaki; Kurita, Morio; Kuwahara, Takashi; Goto, Sadao.

    1990-01-01

    This paper presents a new precooling method which reduces the temperature of mixed concrete by mixing it with sand frozen by liquid nitrogen. The authors tried to clarify the properties of both the frozen sand and the concrete mixed with the frozen sand. The results of a series of experimental studies indicate that the temperature of mixed concrete can be reduced about 25degC, which is a larger reduction quantity than that achieved by conventional precooling methods; and that this method contributes to improvement of the consistency and the compressive strength of the concrete. Furthermore, the advantageous effect of this precooling method is confirmed from the results of laboratory tests using massive concrete members. (author)

  15. Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

    OpenAIRE

    Noor Zainab Habib; Ibrahim Kamaruddin; Madzalan Napiah; Isa Mohd Tan

    2011-01-01

    This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely cont...

  16. Plastometry for the Self-Compacting Concrete Mixes

    Science.gov (United States)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  17. a new approach to concrete mix design using computer techniques

    African Journals Online (AJOL)

    Engr. Vincent okoloekwe

    required for a specified grade of concrete. 26 ... terms of the grade of the concrete required, its durability and ... experiments involves the use of a planned ..... machinery or vehicles. Nominal mix; 1:1:2. ½. 1. 1½. 2. 4½. 9. 1. 2. 3. 3¾. 82/3. 171/3.

  18. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    Optimising of Steel Fiber Reinforced Concrete Mix Design. ... as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. ... An experimental study of an optimisation method of fibres in reinforced ...

  19. Quality assurance program : bituminous concrete and central mix aggregates.

    Science.gov (United States)

    1980-01-01

    This report presents the results of a pilot quality assurance program initiated in the Richmond District in 1978. Under this program the producer's control tests are used for the acceptance of central mix aggregate and bituminous concrete and the Dep...

  20. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  1. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  2. 1.3. Chemical and mineral additives of concretes and water used for concrete mix preparation

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is known that chemical and mineral additives increase physicochemical properties of concretes, thus, chemical and mineral additives, including super plasticizer and organo mineral additives are examined in this work. It was noted that along with salt water fresh water can also be used for concrete mix preparation.

  3. Experimental Study on Superfine Sand Concrete Mixed by Double Mixing Technology

    OpenAIRE

    yuqing zhao

    2013-01-01

    Traditional concept thought that medium sand and fine sand can be used to mix concrete, superfine sand can not used to mix concrete. This makes the source of superfine sand limited. With the shortage of medium sand and fine sand, it is imperative to exploit the resource of superfine sand. Superfine sand concrete is mixed by means of Double-doped Technology-ultra-fine fly ash and super plasticizer. Primary factor influencing superfine sand concrete strength is studied by orthogonal test, the o...

  4. Radiometric assessment of quality of concrete mix with respect to hardened concrete strength

    International Nuclear Information System (INIS)

    Czechowski, J.

    1983-01-01

    The experiments have confirmed the relationship between the intensity of backscattered gamma radiation and the density of fresh concrete, and also between the flow of backscattered fast neutrons and the water content. From the said two parameters it is possible to derive the compression strength of concrete over the determined period of mix hardening, e.g., after 28 days. For a certain composition of concrete it is possible to derive empirical relations between the intensity of backscattered gamma radiation and neutrons and concrete strength after hardening and to construct suitable nomograms. (Ha)

  5. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  6. Characterization of mixed mode crack opening in concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl; Poulsen, Peter Noe; Olesen, John Forbes

    2012-01-01

    components of the mixed mode displacement are measured using a custom made orthogonal gauge, and the measurements are used directly as the closed loop control signals. A double notch, concrete specimen is used for the crack investigation. The tests are divided into two steps, a pure Mode I opening step......In real concrete structures cracks often open in mixed mode after their initiation. To capture the direct material behavior of a mixed mode crack opening a stiff biaxial testing machine, capable of imposing both normal and shear loads on a given crack area, has been applied. The opening and sliding......, where a macro crack is initiated in the specimen followed by the mixed mode opening step. The high stiffness of the set-up together with the closed control loop ensures a stable crack initiation followed by a controllable mixed mode opening. The deep notches result in a plane crack, only influenced...

  7. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  8. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  9. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  10. Mix design proposal for structural concrete using messobo ordinary ...

    African Journals Online (AJOL)

    Hessebo Ordinary Portland Cement (OPC). Realizing the various factors contributing to the quality of concrete, 43 trial batches of different mix designs were investigated. Based on the test results, equations were derived to relate compressive strength to w/c and to predict the 28 days compressive strength from the 7 days ...

  11. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  12. Mix for production of heavy concretes

    International Nuclear Information System (INIS)

    Skvara, F.; Halen, S.; Kolar, K.; Novotny, J.; Zadak, Z.; Zezulka, J.

    1981-01-01

    The mix consists of 76 to 99.79 wt.% of cement clay of a specific area of 150 to 3000 m 2 /kg, of heavy aggregate (in a ratio of 1 part of cement clay to more than 1 part of the heavy aggregate) and of 0.1 to 8 wt.% of lignosulphonic acid salt. The mix also contains 0.1 to 8 wt.% of boric acid, 0.01 to 8 wt.% of a carbonate or a hydrogen carbonate of an alkali metal. (H.S.)

  13. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Advantages of Concrete Mixing with Tyre Rubber

    OpenAIRE

    Mazyad Al-Fadhli *

    2017-01-01

    Strong waste administration is one of the major natural concerns everywhere throughout the world. Tire-rubber particles made out of tire chips, piece elastic, and a mix of tire chips and scrap elastic, where utilized to supplant mineral totals in cement. These particles were utilized to supplant 10% , 15% , 20%, and 25% of the aggregate mineral totals volume in cement.Using rubber aggregates in such applications can help to prevent pollution and overcome the problem of storing used tyres. Adv...

  15. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Abdul Bakhri Muhammad; Mohd Kamal Shah Shamsuddin; Rahmad Abd Rashid

    2012-01-01

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  16. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  17. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    Science.gov (United States)

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  18. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  19. Evaluation of isotropy in wet-mix sprayed concrete

    Directory of Open Access Journals (Sweden)

    Yubero, E.

    2009-07-01

    Full Text Available It is well known that there are differences between the fresh mix concrete and the placed concrete sprayed using dry or wet-mix process. Because of that, the characterization of such material is carried out in cores extracted parallel to the spray direction from sample panels. However, in many applications (e.g. tunnel lining, considerable compressive stresses appear along the transversal direction. In this paper different spayed concretes are evaluated. It was observed that the values of compressive strength and modulus of elasticity were different depending on the direction of measurement. These differences are related to a preferential orientation of the coarse aggregate due to the characteristics of the casting process. Rather than applying classic empirical methods, the concrete mixes used in this study were designed according to a new proportioning method based on the difference between the composition of the fresh mix concrete and the placed concrete.Dadas las diferencias entre el hormigón de partida y el colocado, la evaluación de las propiedades de un hormigón proyectado, por vía húmeda o seca, se realiza mediante la extracción de testigos, evaluándose las propiedades mecánicas o deformacionales de forma uniaxial, según la dirección de la proyección. No obstante, son muchas las aplicaciones, como es el caso del sostenimiento en túneles, en las que esta disposición no representa la forma de trabajo principal del hormigón en la estructura. En el presente artículo se ha verificado que pueden existir diferencias en la resistencia a compresión y módulo de elasticidad del hormigón proyectado por vía húmeda, según la dirección de evaluación. Éstas van ligadas a la orientación que sufre el árido grueso como consecuencia de la puesta en obra del hormigón. Asimismo, el hormigón proyectado del estudio se ha dosificado utilizando como procedimiento de dosificación una propuesta metodológica, basada en las diferencias

  20. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  1. Mechanical properties of self-compacted fiber concrete mixes

    Directory of Open Access Journals (Sweden)

    Mounir M. Kamal

    2014-04-01

    Full Text Available Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. The major impact of the introduction of self-compacting concrete (SCC is connected to the production process. The productivity is drastically improved through the elimination of vibration compaction and process reorganization. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, SCC technology has improved the performance in terms of hardened concrete properties like surface quality, strength and durability. The main objective of this research was to determine the optimum content of fibers (steel and polypropylene fibers used in SCC. The effect of different fibers on the fresh and hardened properties was studied. An experimental investigation on the mechanical properties, including compressive strength, flexural strength and impact strength of fiber reinforced self-compacting concrete was performed. The results of the investigation showed that: the optimum dosage of steel and polypropylene fiber was 0.75% and 1.0% of the cement content, respectively. The impact performance was also improved due to the use of fibers. The control mix specimen failed suddenly in flexure and impact, the counterpart specimens contain fibers failed in a ductile manner, and failure was accompanied by several cracks.

  2. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of mixing procedure on robustness of self-consolidating concrete.

    Science.gov (United States)

    2014-08-01

    Self-Consolidating Concrete is, in the fresh state, more sensitive to small variations in the constituent elements and the mixing : procedure compared to Conventional Vibrated Concrete. Several studies have been performed recently to identify robustn...

  4. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  5. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    Science.gov (United States)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  6. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    Science.gov (United States)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  7. Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

    OpenAIRE

    A. A. Okeola; T. I. Sijuade

    2016-01-01

    Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days...

  8. Experimental Study on Ready-Mix Concrete: Case Study

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available Ready-mix concrete (RMC in Tunisia is becoming more and more in demand in the civil engineering sector thanks to its qualities of handling in the fresh state and resistance in the hardened state, this composite material must respect the quality-price ratio. A RMC with a minimal cost is the object of our work. This research is part of the opening of higher education on professional life, where we optimized the formulation of a RMC. This work has 3 axes. In the first place the resources in building materials were characterized, namely various samples of sand, gravel, cement and water. Subsequently, the adjuvant-cement ratio (A/C was optimized. Finally, the workability of the concrete as well as its mechanical aptitude at various ages 7, 14 and 28 days were characterized. These examinations have resulted in an appropriate formulation for any type of resource that varies according to the provenance of the quarries (gravel and sand, the effect of the plasticizer-water reducer is found for a very interesting A/C ratio, the mechanical tests for different ages are also conclusive.

  9. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  10. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    Science.gov (United States)

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  11. 2.4. Kinetics of voids structure change according to the specific properties of the concrete mix

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    This work is devoted to kinetics of voids structure changes according to the specific properties of concrete mix. The influence of concrete mix mobility on durability and watertightness of concrete was studied. The influence of cement expenditure on concrete durability was examined.

  12. Transmission of neutrons in serpentine mixed and ordinary concrete a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P.K.

    2002-01-01

    Full text: In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of, concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  13. Transmission of neutrons in serpentine mixed and ordinary concrete- a comparative study

    International Nuclear Information System (INIS)

    Ravishankar, R.; Bhattacharyya, Sarmishtha; Bandyopadhyay, Tapas; Sarkar, P. K.

    2002-01-01

    In particle accelerator facilities, for radiation shielding, concrete is commonly used for its effectiveness in attenuating neutrons in addition to its good structural and mechanical properties. Neutron attenuation depends largely on the water content in the concrete. Serpentine mixed concrete is reported to retain better water content than ordinary concrete. Experiments have been carried out to compare neutron attenuation properties of Serpentine mixed concrete slabs and ordinary concrete slabs of different thickness. Transmission of neutrons from a 185 GBq Pu-Be neutron source has been studied using NE-213 liquid scintillator detector, along with the associated electronics to discriminate neutron from gamma using pulse shape discrimination techniques. The energy differential neutron spectra transmitted through the concrete slabs and the corresponding dose have been obtained by unfolding the pulse height spectra using the FERDOR-U computer code and proper response matrix data of the NE-213 detector. The neutron transmission factors through both Serpentine and Ordinary concrete slabs have been studied. The results show serpentine mixed concrete slabs can attenuate more neutrons of varying energies compared to ordinary concrete slabs of equal dimensions. From the trend, it has been found out, with the increase in slab thickness, the gain in neutron attenuation increases. This is due to increase in quantity of serpentine with the increase in thickness of concrete. A Monte Carlo simulation carried out, for theoretical analysis of the results, has been found to be in order

  14. Influence of High Temperatures on the Workability of Fresh Ready-Mixed Concrete

    Directory of Open Access Journals (Sweden)

    Victor Sampebulu'

    2012-04-01

    Full Text Available Properties of fresh concrete made in tropical countries, which is mixed, transported (with agitation, placed and initially cured in places where the temperature ranges from about 20oC to 40oC and relative humidity above 60%, are not completely understood. Applicable requirements also differ from country to country and government agencies and private enterprises have their own specifications. Assuming such temperature and relative humidity conditions, the present study is an attempt at evaluating the properties of hot weather concrete in fresh state with using a method of ready–mixed concrete. The fresh concrete was mixed and agitated at varying concrete and ambient temperatures. Three groups of the component materials, each material having such temperature as to bring resulting temperature of the fresh concrete to about 20oC, 30oC, 35oC, were chosen. The temperature of cement was conditioned to about20o, 40oC and 60oC for each of groups respectively. The aggregate was made warm enough to simulate the condition of outdoor pile in ready-mixed concrete plant. The temperature of tap water was always 20oC as it was easily controlled and unlikely affected by outdoor temperature. With the fresh concrete prevented from evaporation, slump loss is caused solely by increased temperature of concrete. During agitation, the slump loss increases rapidly during the first 30 minutes but moderately during the remaining period. Concrete-placing temperature (upon arrival at the work site could be estimated by a proposed formula derived from this study. Besides the freshly mixed concrete temperature, this formula also takes into consideration the ambient temperature, agitating time in transit and hydration heat. The achievement as described in this study may be useful to control concrete quality in terms of strength, shrinkage and other properties of concrete to be placed in hot-humid environment.

  15. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    OpenAIRE

    Aljbour Salah H.; Tarawneh Sultan A.; Al-Harahsheh Adnan M.

    2017-01-01

    Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obt...

  16. Value-added utilisation of recycled concrete in hot-mix asphalt.

    Science.gov (United States)

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  17. Liquid concrete mixes for V-2 nuclear power plant at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1983-01-01

    The liquid concrete mixes consist of aggregates, cement, water and plastifiers. The main component of aggregates is redeposited dolomite from the Dolinka locality and sand. Cement of the SPC-325 type is used while mixing water is taken from the service water pump station for the V-1 nuclear power plant. All concretes used for the V-2 nuclear power plant construction are treated using plastifier Plastifikator S. In concrete mix development, care was primarily taken to select sand with sufficient amounts of grain of a size up to 0.25 mm. Granularity curves of the sands and the resulting curve of the aggregates granularity of the concrete mix are shown graphically. The method of manufacture and conveying of concrete mixes are briefly described. The mathematical statistical analysis of the quality of the concrete mixes produced showed that the proposed concrete mixes meet the requirements for homogeneity in the controlled parameters and that they can be manufactured in the situation of building production provided suitable components are selected, suitable aggregates are available and the quality of production is systematically checked. (J.P.)

  18. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak Seok; Lee, Woo Yeol [Kyonggi University, Suwon (Korea)

    1998-06-30

    Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete using waste tire to evaluate the mechanical properties in comparison with conventional asphalt concrete. According to the test results, the modified product was superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the resistance of durability. The experimental results should recommend that the waste tire is positively recycled for asphalt concrete. (author). 11 refs., 6 tabs., 2 figs.

  20. Study on the dynamic performance of concrete mixer's mixing drum

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-06-01

    Full Text Available When working, the geometric distribution shape of concrete in concrete mixing truck's rotary drum changes continuously, which cause a great difficulty for studying the dynamic performance of the mixing drum. In this paper, the mixing system of a certain type of concrete mixing truck is studied. A mathematical formulation has been derived through the force analysis to calculate the supporting force. The calculation method of the concrete distribution shape in the rotary drum is developed. A new transfer matrix is built with considering the concrete geometric distribution shape. The effects of rotating speed, inclination angle and concrete liquid level on the vibration performance of the mixing drum are studied with a specific example. Results show that with the increase of rotating speed, the vibration amplitude of the mixing drum decreases. The peak amplitude gradually moves to the right with the inclination angle increasing. The amplitude value of the peak's left side decreases when tilt angle increases, while the right side increases. The maximum unbalanced response amplitude of the drum increases with the decrease of concrete liquid level height, and the vibration peak moves to the left.

  1. Application of an artificial neural network to ready-mixed concretes mix design

    Directory of Open Access Journals (Sweden)

    Setién, J.

    2003-06-01

    Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.

    En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.

  2. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  3. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  4. Cathodic protection of concrete ground floor elements with mixed in chloride

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.

    1999-01-01

    Corrosion of reinforcement in precast concrete ground floor elements containing mixed in chloride can cause considerable damage. This is a major problem in the Netherlands concerning a large number of privately owned houses. Conventional concrete repair is not acceptable because it does not provide

  5. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    Science.gov (United States)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  6. NPDES Permit for Super Concrete Ready-Mix Corp. (Aggregate Industries)

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number DC0000175, Super Concrete Ready-Mix Corporation is authorized to discharge from a facility to receiving waters named unnamed tributary to Northwest Branch of the Anacostia River.

  7. Temperature and mixing effects on electrical resistivity of carbon fiber enhanced concrete

    International Nuclear Information System (INIS)

    Chang, Christiana; Song, Gangbing; Gao, Di; Mo, Y L

    2013-01-01

    In this paper, the effect of temperature and mixing procedure on the electrical resistivity of carbon fiber enhanced concrete is investigated. Different compositions of concrete containing varying concentrations of carbon fiber into normal and self-consolidating concrete (SCC) were tested under DC electrical loading over the temperature range −10 to 20 °C. The electrical resistivity of the bulk samples was calculated and compared against temperature. It was observed that there is an inverse exponential relationship between resistivity and temperature which follows the Arrhenius relationship. The bulk resistivity decreased with increasing fiber concentration, though data from SCC indicates a saturation limit beyond which electrical resistivity begins to drop. The activation energy of the bulk electrically conductive concrete was calculated and compared. While SCC exhibited the lowest observed electrical resistance, the activation energy was similar amongst SCC and surfactant enhanced concrete, both of which were lower than fiber dispersed in normal concrete. (paper)

  8. Influence of the mix parameters and microstructure on the behaviour of concrete at high temperature

    International Nuclear Information System (INIS)

    Kanema, M.; Noumowe, A.; Gallias, J.-L.; Cabrillac, R.

    2005-01-01

    Concrete is used in structures likely to be exposed to high temperature. Data on the behaviour of concrete at high temperature are necessary to design buildings and other civil engineering structures in order to resist under accidental conditions (fire) or particular conditions of service (storage of radioactive waste). The present experimental study was carried out on the behaviour of five concretes containing the same nature and quantity of aggregates and presenting different water/cement ratios. Concrete specimens were submitted to heating-cooling cycles whose maximum temperatures were 150, 300, 450 and 600 degree C. Measurements of compressive and tensile strength, modulus of elasticity and permeability were carried out on cylindrical specimens before and after heating-cooling cycles. The results showed the influence of concrete mix parameters on the residual properties and the dehydration of the cement paste matrix, the evolution of the permeability and thermal stability of concrete when it is subjected to high temperature. (authors)

  9. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    Directory of Open Access Journals (Sweden)

    Aljbour Salah H.

    2017-01-01

    Full Text Available Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obtained with 70 wt.% coarse slag aggregate and 70 wt.% medium slag aggregate. Under these proportions, the 28-days compressive strength was higher than the 28-days compressive strength of a concrete mix prepared from normal aggregate. Strong interaction effect exists between slag aggregate size on the compressive strength at 7-days curing. Lower compressive strength for the concrete mix might be obtained if improper proportions of mixed medium and coarse slag aggregate were employed.

  10. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  11. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  12. Effect of mix proportion of high density concrete on compressive strength, density and radiation absorption

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu

    2014-01-01

    To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)

  13. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  14. SYSTEM FOR CONTROLLING ELECTRIC DRIVE OF ASPHALT CONCRETE MIXING PLANT

    Directory of Open Access Journals (Sweden)

    A. S. Surmak

    2005-01-01

    Full Text Available It is proposed to evaluate quality of asphalt concrete mixture through definition of current component variable of a drive motor and measurement of its derivative sign. In order to carry out final determination of mixture uniformity a transducer on the basis of a nuclear magnetic resonance is applied. Block diagram of the system is presented and algorithm of its operation is given in the paper. In addition to improvement of the finished product quality the application of the system makes it possible to reduce bitumen consumption used for production of asphalt concrete.

  15. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, Götz; Brouwers, Jos

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist

  16. estimating formwork striking time for concrete mixes estimating

    African Journals Online (AJOL)

    eobe

    In this study, we estimated the time for strength development in concrete cured up to 56 days. Water. In this .... regression analysis using MS Excel 2016 Software performed on the ..... [1] Abolfazl, K. R, Peroti S. and Rahemi L 'The Effect of.

  17. Creep and shrinkage behaviour of concrete with mixed recycled aggregates

    NARCIS (Netherlands)

    Hordijk, D.A.; Uijl, J. den

    1999-01-01

    For environmental reasons the interest in possibilities to use recycled aggregates in concrete is strongly increasing. World-wide, most attention with respect to recycled aggregates is paid to the quality of the aggregates. Still only limited information is available for the mechanica! properties of

  18. A New Approach to Concrete Mix Design Using Computer Techniques

    African Journals Online (AJOL)

    In addition such a model can be used to generate data on mix proportions and their corresponding compressive strength, thereby furnishing useful information for general purpose, safe-ready-to-use mix design. Such data were generated and checked against values obtainable from standard mix design practice and found ...

  19. Mix proportioning and performance of a crushed limestone sand-concrete

    OpenAIRE

    Makhloufi Zoubir; Bouziani Tayeb; Bédérina Madani; Hadjoudja Mourad

    2014-01-01

    Satisfying the ever-growing demand of concrete aggregates poses a problem in many parts of the world due to shortage of natural sand. Moreover, to conserve natural resources and protect civil engineering infrastructures, there is a need to find alternative materials. Crushed stone sand has been identified as a potential substitute material for natural sand in making good quality concrete. The main objective of the present investigation is to determine an adequate mix design method and evaluat...

  20. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    International Nuclear Information System (INIS)

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  1. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  2. Effect of mixing methods and aggregate type on strength of hardened concrete

    International Nuclear Information System (INIS)

    Elhadi, S.

    2006-01-01

    The objective of the research contained in this paper is to study the effect on strength of concrete which can be caused by changing method of concrete mix with or without changing aggregate crushing value under hand or mechanical compaction, and to compare results obtained when nondestructive testing techniques are used. It has been found that all methods of mix design are nearly identical in predicting the strength under a known value of w/c ratio. Up to strength of about 30 N/mm 2 , hand and mechanical compaction seems to be identical in all methods of concrete mixing. Important results regarding destructive and non-destructive testing has been drawn from the study.(Author)

  3. Constitutive Mixed Mode Behavior of Cracks in Concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl

    of custom made orthogonal gauge rails mounted on the specimen. The precise orthogonal gauge rails entail a direct interpretation of the mixed mode crack opening process, ensuring that the achieved response over the ligament is equal to the prescribed mixed mode displacement. After a crack is initiated...

  4. Towards a more common use of Ultra-High Performance Concrete (UHPC) – development of UHPC for ready-mix and prefabrication concrete plants

    NARCIS (Netherlands)

    Spiesz, P.R.; Hunger, M.; Justnes, Harald; Braarud, Henny

    2017-01-01

    This study addresses the development of ultra-high performance concrete (UHPC) suitable for a mass production in conventional ready-mix and prefabrication concrete plants. In order to facilitate the production process, curing regime and to minimize the costs, no additional treatments (e.g. thermal

  5. Application of orthogonal test method in mix proportion design of recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhao, Zhanshan; An, Le; Zhang, Yijing; Yuan, Jie

    2017-03-01

    Recycled lightweight aggregate concrete was made with construction waste and ceramsite brick mainly including brick. Using the orthogonal test method, the mix proportion of recycled lightweight aggregate concrete was studied, and the Influence regularity and significance of water binder ratio, fly ash, sand ratio, the amount of recycled aggregate proportion on the compressive strength of concrete, the strong influence of mass ratio, slump expansion degree was studied. Through the mean and range analysis of the test results, the results show that the water binder ratio has the greatest influence on the 28d intensity of recycled lightweight aggregate concrete. Secondly, the fly ash content, the recycled aggregate replacement rate and the sand ratio have little influence. For the factors of expansion: the proportion of fly ash = water binder ratio sand >sand rate> recycled aggregate replacement rate. When the content of fly ash is about 30%, the expanded degree of recycled lightweight aggregate concrete is the highest, and the workability of that is better and the strength of concrete with 28d and 56d are the highest. When the content of brickbat is about 40% brick particles, the strength of concrete reaches the highest.

  6. Optimizing the use of natural gravel Brantas river as normal concrete mixed with quality fc = 19.3 Mpa

    Science.gov (United States)

    Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.

    2018-04-01

    The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.

  7. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  8. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  9. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  10. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  11. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  12. Development of k-300 concrete mix for earthquake-resistant Housing infrastructure in indonesia

    Science.gov (United States)

    Zulkarnain, Fahrizal

    2018-03-01

    In determining the strength of K-300 concrete mix that is suitable for earthquake-resistant housing infrastructure, it is necessary to research the materials to be used for proper quality and quantity so that the mixture can be directly applied to the resident’s housing, in the quake zone. In the first stage, the examination/sieve analysis of the fine aggregate or sand, and the sieve analysis of the coarse aggregate or gravel will be carried out on the provided sample weighing approximately 40 kilograms. Furthermore, the specific gravity and absorbance of aggregates, the examination of the sludge content of aggregates passing the sieve no. 200, and finally, examination of the weight of the aggregate content. In the second stage, the planned concrete mix by means of the Mix Design K-300 is suitable for use in Indonesia, with implementation steps: Planning of the cement water factor (CWF), Planning of concrete free water (Liters / m3), Planning of cement quantity, Planning of minimum cement content, Planning of adjusted cement water factor, Planning of estimated aggregate composition, Planning of estimated weight of concrete content, Calculation of composition of concrete mixture, Calculation of mixed correction for various water content. Implementation of the above tests also estimates the correction of moisture content and the need for materials of mixture in kilograms for the K-300 mixture, so that the slump inspection result will be achieved in planned 8-12 cm. In the final stage, a compressive strength test of the K-300 experimental mixture is carried out, and subsequently the composition of the K-300 concrete mixture suitable for one sack of cement of 50 kg is obtained for the foundation of the proper dwelling. The composition is consists of use of Cement, Sand, Gravel, and Water.

  13. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  14. Evaluation of recycled hot mix asphalt concrete on Route 220 : final report.

    Science.gov (United States)

    1985-01-01

    This report describes the performance of an approximately 8-mi section of roadway on which the rod two layers of asphalt concrete were milled, recycled through a conventional asphalt batch plant, and relaid. The recycled mix consisted of about 40% re...

  15. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  16. 78 FR 51267 - Hours of Service of Drivers: National Ready Mixed Concrete Association; Application for Exemption

    Science.gov (United States)

    2013-08-20

    ... Mixed Concrete Association (NRMCA) for an exemption from the 30-minute rest break provision of the.... Due to the nature of their operation, NRMCA believes that compliance with the 30-minute rest break... reasons for denying or granting the application and, if granted, the name of the person or class of...

  17. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  18. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  19. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  20. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  1. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  2. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    Science.gov (United States)

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE Based on Water Permeability and Compressive Strength

    Directory of Open Access Journals (Sweden)

    Abdulsalam Arafa Salaheddin

    2017-01-01

    Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.

  4. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  5. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    Science.gov (United States)

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  6. Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Amjad Hamad Albayati

    2017-07-01

    Full Text Available The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p, intercept (a, slope (b, Alpha and Mu as well as resilient strain (r and resilient modulus (Mr. To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70 brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c. The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively. Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.

  7. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  8. A Study of the Effect of Recycled Mix Glass on the Mechanical Properties of Green Concrete

    Directory of Open Access Journals (Sweden)

    Aseel B. Al-Zubaidi

    2017-12-01

    Full Text Available In this paper we utilized mixing of different types of recycled glass such as (neon glass, brown glass, and green glass that has high percentage of silicon dioxide (SiO2 with different concentrations. Utilization these landfall materials can be considered as keeping on resources. Different waste glasses used as a partial replacement of cement with different concentrations 11%, 13%, and 15% of cement weight for each type, and study the effect of it on the mechanical properties of concrete. After mixing, casting, and curing in water at (20±2°C for (7, 14, and 28 days, the mechanical properties showed that the compressive strength and flexural showed highest results at 13% from cement weight of neon glass, whereas splitting tensile strength showed the highest value at the same percentage, but from green glass.

  9. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    Science.gov (United States)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.

  10. The influence of kind of coating additive on the compressive strength of RCA-based concrete prepared by triple-mixing method

    Science.gov (United States)

    Urban, K.; Sicakova, A.

    2017-10-01

    The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.

  11. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  12. Safety in ready mixed concrete industry: descriptive analysis of injuries and development of preventive measures.

    Science.gov (United States)

    Akboğa, Özge; Baradan, Selim

    2017-02-07

    Ready mixed concrete (RMC) industry, one of the barebones of construction sector, has its distinctive occupational safety and health (OSH) risks. Employees experience risks that emerge during the fabrication of concrete, as well as its delivery to the construction site. Statistics show that usage and demand of RMC have been increasing along with the number of producers and workers. Unfortunately, adequate OSH measures to meet this rapid growth are not in place even in top RMC producing countries, such as Turkey. Moreover, lack of statistical data and academic research in this sector exacerbates this problem. This study aims to fill this gap by conducting data mining in Turkish Social Security Institution archives and performing univariate frequency and cross tabulation analysis on 71 incidents that RMC truck drivers were involved. Also, investigations and interviews were conducted in seven RMC plants in Turkey and Netherlands with OSH point of view. Based on the results of this research, problem areas were determined such as; cleaning truck mixer/pump is a hazardous activity where operators get injured frequently, and struck by falling objects is a major hazard at RMC industry. Finally, Job Safety Analyses were performed on these areas to suggest mitigation methods.

  13. Vision-Inspection System for Residue Monitoring of Ready-Mixed Concrete Trucks

    Directory of Open Access Journals (Sweden)

    Deok-Seok Seo

    2015-01-01

    Full Text Available The objective of this study is to propose a vision-inspection system that improves the quality management for ready-mixed concrete (RMC. The proposed system can serve as an alternative to the current visual inspection method for the detection of residues in agitator drum of RMC truck. To propose the system, concept development and the system-level design should be executed. The design considerations of the system are derived from the hardware properties of RMC truck and the conditions of RMC factory, and then 6 major components of the system are selected in the stage of system level design. The prototype of system was applied to a real RMC plant and tested for verification of its utility and efficiency. It is expected that the proposed system can be employed as a practical means to increase the efficiency of quality management for RMC.

  14. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    Science.gov (United States)

    Miller, Sabbie A.; Horvath, Arpad; Monteiro, Paulo J. M.; Ostertag, Claudia P.

    2015-11-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO2-eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California.

  15. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    International Nuclear Information System (INIS)

    Miller, Sabbie A; Horvath, Arpad; Monteiro, Paulo J M; Ostertag, Claudia P

    2015-01-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO 2 -eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California. (letter)

  16. Evaluation of the reinforcing steel corrosion in concrete mixes that will be used for constructing mid activity disposal repositories

    International Nuclear Information System (INIS)

    Moreno, Manuel; Alvarez, Marta G.; Duffo, Gustavo S.

    2000-01-01

    This study presents an evaluation of the reinforcing steel bars (rebars) corrosion behavior embedded in high performance concrete's prepared with three different cement types (normal Portland, Sulfate resistant and with furnace slag). The results of the study will provide the basis to select the materials used for constructing the mid activity radioactive disposals containers. The effect of aggressive ions such as chlorides and sulfates, as well as concrete carbonation, on the rebar corrosion process is evaluated using concrete specimens containing rebar segments. The electrochemical parameters that characterize the rebar corrosion process (corrosion potential (E corr ), polarization resistance (Rp) and electrical resistivity of concrete (ρ)) where periodically monitored after a conditioning period of 100 days. The results show that under all exposure conditions evaluated the rebar segments in contact with the three concrete mixes achieve a passive state of corrosion. Due to the continuos curing process of concrete the values of ρ present an increasing trend within time, even in the specimens exposed to the immersed conditions. (author)

  17. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    International Nuclear Information System (INIS)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-01-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  18. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-06-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  19. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-02-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  20. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    OpenAIRE

    Manu S. Nadesan; P. Dinakar

    2017-01-01

    Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of ...

  1. INVESTIGATION ON UTILITY OF PLASTIC WASTE AS AN ADDITIVE FOR BITUMINOUS CONCRETE USING WET PROCESS OF MIXING

    Directory of Open Access Journals (Sweden)

    Anurag Virendra Tiwari

    2017-12-01

    Full Text Available Purpose. Plastic waste has become a major environmental issue of concern due to its exponential growth due to rapid urbanization. The paper investigates utility of plastic waste as an additive for bituminous concrete using wet process of mixing. Methodology. The methodology for the present paper has been designed with complex research consisting of Marshall mix design of the bituminous mix added with plastic waste for modifying bitumen using wet process of mixing, performing the tests on the samples and analyzing the results in the form of table and figures. In the present paper LDPE and HDPE type of plastic waste are used to modify the bitumen. Finding. The results show that addition of 6 percent of bitumen improves the Marshall properties of the mix. Use of plastic to modify the bitumen not only makes the road surface more durable but also it is an eco-friendly way of proper disposal of plastic waste. Originality. The processes used for mixing the plastic waste to the bitumen are dry process and wet process. Dry process of mixing the plastic waste to the bituminous mix is most common and lot of study is carried out on its application. In the present paper wet process of mixing has not yet been studied much. Practical Value. The practical application of utilizing the plastic waste to modify bitumen in the bituminous mix improves the stability values resulting in the more durable road surface. Also the method ensures the proper disposal of plastic waste in eco-friendly way.

  2. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    Directory of Open Access Journals (Sweden)

    Long Hui

    2016-01-01

    Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.

  3. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  4. Developing design methods of concrete mix with microsilica additives for road construction

    Science.gov (United States)

    Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga

    2017-10-01

    Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.

  5. Evaluation of warm mix technologies for use in asphalt rubber - asphaltic concrete friction courses (AR\\0x2010ACFC) : final report.

    Science.gov (United States)

    2016-07-01

    The objective of this research project was to determine whether warm mix asphalt (WMA) technologies can be : used by the Arizona Department of Transportation (ADOT) for the production of an asphalt rubberasphaltic : concrete friction course (AR...

  6. An Experimental Study on Strength and Durability for Utilization of Fly Ash in Concrete Mix

    Directory of Open Access Journals (Sweden)

    Abdulhalim Karaşin

    2014-01-01

    Full Text Available The intention of this study is to discuss the variation of concrete exposed to high sulfate environment of a specific region with respect to strength and durability. Secondly, it is aimed to discuss the possibility of reducing the cement amount in construction of concrete structures. For this purpose, laboratory tests were conducted to investigate compressive strength and sulfate resisting capacity of concrete by using 20% fly ash as mineral additives, waste materials, instead of cement. As a case study the soil samples, received from Siirt Province areas which contain high sulfate rate, have been compared with respect to sulfate standard parameters of TS 12457-4. In such regions contact of underground water seep into hardened concrete substructures poses a risk of concrete deterioration. In order to determine the variation of strength and durability for concrete exposed to such aggressive environment, the samples were rested in a solution of Na2SO4 (150 g/lt in accordance with ASTM C 1012 for the tests. As a result of this experimental study, it is noted that the use of 20% fly ash, replacement material instead of cement, has no significant effect on compressive strength of concrete over time.

  7. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-05-01

    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  8. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    International Nuclear Information System (INIS)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-01-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [es

  9. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  10. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  11. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...

  12. Automated measurement and control of concrete properties in a ready mix truck with VERIFI.

    Science.gov (United States)

    2014-02-01

    In this research, twenty batches of concrete with six different mixture proportions were tested with VERIFI to evaluate 1) accuracy : and repeatability of VERIFI measurements, 2) ability of VERIFI to adjust slump automatically with water and admixtur...

  13. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    "This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...

  14. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  15. The effect of mixing sequence on the workability and indirect tensile strength of asphalt concrete

    NARCIS (Netherlands)

    Voskuilen, J.; Gaarkeuken, B.; Vliet, D. van; Poot, M.

    2017-01-01

    The KGO mixing method was developed 40 years ago. Instead of adding the bitumen at the end of the mixing cycle, the bitumen was poured down first together with the larger aggregates. After mixing the bitumen with the larger aggregates, the reamining aggregates were mixed down. As benefits of the KGO

  16. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    Science.gov (United States)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  17. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    Science.gov (United States)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  18. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  19. Recycling of asphalt concrete : Oregon's first hot mix project : interim report.

    Science.gov (United States)

    1977-11-01

    The need to reduce fuel consumption and conserve natural resources have been items of ever-increasing importance during recent years. This report discusses a project in which almost 50,000 tons of asphalt concrete placed to carry detour traffic durin...

  20. Mixed metaphors: Electrophysiological brain responses to (un)expected concrete and abstract prepositional phrases.

    Science.gov (United States)

    Zane, Emily; Shafer, Valerie

    2018-02-01

    Languages around the world use spatial terminology, like prepositions, to describe non-spatial, abstract concepts, including time (e.g., in the moment). The Metaphoric Mapping Theory explains this pattern by positing that a universal human cognitive process underlies it, whereby abstract concepts are conceptualized via the application of concrete, three-dimensional space onto abstract domains. The alternative view is that the use of spatial propositions in abstract phrases is idiomatic, and thus does not trigger metaphoric mapping. In the current study, event-related potentials (ERPs) were used to examine the time-course of neural processing of concrete and abstract phrases consisting of the prepositions in or on followed by congruent and incongruent nouns (e.g., in the bowl/plate and in the moment/mend). ERPs were recorded from the onset of reference nouns in 28 adult participants using a 128-channel electrode net. Results show that congruency has differential effects on neural measures, depending on whether the noun is concrete or abstract. Incongruent reference nouns in concrete phrases (e.g., on the bowl) elicited a significant central negativity (an N400 effect), while incongruent reference nouns in abstract phrases (e.g., on the moment) did not. These results suggest that spatially incongruent concrete nouns are semantically unexpected (N400 effect). A P600 effect, which might indicate rechecking, reanalysis and/or reconstruction, was predicted for incongruent abstract nouns, but was not observed, possibly due to the variability in abstract stimuli. Findings cast doubt on accounts claiming that abstract uses of prepositions are cognitively and metaphorically linked to their spatial sense during natural, on-line processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    Science.gov (United States)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  2. Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority ranking method

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ongkowijoyo, Citra Satria

    2015-01-01

    Corporate competitiveness is heavily influenced by the information acquired, processed, utilized and transferred by professional staff involved in the supply chain. This paper develops a decision aid for selecting on-site ready-mix concrete (RMC) unloading type in decision making situations involving multiple stakeholders and evaluation criteria. The uncertainty of criteria weights set by expert judgment can be transformed in random ways based on the probabilistic virtual-scale method within a prioritization matrix. The ranking is performed by grey relational grade systems considering stochastic criteria weight based on individual preference. Application of the decision aiding model in actual RMC case confirms that the method provides a robust and effective tool for facilitating decision making under uncertainty. - Highlights: • This study models decision aiding method to assess ready-mix concrete unloading type. • Applying Monte Carlo simulation to virtual-scale method achieves a reliable process. • Individual preference ranking method enhances the quality of global decision making. • Robust stochastic superiority and inferiority ranking obtains reasonable results

  3. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2018-02-01

    Full Text Available Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been provided on the self-compacting concrete mixes.

  4. Compressive strength of a concrete mix for pavement blocks incorporating industrial by-product

    CSIR Research Space (South Africa)

    Mokoena, Refiloe

    2017-07-01

    Full Text Available - reference 3 0 0.26 808 0 1062 344 210 0 - Mix 8 50 0.28 404 404 1062 212 226 0 0 Mix 8A 50 0.28 404 404 1062 212 226 3.10 5 Mix 8B 50 0.28 404 404 1062 212 226 6.21 10 Mix 9 90 0.28 81 727 1062 106 226 0 55 *water:binder ratio where fly ash and cement... was made for the 90% fly ash specimens due to the specimens disintegrating once placed in water. These specimens were therefore cured in heavy duty plastic bags; mixes 3, 6 and 9 were cured in the heavy duty bags before crushing on the appropriate days...

  5. A study on the influence of curing on the strength of a standard grade concrete mix

    OpenAIRE

    Krishna Rao M.V.; Kumar Rathish P.; Khan Azhar M.

    2010-01-01

    Curing is essential if concrete is to perform the intended function over the design life of the structure while excessive curing time may lead to the escalation of the construction cost of the project and unnecessary delays. Where there is a scarcity of water and on sloping surfaces where curing with water is difficult and in cases where large areas like pavements have to be cured, the use of curing compound may be resorted to. The parameters of the study include the curing period [1, 3, 7, 1...

  6. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    Science.gov (United States)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  7. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  8. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  9. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  10. Review of warm mix rubberized asphalt concrete : Towards a sustainable paving technology

    NARCIS (Netherlands)

    Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, Athanasios

    2018-01-01

    In recent years, transportation agencies and the general public alike are demanding increased considerations of sustainability in transport infrastructure. Warm mix asphalt (WMA) is developed for reducing energy consumptions and emissions in asphalt paving industry. In addition, the use of

  11. Concrete pavement mixture design and analysis (MDA) : application of a portable x-ray fluorescence technique to assess concrete mix proportions.

    Science.gov (United States)

    2012-03-01

    Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and : uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the po...

  12. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    Directory of Open Access Journals (Sweden)

    Jiménez, J. R.

    2011-06-01

    Full Text Available Seven different types of recycled aggregates from construction and demolition waste (CDW have been evaluated as granular materials for unbound road sub-bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3. Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate.

    Siete áridos reciclados de residuos de construcción y demolición (RCD se han evaluado como zahorras para la construcción de sub-bases de carreteras. Los resultados muestran que los áridos reciclados de hormigón cumplen todas las especificaciones del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras de España (PG-3 para su uso en capas estructurales (sub-base de las categorías de tráfico T3 y T4. Algunos áridos reciclados mixtos no cumplen por escaso margen algunas de las especificaciones, debido a un alto contenido de compuestos de azufre y a una menor resistencia a la fragmentación. El precribado de la fracción fina antes de la trituración de los RCD mixtos reduce el contenido de azufre total y mejora la calidad, por el contrario, el precribado de los RCD de hormigón no tiene ningún efecto sobre la calidad de los áridos reciclados. Los resultados se compararon con una zahorra artificial caliza como árido natural.

  13. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    Science.gov (United States)

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  14. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  15. ADDITIVES FOR COLD ASPHALT-CONCRETE MADE FROM EMULSION-MINERAL MIXES

    Directory of Open Access Journals (Sweden)

    P. V. Vavilov

    2015-01-01

    Full Text Available The article considers the additives use for cold asphalt emulsion mixes. Urgency of the issue consists in the necessity of usage justification and regulation of additive for cold mixes properties adjustment. The article is represented as the general result of analysis of regulatory, literary and other sources related to additive using for CAEM.The main part of the article proposes and justifies the classification of CAEM additives according to their functional purpose (the main purpose of additive: increasing of strength, water resistance, durability, regulating curing and technological modifiers. Depending on the purpose the criteria of technical efficiency of additive using are presented. For each criteria provided the methods determining one or more quality indicators. The quality indicator changing is indicator of additive efficiency. There is provided the formula determining the efficiency of CAEM curing period reduction additives. As an example provided efficiency calculation and evaluation of additives for regulation (acceleration CAEM curing according to the previously published experimental data. The efficiency of curing regulating additives was determined according to the function of temporal changes of CAEM compressing strength and dynamic modulus of elasticity.The article provides the example list of materials that could be or currently used as additives for cold mixes. The conclusion states that proposed classification and criteria give base to purposive regulation of cold asphalt emulsion mixture compositions and their properties.

  16. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Directory of Open Access Journals (Sweden)

    Julide Oner

    Full Text Available The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  17. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Science.gov (United States)

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  18. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  19. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report E : hardened mechanical properties and durability performance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    A rising concern in todays construction industry is environmental responsibility. : The addition of fly ash is a leading innovation in sustainable design of concrete. Fly ash, : a waste by-product of coal burning power plants, can be used to repla...

  20. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  1. Determination of the heating temperature of potholes surface on road pavement in the process of repairs using hot asphalt concrete mixes

    Directory of Open Access Journals (Sweden)

    Giyasov Botir Iminzhonovich

    2014-12-01

    Full Text Available In the process of roads construction the necessary transport and operational characteristics should be achieved, which depend on the quality of the applied, material and technologies. Under the loads of transport means and the influence of weather conditions on the road pavement deformations and destructions occur, which lead to worsening of transport and operational characteristics, decrease of operational life of the road and they are often the reason of road accidents. According to the data of the Strategic Research Center of "Rosgosstrah" more than 20 % of road accidents in Russia occur due to bad quality of road pavement. One of the main directions in traffic security control and prolongation of operational life for road pavement of non-rigid type is road works, as a result of which defects of pavement are eliminated and in case of timely repairs of high quality the operational life of the road increases for several years. The most widely used material for non-rigid pavement repairs is hot road concrete mixes and in case of adherence to specifications they provide high quality of works. The authors investigate the problems of hot asphalt concrete mixes for repairs of road surfaces of non-rigid type. The results of the study hot asphalt concrete mix’s temperature regimes are offered in case of repair works considering the temperature delivered to the work site and the ambient temperature depending on the type of mix and class of bitumen.

  2. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard †

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Pozo, Julia Mª Morán-del; Guerra-Romero, Manuel I

    2014-01-01

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW. PMID:28788164

  3. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard.

    Science.gov (United States)

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, Manuel I

    2014-08-13

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  4. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard

    Directory of Open Access Journals (Sweden)

    Desirée Rodríguez-Robles

    2014-08-01

    Full Text Available Construction and demolition waste (CDW constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA and ceramic recycled aggregates (CerRA. In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08 to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  5. The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Shafigh Payam

    2016-01-01

    Full Text Available This paper reports the results of a study conducted to investigate the effect of superplasticizer (SP dosage on the slump, density, compressive strength and splitting tensile strength under different curing conditions of a lightweight aggregate concrete reinforced with polypropylene (PP fiber. The lightweight aggregate used in this study was oil palm shell, which is an agricultural solid waste, originating from the palm oil industry. The results indicated that an increase in superplasticizer increased the workability, however, all the mechanical properties declined significantly. The reduction in the 28-day compressive and splitting tensile strengths was about 14. This study showed that although additional SP can improve the workability of the concrete, it may have a negative effect on the other properties of concrete. Therefore, the SP dosage in concrete mixtures containing PP fiber should be limited to a certain amount.

  6. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  7. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  8. Intense volume reduction of mixed and low-level waste, solidification in sulphur polymer concrete, and excellent disposal at minimum cost

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1990-01-01

    Progressive changes in regulations governing the disposal of the nation's radioactive and hazardous wastes demand the development of more advanced treatment and disposal systems. The U.S. Department of Energy's Radioactive Waste Technology Support Program (formerly the Defense Low-Level Waste Management Program) was given the task of demonstrating the degree of excellence that could be achieved at reasonable cost using existing technology. The resulting concept is a Waste Treatment and Disposal Complex that will fully treat contact-handled mixed and low-level radioactive waste to a disposable product that is totally liquid-free and approximately 98% inorganic. An excellent volume reduction factor is achieved through sorting, sizing, incineration, vitrification, and final grouting. Inorganic waste items larger than 1/4 in. will be placed in inexpensive, uniform-sized, smooth-sided, thin-walled steel boxes. The smaller particles will be mixed with sulfur polymer concrete and pumped into the boxes, filling most voids. The appendage-free boxes measuring 1 by 1 by 1 m will be stacked tightly in an abovegrade, earth-mounded, concrete disposal vault where a temporary roof will protect them from rain and snow. A concrete roof poured directly on top of the dense, essentially voidless waste stack will be topped by an engineered, water-shedding earthen cover. Total cost for design, construction, testing, 30 years of treatment and disposal, administration, decontamination and decommissioning, site closure, and postclosure monitoring and maintenance will cost less per cubic foot than is currently expended for subsurface disposal. A radiological performance assessment shows this concept will exceed the nation's existing disposal systems and governmental performance objectives for the protection of the general public by a factor of 30,000

  9. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  10. Automatic dam concrete placing system; Dam concrete dasetsu sagyo no jidoka system

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Y; Hori, Y; Nakayama, T; Yoshihara, K; Hironaka, T [Okumura Corp., Osaka (Japan)

    1994-11-15

    An automatic concrete placing system was developed for concrete dam construction. This system consists of the following five subsystems: a wireless data transmission system, an automatic dam concrete mixing system, a consistency determination system, an automatic dam concrete loading and transporting system, and a remote concrete bucket opening and closing system. The system includes the following features: mixing amount by mixing ratio and mixing intervals can be instructed from a concrete placing site by using a wireless handy terminal; concrete is mixed automatically in a batcher plant; a transfer car is started, and concrete is charged into a bucket automatically; the mixed concrete is determined of its properties automatically; labor cost can be reduced, the work efficiency improved, and the safety enhanced; and the system introduction has resulted in unattended operation from the aggregate draw-out to a bunker line, manpower saving of five persons, and reduction in cycle time by 10%. 11 figs., 2 tabs.

  11. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  12. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  13. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  14. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  15. Report E : self-consolidating concrete (SCC) for infrastructure elements - hardened mechanical properties and durability performance.

    Science.gov (United States)

    2012-08-01

    Concrete is one of the most produced and utilized materials in the world. Due to : the labor intensive and time consuming nature of concrete construction, new and : innovative concrete mixes are being explored. Self-consolidating concrete (SCC) is on...

  16. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base; Estudio comparativo de los aridos reciclados de hormigon y mixtos como material para sub-bases de carreteras

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-07-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  17. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  18. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  19. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  20. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  1. developed algorithm for the application of british method of concret

    African Journals Online (AJOL)

    t-iyke

    Most of the methods of concrete mix design developed over the years were geared towards manual approach. ... Key words: Concrete mix design; British method; Manual Approach; Algorithm. ..... Statistics for Science and Engineering.

  2. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  3. A preliminary study on using manufactured sand from Jelsa Quarry for the production of plastic concrete mixes. FA 2 Competitive constructions. SP 2.3 High quality manufactured sand for concrete

    OpenAIRE

    Cepuritis, Rolands

    2012-01-01

    This study has been carried out within COIN - Concrete Innovation Centre - one of presently 14 Centres for Research based Innovation (CRI), which is an initiative by the Research Council of Norway. 3D005940

  4. Concrete pavement mixture design and analysis (MDA) : assessment of air void system requirements for durable concrete.

    Science.gov (United States)

    2012-06-01

    Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a : specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize micros...

  5. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  6. An Experimental Investigation on the Effect of Addition of Ternary Blend on the Mix Design Characteristics of High Strength Concrete using Steel Fibre

    Science.gov (United States)

    Sinha, Deepa A., Dr; Verma, A. K., Dr

    2017-08-01

    This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.

  7. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  8. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  9. 9 CFR 91.26 - Concrete flooring.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000 psi...

  10. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  11. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  12. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  13. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  14. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  15. Material test of concrete for PCCV

    International Nuclear Information System (INIS)

    Okada, Katsuya; Kamiyama, Yukio; Iwasawa, Jiro.

    1987-01-01

    The concrete used for the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. has the design standard strength as high as 420 kg/cm 2 , but for the purpose of preventing the cracking due to hydration heat at the time of concrete hardening, the medium heat cement mixed with flyash was adopted. The example of using the cement of this kind for high strength concrete has been few, and the data on its various properties have been scarce. First, the various mixing proportion for the high strength concrete using the medium heat cement mixed with flyash was experimented, and the basic mixing proportion for satisfying the design standard strength 420 kg/cm 2 was determined. Next, about this basic mixing proportion, the tests on the crrep characteristics and the thermal characteristics required for the design of PCCVs were carried out. In this report, the results of these tests on the concrete are described. By combining the concrete materials available in Tsuruga district, the test on unsolidified concrete and hardened concrete was carried out. The experimental method and the results are reported. Uniaxial compression creep test was carried out on the concrete having the selected mixing proportion to evaluate the propriety of the design creep factor. In the test of the thermal characteristics, the heat conductivity, heat diffusivity, linear thermal expansion and specific heat were measured. (Kako, I.)

  16. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  17. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  18. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  19. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  20. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  1. Concrete Fibrations

    OpenAIRE

    Pagnan, Ruggero

    2017-01-01

    As far as we know, no notion of concrete fibration is available. We provide one such notion in adherence to the foundational attitude that characterizes the adoption of the fibrational perspective in approaching fundamental subjects in category theory and discuss it in connection with the notion of concrete category and the notions of locally small and small fibrations. We also discuss the appropriateness of our notion of concrete fibration for fibrations of small maps, which is relevant to a...

  2. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  3. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  4. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    Science.gov (United States)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  5. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  6. Pervious concrete physical characteristics and effectiveness in stormwater pollution reduction.

    Science.gov (United States)

    2016-04-01

    The objective of this research was to investigate the physical/chemical and water flow characteristics of various previous concrete : mixes made of different concrete materials and their effectiveness in attenuating water pollution. Four pervious con...

  7. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-01-01

    Full Text Available To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing

  8. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    Science.gov (United States)

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate

  9. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  10. Recycled aggregates in concrete production: engineering properties and environmental impact

    OpenAIRE

    Seddik Meddah Mohammed

    2017-01-01

    Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which ...

  11. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  12. Photocatalyticpaving concrete

    OpenAIRE

    Lyapidevskaya Ol'ga Borisovna; Fraynt Mikhail Aleksandrovich

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  13. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  14. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  15. Workability and Compressive Strength for Concrete With Coconut Shell Aggregate

    Directory of Open Access Journals (Sweden)

    Leman Alif Syazani

    2017-01-01

    Full Text Available This study was conducted to investigate the compressive strength and workability of concrete added with coconut shells. Comparisons were made between conventional concrete with concrete mix coconut shell. In this study, the concretes were mixes with coconut shell by percentage of weight concrete which is 0%, 5%, and 10%. The coconut shell has been crushed first, then it was sieved, to get the optimum size which, that retained on the 5mm sieve and passing 10mm sieve. Experimental tests conducted in this study are slump test and compressive test. The results from this study are workability of concrete added with 0% and 5% of coconut shell has medium degree of workability compared to concrete added with 10% that has low workability. For the compressive strength, the concrete added with 5% and 10% of coconut shell has lower strength compared with normal concrete.

  16. DECISION MAKING MODELING OF CONCRETE REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    Suhartono Irawan

    2001-01-01

    Full Text Available This paper presents the results of an experimental evaluation between predicted and practice concrete strength. The scope of the evaluation is the optimisation of the cement content for different concrete grades as a result of bringing the target mean value of tests cubes closer to the required characteristic strength value by reducing the standard deviation. Abstract in Bahasa Indonesia : concrete+mix+design%2C+acceptance+control%2C+optimisation%2C+cement+content.

  17. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  18. Placement of mass concrete for cast-in-place concrete piling : the effects of heat of hydration of mass concrete for cast-in-place piles.

    Science.gov (United States)

    2008-12-01

    This report describes models, ABAQUS and Schmidt, to predict the peak temperature in the center of cast-in-place concrete piling. Five concrete piles with varying diameters and made up of concrete mixes with different percentage of fly ash are used. ...

  19. Effect of mixing on properties of SCC

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune

    2007-01-01

    agglomerates will remain. The paper focuses on the effect of mixing schedule on self-compacting concrete properties. Workability and micro structure of a typical Danish self-compacting concrete mixed at varying intensity and with addition of superplasticizer in either one or two batches are described....... The observations indicate that the most homogeneous concrete does not necessarily exhibit the lowest rheological properties....

  20. Lattice modeling of aggregate interlocking in concrete

    DEFF Research Database (Denmark)

    Eliáš, Jan; Stang, Henrik

    2012-01-01

    roughness, i.e.what is termed aggregate interlocking. We demonstrate this enhancement via the simulation of mixed-mode experiments on concrete performed at a laboratory at the Technical University of Denmark. Double notched concrete specimens were initially pre-cracked in tension. Then, various combinations...

  1. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  2. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  3. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  4. Desempenho de concretos avançados para a construção civil, formulados a partir do método de dosagem computacional Performance of advanced concretes for building site designed by computing mix proportion technique

    Directory of Open Access Journals (Sweden)

    A. L. de Castro

    2009-09-01

    and compared to those high performance ones used in building site researches. The fresh properties were evaluated measuring the fluidity index and the rheological behavior of the material. In the hardened condition, the mechanical strength were evaluated by the compressive, splitting tensile and 3 point bending tests, whereas the Young's modulus were measured by the static and dynamic methods. The new concretes showed to be more workable for a longer period of time than the reference one, without the need of retarding admixtures addition. In terms of mechanical strength, it was possible to verify higher reproducibility for the concretes designed with the computing mix proportion technique. Besides that, it was also possible to establish good correlations between the strength measured for these concretes, as well for the Young's modulus measured by both test methods.

  5. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  6. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  7. Influence of wollastonite on mechanical properties of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Renu Mathur; A.K. Misra; Pankaj Goel

    2007-12-15

    Studies were made on cement concrete and cement-fly ash concrete mixes incorporating wollastonite as partial substitute of cementitious material and sand respectively. Improvements in compressive (28-35%) and flexural strength (36-42%) at 28 and 56 days respectively were observed by incorporation of wollastonite (10%) in concrete mixes. By incorporation of wollastonite, reduction in water absorption, drying-shrinkage and abrasion loss of concrete, and enhancement in durability against alternate freezing-thawing and sulphate attack were observed. Because of high concrete strength and abrasion resistance, a better utilization of concrete cross section is possible. Alternatively, thickness of pavement slab can be reduced by incorporation of wollastonite micro-fibres in concrete mixes.

  8. Recycled construction and demolition concrete waste as aggregate for structural concrete

    Directory of Open Access Journals (Sweden)

    Ashraf M. Wagih

    2013-12-01

    Full Text Available In major Egyptian cities there is a surge in construction and demolition waste (CDW quantities causing an adverse effect on the environment. The use of such waste as recycled aggregate in concrete can be useful for both environmental and economical aspects in the construction industry. This study discusses the possibility to replace natural coarse aggregate (NA with recycled concrete aggregate (RCA in structural concrete. An investigation into the properties of RCA is made using crushing and grading of concrete rubble collected from different demolition sites and landfill locations around Cairo. Aggregates used in the study were: natural sand, dolomite and crushed concretes obtained from different sources. A total of 50 concrete mixes forming eight groups were cast. Groups were designed to study the effect of recycled coarse aggregates quality/content, cement dosage, use of superplasticizer and silica fume. Tests were carried out for: compressive strength, splitting strength and elastic modulus. The results showed that the concrete rubble could be transformed into useful recycled aggregate and used in concrete production with properties suitable for most structural concrete applications in Egypt. A significant reduction in the properties of recycled aggregate concrete (RAC made of 100% RCA was seen when compared to natural aggregate concrete (NAC, while the properties of RAC made of a blend of 75% NA and 25% RCA showed no significant change in concrete properties.

  9. Conductive concrete wins Popular Science prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    A conductive concrete developed by a research team at IRC (Institute for Research in Construction, National Research Council of Canada) has won a prize in the home technology category because of its possible use in heating homes. Following the award, there have been a number of inquiries regarding possible applications for the concrete. Greatest interests in the concrete have been in its potential to heat buildings by using it as flooring. Other possible applications included de-icing pavements to building warming pads for parking aircraft. Essentially, carbon fibres and conductive particles are added to a concrete mix in such a quantity that they form a network within the mix, ensuring high electrical conductivity. A demonstration project is underway to build a 20 by 80 foot conductive concrete pad to test the material`s capability as a snow removal and de-icing tool.

  10. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  11. Study and application of construction technology of shielding concrete

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Chen Liangzhu; Zhao Jingfa; Li Shilong

    2008-01-01

    Process and techniques such as mixing,transportation and pouring have been studied. The construction technology for the shielding concrete with different densities has been summarized. The technology for the common concrete is quite different from that of shielding concrete, especially when its density is more than 4000 kg/m3. Application and practices have shown that different construction technologies shall be used for shielding concretes with different densities, and thus to ensure its uniformity and construction quality. (authors)

  12. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    OpenAIRE

    Carrión, F.; Montalban Domingo, Maria Laura; Real Herráiz, Julia Irene; Real, T.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate) and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strenght, flexural strength, modulus of elasticity,...

  13. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  14. Concrete spirituality

    OpenAIRE

    Kritzinger, Johannes N.J.

    2014-01-01

    This article reflects on a number of liturgical innovations in the worship of Melodi ya Tshwane, an inner-city congregation of the Uniting Reformed Church in Southern Africa (URCSA). The focus of the innovations was to implement the understanding of justice in Article 4 of the Confession of Belhar, a confessional standard of the URCSA. The basic contention of the article is that well designed liturgies that facilitate experiences of beauty can nurture a concrete spirituality to mobilise urba...

  15. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  16. Quality control of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1982-07-01

    This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...

  17. Factors and mechanisms affecting corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Dehqanian, Ch.

    1986-01-01

    Atomic power plants possess reinforced concrete structures which are exposed to sea water or sea atmosphere. Sea water or its surrounding environment contain very corrosive species which cause corrosion of metal in concrete. It should be mentioned that corrosion of steel in concrete is a complex problem that is not completely understood. Some of the factors which influence the corrosion mechanism and can be related to the pore solution composition is discussed. Chloride ion caused problems are the main source of the corrosion damage seen on the reinforced concrete structures. Corrosion rate in concrete varies and depends on the way chloride ion diffuses into concrete. In addition, the associated cations can influence diffusion of chloride into concrete. The type of portland cement and also the concrete mix design all affect the corrosion behaviour of steel in concrete

  18. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.

    Science.gov (United States)

    Guerra, I; Vivar, I; Llamas, B; Juan, A; Moran, J

    2009-02-01

    The aim of this research was to investigate some of the physical and mechanical properties of concrete mixed under laboratory conditions, where different proportions of coarse aggregate materials were substituted by porcelain from sanitary installations. The results of the tests show that the concrete produced has the same mechanical characteristics as conventional concrete, thus opening a door to selective recycling of sanitary porcelain and its use in the production of concrete.

  19. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  20. Comparative study of the shield of concrete blocks with hematite in relation to common concrete blocks

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Buerger, Andre A.; Naccache, Veronica K.; Priszkulnik, Simao

    2012-01-01

    The present work shows results of an empirical evaluation of the transmission properties of two radioprotection materials: an ordinary concrete and an ordinary concrete mixed with hematite. It was used techniques of x-ray spectroscopy and measurements of the air-kerma transmitted through these two materials in order to compare the transmission properties for each one. (author)

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  2. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  3. A study of concrete properties using phyllite as coarse aggregates

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Afrifa, Russell Owusu

    2010-01-01

    Nowadays, industrial activities generate a huge amount of waste. One such activity is underground mining which generates phyllite wastes that are recycled as coarse aggregates for use in concrete production. Aggregate use in concrete is dependent on availability. This paper reports of an experimental study on some of the physical and mechanical properties of phyllite aggregate concrete as compared to granite (conventional) aggregate concrete. The obtained physical and mechanical properties of both aggregates for specific gravity, water absorption (%), dry density, aggregate impact value (%), aggregate crushing value (%), 10% fines, elongation index (%), flakiness index (%) and Los Angeles abrasion values satisfied minimum requirements for aggregates suitable for concrete production. Five mixes of concrete mix proportions designated M1, M2, M3, M4 and M5 were cast using phyllite and granite aggregates. A total of 400 concrete cubes and 210 modulus of rupture beams were cast and cured by total submerging in water for ages 3, 7, 14, 28, 56, 90, 180 and 360 days before compression and bending tests were performed. The results show that the trends in the development of compressive and bending strengths of plain phyllite concrete were similar to those in granite (conventional) aggregate concrete. However the compressive and bending strengths of phyllite concrete mixes were on the average 15-20% lower than those of the corresponding granite concrete mixes at all ages. The same concrete mix proportions gave lower concrete classes for phyllite compared to granite with the exception of the lowest grade. This was probably because the flakiness and elongation properties coupled with reactive materials in phyllite aggregates affect the absorption and bond characteristics of its concrete.

  4. Quality control of concrete structures in nuclear power plant, (4)

    International Nuclear Information System (INIS)

    Takahashi, Hisao; Kawaguchi, Tohru; Oike, Takeshi; Morimoto, Shoichi; Takeshita, Shigetoshi.

    1979-01-01

    This report describes the result of an investigation to clarify the effect of concrete temperature as mixed in the summer season on the strength gain characteristics of mass concrete such as used in construction of nuclear power plants. It is pointed out that the low strength gain of control cylinders in summer is caused by two main factors, viz., the absence of water modification in the mix design according to concrete temperature as mixed and high curing temperature after placing up to mold removal rather than concrete temperature itself as mixed. On the other hand, it has been clarified that high strength gain in mass concrete can be realized by lowering concrete temperature as mixed so as to lower the subsequent curing temperature at early age. Furthermore, it is explained that the larger the size of the member is, the more effect can be expected from lowering concrete temperature. The effect of concrete temperature as mixed on high strength concrete to be used in PCCV is discussed in the Appendix. (author)

  5. Refractory concretes

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 and Gd 2 O 3 with an aqueous solution of a salt selected from the group of NH 4 HO 3 , NH 4 Cl, YCl 3 and Mg(NO 3 ) 2 to form a fluid mixture; and allowing the fluid mixture to harden

  6. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  7. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  8. The Improvement of Thermal Insulating Concrete Panel

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Nasser Ali

    2018-05-01

    Full Text Available The Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the Alabaster aggregates, and the third stage the mixing ratios based on the replacement of wood ash instead of the sand. While the fourth stage mixing ratios based on decreasing the thermal conductivity and increasing mechanical properties by adding a multilayer of a plastic net. The result shows that using a concrete panel with components (cement, sand, coarse aggregate, wood ash, and Alabaster aggregates with a mass ratio of (1:1:2:1:1 and 3-plastic layers, gives the best improvement of the thermal properties. Where, the thermal conductivity is reduced by 42% and the specific heat increased by 41.2% as compared to the traditional concrete panel mixing ratio, with mechanical properties are agreed with the Iraqi standards.

  9. Bond behavior of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ponmalar S.

    2018-03-01

    Full Text Available The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  10. Bond behavior of self compacting concrete

    Science.gov (United States)

    Ponmalar, S.

    2018-03-01

    The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  11. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  12. The use of a concrete additive to eliminate returned concrete waste volumes

    Directory of Open Access Journals (Sweden)

    Bester Johannes

    2017-01-01

    Full Text Available This paper investigates the effects of the use of a recently developed two-component powdered product made from polymers and inorganic compounds that can be mechanically mixed into returned fresh ready-mix concrete to allow for the separation of the concrete into fine and coarse aggregates. This allows for the re-use of the returned concrete as aggregates in the manufacturing of new concrete. The returned concrete waste can therefore be eliminated, thus reducing virgin aggregate usage, as well as reducing the environmental impact of returned concrete. In this study, the treated recycled fresh concrete was separated into fine and coarse aggregates, and then used at replacement levels of 0%, 25%, 50%, 75% and 100%. The effect of the product on the material classification, and on important fresh and hardened properties of the concrete for the above-mentioned replacement values was tested. For the fine aggregate, the results indicate minimal changes in both the fresh and hardened properties. For the coarse aggregate, the results show a marked improvement of flexural strength with an increase in replacement value when coarse aggregates are used. Very high replacement levels may be used with very little effect on the quality of the new concrete.

  13. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  14. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  15. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  16. The issues and discussion of modern concrete science

    CERN Document Server

    Yang, Wenke

    2015-01-01

    This book is devoted to two primary objectives. The first is to present the errors, inadaptability, and mistakes arising when the current theory on concrete is applied to explaining practical construction of concrete; the second is to put forward viewpoints in modern concrete science. Taking a number of engineering cases as examples, we experimentally studied and theoretically analyzed the errors, inadaptability, and mistakes when the current theory on concrete is applied to explaining practical construction of concrete. Moreover, we investigated the use of mixing ratios, aggregates, cement, high-performance concrete and fibers, as well as the frost resistance, cracking behavior, durability, dry shrinkage and autogenous healing to address and remedy the shortcomings in today’s concrete science, put forward new proposals, and make a number of innovative achievements in the field, particularly in modern theory on concrete science. The results and topics which will be of particular interest to engineers and...

  17. The issues and discussion of modern concrete science

    CERN Document Server

    Yang, Wenke

    2015-01-01

    This book is devoted to two primary objectives. The first is to present the errors, inadaptability, and mistakes arising when the current theory on concrete is applied to explaining practical construction of concrete; the second is to put forward viewpoints in modern concrete science. Taking a number of engineering cases as examples, we experimentally studied and theoretically analyzed the errors, inadaptability, and mistakes when the current theory on concrete is applied to explaining practical construction of concrete. Moreover, we investigated the use of mixing ratios, aggregates, cement, high-performance concrete and fibers, as well as the frost resistance, cracking behavior, durability, dry shrinkage and autogenous healing to address and remedy the shortcomings in today’s concrete science, put forward new proposals, and make a number of innovative achievements in the field, particularly in modern theory on concrete science. The results and topics which will be of particular interest to engineers and re...

  18. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  19. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  20. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  1. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  2. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  3. Lightweight Concrete Using Oil Palm Boiler Clinker (OPBC – A Review

    Directory of Open Access Journals (Sweden)

    Hartono Herry

    2016-01-01

    Full Text Available Lightweight concrete can be effectively produced by replacing normal aggregates (60% to 75% of concrete volume with a lighter alternative. With depleting natural resources, utilising waste materials, such as oil palm boiler clinker (OPBC, in concrete for structural use is one way to mitigate environmental concerns raised by the construction industry. This paper presents a review of the mechanical properties, structural behaviour and performance of OPBC concrete. Lightweight concrete using OPBC can be designed to achieve different compressive strengths with different mixes. The different OPBC concrete mixes result in different densities and workability. The degree of content and the type of OPBC substitutes used affect the flexural strength and 28-day splitting tensile strength of OPBC concrete. A different effect was observed in the modulus of elasticity as the drying shrinkage and water absorption of OPBC concrete are also impacted. This review study also compares the structural performance of OPBC concrete to that of conventional concrete.

  4. Study and installation of concrete shielding in the civil engineering of nuclear construction (1960)

    International Nuclear Information System (INIS)

    Dubois, F.

    1960-01-01

    The object of this report is to give technical information about high density concretes which have become very important for radiation biological shielding. The most generally used heavy aggregates (barytes, ilmenite, ferrophosphorus, limonite, magnetite and iron punching) to make these concretes are investigated from the point of view prospecting and physical and chemical characteristics. At first, a general survey of shielding concretes is made involving the study of components, mixing and placing methods, then, a detailed investigation of some high density concretes: barytes concrete, with incorporation of iron punching or iron shot, ferrophosphorus concrete, ilmenite concrete and magnetite concrete, more particularly with regard to grading and mix proportions and testing process. To put this survey in concrete form, two practical designs are described such as they have been carried out at the Saclay Nuclear Station. Specifications are given for diverse concretes and for making the proton-synchrotron 'Saturne' shielding blocks. (author) [fr

  5. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  6. Concrete Memories

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2015-01-01

    This article traces the presence of Atlantikwall bunkers in amateur holiday snapshots and discusses the ambiguous role of the bunker site in visual cultural memory. Departing from my family’s private photo collection from twenty years of vacationing at the Danish West coast, the different mundane...... and poetic appropriations and inscriptions of the bunker site are depicted. Ranging between overlooked side presences and an overwhelming visibility, the concrete remains of fascist war architecture are involved in and motivate different sensuous experiences and mnemonic appropriations. The article meets...... the bunkers’ changing visuality and the cultural topography they both actively transform and are being transformed by through juxtaposing different acts and objects of memory over time and in different visual articulations....

  7. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    Science.gov (United States)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  8. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  9. Self-compacting concrete mixtures for road BUILDING

    Directory of Open Access Journals (Sweden)

    Tran Tuan My

    2012-10-01

    Therefore, effective concrete road pavements require self-compacting though non-segregating concrete mixtures to comply with the pre-set values of their properties, namely, bending and compressive strength, corrosion resistance, freeze resistance, etc. Acting in cooperation with Department of Technology of Binders and Concretes of MSUCE, NIIMosstroy developed and examined a self-compacting cast concrete mixture designated for durable monolithic road pavements. The composition in question was generated by adding a multi-component modifier into the mix. The modifier was composed of a hyperplasticiser, active (structureless fine and crystalline silica, and a concrete hardening control agent.

  10. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  11. Flow conditions of fresh mortar and concrete in different pipes

    International Nuclear Information System (INIS)

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-01-01

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  12. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete

    OpenAIRE

    Çakır, Özgür; Sofyanlı, Ömer Özkan

    2015-01-01

    Several studies related to sustainable concrete construction have encouraged development of composite binders, involving Portland cement, industrial by-products, and concrete mixes with partial replacement of natural aggregate with recycled aggregate. In this paper, the effects of incorporating silica fume (SF) in the concrete mix design to improve the quality of recycled aggregates in concrete are presented. Portland cement was replaced with SF at 0%, 5% and 10%. Specimens were manufactured ...

  13. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Kovler, Konstantin

    2012-01-01

    The paper “Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks” deals with different aspects of using superabsorbent polymers (SAP) in concrete to mitigate self-desiccation. The paper concludes that “Addition of SAP...... by overestimation of SAP water absorption. This results in an increase in water/cement ratio (w/c) for concrete with SAP. It is misleading to conclude on how SAP influences concrete properties, based on comparison of concrete mixes with SAP and reference concrete without SAP, if SAP mixes have higher w/c than...

  14. Quality control chart for crushed granite concrete

    Directory of Open Access Journals (Sweden)

    Ewa E. DESMOND

    2016-07-01

    Full Text Available A chart for assessing in-situ grade (strength of concrete, has been developed in this study. Four grades of concrete after the Nigerian General Specification for Roads and bridges (NGSRB-C20, C25, C30 and C35, is studied at different water-cement ratios for medium and high slump range. The concrete mixes are made from crushed granite rock as coarse aggregate with river sand as fine aggregate. Compression test on specimens are conducted at curing age of 1, 3, 7, 14, 21, 28 and 56 days. Results on concrete workability from slump values, and water-cement ratios revealed that specimens with lower water-cement ratio were less workable but had higher strength, compared to mixes with higher water cement ratio. A simple algorithm using nonlinear regression analysis performed on each experimental data set produced Strength-Age (S-A curves which were used to establish a quality control chart. The accuracy of these curves were evaluated by computing average absolute error (AAS, the error of estimate (EoE and the average absolute error of estimate (Abs EoE for each concrete mix. These were done based on the actual average experimental strengths to measure how close the predicted values are to the experimental data set. The absolute average error of estimate (Abs. EoE recorded was less than ±10% tolerance zone for concrete works.

  15. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  16. Proposal for the Evaluation of Eco-Efficient Concrete

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available The importance of environmental consequences due to diverse substances that are emitted during the production of concrete is recognized, but environmental performance tends to be evaluated separately from the economic performance and durability performance of concrete. In order to evaluate concrete from the perspective of sustainable development, evaluation technologies are required for comprehensive assessment of environmental performance, economic performance, and durability performance based on a concept of sustainable development called the triple bottom line (TBL. Herein, an assessment method for concrete eco-efficiency is developed as a technique to ensure the manufacture of highly durable and eco-friendly concrete, while minimizing both the load on the ecological environment and manufacturing costs. The assessment method is based on environmental impact, manufacturing costs, and the service life of concrete. According to our findings, eco-efficiency increased as the compressive strength of concrete increased from 21 MPa to 40 MPa. The eco-efficiency of 40 MPa concrete was about 50% higher than the eco-efficiency of 24 MPa concrete. Thus eco-efficiency is found to increase with an increasing compressive strength of concrete because the rate of increase in the service life of concrete is larger than the rate of increase in the costs. In addition, eco-efficiency (KRW/year was shown to increase for all concrete strengths as mixing rates of admixtures (Ground Granulated Blast furnace Slag increased to 30% during concrete mix design. However, when the mixing rate of admixtures increased to 40% and 60%, the eco-efficiency dropped due to rapid reduction in the service life values of concrete to 74 (year/m3 and 44 (year/m3, respectively.

  17. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  18. Production and quality control of concrete for the Rajasthan Atomic Power Station - [Part 2

    International Nuclear Information System (INIS)

    Singh Roy, P.K.; Sukhtankar, K.D.; Prasad, K.

    1975-01-01

    The following aspects of the production and quality control of concrete and concrete materials used in the construction of twin-reactor Rajasthan Atomic Power Station are discussed : (1) relationship between strength of cubes and cylinders made of concrete used for the prestressed dome (2) temperature control during pouring of concrete (3) thermal conductivity of heavy concrete (4) various types of grouting procedures used for different structures forming part of reactors (5) quality control of normal and heavy concrete and (6) leakage through form ties. Typical concrete mixes used for grouts are also given. (M.G.B.)

  19. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    OpenAIRE

    Bangwar, Daddan Khan; Ali Soomro, Mohsin; Ali Laghari, Nasir; Ali Soomro, Mukhtiar; Ali Buriro, Ahsan

    2018-01-01

    This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was...

  20. Industrial waste utilization for foam concrete

    Science.gov (United States)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  1. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  2. Using of Porcelinite as Coarse Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Haifa Saleh

    2015-02-01

    Full Text Available In this research the ability of using porcelinite as coarse aggregate to produce light weight concrete was investigated.  The experimental program consists of preparing and testing a mixes to investigate mechanical properties of concrete, with a total of 15 cubes (100×100×100 mm, 30 cylinders (100×200 mm. The tests include compressive strength, splitting tensile strength, fresh and hardened density of  light weight concrete for different porcelinite percentages ranged between(0% to 100% of the coarse aggregate weight. The obtained results for tested specimens were compared to control one. Test results indicated that using of porcelinite in concrete mix reduces the strength of concrete Porcelinite aggregate represents a reduction in density ranging between (10%-36% of normal weight concrete, therefore there is an advantage  using this type of light weight aggregate in this country where soil bearing capacity is low in most construction sites.

  3. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  4. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  5. Study of local Agregate for Gamma radiation concrete shield

    International Nuclear Information System (INIS)

    Tochrul-Binowo; Endro-Kismolo; Darsono

    1996-01-01

    Investigation on the composition of gamma radiation concrete shield made of local barite, manganese fine and coarse aggregates from Kulon Progo, Yogyakarta has been done. The purpose of the research was to find out the quality of these local material for an aggregate of gamma radiation concrete shield. The research was done where each mineral was used as coarse aggregate and the fine aggregate from Kulon Progo was used as fine basic aggregate. Firstly a normal concrete was made by mixing cement, fine aggregate, coarse aggregate and water at a weight ratio of cement: fine aggregate: coarse: water 1: 2.304: 3.456: 0.58. The gamma radiation absorption capacity of the concrete tested by using Cs-137 as source standard. The same method was done on barite concrete at the weight ratio of cement: fine aggregate: barite aggregate: water 1: 2.303: 3.456: 0.58 and manganese concrete at the weight ratio of cement: fine aggregate: manganese aggregate: and water 1: 1.896: 2.844: 0.58. The result of the study showed that the gamma radiation absorption capacity of barite aggregate was greater than that of normal concrete and manganese concrete. The coefficient linear attenuation (for 6.0 cm thickness) of each concrete were μ barite concrete = 0.23071 cm -1 , μ manganese concrete = 0.08401 cm -1 and μ normal concrete = 0.1669 cm -1

  6. Shear transfer in concrete reinforced with carbon fibers

    Science.gov (United States)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  7. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  8. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  9. Analysis of production factors in high performance concrete

    Directory of Open Access Journals (Sweden)

    Gilberto Carbonari

    2003-01-01

    Full Text Available The incorporation of silica fume and superplasticizers in high strength and high performance concrete, along with a low water-cement ratio, leads to significant changes in the workability and the energy needed to homogenize and compact the concrete. Moreover, several aspects of concrete production that are not critical for conventional concrete are important for high strength concrete. This paper will discuss the need for controlling the humidity of the aggregates, optimizing the mixing sequence used in the fabrication, and the slump loss. The application of a silica fume concrete in typical building columns will be analyzed considering the required consolidation, the variability of the material strength within the structural element and the relation between core and molded specimen strength. Comparisons will also be made with conventional concrete.

  10. Long-term properties of concrete in nuclear containment structures

    International Nuclear Information System (INIS)

    Field, S.N.; Bamforth, P.B.

    1991-01-01

    Over the last thirty years a large volume of testing has been carried out on concretes used in prestressed concrete pressure vessels and similar structures. The main aim of the work has been to provide the designers with a prediction method for elastic moduli and creep deformation which takes into account temperature and age at loading. This paper summarises and reviews the results from the six concretes tested by Taywood Engineering Ltd (T.E.L.), comparing mixes with and without PFA. (author)

  11. A Blocking Criterion for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2005-01-01

    To benefit from the full potential of Self-Compacting Concrete (SCC) prediction tools for the form filling ability of SCC are needed. This paper presents a theoretical concept for assessment of the blocking resistance of SCC. A critical concrete flow rate above which no blocking occurs...... is introduced. The critical flow rate takes into account the mix design, the rheological properties of the matrix and concrete, and the geometry of the flow domain....

  12. EXPERIMENTAL STUDY ON HYBRID FIBER SELF COMPACTING CONCRETE

    OpenAIRE

    S. M. Leela Bharathi

    2017-01-01

    Self-Compacting Concrete is a recently developed concept in which the ingredients of the concrete mix are proportioned in such a way that it can flow under its own weight to completely fill the formwork and passes through the congested reinforcement without segregation and self-consolidate without any mechanical vibration. Several studies in the past have revealed the usefulness of fibres to improve the structural properties of concrete like ductility, post crack resistance, energy absorption...

  13. Packing Density Approach for Sustainable Development of Concrete

    Directory of Open Access Journals (Sweden)

    Sudarshan Dattatraya KORE

    2017-12-01

    Full Text Available This paper deals with the details of optimized mix design for normal strength concrete using particle packing density method. Also the concrete mixes were designed as per BIS: 10262-2009. Different water-cement ratios were used and kept same in both design methods. An attempt has been made to obtain sustainable and cost effective concrete product by use of particle packing density method. The parameters such as workability, compressive strength, cost analysis and carbon di oxide emission were discussed. The results of the study showed that, the compressive strength of the concrete produced by packing density method are closer to that of design compressive strength of BIS code method. By adopting the packing density method for design of concrete mixes, resulted in 11% cost saving with 12% reduction in carbon di oxide emission.

  14. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  15. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA Concrete

    Directory of Open Access Journals (Sweden)

    Oseni O. W.

    2016-09-01

    Full Text Available The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0% with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32 mm from fine to coarse aggregates was tested for: (1 compressive strength, and the (2 slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 – 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  16. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  17. Utilisation of iron ore tailings as aggregates in concrete

    Directory of Open Access Journals (Sweden)

    Francis Atta Kuranchie

    2015-12-01

    Full Text Available Sustainable handling of iron ore tailings is of prime concern to all stakeholders who are into iron ore mining. This study seeks to add value to the tailings by utilising them as a replacement for aggregates in concrete. A concrete mix of grade 40 MPa was prepared in the laboratory with water–cement ratio of 0.5. The concrete were cured for 1, 2, 3, 7, 14 and 28 days. The properties of the concrete such as workability, durability, density, compressive strength and indirect tensile strength were tested. A controlled mix of concrete was also prepared in similar way using conventional materials and the results were compared with the tailings concrete. It was found that the iron ore tailings may be utilised for complete replacement for conventional aggregates in concrete. The iron ore tailings aggregates concrete exhibited a good mechanical strength and even in the case of compressive strength, there was an improvement of 11.56% over conventional aggregates concrete. The indirect tensile strength did not improve against the control mix due high content of fines in the tailings aggregates but showed 4.8% improvement compared with the previous study where the conventional fine aggregates was partially replaced by 20% with iron ore tailings.

  18. Improved technology for spun-cast concrete poles

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, W H; Ghali, A

    1984-07-01

    Different types of concrete were investigated with the goal of developing concrete suitable for the production of spun-cast concrete poles. A total of 65 different concrete mixes were investigated, with the suitability criteria defined as: compactability, no segregation of the mix components during the spinning operation, no shrinkage cracking, high strength, and durability. High strength normal weight concretes and semi-lightweight concretes, both with and without fly ash and/or silica fume and with different types of admixtures were used to produce spun-cast concrete pole segments. Of the 35 lightweight concretes only 3 were considered successful, as in all other specimens the inner layer of coarse aggregate was not well embedded in the mortar, and many mixes could not be compacted properly because they were too stiff, too wet, or started to set before spinning commenced. The three successful specimens contained fly ash and one contained silica fume, and had low water/cement ratios (0.26 to 0.29). Of the 23 normal weight concretes tested, only 5 were considered suitable, and all these had a sand/coarse aggregate ratio of 0.25 or smaller and a cement content between 350 and 400 kg/m{sup 3}. A theoretical study of the stresses in the end zones of pretensioned poles is presented. 10 refs., 53 figs., 14 tabs.

  19. Experimental Study of Reinforced Light Weight Concrete Beams

    Directory of Open Access Journals (Sweden)

    Hassanien Mohammed Thiyab

    2016-12-01

    Full Text Available This study provides a new technique for a lightweight concrete on one side and contribute to the application of sustainability principle by another side. The lightweight concrete was produced by replacing the coarse aggregate in the concrete mix by crushed bricks after conducting the sieve analysis process. To apply this technique to reinforced concrete beams, seven specimens having dimensions (1200 mm length × 200mm height × 100 mm width for each were poured. The first of these beams had made from ordinary concrete, and the rest lightweight different mix design as well as the casting of three cubes and a three-cylinder with each beam. After curing the specimens with water to the age 28 days, they were examined in the laboratory. Using different design mixes of concrete and with the help of super stabilizer material , good compressive strength of concrete was obtained so it become more effective lightweight in structure. By comparing between the results of the light and normal weight concrete beams, it is found reducing in the weight of concrete by about 23% due to using this technique ,the ultimate strength increased to about 32.1% and the deflection decreased about 46.7% .

  20. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  1. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  2. Characteristics of Structural Breakdown in Plastic Concrete and ...

    African Journals Online (AJOL)

    Characteristics of Structural Breakdown in Plastic Concrete and Their Potentials for Quality Control. ... A typical trace has four such significant features which characterise the mix. The significance of these features are analysed in relation to the functional requirements of plastic concrete in practice. Finally, the potentials of ...

  3. Engineering properties of scoria concrete as a construction material ...

    African Journals Online (AJOL)

    The weight and cost of plain concrete are part of the setbacks in its use for construction purposes especially in low-cost housing delivery. This paper reports the experimental results of samples of concrete produced from a mix combination of cement, fine aggregate (sand) and volcanic scoria as coarse aggregate. The scoria ...

  4. Optimization of the compressive strength of five-component-concrete ...

    African Journals Online (AJOL)

    The paper presents the report of an investigation carried out to optimize some mechanical properties of a five-component-concrete mix. Mound soil (MS), randomly selected from some habitats of a common tropical specie of termites from Iyeke-Ogba, Nigeria was investigated as a fifth component in concrete. The work ...

  5. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  6. Effect of Neem Seed Husk Ash on Concrete Strength Properties ...

    African Journals Online (AJOL)

    Neem Seed Husk is a by-product obtained during industrial processing of Neem Seed to extract oil and produce fertilizer. Laboratory tests on Neem seed husk ash (NSHA) mixed with cement were conducted to find its effect on concrete strength and workability. Tests including slump test, compressive strength test, concrete ...

  7. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  8. Freeze/thaw phenomena in concrete at low temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    Freeze/thaw damage in concrete is by general practice concluded to be a problem that can be avoided by using air-entraining agents to develop an air bubble structure in the hardened concrete together with the use of a relatively low water to cement ratio in mix. This fact is true for inner damage...

  9. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  10. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  11. Engineering Behavior of Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    Ayob Afizah

    2017-01-01

    Full Text Available Concrete is extensively used as construction materials in Malaysia. Concrete contributes suitable feature for construction industry for instance durability, adequate compressive strength, fire resistance, availability and is economic as compared to other construction materials. Depletion of natural resources and disposal of construction and demolition waste remarkably claim environmental threat. In this paper, the engineering behavior, durability, and concrete microstructure of recycled concrete aggregates (RCA on short-term concrete properties were investigated. The studied concrete at design mix proportion of 1:0.55:2.14:2.61 (weight of cement :coarse aggregates :sand :water used to obtain medium-high compressive strength with 20%, 50%, and 100% of RCA. Results show that for the same water/cement ratio, RCA replacement up to 50% still achieved the targeted compressive strength of 25 MPa at 28 curing days. Addition, at similar RCA replacement, the highest carbonation depth value was found at 1.03 mm which could be attributed to the pozzolanic reaction, thus led to lower carbonation resistance. Scanning electron microscopy microstructure shows that the RCA surface was porous and covered with loose particles. Moreover, the interfacial transition zone was composed of numerous small pores, micro cracks, and fissures that surround the mortar matrix. On the basis of the obtained results, recommendable mineral admixtures of RCA are necessary to enhance the quality of concrete construction.

  12. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  13. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  14. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  15. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references

  16. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  17. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  18. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  19. Workability enhancement of geopolymer concrete through the use of retarder

    Science.gov (United States)

    Umniati, B. Sri; Risdanareni, Puput; Zein, Fahmi Tarmizi Zulfikar

    2017-09-01

    Geopolymer concrete is a type of concrete manufactured without the addition of cement. In geopolymer concrete, along with an activator, cement as the concrete binder can be replaced by the fly ash. This will reduce global demand on cement, and therefore will reduce CO2 emission due to cement production. Thus, geopolymer concrete is commonly known as an eco-friendly concrete. Geopolymer concrete also offers a solution concerning with the utilization of the fly ash waste. However, despite of its environmental advantages, geopolymer concrete has a drawback, namelygeopolymer concrete set quickly, thus reducing its workability. This research aimed to increase the workability of geopolymer concrete by using retarder admixture (Plastocrete RT6 Plus). Retarder used varies within 0.2%, 0.4% and 0.6% of fly ash mass. As a control, geopolymer concrete without retarder (0%) were also made. Activator used in this research was Na2SiO3 mixed with NaOH 10 M solution, with ratio of 1:5. The results showed an optimum composition of geopolymer concrete with 0.6% retarder, where initial setting time occured after 6.75 hours, and the final setting time reached after 9.5 hours. Moreover, the slump of the geopolymer concrete was 8.8 cm, and the slump flow was 24 cm. The compressive strength of the geopolymer concrete at 28 days was 47.21 MPa. The experiment showed that the more retarder added, the setting time of the geopolymer concrete will be increased, thus increasing its workability.

  20. engineering properties of scoria concrete as a construction material

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    2015-08-11

    Aug 11, 2015 ... The scoria concrete so produced in mix ratio 1:2:4 was tested for compressive strength, flexural strength and water absorption capacity. Empirical values of those factors that affect ... Scoria obtained from Wurukum market was.

  1. Assessment of Quality of Asphalt Concrete used in Road ...

    African Journals Online (AJOL)

    OLUWASOGO

    subjected to bitumen extraction and sieve analysis, hot mix Marshall Stability and flow tests, penetration and ... asphalt concrete as well as other structures of the flexible pavement. ... High-quality road networks are very important to the.

  2. Accelerated degradation and durability of concrete in cold climates.

    Science.gov (United States)

    2011-08-01

    Degradation of aggregate in concrete can be caused by erosion or fracture, and both cementitious materials and aggregate age over time. : The specification requirements for the degradation of aggregates have been established for hot mix asphalt and f...

  3. Developing criteria for performance-based concrete specifications.

    Science.gov (United States)

    2013-07-01

    For more than 50 years now, concrete technology has advanced, but CDOT specifications for durability have : remained mostly unchanged. The minimum cement content for a given strength is derived from mix design : guidelines that were developed before ...

  4. Variability in properties of Salado Mass Concrete

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft 3 to 5.0 yd 3 , with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties

  5. The positive and negative influences of VMA's on the robustness of fresh self-compacting concrete

    NARCIS (Netherlands)

    Van der Vurst, F.; Grunewald, S.; De Schutter, G.

    2015-01-01

    Over time, several mix design metliods liave been developed to obtain a selfcompacting concrete (SCC) with suitable fresh and hardened concrete properties. The very fluid concrete with no need for external compaction is achieved by using a higher powder content and the use of chemical admixtures.

  6. Design considerations and sustainability of self-compacting concrete

    OpenAIRE

    Grünewald, Steffen; De Schutter, Geert

    2016-01-01

    Self-compacting concrete (SCC) differs from conventional vibrated concrete (CVC) in the rheological behaviour, which is achieved by adequate mix design. The application and production requirements also pose demands on the mix design and workability. Effective production requires adequate strength control. The use of Portland Cement promotes a rapid early age strength development, but it comes with a relative high impact on the environment since decarbonation and a high energ...

  7. Recycled construction debris as an aggregates. Production of concrete blocks

    OpenAIRE

    Sousa, J. G. G.; Bauer, E.; Sposto, R. M.

    2003-01-01

    This paper analyzes the use of recycled construction and demolition debris as aggregate for the construction of concrete blocks to be used in sealing masonry. Initial studies addressed the definition of parameters used in the mix of conventional materials (traditionally used in the production of concrete blocks), involving cylindrical test specimens (100x200 mm), molded with the help of a vibratory table. In addition to these definitions, and based on the mixes showing the best results, a new...

  8. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  9. Utilisation of iron ore tailings as aggregates in concrete

    OpenAIRE

    Francis Atta Kuranchie; Sanjay Kumar Shukla; Daryoush Habibi; Alireza Mohyeddin

    2015-01-01

    Sustainable handling of iron ore tailings is of prime concern to all stakeholders who are into iron ore mining. This study seeks to add value to the tailings by utilising them as a replacement for aggregates in concrete. A concrete mix of grade 40 MPa was prepared in the laboratory with water–cement ratio of 0.5. The concrete were cured for 1, 2, 3, 7, 14 and 28 days. The properties of the concrete such as workability, durability, density, compressive strength and indirect tensile strength we...

  10. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  11. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  12. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  13. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  14. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  15. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  16. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  17. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    Science.gov (United States)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  18. Production of iron-serpentinite concrete and mortar for Jaslovske Bohunice V-2 nuclear power plant

    International Nuclear Information System (INIS)

    Valenta, D.; Oravec, J.

    1982-01-01

    The ideas behind the research and the results of the research of serpentinite concrete with a discontinuous granulometric curve are given. Concrete mixes were experimentally tested; a formula is given for the manufacture of 1 m 3 of fresh concrete. Serpentinite concrete of a density of 2,240 kg/m 3 is satisfactory as shielding material. Time dependence of workability was also tested. It was found that the concrete was well workable as late as 2 hours after manufacture. Serpentinite concrete and mortar were made and used for the biological shielding construction in the shaft of Unit I of the V-2 nuclear power plant. (J.P.)

  19. Preplaced aggregate concrete application on Fort St. Vrain PCRV construction

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1976-01-01

    Two distinct concreting methods were employed in the construction of the prestressed concrete reactor vessel (PCRV) of the Fort St. Vrain (FSV) Nuclear Generating Station, a 330 MW(e) High Temperature Gas-Cooled Reactor installation near Denver, Colorado. Preplaced aggregate concrete (PAC) techniques were employed in the PCRV bottom head and the core support floor; conventional job-mixed concrete was used in the PCRV sidewall and top head regions. This paper describes the successful application of PAC techniques utilized primarily in solving construction difficulties associated with confined and heavily congested regions of the PCRV. The PAC technique consists of placing coarse aggregate inside the forms, followed by injection of grout under pressure through embedded pipes to fill the interstices in the aggregate mass. Details of the PAC construction method including grout mix development, grouting equipment, grout pipe layout, grouting sequence, grout level monitoring, concrete temperature control, and pre-construction mockups are described. (author)

  20. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  1. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  2. Concretes with high mechanical resistance

    International Nuclear Information System (INIS)

    Mauny, Pierre.

    1973-01-01

    Description is given of a method for manufacturing concretes with high mechanical resistance in compression, obtained by mixing gravels highly resistant to compression, sand and cement in an aqueous medium. Use is made of sands of porous ceramics, such as terra-cotta, of a grain size from 0,1 to 5mm, the pore diameter of which is from 0.5 to 15 microns, chosen so as to be slighty bigger than the crystals of the cement used. This can be applied to the pre-stressed structures used in the nuclear field [fr

  3. Utilization of crushed clay brick in cellular concrete production

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available The main objective of this research program is to study the effect of using crushed clay brick as an alternative aggregate in aerated concrete. Two series of mixtures were designed to investigate the physico-mechanical properties and micro-structural analysis of autoclave aerated concrete and foamed concrete, respectively. In each series, natural sand was replaced with crushed clay brick aggregate. In both series results showed a significant reduction in unit weight, thermal conductivity and sound attenuation coefficient while porosity has increased. Improvement on compressive strength of autoclave aerated concrete was observed at a percentage of 25% and 50% replacement, while in foamed concrete compressive strength gradually decreased by increasing crushed clay brick aggregate content. A comparatively uniform distribution of pore in case of foamed concrete with natural sand was observed by scanning electron microscope, while the pores were connected mostly and irregularly for mixes containing a percentage higher than 25% clay brick aggregate.

  4. ANALYSIS OF PROPERTIES OF CONCRETE USING DRIED BANANA PEEL POWDER AS ADMIXTURE

    OpenAIRE

    Vishal Gadgihalli; MeenaY.R; Sindhu Shankar; Raghavendra Prasad Havanje Dinakar

    2017-01-01

    Ingredients other than cement, water& aggregates that import a specific quality to either plastic(fresh)mix or the hardened concrete (ASTMC 496) is called concrete admixture. In this paper analysis of properties of concrete using banana peel as admixture is studied and verified the strength of concrete and temperature emitted due to chemical reaction to the normal Portland cement. As banana’s peel is rich in natural fiber and it is well known source of potassium. The flexural strength of conc...

  5. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    OpenAIRE

    M.I. Abdou; Hesham Abuseda

    2016-01-01

    Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume) was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement...

  6. EFFECT OF ELEVATED TEMPERATURE ON COMPRESSIVE STRENGTH OF FIBER REINFORCED CONCRETE

    OpenAIRE

    Prashant shinkar*, Prof. Deepak kakade, Dr.A.P.Wadekar

    2017-01-01

    This paper deals with the mechanical properties of concrete with steel fibers subjected to temperatures up to 500°C. Now a day concrete are being used extensively in the construction that might be subjected to elevated temperatures. The behavior of concrete structures at elevated temperatures is of significant importance in predicting the safety of structures in response to certain accidents or particular service conditions. Concrete mixes of M 50 have been designed along with steel fibers fr...

  7. Retempering of Concrete made by using Manufactured Sand

    Science.gov (United States)

    Pethkar, A. R.; Deshmukh, G.

    2014-06-01

    Retempering is defined as, " Addition of water and remixing of concrete or mortar which has lost enough workability to become unplaceable". Retempering inevitably results in some loss of strength compared with the original concrete [1]. Adding water to a plastic mix to increase slump is an extremely common practice, even though it is not recommended because it increases the porosity of concrete. Concrete often arrives on site more than half an hour after initial mixing. Placement operations can take anywhere from 10 to 60 min, depending on the field conditions and the size of the load. When the slump decreases to an unacceptable level during the operations, water is added to the mix [1]. In this work, an attempt is made to study the strength characteristics of retempered concrete made by using manufactured sand. Usually the retempering process is there with normal and ready mixed concrete; hence an attempt is made to check the compressive and flexural strength of normal retempered concrete with an addition of retarder 0.2, 0.4 and 0.6 % at retempering time from 15 to 90 min. There is scarcity of natural sand due to various factors, which is replaced by the manufactured sand. The concept of manufactured sand is nothing but breaking stone into smaller and smaller particles in such way that the gradation of particle will match with zone-II of I.S.

  8. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  9. Work for radiation shielding concrete in large-scaled radiation facilities

    International Nuclear Information System (INIS)

    Konomi, Shinzo; Sato, Shoni; Otake, Takao.

    1980-01-01

    This paper reports the radiation shielding concrete work in the construction of radiation laboratory facilities of Electrotechnical Laboratory, a Japanese Government agency for the research and development of electronic technology. The radiation shielding walls of the facilities are made of ordinary concrete, heavy weight concrete and raw iron ore. This paper particularly relates the use of ordinary concrete which constitutes the majority of such concretes. The concrete mix was determined so as to increase its specific gravity for better shielding effect, to improve mass concrete effect and to advance good workability. The tendency of the concrete to decrease its specific gravity and the temperature variations were also made on how to place concrete to secure good shielding effect and uniform quality. (author)

  10. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  11. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    Science.gov (United States)

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  12. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  13. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  14. Palm Oil Fuel Ash (POFA and Eggshell Powder (ESP as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Mohamad Mazizah Ezdiani

    2018-01-01

    Full Text Available This study is an attempt to partially replace Ordinary Portland cement (OPC in concrete with palm oil fuel ash (POFA and eggshell powder (ESP. The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  15. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  16. Promoting the use of crumb rubber concrete in developing countries.

    Science.gov (United States)

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.

  17. Performance and Compatibility of Phosphonate-Based Superplasticizers for Concrete

    Directory of Open Access Journals (Sweden)

    Luigi Coppola

    2017-07-01

    Full Text Available The paper deals with the effectiveness of an innovative phosphonate-based superplasticizer (PNH for ready mixed concrete. Concrete specimens were manufactured by considering a constant initial workability, equal to 220 mm slump at the end of the mixing procedure. Workability was measured at 0, 30, and 60 min to evaluate the workability retention performances of the innovative superplasticizer. Compressive tests at 1, 7, and 28 days were carried out to evaluate the influence of the phosphonate-based superplasticizer on concrete setting and hardening. The concrete mixes were designed by considering 13 different cements to assess the superplasticizer-cement compatibility. The PNH-based admixture showed a better performance in terms of water reduction and workability retention with respect to napthalenesulphonate based admixtures (NSF; however, a higher dosage of PNH with respect to polycarboxylate ethers (PCEs was needed to get the same initial fluidity.

  18. Heavyweight cement concrete with high stability of strength parameters

    Science.gov (United States)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  19. Effect of mix design on the size-independent fracture energy of normal- and high-strength self-compacting concrete; Influencia de la composición de la mezcla sobre la energía de fractura de hormigones autocompactantes de resistencias media y alta.

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, H.; Ríos, J.D.; Gómez, E.J.

    2018-04-01

    Self-compacting concrete has a characteristic microstructure inherent to its specific composition. The higher content of fine particles in self-compacting concrete relative to the equivalent vibrated concrete produces a different fracture behavior that affects the main fracture parameters. In this work, a comprehensive experimental investigation of the fracture behavior of self-compacting concrete has been carried out. Twelve different self-compacting concrete mixes with compressive strength ranging from 39 to 124 MPa (wider range than in other studies) have been subjected to three-point bending tests in order to determine the specific fracture energy. The influence of the mix design and its composition (coarse aggregate fraction, the water to binder ratio and the paste to solids ratio) on its fracture behavior has been analyzed. Moreover, further evidence of the objectivity of the size-independent fracture energy results, obtained by the two most commonly used methods, has been p [Spanish] Los hormigones autocompactantes tienen una microestructura interna inherente a su composición específica. Su mayor contenido de partículas finas, en comparación con hormigones vibrados equivalentes, provoca un comportamiento diferente en fractura que afecta a los principales parámetros de fractura. En este trabajo, se ha realizado una amplia investigación experimental del comportamiento en fractura de hormigones autocompactantes. Así, se han realizado ensayos de flexión en tres puntos para determinar sus propiedades de fractura sobre 12 hormigones autocompactantes de diferente composición, con resistencias a compresión que van desde 39 hasta 124 MPa (mayor que en otros estudios). De esta forma, se ha analizado la influencia de la dosificación del hormigón y su composición (contenido en árido grueso, relación agua-cemento y pasta-sólidos) sobre su comportamiento en fractura. Además, se ha validado, para hormigones autocompactantes, la objetividad de los

  20. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  1. Pedogenic Carbonate Concretions in the Russian Chernozem

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  2. Structure formation control of foam concrete

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  3. Investigation on Compressive Strength of Special Concrete made with Crushed Waste Glass

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Special concrete is the type of concrete that produced by using waste material or using unusual techniques/method of preparation. Special concrete made with waste material is becoming popular in a construction site. This is because the special concrete is selected due to quality, integrity, economic factor and environmental factor. The waste glass is selected as an additional material to provide a good in compressive strength value. The compressive strength is the importance of mechanical properties of concrete and typically the concrete is sustained and stiffed in compression load. The significant issue to utilize the waste glass from the automotive windscreen is to improve the strength of concrete. The waste glass is crushed to become 5 mm size and recognised as crushed waste glass that be used in concrete as additional material. The main objective of the study is to determine the appropriate percentage of crushed waste glass in concrete grade, 30 in order to enhance the compressive strength. There are four mixes of concrete that contained of crushed waste glass with percentage of 2 %, 4 %, 6 % and 8 % and one control mix with 0 % of crushed waste glass. As the result, crushed waste glass with an additional 4 % in concrete is reported having a higher value of compressive strength in early and mature stage. In addition, if the percentage of crushed glass wastes in concrete increases and it leads to a reduction in the workability of concrete.

  4. Engineering properties of inorganic polymer concretes (IPCs)

    International Nuclear Information System (INIS)

    Sofi, M.; Deventer, J.S.J. van; Mendis, P.A.; Lukey, G.C.

    2007-01-01

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures

  5. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  6. Self-compacting concrete: the role of the particle size distribution

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Radix, H.J.

    2005-01-01

    This paper addresses experiments and theories on Self-Compacting Concrete. The “Chinese Method”, as developed by Su et al. [1] and Su and Miao [2] and adapted to European circumstances, serves as a basis for the development of new concrete mixes. Mixes, consisting of slag blended cement, gravel

  7. CBP [TASK 12] experimental study of the concrete salstone two-layer system

    Energy Technology Data Exchange (ETDEWEB)

    Samson, Eric [SIMCO Technologies, Inc., Ville de Québec, QC (Canada); Protiere, Yannick [SIMCO Technologies, Inc., Ville de Québec, QC (Canada)

    2016-11-01

    This report presents the results of a study which intended to study the behavior of concrete samples placed in contact with a wasteform mixture bearing high level of sulfate in its pore solution. A setup was prepared which consisted in a wasteform poured on top of vault concrete mixes (identified as Vault 1/4 and Vault 2 mixes) cured for approximately 6 months.

  8. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    Science.gov (United States)

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  9. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  10. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  11. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  12. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  13. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  14. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  15. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  16. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  17. Durability of an inorganic polymer concrete coating

    Science.gov (United States)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  18. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Maheri, M. R.; Haji-pour, A.; Yousefnia, H.; Zolghadri, S.

    2007-01-01

    In megavoltage radiotherapy rooms, ordinary concrete is usually used due to its low construction costs, although higher density concrete are sometimes used, as well. The use of high-density concrete decreases the required thickness of the concrete barrier; hence, its disadvantage is its high cost. In a nuclear reactor, neutron radiation is the most difficult to shield. A method for production of economic high-density concrete witt, appropriate engineering properties would be very useful. Materials and Methods: Galena (Pb S) mineral was used to produce of a high-density concrete. Galena can be found in many parts of Iran. Two types of concrete mixes were produced. The water-to-concrete (w/c) ratios of the reference and galena concrete mixes were 0.53 and 0.25, respectively. To measure the gamma radiation attenuation of Galena concrete samples, they were exposed to a narrow beam of gamma rays emitted from a cobalt-60 therapy unit. Results: The Galena mineral used in this study had a density of 7400 kg/m 3 . The concrete samples had a density of 4800 kg/m 3 . The measured half value layer thickness of the Galena concrete samples for cobalt 60 gamma rays was much less than that of ordinary concrete (2.6 cm compared to 6.0 cm). Furthermore, the galena concrete samples had significantly higher compressive strength (500 kg/cm 2 compared to 300 kg/cm 2 ). Conclusion: The Galena concrete samples made in our laboratories had showed good shielding/engineering properties in comparison with all samples made by using high-density materials other than depleted uranium. Based on the preliminary results, Galena concrete is maybe a suitable option where high-density concrete is required in megavoltage radiotherapy rooms as well as nuclear reactors

  19. Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    Nazar A.M. Md

    2014-03-01

    Full Text Available A major problem arising from the widespread use of forestry biomass and processed timber waste as fuel is related to the production of significant quantities of ash as a by-product from the incineration of such biomasses. A major portion (approximately 70% of the wood waste ash produced is land-filled as a common method of disposal. If the current trend continues with waste products, such as paper mill sludge landfills, a large amount of space would be required by 2020. A revenue study was conducted as a result of investigations into the use of paper mill sludge as recycled materials and additives in concrete mixes for use in construction projects. The study had to provide the assurance that the concrete produced had the correct mechanical strength. Concrete mixes containing paper mill sludge were prepared, and their basic strength characteristics such as the compressive strength, flexural strength, ultra pulse velocity and dynamic modulus elasticity were tested. Four concrete mixes, i.e. a control mix, and a 10%, 20%, and 30% mix of paper mill sludge as cement replacement for concrete were prepared with a DoE mix design by calculating the weight of cement, sand and aggregate. The performance of each concrete specimen was compared with the strength of the control mix. As a result, when the percentage of paper mill sludge in the concrete increased, the strength decreased. Overall, a high correlation was observed between density and strength of the concrete containing paper mill sludge.

  20. High Density Radiation Shielding Concretes for Hot Cells of 99mTc Project

    International Nuclear Information System (INIS)

    Sakr, K.

    2006-01-01

    High density concrete [more than 3.6 ton/m 3 (3.6x10 3 kg/m 3 )] was prepared to be used as a radiation shielding concrete (RSC) for hot-cells in gel technetium project at inshas to attenuate gamma radiation emitted from radioactive sources. different types of concrete were prepared by mixing local mineral aggregates mainly gravel and ilmenite . iron shots were added to the concrete mixture proportion as partial replacement of heavy aggregates to increase its density. the physical properties of prepared concrete in both plastic and hardened phases were investigated. compressive strength and radiation attenuation of gamma rays were determined. Results showed that ilmenite concrete mixed with iron shots had the highest density suitable to be use as RSC according to the chinese hot cell design requirements. Recommendations to avoid some technical problems of manufacturing radiation shielding concrete were maintained

  1. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France)], E-mail: christophe.journeau@cea.fr; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France); Brissonneau, Laurent [CEA, DEN, STPA/LPC, Cadarache, F-13108 St Paul lez Durance (France)

    2009-10-15

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  2. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure; Brissonneau, Laurent

    2009-01-01

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  3. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ...

  4. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  5. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  6. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  7. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  8. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  9. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  10. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  11. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  12. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    Science.gov (United States)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  13. Effect of Superabsorbent Polymer on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Juntao Dang

    2017-12-01

    Full Text Available Incorporating superabsorbent polymer (SAP, which has the abilities of absorption and desorption in concrete can achieve the effect of internal curing. The influences of the volume, particle size and ways of entrained water of SAP on the workability, compressive strength, shrinkage, carbonation resistance and chloride penetration resistance of concrete were analyzed through the macroscopic and microscopic test. The results show that pre-absorbed SAP can increase the slump of the mixture, but SAP without water absorption and pre-absorbed SAP with the deduction of internal curing water from mixing water can reduce the slump. The improvement effects of SAP on compressive strength of concrete increase gradually with the increase of age. Especially from 28 days, the compressive strength of concrete increases obviously. At later age, the compressive strengths of SAP concrete under natural curing environment exceed the strength of reference concrete under natural curing environment and nearly reach the strengths of reference concrete under standard curing environment. SAP effectively reduces the shrinkage of concrete, improves the concrete’s abilities of carbonation resistance and chloride penetration resistance. The microscopic test results show that SAP can effectively improve the micro structure and make the pore structure refined. When SAP is added into concrete, the gel pores and small capillary pores are increased, the size of big capillary pores and air pores are reduced.

  14. Olive pomace based lightweight concrete, an experimental approach and contribution

    Directory of Open Access Journals (Sweden)

    Lynda Amel Chaabane

    2018-01-01

    Full Text Available Due to conventional aggregates resources depletion, material recycling has become an economic and ecologic alternative. In this paper, locally available natural residues such as olive pomace were investigated, when partially incorporated in the concrete formulation, since the mechanical characteristics of lightweight aggregate concrete strongly depend on its properties and proportions. Lightweight aggregates are more deformable than the cement matrix because of their high porosity, and their influence on the concrete strength remains complex. The purpose of this paper is to investigate the aggregates properties on lightweight concrete mechanical behaviour through an experimental approach. In addition, the different substitution sequences and the W/C ratio on lightweight concrete behaviour were evaluated, in order to determine the W/C ratio influence on the improvement of the lightweight concrete mechanical properties while knowing that the mixing water quantity gives the cement paste manoeuvrability and mechanical strength effects. The last part of this paper, therefore, was to provide statistical survey for estimating strength and weight reduction through the different natural aggregate substitutions to improve the lightweight concrete properties. The results achieved in a significant olive-pomace lower adhesion with the matrix after the cement setting, making the lightweight concrete mechanical strength weak. However, this work can open several perspectives: Results modeling and correlation with an experimental approach, the evolution and determination of lightweight concrete characteristics when exposed to high temperatures and thermohydric properties.

  15. Physio-chemical reactions in recycle aggregate concrete

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Gao, X.F.; Tam, C.M.; Ng, K.M.

    2009-01-01

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C 3 S 2 H 3 , iron-substituted ettringite, dehydroxylation of CH and development of C 6 S 3 H at about 90 deg. C, 135 deg. C, 441 deg. C and 570 deg. C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C 3 S 2 H 3 , ettringite, CH and C 6 S 3 H, which shows that RAC made from the TSMA can improve the hydration processes

  16. Reuse of thermosetting plastic waste for lightweight concrete.

    Science.gov (United States)

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  17. Physio-chemical reactions in recycle aggregate concrete.

    Science.gov (United States)

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  18. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  19. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  20. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  1. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    Directory of Open Access Journals (Sweden)

    D. K. Bangwar

    2018-02-01

    Full Text Available This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was observed that the bond strength between concrete and steel decreases with the replacement of cement with ash, conversely the bond strength improves with the addition of polymer dosages.

  2. Flexural Performance of Transparent Plastic Bar Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Byoungil Kim

    2018-02-01

    Full Text Available In this study, experiments were conducted to derive a mix design for improving the flexural performance of light transparent concrete, which is attracting much attention and interest as an interior and exterior material for buildings, so that it could be easily applied in the field as a non-structural element by securing a lightweight, workability, and economic efficiency through the improvement of the concrete mix design and the use of economical materials for promoting its practical use. It was found that the mixing of polyvinyl alcohol (PVA fiber was effective in improving the consistency by preventing the aggregate from floating due to the mixing of lightweight aggregate with a low specific gravity. The flexural performance test results showed that the load transfer factor (LTF from the concrete matrix to the fiber was highest in the test specimens without plastic bars, followed by those with 5 and 10 mm plastic bars, respectively.

  3. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  4. Properties of Sugarcane Fiber on the Strength of the Normal and Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available The usage of natural fiber in construction are widely used in building materials engineering. However, using sugarcane fiber waste material as a natural in construction is very precious, because it can increase crack control and ductility, brittle concrete. Furthermore, the usage of sugarcane in construction can reduce of environmental pollution.In this study, a mixture of sugarcane fiber to be used in normal grade concrete and lightweight concrete to determine whether there is an increase in the compressive and tensile strength of the concrete. The objective of this study was to determine the compressive and tensile strength between control concrete and concrete mix with sugarcane fiber. In addition, the optimal volume of sugarcane fiber in the concrete mixture where the percentage of sugarcane fiber used was 0.5%, 1.0% and 1.5%. Compessive strength was tested on days 7 and 28 after curing test is carried out. Meanwhile, the tensile test, has been carried out to measure the tensile strength of sugarcane fiber relations in concrete mixes only at 28 day curing. Result of the testing showed that the optimum value containing admixtures of sugarcane is 0.5%. This percentage get the value of compressive strength is nearest with concrete control and the value of tensile strength is higher than concrete control and also the timing of concrete to cracked getting slower. Therefore, the use of sugarcane fiber suitable for addition that do not exceed 0.5% of the concrete mixture.

  5. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    Science.gov (United States)

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  6. OPTIMIZATION OF PRESERVATIVE FOR PROTECTION OF CONCRETE PAVEMENT OF HIGHWAYS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2018-01-01

    Full Text Available Disadvantages of road concrete pavement quite well known professionals-standards. They were mainly low elasticity modulus asphaltic concrete, as well as a fairly rapid aging of asphalt concrete core component-bitumen. And, as a consequence, is relatively low durability of the coating, the need for frequent repair. To some extent, cement concrete cover signifi cantly outperform this index of asphalt, convinces experience roads of Germany, the United States and other countries. The correct structure of concrete, overall compliance technology laying concrete, comprehensive quality control production  work, sufficient technical personnel qualifications provide long defect-free work road re-coated. However, violations by manufacture of works or in the process of exploitation, particularly in the harsh conditions of freezing and thawing, saturation-drying, especially under the influence of salts-defrosting, cause defects, reduce its durability. There are two directions of increase of durability of the coating. Firstly, it is the primary protection is the creation of concrete with minimal possible on data components mixture water cement ratio that provides reception of concrete with minimum porosity and consequently with maximum durability. Secondly, the secondary protection, providing increased resistance already ready-mixed concrete cover external aggressive actions. In this case against the background of other ways quite promising looks impregnation of the surface concrete integrated structure. Composition must contain multiple components, primarily water repellents, preventing penetration of fluid into the body of the concrete, and finely dispersed silica sol in particular silica, providing reduction of the porosity of the surface layers of concrete by interacting with the free calcium hydroxide. The problem of optimization of impregnation structure and is dedicated to this work.

  7. Sulfate and Chloride Resistance of High Fluidity Concrete including Fly Ash and GGBS for NPP

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Fly ash mixed concrete has been used for NPP concrete structures in Korea in order to prevent aging and improve durability since the Shin.Kori no.1,2 in 2005. Concentrated efforts to develop technology for the streamlining of construction work and to affect labor savings have been conducted in construction. The application of high fluidity concrete for nuclear power plants has been the research subject with the aim of further rationalization of construction works. Since high fluidity concrete can have the characteristics of high density and high strength without compaction. However, high fluidity concrete can cause thermal cracking by heat of hydration. For this reason, the amount of pozzolan binder should be increased in high fluidity concrete for nuclear power plants. In this study, the resistance of high fluidity concrete on sulfate and chloride was compared with that of the concrete currently using for nuclear power plants

  8. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    Science.gov (United States)

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  9. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC

    International Nuclear Information System (INIS)

    Cwirzen, A.; Penttala, V.; Vornanen, C.

    2008-01-01

    The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durability of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete

  10. The Effect of a Plasticizing Admixture on the Properties of Hardened Concrete

    Directory of Open Access Journals (Sweden)

    Anastasija Abasova

    2012-11-01

    Full Text Available Concrete is material obtained mixing matrix material, coarse and small aggregates and water along with additives acquiring necessary properties of hardening. The quality and properties of raw material used for manufacturing concrete, V/C ratio and the uniformity of the compaction of the mixture lead to the fundamental properties of concrete. The compressive strength of concrete is one of the most important properties of concrete. The article deals with the impact of plasticizers on the structural properties of concrete choosing an optimal content of additives. Concrete plasticizers increasing the content of additive increase the strength of samples, the density and ultrasonic pulse of velocity and decrease absorption. Test results have revealed that a plasticizing admixture under dosing or overdosing can reduce the properties of concrete.

  11. The repair and protection of reinforced concrete with migrating corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.

    2016-01-01

    The concrete is a very durable construction material and his use is based on the principle that concrete is an ideal environment for steel if properly proportioned and placed. In general, reinforced concrete has proved to be successful in terms of both structural performance and durability. However, there are instances of premature failure of reinforced concrete components due to corrosion of the reinforcement. Experience has shown that there are certain portions of exposed concrete structures more vulnerable than others. Methodology for concrete repair it addresses to suggestions of the types of repair methods and materials and a detailed description of the uses, limitations, materials, and procedures for Repair of Concrete. At same the time the methodology presents recommendation on materials, methods of mixing, application, curing and precautions to be exercised during placement. This work presents guidelines for managing reinforced concrete components and specifies the repair strategy with inhibitors incorporating. (authors)

  12. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete.

    Science.gov (United States)

    Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd

    2015-12-10

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  13. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Md. Safiuddin

    2015-12-01

    Full Text Available The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  14. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.

    2015-01-01

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732

  15. High flow concrete 2; Koryudo konkurito 2

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Hiroyasu [Mitsubishi Materials Corp., Tokyo (Japan)

    1998-09-10

    Hashimoto et al. compared U-type repletion test that evaluation method of the consistency in design of mix of high workable concrete was proposed as a repletion test with the box test, and it was examined, and it had clarified the difference between the behavior in the test by the analysis of the shearing strain speed by the visualization as the technique, and the important proposal was done, when the evaluation method would be divided in future. Anchors showed that it analyzed it in order to quantitatively evaluate separating resistance-ness of the coarse aggregate, with model and proposes the analysis method on separating resistance-ness of high workable concrete according to the original model, and that the correlation is high. In the future, further examination was carried out on aggregate shapes and lees aggregate amount, etc. and intended to propose the technique which could be analyzed more high-precise. Branch pines examined the effect of the fineness modulus in addition to factors such as real width rate and particle size of a fine aggregate in the technique in which researchers have proposed the setting of class aggregate amount in the top in search of the optimum value. It can be expected that it is future effectively utilized, because it is a proposed equation which sufficiently added characteristics of the Tsumugi aggregate. Temple areas found and proposed that viscosity and of the optimum mortar minute in design of mix in high workable concrete for the dam for the downward flow hour differed from the case in which the 20 mm aggregate was used on the design of mix technique in using the 40 mm aggregate. It is the research which considered the application of high workable concrete to the concrete for the dam, and it seems to be very much useful to future popularization. (translated by NEDO)

  16. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  17. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  18. Performance of Kaolin Clay on the Concrete Pavement

    Science.gov (United States)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  19. Performance Evaluation of Concrete using Marble Mining Waste

    Science.gov (United States)

    Kore, Sudarshan Dattatraya; Vyas, A. K.

    2016-12-01

    A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  20. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  1. Characterization of High Density Concrete by Ultrasonic Goniometer

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismail; Noor Azreen Masenwat; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of ultrasonic goniometer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/ c) and types of fine aggregate. All samples were cured in water for 7 days. After 28 days of casting, the concrete cubes were then cut into small size of about 10 mm x 20 mm x 30 mm so that it can be fitted into goniometer specimen holder. From this measurement, longitudinal, shear and surface Rayleigh waves in the concrete can be determined. The measurement results are explained and discussed. (author)

  2. SLAM: a sodium-limestone concrete ablation model

    International Nuclear Information System (INIS)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions

  3. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  4. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  5. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  6. A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures

    Science.gov (United States)

    Lobo, Colin; Guthrie, William F.; Kacker, Raghu

    1995-01-01

    The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete. PMID:29151762

  7. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Maslehuddin, M.; Garwan, M.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.; Khateeb-ur-Rehman

    2010-01-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  8. A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures.

    Science.gov (United States)

    Lobo, Colin; Guthrie, William F; Kacker, Raghu

    1995-01-01

    The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete.

  9. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M.; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-03-15

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  10. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  11. The quality control for biological-shield heavy concrete construction of nuclear power project

    International Nuclear Information System (INIS)

    Sun Hongjun; Ma Xinchao

    2012-01-01

    The paper introduces the function and characteristics of biological protective heavy-concrete, and its main application scope and role in Fangjiashan nuclear power project. From the aspects of raw material selection, mixing ratio test, heavy concrete production, the paper discusses the main control points of heavy concrete construction process, points out the basic characteristics of heavy concrete construction, and put forward measures to prevent density non-uniformity during heavy concrete construction and to control slump during transportation. Results prove that reasonable construction process control can assure the engineering quality. (authors)

  12. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  13. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  14. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  15. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  16. The use of maturity method in estimating concrete strength

    International Nuclear Information System (INIS)

    Salama, A.E.; Abd El-Baky, S.M.; Ali, E.E.; Ghanem, G.M.

    2005-01-01

    Prediction of the early age strength of concrete is essential for modernized concrete for construction as well as for manufacturing of structural parts. Safe and economic scheduling of such critical operations as form removal and re shoring, application of post-tensioning or other mechanical treatment, and in process transportation and rapid delivery of products all should be based upon a good grasp of the strength development of the concrete in use. For many years, it has been proposed that the strength of concrete can be related to a simple mathematical function of time and temperature so that strength could be assessed by calculation without mechanical testing. Such functions are used to compute what is called the m aturity o f concrete, and the computed value is believed to obtain a correlation with the strength of concrete. With its simplicity and low cost, the application of maturity concept as in situ testing method has received wide attention and found its use in engineering practice. This research work investigates the use of M aturity method' in estimating the concrete strength. An experimental program is designed to estimate the concrete strength by using the maturity method. Using different concrete mixes, with available local materials. Ordinary Portland Cement, crushed stone, silica fume, fly ash and admixtures with different contents are used . All the specimens were exposed to different curing temperatures (10, 25 and 40 degree C), in order to get a simplified expression of maturity that fits in with the influence of temperature. Mix designs and charts obtained from this research can be used as guide information for estimating concrete strength by using the maturity method

  17. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  18. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  19. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  20. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  1. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  2. Effect of the type of mineral aggregate on the high-temperature creep of HTR-concrete

    International Nuclear Information System (INIS)

    Diederichs, U.; Becker, G.

    1989-01-01

    Within the scope of the research and development work for the prestressed concrete vessel of the HTR 500 High-Temperature Reactor mix design, manufacture as well as mechanical and thermal behavior of the concrete have been comprehensively studied. Of the concrete types analyzed, a basalt concrete showed extremely favorable high-temperature characteristics while a concrete with Rhine gravel was characterized by a good workability. These two types of concrete were subjected to numerous tests, whereby the testing procedures were strongly related to the anticipated combined stress, temperature and moisture conditions in the real structure

  3. Design of Normal Concrete Mixtures Using Workability-Dispersion-Cohesion Method

    OpenAIRE

    Qasrawi, Hisham

    2016-01-01

    The workability-dispersion-cohesion method is a new proposed method for the design of normal concrete mixes. The method uses special coefficients called workability-dispersion and workability-cohesion factors. These coefficients relate workability to mobility and stability of the concrete mix. The coefficients are obtained from special charts depending on mix requirements and aggregate properties. The method is practical because it covers various types of aggregates that may not be within sta...

  4. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  5. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  6. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  7. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  8. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    International Nuclear Information System (INIS)

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  9. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  10. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  11. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  12. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  13. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  14. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  15. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  16. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  17. Effect of Micro-Teaching Practices with Concrete Models on Pre-Service Mathematics Teachers' Self-Efficacy Beliefs about Using Concrete Models

    Science.gov (United States)

    Ünlü, Melihan

    2018-01-01

    The purpose of the current study was to investigate the effect of micro-teaching practices with concrete models on the pre-service teachers' self-efficacy beliefs about using concrete models and to determine the opinions of the pre-service teachers about this issue. In the current study, one of the mixed methods, the convergent design (embedded)…

  18. The effect on slurry water as a fresh water replacement in concrete properties

    Science.gov (United States)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  19. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  20. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  1. ADVANCEMENTS IN CONCRETE TECHNOLOGY

    OpenAIRE

    Shri Purvansh B. Shah; Shri Prakash D. Gohil; Shri Hiren J. Chavda; Shri Tejas D. Khediya

    2015-01-01

    Developing and maintaining world’s infrastructure to meet the future needs of industrialized and developing countries is necessary to economically grow and improve the quality of life. The quality and performance of concrete plays a key role for most of infrastructure including commercial, industrial, residential and military structures, dams, power plants. Concrete is the single largest manufactured material in the world and accounts for more than 6 billion metric tons of materials annual...

  2. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  3. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  4. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  5. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  6. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Durable concrete for a waste repository - Measurement of ionic ingress

    International Nuclear Information System (INIS)

    Feldman, R.F.; Beaudoin, J.J.; Philipose, K.E.

    1990-01-01

    A waste repository for the below ground disposal of low level radioactive waste is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for the required 500 year service life. A research program to design durable concrete and predict its service life is in progress. The degradation of the concrete depends to a large extent on the rate of ingress of corrosive agents. Penetration of chloride and sulfate ions are particularly relevant. Twenty mix formulations were developed to create various types and qualities of concrete, and to study their behavior in different site environmental conditions. A total of 1,000 concrete specimens are being exposed at 20C and 45C to 25 different combinations of the corrosive agents including CO 2 . Procedures to measure the ionic profiles and to determine the factors controlling diffusion of the ions in the various concretes have been developed. Results of selected concrete systems exposed to chloride and sulfate solutions for 1 year are presented and discussed in terms of pore structure and permeability parameters of the concrete

  8. FRP confined smart concrete/mortar

    Science.gov (United States)

    Xiao, Y.; Zhu, P. S.; Choi, K. G.; Wu, Y. T.; Huang, Z. Y.; Shan, B.

    2006-03-01

    In this study, fiber reinforced polymer (FRP) confined smart concrete/mortar sensors were invented and validated for significantly improved measurement range. Several trial mixes were made using cement mortar and micron-phase graphite powders at different mix proportions. Compressive loading tests were conducted on smart mortar cylinder specimens with or without FRP confinement. Two-probe method was used to detect the electrical resistance of the smart cement mortar specimens. Strong correlation was recognized between the stress and electric resistance of the smart mortar. The test results indicated that the FRP wrapping could significantly enlarge the range of such self-sensing property as a consequence of confinement.

  9. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  10. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...

  11. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  12. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  13. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  14. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  15. Concrete research using blended cements

    International Nuclear Information System (INIS)

    Butler, W.B.

    2001-01-01

    Concrete research increasingly involves the use of mixes containing one or more of the supplementary cementitious materials (SCMs), often in conjunction with chemical admixtures. The influence of materials is commonly evaluated on the basis of water/ cement or water/ binder ratio and SCM content as a percentage of total binder, with dosage level of chemical admixture varied to maintain workability. As a result, more than one variable is introduced at a time and the objectives of the research may not be achieved. The significance of water/ cement ratio and addition rates of admixtures are examined from a practical standpoint with suggestions for more appropriate means of evaluation of the influence of individual materials. Copyright (2001) The Australian Ceramic Society

  16. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    Özgür Çakır

    2015-08-01

    Full Text Available Several studies related to sustainable concrete construction have encouraged development of composite binders, involving Portland cement, industrial by-products, and concrete mixes with partial replacement of natural aggregate with recycled aggregate. In this paper, the effects of incorporating silica fume (SF in the concrete mix design to improve the quality of recycled aggregates in concrete are presented. Portland cement was replaced with SF at 0%, 5% and 10%. Specimens were manufactured by replacing natural aggregates with recycled aggregates. Two size fractions (4/12 mm and 8/22 mm as recycled aggregates were used and four series of concrete mixtures were produced. In all concrete mixtures, a constant water/binder ratio at 0.50 was used and concrete mixtures with a target initial slump of S4 class (16–21 cm were prepared. Concrete properties were evaluated by means of compressive strength, tensile splitting strength, water absorption and ultrasonic pulse velocity and it was found that, using 10% SF as a cement replacement for recycled aggregate concretes enhanced the mechanical and physical properties of concrete. At all the test ages the tensile splitting strength gain of the natural aggregate concrete mixture (NA with and without SF was higher than that of the recycled concrete mixtures. Continuous and significant improvement in the tensile splitting strength of recycled aggregate concretes incorporating SF was observed. Similar to compressive strength test results, concrete incorporating 10% SF and containing 4/12 mm fraction recycled aggregates showed better performance among recycled aggregate concretes.

  17. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  18. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  19. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications

    International Nuclear Information System (INIS)

    Cao, Vinh Duy; Pilehvar, Shima; Salas-Bringas, Carlos; Szczotok, Anna M.; Rodriguez, Juan F.; Carmona, Manuel; Al-Manasir, Nodar; Kjøniksen, Anna-Lena

    2017-01-01

    Highlights: • Microencapsulated phase change materials give high energy storage capacity concrete. • Microcapsule addition increases the porosity of concrete. • Thermal and mechanical properties are linked to the enhanced concrete porosity. • Agglomerated microcapsules have strong impact on the concrete properties. • Microcapsules caused geopolymer to become more energy efficient than Portland cement. - Abstract: Concretes with a high thermal energy storage capacity were fabricated by mixing microencapsulated phase change materials (MPCM) into Portland cement concrete (PCC) and geopolymer concrete (GPC). The effect of MPCM on thermal performance and compressive strength of PCC and GPC were investigated. It was found that the replacement of sand by MPCM resulted in lower thermal conductivity and higher thermal energy storage, while the specific heat capacity of concrete remained practically stable when the phase change material (PCM) was in the liquid or solid phase. Furthermore, the thermal conductivity of GPC as function of MPCM concentration was reduced at a higher rate than that of PCC. The power consumption needed to stabilize a simulated indoor temperature of 23 °C was reduced after the addition of MPCM. GPC exhibited better energy saving properties than PCC at the same conditions. A significant loss in compressive strength was observed due to the addition of MPCM to concrete. However, the compressive strength still satisfies the mechanical European regulation (EN 206-1, compressive strength class C20/25) for concrete applications. Finally, MPCM-concrete provided a good thermal stability after subjecting the samples to 100 thermal cycles at high heating/cooling rates.

  20. Neural correlates of concreteness in semantic categorization.

    Science.gov (United States)

    Pexman, Penny M; Hargreaves, Ian S; Edwards, Jodi D; Henry, Luke C; Goodyear, Bradley G

    2007-08-01

    In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255-287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223-250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577-660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.

  1. Improvement of Concrete Paving Blocks Properties by Mineral Additions

    Directory of Open Access Journals (Sweden)

    Aqeel Hatem Chkheiwer

    2017-03-01

    Full Text Available This research presents the results of experimental work on the various properties concrete paving blocks (CPB made with concrete containing different mineral additions.in this study, three types of mineral additions;Fly Ash (FA,Metakaolin (MK and Silica Fume (SF were used. Thirteen concretes mixes were cast at a water/binder ratio of 0.45 with 0, 5, 10,15and 20% cement replaced by either Fly ash,Metakaolin or Silica Fume. Theconcrete mixes were tested for slump, compressive strength, water absorption, and abrasion resistance.Metakaolin-contained concrete showed a better workability than fly ash and silica fume concrete. As the replacement level wasincreased, the 28-days compressive strength of the CPB containing MK increased similarly to that of the silica fume-containedCPB up to 20% replacement ratio. The replacement ratio of MK and SF from 5 to 20 % reduced water absorptionof CPB from5 to 19 than that of control mix. The increase in replacement ratio of MK andSF from 5 to 20 % leads to increasing abrasion resistance from 8 to 18% that of control mix

  2. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  3. Effects on concrete from borated water and boric compounds cast into the concrete

    International Nuclear Information System (INIS)

    Fagerlund, Goeran

    2010-06-01

    A study has been made of the effects on concrete of its exposure to external water containing boric acid, and the effects on concrete of boric compounds cast into the concrete during its manufacture. According to information in literature boric acid is a weak Lewis acid that has no effect on concrete. Reaction between calcium hydroxide existing in concrete and boric acid might occur at the concrete surface. The reaction product formed (calcium-metaboritehexahydrate) has lower solubility than calcium hydroxide itself. Therefore, the reaction is reasonably harmless. Accelerated and non-accelerated test methods exist by which quantitative information on the effect of boric acid can be obtained. The test principles are described. Boron-containing compounds might be mixed into concrete in order to increase its resistance to neutron radiation. Pure boron minerals, as well as boron-containing residual materials from processing of natural boron minerals, might be used. Concrete might be affected with regard to the following properties: - Workability of the fresh concrete; - Stiffening and hardening of the concrete; - Strength (compression, tension); - Deformation (E-modulus, creep); - Durability (chemical, steel corrosion. Information in literature indicates that the hardening process might be severely affected also when rather small amounts of certain boron-containing materials are used. The effect seems to be small, or none, however, if materials with low solubility are used. The effect on workability seems to be marginal. Test methods exist by which it is practical possible to develop acceptable concrete recipes. The effects on mechanical properties are not well clarified by research. However, effects seem to be small when boron materials with low solubility are used. In one study, in which part of the cement was replaced by a boron containing colemanite waste, it was found that the E-modulus was very much reduced. The significance of this result is unclear. The

  4. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  5. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  6. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  7. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    Science.gov (United States)

    Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng

    2015-01-01

    The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  8. Concrete manufactured with crushed asphalt as partial replacement of natural aggregates

    Directory of Open Access Journals (Sweden)

    L. Coppola

    2016-09-01

    Full Text Available The paper focuses on the reuse of crushed asphalt (GA as a partial replacement (up to 20% of natural aggregates for concrete manufacture. Addition of GA aggregates produced a positive effect on workability loss. The GA mixes, however, showed a significant tendency to bleed and segregate at the highest replacement percentage applied. GA led to a decrease of compressive strength in concrete (with respect to that of the reference concrete up to 50% due to the weakness of the cement paste / recycled aggregate interface. To compensate for this negative effect, a reduction of w/c for the GA concretes was necessary. A decrease of w/c allowed the GA concretes to show drying shrinkage values substantially similar to those of reference concrete with the same cement factor. The experimental results confirmed the possibility of partial substitution (max. 15% of natural aggregates with crushed asphalt for making concrete.

  9. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  10. Let’s Get Concrete!

    DEFF Research Database (Denmark)

    Jones, Candace; Boxenbaum, Eva

    whereas in the United States market and professional logics interacted: manufacturers cooperated to create standards for concrete and appealed to architects as consumers. Our findings also illuminate that concrete was legitimated initially by imitation of stone, but this strategy soon de......-legitimated not only concrete but also stone. Concrete was perceived as merely imitative and thus inauthentic. For concrete to become a legitimate and widely adopted material, architects had to theorize concrete as unique material with distinctive aesthetic possibilities, which led to new kinds of buildings and new...... architectural styles. Our study illuminates the key role that materials and aesthetics played within architects’ professional logic and shaped processes of institutional change....

  11. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  12. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  13. Concrete and prestressing process, container made with this concrete

    International Nuclear Information System (INIS)

    Gerard, M.

    1992-01-01

    Shape memory alloy fibers or heat shrinking fibers are encapsulated in a standard concrete. Prestressed concrete is obtained by heat treatment. Application is made to the fabrication of radioactive waste containers

  14. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  15. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  16. Production of a datolite-based heavy concrete for shielding nuclear reactors and megavoltage radiotherapy rooms

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M.A.; Baradaran-Ghahfarokhi, M.; Siavashpour, Z.; Farshadi, A.; Ghafoori, M.; Shahvar, A.

    2010-01-01

    Biological shielding of nuclear reactors has always been a great concern and decreasing the complexity and expense of these installations is of great interest. In this study, we used datolite and galena minerals for production of a high performance heavy concrete. Materials and Methods: Datolite and galena minerals which can be found in many parts of Iran were used in the concrete mix design. To measure the gamma radiation attenuation of the Datolite and galena concrete samples, they were exposed to both narrow and wide beams of gamma rays emitted from a cobalt-60 radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. To test the compression strengths, both types of concrete mixes (Datolite and galena and ordinary concrete) were investigated. Results: The concrete samples had a density of 4420-4650 kg/m 3 compared to that of ordinary concrete (2300-2500 kg/m 3 ) or barite high density concrete (up to 3500 kg/m 3 ). The measured half value layer thickness of the Datolite and galena concrete samples for cobalt-60 gamma rays was much less than that of ordinary concrete (2.56 cm compared to 6.0 cm). Furthermore, the galena concrete samples had a significantly higher compressive strength as well as 20% more neutron absorption. Conclusion: The Datolite and galena concrete samples showed good shielding/engineering properties in comparison with other reported samples made, using high-density materials other than depleted uranium. It is also more economic than the high-density concretes. Datolite and galena concrete may be a suitable option for shielding nuclear reactors and megavoltage radiotherapy rooms.

  17. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  18. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties

    Directory of Open Access Journals (Sweden)

    Omar M. Omar

    2012-12-01

    Full Text Available Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. Limestone waste is obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. Using quarry waste as a substitute of sand in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of river and mining sands. This paper reports the experimental study undertaken to investigate the influence of partial replacement of sand with limestone waste (LSW, with marble powder (M.P as an additive on the concrete properties. The replacement proportion of sand with limestone waste, 25%, 50%, and 75% were practiced in the concrete mixes except in the concrete mix. Besides, proportions of 5%, 10% and 15% marble powder were practiced in the concrete mixes. The effects of limestone waste as fine aggregate on several fresh and hardened properties of the concretes were investigated. The investigation included testing of compressive strength, indirect tensile strength, flexural strength, modulus of elasticity, and permeability. It was found that limestone waste as fine aggregate enhanced the slump test of the fresh concretes. But the unit weight concretes were not affected. However, the good performance was observed when limestone waste as fine aggregate was used in presence of marble powder.

  19. Effect of presaturation and seawater on strength and durability of lightweight concrete

    International Nuclear Information System (INIS)

    Haque, M.N.

    2009-01-01

    The internal curing is provided, usually, by the use of some proprietary fine aggregates which provide sufficient water from within to promote the ongoing hydration of cement and hence result in a relatively high performance concrete. Two concretes, one total lightweight concrete (TLWC) and the second sand lightweight concrete (SLWC) of 28 day cube strength of approximately 40 MPa (5800 psi) were designed. A total of six mixes were cast out of these two concretes, 4-TLWC's and 2-SLWC's. The variation in the mixes was due to moisture condition of the aggregates and the use of seawater in mixing and curing of the concretes. The effect of these variations on the cube compressive strength, water permeability, sulphate and chloride content, depth of carbonation and shrinkage of these six concretes was studied. The presaturation of the lightweight aggregates (LWA's used do not seem to have improved the compressive strength, and water permeability of these concretes. The drying shrinkage strains of the concrete using pre saturated aggregates decreased considerably. The application of seawater in making and curing these LWC's increased the compressive strength by about 15%. (author)

  20. Simulation of the behavior of pressurized underwater concrete

    Directory of Open Access Journals (Sweden)

    Ashraf Mohamed Heniegal

    2015-06-01

    Full Text Available Under-Water Concrete (UWC contains Anti-Washout Admixtures (AWA (0.0%, 0.2%, 0.3%, 0.4% and 0.5% by weight of cement with cement contents (400, 450, 500 and 550 kg/m3. All concrete mix contains silica fume and high-range water reducing (15% and 4% respectively by weight of cement. The fine to steel slag coarse aggregate was 1:1. The concrete mix was tested for slump, slump flow, compressive strength and washout resistance using two test methods based on different principles. The first method is the plunge test CRDC61 which is widely used in North America, and the second method is the pressurized air tube which has been manufactured for this research and developed to simulate the effect of water pressure on washout resistance of underwater mix. The results of compressive strength test were compared to concrete cast underwater with that cast in air. Test results indicated that the use of an AWA facilitates the production of UWC mix with the added benefit of lower washout resistance. New technique of simulating pressurized UWC is reliable for detecting UWC properties. Adding AWA (0.3–0.5% by weight of cement makes all mix acceptable according to Japanese Society of Civil Engineers.