WorldWideScience

Sample records for concrete masonry construction

  1. 75 FR 60480 - Concrete and Masonry Construction; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2010-09-30

    ...] Concrete and Masonry Construction; Extension of the Office of Management and Budget's (OMB) Approval of... requirements specified in the Standard on Concrete and Masonry Construction (29 CFR part 1926, subpart Q..., screens or pumps used for concrete and masonry construction) specified by paragraphs 1926.702(a)(2), (j)(1...

  2. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  3. Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns

    Directory of Open Access Journals (Sweden)

    A. P. Tramontin

    Full Text Available Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of "electrowelded wire mesh without steel angles" is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.

  4. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Adrian Page

    2012-12-01

    Full Text Available Masonry is a construction material which is widely used in Australia in a number of forms (fired clay, concrete, calcium silicate, natural stone, autoclaved aerated concrete and in a wide range of both loadbearing and non-loadbearing applications. As such, it serves as the primary structural element in structures such as 3-4 story “walk up” apartment buildings or low rise commercial structures, or as a veneer or infill in housing or high rise framed construction. Despite its current widespread use, for masonry to remain a viable construction material in the future, design and construction practices need to be flexible, able to adapt to change and be receptive to innovation. This applies not only to advances in materials technology and the development of new products and building systems, but also an effective response to changes in the regulatory framework which have an increasing emphasis on thermal and acoustic performance, seismic resistance and sustainable practices. In this context, an overview of the Australian past, present and possible future masonry scene is given.

  5. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  6. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  7. Laboratory Characterization of Gray Masonry Concrete

    National Research Council Canada - National Science Library

    Williams, Erin M; Akers, Stephen A; Reed, Paul A

    2007-01-01

    Personnel of the Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, conducted a laboratory investigation to characterize the strength and constitutive property behavior of a gray masonry concrete...

  8. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    Science.gov (United States)

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  10. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2016-01-01

    This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...

  11. Experimental determination of damping factors for walls of masonry and reinforced concrete

    International Nuclear Information System (INIS)

    Buttman, P.

    1983-01-01

    'Damping' is a fundamental parameter for the determination of the internal force with a given acceleration response spectrum when designing and dimensioning masonry and reinforced concrete walls for the loading case earthquake. The actual dampings of masonry and reinforced concrete walls are determined on a scale of 1:1 by means of a horizontal excitation at a chosen test setup. The test specimen have the dimensions b/h/d=100/200/11,5 cm and 24 cm. The horizontal and sinusoidal excitation of the test specimen is effected by a dynamic oscillating excitation with a maximum power of 20 kN. The evaluation of the measurements shows that the assumed damping values of 4% for the operating basis earthquake are realistic. In case of amplitudes corresponding to the loadings of the safe shutdown earthquake, however, dampings of 11% for reinforced concrete walls and of 24% for masonry walls were determined. This real damping behavior of reinforced concrete and masonry walls was documented by means of measurements, films and pictures. (orig.)

  12. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  13. SCIENTIFI SCHOOL FORMATION OF REINFORCED CONCRETE AND MASONRY STRUCTURES

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-10-01

    Full Text Available A brief history of development of the Department Reinforced Concrete and Masonry Constructions SHEE “Prydniprov’ska State Academy of Civil Engineering and Architecture” is shown on the basis of the organic unity of components of “education – science – industry”. The team achievements of the Department shows that the best traditions still has been living, deepening and expanding along with the positive changes taking place in the social and political and economic life of our country Ukraine that were laid out by past generations.

  14. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  15. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    International Nuclear Information System (INIS)

    Xiao Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang Qingyuan; Poon, Chi-Sun

    2011-01-01

    Highlights: → Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. → Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. → A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.

  16. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2017-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...

  17. Recycled construction debris as an aggregates. Production of concrete blocks

    OpenAIRE

    Sousa, J. G. G.; Bauer, E.; Sposto, R. M.

    2003-01-01

    This paper analyzes the use of recycled construction and demolition debris as aggregate for the construction of concrete blocks to be used in sealing masonry. Initial studies addressed the definition of parameters used in the mix of conventional materials (traditionally used in the production of concrete blocks), involving cylindrical test specimens (100x200 mm), molded with the help of a vibratory table. In addition to these definitions, and based on the mixes showing the best results, a new...

  18. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    Science.gov (United States)

    2008-05-27

    blocks were purchased from H. L. Munn Lumber Co., Ames, IA (masonry A) and Glen -Gary Corporation, Des Moines, IA (masonry B). One type of clay brick...approximately 1,100 lbs in total) was donated by an individual in Ames, IA (masonry C), and the other was purchased from Glen -Gary Corporation, Des...appeared to be clay brick, not concrete block, which is probably due to the fact that the clay bricks were a more brittle material than concrete blocks

  19. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  20. Masonry constructions mechanical models and numerical applications

    CERN Document Server

    Lucchesi, Massimiliano; Padovani, Cristina

    2008-01-01

    Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w

  1. Experimental Study on a Self-Centering Earthquake-Resistant Masonry Pier with a Structural Concrete Column

    Directory of Open Access Journals (Sweden)

    Lijun Niu

    2017-01-01

    Full Text Available This paper proposes a slotting construction strategy to avoid shear behavior of multistory masonry buildings. The aspect ratio of masonry piers increases via slotting between spandrels and piers, so that the limit state of piers under an earthquake may be altered from shear to rocking. Rocking piers with a structural concrete column (SCC form a self-centering earthquake-resistant system. The in-plane lateral rocking behavior of masonry piers subjected to an axial force is predicted, and an experimental study is conducted on two full-scale masonry piers with an SCC, which consist of a slotting pier and an original pier. Meanwhile, a comparison of the rocking modes of masonry piers with an SCC and without an SCC was conducted in the paper. Experimental verification indicates that the slotting strategy achieves a change of failure modes from shear to rocking, and this resistant system with an SCC incorporates the self-centering and high energy dissipation properties. For the slotting pier, a lateral story drift ratio of 2.5% and a high displacement ductility of approximately 9.7 are obtained in the test, although the lateral strength decreased by 22.3% after slotting. The predicted lateral strength of the rocking pier with an SCC has a margin of error of 5.3%.

  2. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  3. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  4. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical

  5. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    International Nuclear Information System (INIS)

    Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.

    2008-01-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria

  6. 75 FR 81663 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Concrete...

    Science.gov (United States)

    2010-12-28

    ... for OMB Review; Comment Request; Concrete and Masonry Construction Standard ACTION: Notice. SUMMARY... Administration (OSHA) sponsored information collection request (ICR) titled, ``Concrete and Masonry Construction...: Construction firms engaged in the erection of concrete formwork are required to post warning signs/barriers in...

  7. Comparison of a Wooden House and a Porous Concrete Masonry House

    Directory of Open Access Journals (Sweden)

    Ďurica Pavol

    2014-07-01

    Full Text Available This paper deals with an evaluation of an existing wooden panel house and its comparison with alternative material composition (porous concrete masonry house. The criteria for evaluation are the energy performance, size of the usable area, environmental impact and final costs.

  8. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.

  9. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    OpenAIRE

    Li, Weiwei; Liu, Weiqing; Wang, Shuguang; Du, Dongsheng

    2017-01-01

    The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification f...

  10. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  11. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Márcio R. S. Corrêa

    2012-12-01

    Full Text Available This paper presents an overview of the use of masonry in Brazil. Some historical remarks are presented showing how masonry was introduced and has been developed in the country. A brief on the Brazilian Universities is also reviewed, showing the extensive efforts made to improve the educational system and to insert Brazil into the international masonry research environment. Current materials are shown, focusing on the use of structural and non-structural masonry. The paper points out the development of Codes, considering the most important regulated characteristics of masonry in order to be used in Brazilian constructions. The building situation is addressed, stressing the large housing demands and how the masonry industry can help to partly solve the problem. Finally, present and future challenges are discussed, showing Brazil’s constructions needs, as an emerging country.

  12. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls

    International Nuclear Information System (INIS)

    Vanniamparambil, Prashanth Abraham; Carmi, Rami; Kontsos, Antonios; Bolhassani, Mohammad; Khan, Fuad; Bartoli, Ivan; Moon, Franklin L; Hamid, Ahmad

    2014-01-01

    This paper presents a data fusion approach based on digital image correlation (DIC) and acoustic emission (AE) to detect, monitor and quantify progressive damage development in reinforced concrete masonry walls (CMW) with varying types of reinforcements. CMW were tested to evaluate their structural behavior under cyclic loading. The combination of DIC with AE provided a framework for the cross-correlation of full field strain maps on the surface of CMW with volume-inspecting acoustic activity. AE allowed in situ monitoring of damage progression which was correlated with the DIC through quantification of strain concentrations and by tracking crack evolution, visually verified. The presented results further demonstrate the relationships between the onset and development of cracking with changes in energy dissipation at each loading cycle, measured principal strains and computed AE energy, providing a promising paradigm for structural health monitoring applications on full-scale concrete masonry buildings. (paper)

  13. Uncertainty in Seismic Capacity of Masonry Buildings

    Directory of Open Access Journals (Sweden)

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  14. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  15. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Masera, D; Bocca, P; Grazzini, A, E-mail: davide.masera@polito.it [Department of Structural and Geotechnical Engineering - Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2011-07-19

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  16. 29 CFR 1926.704 - Requirements for precast concrete.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...

  17. Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls

    International Nuclear Information System (INIS)

    Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio

    2008-01-01

    In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided

  18. Image-based method for monitoring of crack opening on masonry and concrete using Mobile Platform

    Directory of Open Access Journals (Sweden)

    A. P. Martins

    Full Text Available This paper proposes an automatic method based on the computing vision, implemented in a mobile platform, to inspect cracks in masonry and concrete. The developed algorithm for image processing performs this task from images of the cracks evolution. The contribution of this paper is the development of a mobile tool with quick response aiming to assist technicians in periodic visits when monitoring the crack opening in masonry and concrete. The obtained results show, successfully, the dimensional alterations of cracks detected by mobile phone in a faster and accurate way compared with the conventional measurement technique. Regardless the irregular shape of the cracks, the proposed method has the advantage of producing results statistically significant in measurement repetition by decreasing the subjectivity inherent to manual measurement technique.

  19. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN THE UNITED STATES

    OpenAIRE

    Richard E. Klingner

    2012-01-01

    In this paper, the process used to develop building codes in the United States of America (USA) is summarized, with emphasis on masonry. Masonry materials used in the USA are discussed. Types of masonry construction in the USA are reviewed, addressing historical as well as modern masonry. Current non-structural and structural applications of masonry in the USA are reviewed. Historical development of masonry codes in the USA is summarized, with emphasis on the current Masonry Standards Joi...

  20. Integrated and holistic suitability assessment of recycling options for masonry rubble

    Science.gov (United States)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical

  1. Masonry Procedures. Building Maintenance. Module V. Instructor's Guide.

    Science.gov (United States)

    Eck, Francis

    This curriculum guide, one of six modules keyed to the building maintenance competency profile developed by industry and education professionals, provides materials for a masonry procedures unit containing eight lessons. Lesson topics are masonry safety practices; set forms; mix concrete; patch and/or repair concrete; pour and finish concrete; mix…

  2. Lightweight concrete masonry units based on processed granulate of corn cob as aggregate

    Directory of Open Access Journals (Sweden)

    Faustino, J.

    2015-06-01

    Full Text Available A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU. Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.En este trabajo de investigación se evaluó la posible aplicación de granulado procesado de la mazorca de maiz como un árido ligero alternativo en el proceso de fabricación de unidades de mampostería de hormigón ligero. Con esta finalidad, se prepararon en una fábrica diversas unidades de mampostería no estructural con granulado procesado de la mazorca de maiz. Además, se fabricaran unidades de mampostería estándar de peso ligero basado en agregados de arcilla expandida. Este trabajo experimental permitió lograr un conjunto de resultados que sugieren que el producto de construcción propuesto presenta interesantes propiedades materiales en el contexto de la pared de mampostería. Por lo tanto, esta solución es prometedora tanto para aplicaciones interiores y exteriores. Esta conclusión es aún más relevante teniendo en cuenta que la mazorca de maíz es un producto de desecho agrícola.

  3. Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures

    International Nuclear Information System (INIS)

    Ingham, Jeremy P.

    2009-01-01

    The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick and mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.

  4. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN THE UNITED STATES

    Directory of Open Access Journals (Sweden)

    Richard E. Klingner

    2012-12-01

    Full Text Available In this paper, the process used to develop building codes in the United States of America (USA is summarized, with emphasis on masonry. Masonry materials used in the USA are discussed. Types of masonry construction in the USA are reviewed, addressing historical as well as modern masonry. Current non-structural and structural applications of masonry in the USA are reviewed. Historical development of masonry codes in the USA is summarized, with emphasis on the current Masonry Standards Joint Committee (MSJC Code and Specification. Future trends in that document are predicted. The paper closes with a list of challenges to the masonry industry, and a list of focused research topics intended to meet those challenges.

  5. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    Science.gov (United States)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  6. Recycling of waste spent catalyst in road construction and masonry blocks.

    Science.gov (United States)

    Taha, Ramzi; Al-Kamyani, Zahran; Al-Jabri, Khalifa; Baawain, Mahad; Al-Shamsi, Khalid

    2012-08-30

    Waste spent catalyst is generated in Oman as a result of the cracking process of petroleum oil in the Mina Al-Fahl and Sohar Refineries. The disposal of spent catalyst is of a major concern to oil refineries. Stabilized spent catalyst was evaluated for use in road construction as a whole replacement for crushed aggregates in the sub-base and base layers and as a partial replacement for Portland cement in masonry blocks manufacturing. Stabilization is necessary as the waste spent catalyst exists in a powder form and binders are needed to attain the necessary strength required to qualify its use in road construction. Raw spent catalyst was also blended with other virgin aggregates, as a sand or filler replacement, for use in road construction. Compaction, unconfined compressive strength and leaching tests were performed on the stabilized mixtures. For its use in masonry construction, blocks were tested for unconfined compressive strength at various curing periods. Results indicate that the spent catalyst has a promising potential for use in road construction and masonry blocks without causing any negative environmental impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. 29 CFR 1926.703 - Requirements for cast-in-place concrete.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for cast-in-place concrete. 1926.703 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.703 Requirements for cast-in-place concrete. (a) General requirements for formwork. (1...

  8. Components interaction in timber framed masonry structures subjected to lateral forces

    Directory of Open Access Journals (Sweden)

    Andreea DUTU

    2012-07-01

    Full Text Available Structures with timber framed masonry represent a special typology that is frequently found in Europe and other countries of the world. They are traditional buildings, non-engineered, which showed an unexpected redundancy during earthquakes where reinforced concrete buildings (improperly constructed collapsed. In the paper, aspects regarding the interaction between timber elements and masonry are mainly addressed, that were observed both in experimental studies, but also in the in situ seismic behavior of this type of structure during important earthquakes.

  9. APPLICATION OF MIKRODUR IN MASONRY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Makarenkova Yuliya Viktorovna

    2012-10-01

    Full Text Available The author describes the problem of production of the ultra lightweight masonry mortar and methods of its solution. Conditions of optimization of the masonry mortar structure are considered in the article. Presently, Microdur is widely used in construction and repair of subsurface structures, tunnels, oil and gas wells. The use of Mikrodur may substantially improve the properties of the masonry mortar (ρр = 941.17 kg/m3, = 11.00 MPa, av = 66.25 kN, compression = 26.50 MPa, ρрstone = 570.47 kg/m3, per unit compression = 46.45 PMa/kg·103, per unit = 19.28 PMa/kg·103, λ = 0.190 Wt/m°С. The thermal conductivity of both bearing and thermal insulation porous concrete blocks is equal to 0.18…0.21 Wt/m°С. Thus, the new envelope structure of homogeneous thermal conductivity has a value of thermotechnical homogeneity ratio = 0.98.

  10. Analysis and design of column reinforced masonry and concrete walls

    International Nuclear Information System (INIS)

    Doyle, J.M.; Roy, S.B.; Fang, S.J.

    1983-01-01

    Fundamental frequencies, maximum moments and maximum shear forces are determined as a function of the governing parameters, for several different boundary conditions. The quantities are obtained for uniform panels, for walls with openings typical of doorways and other penetrations, and for panels having a region of degraded stiffness. In addition to the internal forces and moment due to out-of-plane action, the stresses due to in-plane loading are also found. From the results curves are constructed which allow for easy computation of flexural frequency, and bending moments and shears due to dynamic loads normal to the wall. Furthermore, based on the studies of panels with geometric or material discontinuities, corrections to results for uniform panels are found which can be used if openings or weakened areas exist in the wall. Several conclusions are presented concerning effects on behavior due to varied column location, critical stiffness ratio for columns to be effective, and the effect of openings on overall behavior. A number of design recommendations are presented. While the motivation for the study came from the need to design masonry walls, the analysis results are applicable to solid concrete walls reinforced by vertical columns. (orig./HP)

  11. A seismic analysis for masonry constructions: The different schematization methods of masonry walls

    Science.gov (United States)

    Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo

    2017-11-01

    Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.

  12. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    Science.gov (United States)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  13. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  14. Shaking Table Tests Validating Two Strengthening Interventions on Masonry Buildings

    International Nuclear Information System (INIS)

    De Canio, Gerardo; Poggi, Massimo; Clemente, Paolo; Muscolino, Giuseppe; Palmeri, Alessandro

    2008-01-01

    Masonry buildings constitute quite often a precious cultural heritage for our cities. In order to future generations can enjoy this heritage, thence, effective projects of protection should be developed against all the anthropical and natural actions which may irreparably damage old masonry buildings. However, the strengthening interventions on these constructions have to respect their authenticity, without altering the original conception, not only functionally and aesthetically of course, but also statically. These issues are of central interests in the Messina area, where the seismic protection of new and existing constructions is a primary demand. It is well known, in fact, that the city of Messina lies in a highly seismic zone, and has been subjected to two destructive earthquakes in slightly more than one century, the 1783 Calabria earthquake and the more famous 1908 Messina-Reggio Calabria earthquake. It follows that the retrofitting projects on buildings which survived these two events should be designed with the aim to save the life of occupants operating with 'light' techniques, i.e. respecting the original structural scheme. On the other hand, recent earthquakes, and in particular the 1997 Umbria-Marche sequence, unequivocally demonstrated that some of the most popular retrofitting interventions adopted in the second half the last century are absolutely ineffective, or even unsafe. Over these years, in fact, a number of 'heavy' techniques proliferated, and therefore old masonry buildings suffered, among others, the substitution of existing timber slabs with more ponderous concrete slabs and/or the insertion of RC and steel members coupled with the original masonry elements (walls, arches, vaults). As a result, these buildings have been transformed by unwise engineers into hybrid structures, having a mixed behaviour (which frequently proved to be also unpredictable) between those of historic masonry and new members. Starting from these considerations, a

  15. Mechanical behavior of the reinforced concrete frame with masonry filling Comportement mécanique des portiques en béton armé avec remplissage en maçonnerie

    Directory of Open Access Journals (Sweden)

    Kettar Jalal

    2018-01-01

    The analysis of frames filled with masonry is very complex. This complexity is linked from one part to the difference in the nature of elements and its behavior that make up the masonry itself (brick and mortar and their interaction, and on the other part, for the large dispersion that characterizes the bricks as well as the execution's quality parameters which make it difficult to define reliable criteria for the masonry. The objective of this work is to experimentally highlight the influence of the hollow brick masonry filler, commonly used in Morocco, on reinforced concrete frames subject to lateral stresses, to deepen understanding the seismic behavior of the masonry structures by evaluating the structural performance of a specimen wall. These experimental results will be compared to those found by modeling prototypes, using SAP 2000 software, based on various approaches and models as well as other results deduced from the other researchers. The experimental study was carried out according to standard NF EN 1052-3 on two reinforced concrete frames, of dimensions (2m X 1.6m, the one with the masonry filling, and the other without filling in order to determine the initial characteristic resistance to the shearing of the masonry walls. The obtained results showed that a filling has a beneficial effect on rigidity which can be doubled compared to an empty frame. in the same way the lateral resistance. But this effect is much contrasted; it depends a lot on the characteristics essentially of the materials (bricks and concrete. This is the main reason, which justifies the divergence of the results deduced from the nine models that we used.

  16. Experimental study on the influence of the opening in brick-masonry wall to seismic performance of reinforced concrete frame structures

    Science.gov (United States)

    Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni

    2017-10-01

    Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of

  17. The influence of construction measurement and structure storey on seismic performance of masonry structure

    Science.gov (United States)

    Sun, Baitao; Zhao, Hexian; Yan, Peilei

    2017-08-01

    The damage of masonry structures in earthquakes is generally more severe than other structures. Through the analysis of two typical earthquake damage buildings in the Wenchuan earthquake in Xuankou middle school, we found that the number of storeys and the construction measures had great influence on the seismic performance of masonry structures. This paper takes a teachers’ dormitory in Xuankou middle school as an example, selected the structure arrangement and storey number as two independent variables to design working conditions. Finally we researched on the seismic performance difference of masonry structure under two variables by finite element analysis method.

  18. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  19. ASSESSMENT OF THE ASR EXPANSION OF CONCRETE MADE WITH RECYCLED CONCRETE AGGREGATES

    OpenAIRE

    Boehme, Luc; Joseph, Miquel

    2016-01-01

    The amount of construction and demolition waste is increasing all over the world. Most of this waste consists of concrete and masonry. These waste materials are very suitable to be recycled. After carrying out an advanced recycling procedure, it’s possible to produce highquality recycled aggregates. Until now, most of these aggregates are used in low grade application as in road foundations. In Flanders, where the market in road works is now almost saturated, using more recycled concrete aggr...

  20. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  1. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Directory of Open Access Journals (Sweden)

    Wanlin Cao

    2014-08-01

    Full Text Available Recycled concrete brick (RCB is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  2. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  3. The compressive strength of lignosulphonate stabilised extruded earth masonry units

    OpenAIRE

    Maskell, Daniel; Walker, Pete; Heath, Andrew

    2012-01-01

    Earthen (unfired clay) bricks offer several distinct advantages over conventional fired clay bricks and other high energy masonry units. Most notably there is significantly lower environmental impact, including carbon emissions during manufacture, than comparable products, with unfired clay bricks having an estimated 14% of the energy of fired bricks and 25% of concrete blocks. Earth construction is able to provide passive environmental controls; including the regulation of temperature and hu...

  4. Experimental Measurements of Prestressed Masonry with using Sliding Joint

    Directory of Open Access Journals (Sweden)

    Stara Marie

    2014-06-01

    Full Text Available Contribution deals with experimental measurements of deformations in the place exposed to local load caused by additional pre-stressing. The measurements are made at the masonry corner built in the laboratory equipment. The laboratory equipment was designed at Faculty of Civil Engineering VŠB-Technical University of Ostrava for measurement tri-axial stress-strain conditions in masonry. In this masonry corner two pre-stressing bars are placed. These bars are in different height and are anchored to the anchor plates, which transfer pre-stressing forces to the masonry. The specimen for laboratory testing is performed in the proportion to the reality of 1:1. In the bottom part masonry is inserted asphalt strip. It operates in the masonry like a sliding joint and reduces the shear stress at interface between concrete and masonry structures. The results are compared with the results of masonry without the use of sliding joints, including comment on the effect of sliding joints on the pre-stressing masonry structures.

  5. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    Science.gov (United States)

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-01-01

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality. PMID:28787906

  6. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2016-02-01

    Full Text Available In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP semi-interlocking masonry (SIM infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  7. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel.

    Science.gov (United States)

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-02-11

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  8. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    Science.gov (United States)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  9. Steam-cured stabilised soil blocks for masonry construction

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V. [Indian Inst. of Science, Bangalore (India). Dept. of Civil Engineering; Lokras, S.S. [Indian Inst. of Science, Bangalore (India). ASTRA

    1998-12-01

    Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used for masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner. (orig.)

  10. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  11. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  12. Climate Chamber Experiment-Based Thermal Analysis and Design Improvement of Traditional Huizhou Masonry Walls

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Supported by thousands of years of history, traditional Huizhou buildings have played a vital role, both functionally and culturally, as residential buildings in China. Masonry walls are one of the key building components of a Huizhou building; however, the traditional Huizhou masonry wall structure, predominantly a hollow brick structure, cannot meet the local building energy code requirements, and thus needs to be improved. Within this context, the present research measures the actual thermal performance of traditional Huizhou masonry walls for historical buildings and new-built buildings, which results in mean thermal transmittances of 1.892 W/m2·K and 2.821 W/m2·K, respectively, while the local building energy code requires a minimum thermal transmittance of 1.500 W/m2·K. In order to improve the thermal performance of traditional Huizhou masonry walls, four design scenarios for wall insulation are proposed and tested in a climate chamber: (1 hollow brick wall with inorganic interior insulation mortar, (2 solid brick wall with inorganic interior insulation mortar, (3 hollow brick wall with foamed concrete, and (4 hollow brick wall with foamed concrete plus inorganic interior insulation mortar. The experiment results indicate that, among the four proposed design scenarios, only scenario 4 can significantly improve the thermal performance of Huizhou masonry walls and meet the building energy code requirements, with a mean thermal transmittance of 1.175 W/m2·K. This research lays the foundation for improving the thermal performance of Huizhou masonry walls with new insulation and construction technology, thereby helping to improve the quality of life of Huizhou residents while respecting the cultural significance of the traditional Huizhou building.

  13. Behaviour and strength assessment of masonry prisms

    Directory of Open Access Journals (Sweden)

    Nassif Nazeer Thaickavil

    2018-06-01

    Full Text Available This is a case study presenting the cracking behavior and assessment of the compressive strength of masonry prisms. The compressive strength of masonry was determined by performing laboratory tests on 192 masonry prism specimens corresponding to 3 specimens each in 64 groups. The variables considered in the experimental program are type of brick, strength of masonry and height-to-thickness (h/t ratio of the prism specimen. Pressed earth bricks and burnt clay bricks were used for the preparation of masonry prisms. A mathematical model is also proposed for the estimation of compressive strength of masonry prisms by performing a statistical multiple regression analysis on 232 data sets, which includes 64 test data from the present study and 168 test data published in the literature. The model was developed based on the regression analysis of test data of prisms made of a variety of masonry units namely clay bricks, pressed earth bricks, concrete blocks, calcium silicate bricks, stone blocks, perforated bricks and soft mud bricks. The proposed model not only accounts for the wide ranges of compressive strengths of masonry unit and mortar, but also accounts for the influence of volume fractions of masonry unit and mortar in addition to the height-to-thickness ratio. The predicted compressive strength of prisms using the proposed model is compared with 14 models available in published literature. The predicted strength was found to be in good agreement with the corresponding experimental data. Keywords: Prism strength, Stack bonded masonry, Running bonded masonry, Masonry unit strength, Cracking

  14. Masonry calendar 1989. A handbook on masonry, wall construction materials, sound, thermal and moisture insulation. Mauerwerk-Kalender 1989. Taschenbuch fuer Mauerwerk, Wandbaustoffe, Schall-, Waerme- und Feuchtigkeitsschutz

    Energy Technology Data Exchange (ETDEWEB)

    Funk, P [ed.

    1989-01-01

    The 1989 Masonry Calendar comprises the following sections and contibutions: Harmonisation of technical rules for brickwork construction on a European scale; fundamentals for brickwork dimensioning according to DIN 1053, part 2; exemplary calculations for the dimensioning of brick walls under compressive and shearing loads according to DIN 1053, part 2; calculation aids for brickwork dimensioning according to DIN 1053, part 2; dimensioning tables for reinforced brickwork of rectangular cross section; characteristic data of brickwork, bricks, and mortar; thermal insulation of brickwork; moisture protection problems in brickwork construction; noise abatement in brickwork construction; novel materials and designs in brickwork construction; characteristic data for calculating the thermal conductivity of building materials; regulations on construction, bricks, binders; further construction materials, testing standards, constructional physics, further standards and technical regulations for brickwork construction, with supplements; DGfM codes; work scaffolding; dwelling on brickwork construction; experiments on the seismic response of brickwork; supporting strength of brick walls under simultaneous horizontal and vertical stress; masonry cost calculation in the framework of overall construction cost calculation; bibliography and important addresses. (BR).

  15. Seismic performance of masonry-infilled RC frames

    Directory of Open Access Journals (Sweden)

    Mircea Bârnaure

    2016-09-01

    Full Text Available The masonry infill of RC frames structures is generally considered as non-structural. The design of the concrete frames is often made by ignoring the influence of the masonry infill, which is only accounted for its mass. The experience on buildings submitted to earthquakes shows that masonry infill walls completely change the behaviour of bare frames due to increased initial stiffness and low deformability. The way in which masonry infills affect the RC frames members is difficult to predict, as different failure modes can occur either in the masonry or in the surrounding frame. In addition to local effects, the position of the masonry infills at different levels can lead to structural irregularity, with a strong influence on the global seismic response of the building. Less infilled stories, also called soft stories, have a particularly unfavourable behaviour under seismic loads, as frame members at these levels are more susceptible to failure. This paper analyses the differences in the behaviour of bare and infilled frames through numerical modelling. Nonlinear push-over analyses of infilled frames are carried out under in-plane vertical and lateral loading. The infill panels are modelled as equivalent single diagonal struts. Several force-displacements laws are considered for these diagonals.

  16. Experimental investigation of the seismic performance of the R/C frames with reinforced masonry infills

    Science.gov (United States)

    Tanjung, Jafril; Maidiawati, Nugroho, Fajar

    2017-10-01

    Intensive studies regarding the investigation of seismic performance of reinforced concrete (R/C) frames which are infilled with brick masonry walls have been carried out by several researchers within the last three-decades. According to authors' field and experimentally experiences conclude that the unreinforced brick masonry infills significantly contributes to increase the seismic performance of the R/C frame structure. Unfortunately, the presence of brick masonry infill walls causes several undesirable effects such as short column, soft-storey, torsion and out of plane collapse. In this study, a strengthening technique for the brick masonry infills were experimentally investigated to improve the seismic performance of the R/C frame structures. For this purpose, four experimental specimens have been prepared, i.e. one of bare R/C frame (BF), one of R/C frame infilled with unreinforced brick-masonry wall (IFUM) and two of R/C frames were infilled with reinforced brick-masonry wall (IFRM-1 and IFRM-2). The bare frame and R/C frame infilled with unreinforced brick-masonry wall represents the typical R/C buildings' construction in Indonesia assuming the brick-masonry wall as the non-structural elements. The brick-masonry wall infills in specimens IFRM-1 and IFRM-2 were strengthened by using embedded ϕ4 plain steel bar on their diagonal and center of brick-masonry wall, respectively. All specimens were laterally pushed-over. The lateral loading and its lateral displacement, failure mechanism and their crack pattern were recorded during experimental works. Comparison of the experimental results of these four specimens conclude that the strengthening of the brick-masonry infills wall gave the significantly increasing of the seismic performance of the R/C frame. The seismic performance was evaluated based on the lateral strength of the R/C specimen. The embedded plain steel bar on brick-masonry also reduces the diagonal crack on the brick-masonry wall. It seems that

  17. Nonlinear analysis techniques of block masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Hamid, A.A.; Harris, H.G.

    1986-01-01

    Concrete masonry walls have been used extensively in nuclear power plants as non-load bearing partitions serving as pipe supports, fire walls, radiation shielding barriers, and similar heavy construction separations. When subjected to earthquake loads, these walls should maintain their structural integrity. However, some of the walls do not meet design requirements based on working stress allowables. Consequently, utilities have used non-linear analysis techniques, such as the arching theory and the energy balance technique, to qualify such walls. This paper presents a critical review of the applicability of non-linear analysis techniques for both unreinforced and reinforced block masonry walls under seismic loading. These techniques are critically assessed in light of the performance of walls from limited available test data. It is concluded that additional test data are needed to justify the use of nonlinear analysis techniques to qualify block walls in nuclear power plants. (orig.)

  18. Construction Costs Assessment of Structural Systems for Low-Rise and Social Welfare Housing

    Directory of Open Access Journals (Sweden)

    Carrillo Julián

    2015-09-01

    Full Text Available A comparative analysis of the costs related to the construction of low-rise, low-cost and social welfare housing was carried out. The study included three of the most commonly used structural systems for low-rise housing in Latin America, such as the traditional system of confined masonry walls, concrete walls conventionally reinforced with welded-wire meshes and concrete walls reinforced with steel fiber. The cost comparison was carried out by budgets analysis, which were performed based on construction quantities, unit prices and particular items for each structural system. It was found in the study that, from an economic point of view, the systems of concrete walls reinforced with welded-wire meshes or steel fibers are more advantageous than confined masonry systems. In addition, the integral comparison of the three structural systems demonstrates that the industrialized system of steel fiber reinforced concrete walls allows obtaining greater advantages of cleaning and sustainability, faster construction, lower cost and a more attractive scenario for builders investing in such projects.

  19. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  20. Load-bearing masonry system adoption and performance: A case study of construction company in a developing country

    Science.gov (United States)

    Ramli, Nor Azlinda; Abdullah, Che Sobry; Nawi, Mohd Nasrun Mohd; Bahaudin, Ahmad Yusni

    2016-08-01

    This study addresses the factors that influence the adoption of load-bearing masonry (LBM) system. A case study of the load-bearing masonry (LBM) system adoption is conducted through an interview to explore the situation of the technology adoption in a construction company. The finding indicates the factors influence the adoption of LBM system for the construction company are: organizational resources, usefulness, less maintenance, reduce construction time and cost. From the findings, these factors consistent with previous literature. Furthermore, the performance of the company was measured by looking into the financial and non-financial aspects. The LBM system brings good performance as it increased the profits of the company, a good quality of product and attracts more demand from customers. Thus, these factors should be considered for the other companies that are interested in implementing the LBM system in their projects.

  1. STRUCTURAL VULNERABILITY ASSESSMENT OF MASONRY BUILDINGS IN TURKEY

    OpenAIRE

    KORKMAZ, Kasım Armagan; CARHOGLU, Asuman Isıl

    2011-01-01

    Turkey is located in an active seismic zone. Mid to high rise R/C building and low rise masonry buildings are very common construction type in Turkey. In recent earthquakes, lots of existing buildings got damage including masonry buildings. Masonry building history in Turkey goes long years back. For sure, it is an important structure type for Turkey. Therefore, earthquake behavior and structural vulnerability of masonry buildings are crucial issues for Turkey as a earthquake prone country. I...

  2. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale

    Directory of Open Access Journals (Sweden)

    A. Mebarki

    2012-05-01

    Full Text Available This paper deals with the failure risk of masonry constructions under the effect of floods. It is developed within a probabilistic framework, with loads and resistances considered as random variables. Two complementary approaches have been investigated for this purpose:

    – a global approach based on combined effects of several governing parameters with individual weighted contribution (material quality and geometry, presence and distance between columns, beams, openings, resistance of the soil and its slope. . .,
    – and a reliability method using the failure mechanism of masonry walls standing out-plane pressure.

    The evolution of the probability of failure of masonry constructions according to the flood water level is analysed.

    The analysis of different failure probability scenarios for masonry walls is conducted to calibrate the influence of each "vulnerability governing parameter" in the global approach that is widely used in risk assessment at the urban or regional scale.

    The global methodology is implemented in a GIS that provides the spatial distribution of damage risk for different flood scenarios. A real case is considered for the simulations, i.e. Cheffes sur Sarthe (France, for which the observed river discharge, the hydraulic load according to the Digital Terrain Model, and the structural resistance are considered as random variables. The damage probability values provided by both approaches are compared. Discussions are also developed about reduction and mitigation of the flood disaster at various scales (set of structures, city, region as well as resilience.

  3. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  4. Strengthening of Unreinforced Masonry Walls with Composite Materials

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available Unreinforced masonry (URM is considered one of the oldest construction materials being until the end of XIXth century, the basic material for: foundations, walls, columns, volts, staircases, floor joints, roofs, retaining walls, drainage channels, barrages, etc. Construction with URM elements posses a series of advantages such as: fire resistance, thermal an acoustic insulations between interior and outside spaces, humidity resistance. However the URM elements have some significant inconveniences such as: large self weight (heaviness causes cracks in the other elements of structures, reduced mechanical strengths in comparison with other traditional materials (steel and concrete, low tenacity, great manual labor consumptions, and vulnerability to earthquakes. Various factors cause deteriorations which must be overcome by strengthening solutions. Some strengthening solutions based on fiber reinforced polymers (FRP products applied directly on URM brick walls are presented in the paper.

  5. Quasi-static cyclic tests of two prefabricated, reinforced masonry walls

    OpenAIRE

    Braun, Bernard; Rupf, Michael; Beyer, Katrin; Dazio, Alessandro

    2010-01-01

    In the second half of the 20th century, the majority of residential buildings in Switzerland have been built with unreinforced brick masonry walls and reinforced concrete floors. Following a re-evaluation of the seismic hazard in Switzerland, a country of moderate seismicity, the seismic design spectra have increased in the last revision (2003) of the Swiss building code. As a consequence, it has become very difficult to justify the use of unreinforced masonry walls as sufficient seismic resi...

  6. Report on reuse of concrete and masonry in foreign countries; Concrete no recycle ni kansuru kaigai no doko

    Energy Technology Data Exchange (ETDEWEB)

    Yamato, T. [Fukuoka University, Fukuoka (Japan). Faculty of Engineering

    1997-07-01

    Referring to the report by RILEM in 1976, this paper introduces the status and guidelines on recycling concrete in foreign countries. In Flanders, Belgium, a sub-committee was established in 1990 under the auspices of Environment Agency and the Ministry of Construction. Researches and investigations have been carried out to prepare flexible guidelines so that reclaimed aggregates may be used in public constructions. The Belgian Road Research Center, the Belgian Building Research Institute and its subsidiaries are supporting several investigation and research projects. In England, about 10% of aggregates is estimated to have been made of wastes and recycled materials. The seventh revised edition of the expressway construction specifications in the concrete aggregate standard BS882 has approved for use as an aggregate for pavement concrete if quality of crushed concrete meets the quality and grain size standard of BS882. Additionally, this paper shows a list of specifications and standards for reclaimed aggregates made in the U.S.A., France, Germany and other countries. 18 refs., 3 tabs.

  7. Concreting organization during Chernobylsk NPP construction

    International Nuclear Information System (INIS)

    Lysyuk, R.I.; Kareva, A.P.

    1984-01-01

    Conreting organization during the Chernobylsk NPP construction is described. Processes of extra heavy concrete production and placement, which specific mass constitutes 4t/m 3 at the age of 28 days wiath metallic aggregates and 3.3-3.5 t/m 3 at the same age without aggregates, are considered in short. Basic characteristics of this concrete are presented. At the 4th power unit labour contents for construction works were a 1.5 times lower as compared to the 3rd power unit erection. This progress was achieved by round-the-clock operation of the concrete plant with the 800 m 3 /day output and also by utilization of special equipment for mechanized concrete placement: concrete pumps, automatic concrete mixer, manipulators and concrete pipelines

  8. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    Science.gov (United States)

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  9. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    OpenAIRE

    Soto, I. I.; Ramalho, M. A.; Izquierdo, O. S.

    2013-01-01

    Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a b...

  10. Rilem TC 203-RHM. Repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Maurenbrecher, P.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, M.

    2012-01-01

    Mortar has been in use for many thousands of years and is integral to most masonry construction. Its use is widespread in every culture where masonry is constructed. It is present in the majority of the global built cultural heritage, and is therefore a major consideration in building conservation.

  11. Characterizing the Material Properties of Dutch Unreinforced Masonry

    NARCIS (Netherlands)

    Jafari, S.; Rots, J.G.; Esposito, R.; Messali, F.

    2017-01-01

    In the northern part of the Netherlands, The recent seismic activities have raised concerns about the behavior of unreinforced masonry structures which were not designed and constructed to resist seismic loading. The first step towards assessment of seismic behavior of masonry structures is to

  12. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  13. Construction safety in DOE. Part 2, Students guide

    Energy Technology Data Exchange (ETDEWEB)

    Handwerk, E.C.

    1993-08-01

    This report is the second part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: floor and wall openings; cranes, derricks, hoists, elevators, and conveyors; motor vehicles, mechanized equipment, and marine operations; excavations; concrete and masonry construction; steel erection; underground construction, caisson, cofferdams, and compressed air; demolition; blasting and the use of explosives; power transmission and distribution; rollover protective structures, overhead protection; and ladders.

  14. Passive solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  15. Masonry. Teacher's Guide. Building Maintenance Units of Instruction.

    Science.gov (United States)

    Barnes, Bill

    This teaching guide on masonry building maintenance, one in a series of six publications designed for building maintenance instructors in Texas, is designed to give students an understanding of masonry construction. Introductory material provides teachers with information on use of the units of instruction and personalization and localization of…

  16. Analysis Of Masonry Infilled RC Frame Structures Under Lateral Loading

    Directory of Open Access Journals (Sweden)

    Barnaure Mircea

    2015-03-01

    Full Text Available Partition walls are often made of masonry in Romania. Although they are usually considered non-structural elements in the case of reinforced concrete framed structures, the infill panels contribute significantly to the seismic behaviour of the building. Their impact is difficult to assess, mainly because the interaction between the bounding frame and the infill is an intricate issue. This paper analyses the structural behaviour of a masonry infilled reinforced concrete frame system subjected to in - plane loading. Three numerical models are proposed and their results are compared in terms of stiffness and strength of the structure. The role of the openings in the infill panel on the behaviour is analysed and discussed. The effect of gaps between the frame and the infill on the structural behaviour is also investigated. Comparisons are made with the in-force Romanian and European regulations provisions.

  17. Recycled construction debris as an aggregates. Production of concrete blocks

    Directory of Open Access Journals (Sweden)

    Sousa, J. G. G.

    2003-12-01

    Full Text Available This paper analyzes the use of recycled construction and demolition debris as aggregate for the construction of concrete blocks to be used in sealing masonry. Initial studies addressed the definition of parameters used in the mix of conventional materials (traditionally used in the production of concrete blocks, involving cylindrical test specimens (100x200 mm, molded with the help of a vibratory table. In addition to these definitions, and based on the mixes showing the best results, a new granulometric range was established, against which the granulometry of the recycled aggregates was adjusted. After the initial studies, concrete blocks were molded with the following dimensions: 100x190x390 mm. Studies have determined the behavior of aggregates in relation to mold humidity specific mass, water absorption, and compression resistance in view of the percentage of recycled debris that composes the total aggregate. For the most part, results suggest that construction and demolition debris can potentially be used in the production of concrete blocks, as well as in other pre-molded artefacts.

    El objetivo de esta investigación es contribuir en la producción de bloques de hormigón para muros de albañilería mediante el aprovechamiento de áridos provenientes del reciclaje de residuos de la construcción civil. Los estudios preliminares tuvieron inicio con la definición de los parámetros de mezcla para los materiales convencionales (tradicionalmente utilizados en la construcción de bloques de hormigón, donde se emplearon probetas cilíndricas (100x200 mm, moldeadas con la ayuda de una mesa vibratoria. Cumplidas estas definiciones, se estableció un rango granulométrico a partir de las composiciones de mejores resultados, donde se buscó ajustar la granulometría de los áridos reciclados. Concluidos los estudios preliminares, se moldearon los bloques de hormigón con dimensiones (100x190x390 mm. Los estudios presentan como resultado el

  18. Utilization of crushed clay brick in concrete industry

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available A comprehensive experimental program regarding the use of recycled aggregates produced from demolition of brick buildings is presented. The brick wastes were crushed, sorted and classified into coarse and fine aggregates as well as powder (CBP. The first phase of the research focuses on the effect of incorporating recycled aggregates on physico-mechanical properties of paste, mortar and concrete. Non-traditional tests including X-ray diffraction (XRD, thermo-gravimetric analysis (TGA and micro-structural analysis (MSA were performed. The second phase of the program explores the effect of using recycled aggregates on properties of concrete masonry units. A total of 44 mixtures were utilized throughout the program. Results show cement paste when modified with 25% CBP achieves smaller pore size and lower weight loss under high temperature than reference paste. Furthermore, the use of recycled aggregates reduces the overall unit weight of concrete masonry units. Actually, modified concrete masonry units incorporating recycled aggregates achieve lower unit weight, higher thermal resistance and absorption rate than reference units. Although considerable strength reduction is noticeable by substitution, compressive strength levels meet the Egyptian specifications limitations. Critical replacement ratios are suggested to produce load bearing-concrete masonry units. Based on experimental evidences, it can be stated that the use of recycled aggregate and dust made of clay bricks is promising in many applications where the thermal resistance, cost and environmental aspects are imperative.

  19. Composition and leaching of construction and demolition waste: inorganic elements and organic compounds.

    Science.gov (United States)

    Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F

    2014-07-15

    Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background levels in urban environments. "Old" and "new" concrete samples indicated different PCB congener profiles and the presence of PCB even in new concrete suggested that background levels in raw materials may be an issue. Significant variability in total content of trace elements, even more pronounced for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Recycled construction and demolition concrete waste as aggregate for structural concrete

    Directory of Open Access Journals (Sweden)

    Ashraf M. Wagih

    2013-12-01

    Full Text Available In major Egyptian cities there is a surge in construction and demolition waste (CDW quantities causing an adverse effect on the environment. The use of such waste as recycled aggregate in concrete can be useful for both environmental and economical aspects in the construction industry. This study discusses the possibility to replace natural coarse aggregate (NA with recycled concrete aggregate (RCA in structural concrete. An investigation into the properties of RCA is made using crushing and grading of concrete rubble collected from different demolition sites and landfill locations around Cairo. Aggregates used in the study were: natural sand, dolomite and crushed concretes obtained from different sources. A total of 50 concrete mixes forming eight groups were cast. Groups were designed to study the effect of recycled coarse aggregates quality/content, cement dosage, use of superplasticizer and silica fume. Tests were carried out for: compressive strength, splitting strength and elastic modulus. The results showed that the concrete rubble could be transformed into useful recycled aggregate and used in concrete production with properties suitable for most structural concrete applications in Egypt. A significant reduction in the properties of recycled aggregate concrete (RAC made of 100% RCA was seen when compared to natural aggregate concrete (NAC, while the properties of RAC made of a blend of 75% NA and 25% RCA showed no significant change in concrete properties.

  1. A proposal for the maximum use of recycled concrete sand in masonry mortar design

    Directory of Open Access Journals (Sweden)

    Fernández-Ledesma, E.

    2016-03-01

    Full Text Available Natural sand mining from rivers and seashores is causing serious environmental problems in many parts of the world, whereas the fine fraction from recycling concrete waste is underutilized as a construction material. The aim of this paper is to determine the maximum replacement level of natural sand by recycled sand in the manufacturing of masonry mortar (M-10. For this purpose, five replacement levels were tested: 0%, 25%, 50%, 75% and 100% by volume. The mixes were made using cement CEM II/BL 32.5 N in a volumetric proportion of cement-to-aggregate of 1:5. A commercial admixture was used at a constant content. The amount of water was variable to achieve a consistency of 175±10 mm. The short- and long-term mortar properties were evaluated. The data were analyzed using a one-way ANOVA. In conclusion, a maximum percentage of 50% recycled concrete sand can be used in an indoor environment.La extracción de arena natural de ríos y costas está provocando graves problemas ambientales en muchas partes del mundo, mientras que la fracción fina de los áridos reciclados de residuos de hormigón está infrautilizada como material de construcción. El objetivo de este artículo es determinar el máximo porcentaje de sustitución de arena natural por arena reciclada en la fabricación de morteros M-10. Cinco niveles de sustitución en volumen fueron ensayados: 0%, 25%, 50%, 75% y 100%. Las mezclas fueron hechas con cemento CEM II/BL 32,5 N en una relación volumétrica cemento-árido de 1:5. Se utilizó un aditivo comercial a dosis constante. El agua se ajustó experimentalmente para conseguir una consistencia de 175±10 mm. Se evaluaron las propiedades de los morteros a corto y largo plazo. Los datos se analizaron mediante una ANOVA-simple. En conclusión, un porcentaje máximo del 50% de arena reciclada de hormigón puede usarse en interiores.

  2. Method of detecting construction faults in concrete pressure vessels

    International Nuclear Information System (INIS)

    Robertson, S.A.; Duhoux, M.; Dawance, G.; Carrie, C.; Morel, D.

    1976-01-01

    A major problem in the design and construction of concrete pressure vessels for nuclear power stations is the risk of excessive air leaks through the concrete itself, due to faulty construction. The 'sonic coring' method of non-destructive concrete testing has been used successfully in pile and diaphragm wall construction control for several years, and the potential use of this method to control the presence of faults in concrete pressure vessels is here described. (author)

  3. Study and application of construction technology of shielding concrete

    International Nuclear Information System (INIS)

    Wu Chongming; Ding Dexin; Chen Liangzhu; Zhao Jingfa; Li Shilong

    2008-01-01

    Process and techniques such as mixing,transportation and pouring have been studied. The construction technology for the shielding concrete with different densities has been summarized. The technology for the common concrete is quite different from that of shielding concrete, especially when its density is more than 4000 kg/m3. Application and practices have shown that different construction technologies shall be used for shielding concretes with different densities, and thus to ensure its uniformity and construction quality. (authors)

  4. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication

    International Nuclear Information System (INIS)

    Keum, Hohyun; Eisenhaure, Jeffrey D; Kim, Seok; Carlson, Andrew; Ning, Hailong; Mihi, Agustin; Braun, Paul V; Rogers, John A

    2012-01-01

    We present a micromanufacturing method for constructing microsystems, which we term ‘micro-masonry’ based on individual manipulation, influenced by strategies for deterministic materials assembly using advanced forms of transfer printing. Analogous to masonry in construction sites, micro-masonry consists of the preparation, manipulation, and binding of microscale units to assemble microcomponents and microsystems. In this paper, for the purpose of demonstration, we used microtipped elastomeric stamps as manipulators and built three dimensional silicon microstructures. Silicon units of varied shapes were fabricated in a suspended format on donors, retrieved, delivered, and placed on a target location on a receiver using microtipped stamps. Annealing of the assembled silicon units permanently bound them and completed the micro-masonry procedure. (paper)

  5. Failure Criterion for Brick Masonry: A Micro-Mechanics Approach

    Directory of Open Access Journals (Sweden)

    Kawa Marek

    2015-02-01

    Full Text Available The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.

  6. Living with earthquakes - development and usage of earthquake-resistant construction methods in European and Asian Antiquity

    Science.gov (United States)

    Kázmér, Miklós; Major, Balázs; Hariyadi, Agus; Pramumijoyo, Subagyo; Ditto Haryana, Yohanes

    2010-05-01

    Earthquakes are among the most horrible events of nature due to unexpected occurrence, for which no spiritual means are available for protection. The only way of preserving life and property is applying earthquake-resistant construction methods. Ancient Greek architects of public buildings applied steel clamps embedded in lead casing to hold together columns and masonry walls during frequent earthquakes in the Aegean region. Elastic steel provided strength, while plastic lead casing absorbed minor shifts of blocks without fracturing rigid stone. Romans invented concrete and built all sizes of buildings as a single, unflexible unit. Masonry surrounding and decorating concrete core of the wall did not bear load. Concrete resisted minor shaking, yielding only to forces higher than fracture limits. Roman building traditions survived the Dark Ages and 12th century Crusader castles erected in earthquake-prone Syria survive until today in reasonably good condition. Concrete and steel clamping persisted side-by-side in the Roman Empire. Concrete was used for cheap construction as compared to building of masonry. Applying lead-encased steel increased costs, and was avoided whenever possible. Columns of the various forums in Italian Pompeii mostly lack steel fittings despite situated in well-known earthquake-prone area. Whether frequent recurrence of earthquakes in the Naples region was known to inhabitants of Pompeii might be a matter of debate. Seemingly the shock of the AD 62 earthquake was not enough to apply well-known protective engineering methods throughout the reconstruction of the city before the AD 79 volcanic catastrophe. An independent engineering tradition developed on the island of Java (Indonesia). The mortar-less construction technique of 8-9th century Hindu masonry shrines around Yogyakarta would allow scattering of blocks during earthquakes. To prevent dilapidation an intricate mortise-and-tenon system was carved into adjacent faces of blocks. Only the

  7. Potential of Progressive Construction Systems in Slovakia

    Science.gov (United States)

    Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela

    2017-10-01

    Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.

  8. Performance of masonry structures during earthquake-2005 in kashmir

    International Nuclear Information System (INIS)

    Javed, M.

    2008-01-01

    The Kashmir earthquake of October 8th, 2005 was one of the deadliest earthquakes according to the number of fatalities in the history of indo-Pakistan subcontinent. More than 70,000 people were killed, mainly due to collapse of masonry buildings being widely used in Kashmir and Northern Pakistan. Major causes of damages/ collapse of masonry buildings were: poor quality of mortar, undressed stones, flexible roofs not bonded to supporting walls, lateral thrust from inclined roofs, unbraced parapet and gable walls, non-anchored infilled walls, wide openings without surrounding reinforcement, heavy roofs resting on poor quality masonry walls, etc. A critical review of damages to masonry structures is presented in the paper along with measures that need to be taken in future construction. In order to minimize the losses in masonry structures in case of future seismic activities, strategies such as loss assessment are discuss, a part of which has already been taken as a research project by the authors. (author)

  9. 7 CFR 2902.42 - Wood and concrete sealers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by...

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials

  11. Quality Control of Concrete Structure For APR1400 Construction

    International Nuclear Information System (INIS)

    Seo, Inseop; Song, Changhak; Kim, Duill

    2012-01-01

    Nuclear structure shall be constructed to protect internal facilities in the normal operation against external accidents such as the radiation shielding, earthquakes and to be leak-proof of radioactive substances to the external environment in case of loss of coolants. containment and auxiliary building of nuclear power plants are built in reinforced concrete structures to maintain these protection functions. Nuclear structures shall be designed to ensure soundness in operation since they are located on the waterfront where is easy do drain the cooling water and so deterioration and damage of concrete structures caused by seawater can occur. Durability is ensured for concrete structures of APR1400, a Korea standard NPP, in compliance with all safety requirements. In particular, owners perform quality control directly on the production and pouring of cast in place concrete for the concrete structure construction to make sure concrete structures established with quality homogeneity and durability. This report is to look into the quality control standard and management status of cast in place concrete for APR1400 construction

  12. Two innovative solutions based on fibre concrete blocks designed for building substructure

    Science.gov (United States)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  13. PROSPECTS OF ESTABLISHING EARTHQUAKE RESISTANT BUILDINGS FROM TUBE CONCRETE CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Abdujafar I. Akaev

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the research is to find optimal design solutions for the erection of buildings that will ensure their reliability and durability, compliance with environmental requirements, fire resistance and earthquake resistance. In this regard, the task is to determine the advantages and prospects of erecting earthquake resistant buildings from tube concrete constructions, since they are distinct in constructive, technological and economic efficiency when are used as vertical load-bearing struts of high-rise buildings. Method The technique for calculating the strength of normal sections of eccentrically-compressed tube concrete elements uses a nonlinear deformation model, taking into account the joint operation of the steel shell and the concrete core under the conditions of triaxial compression. Results In the article the review of the newest world experience of using tube concrete as vertical load-bearing structures for public facilities from the standpoint of earthquake resistant construction is given. The international practices of public facility construction ranging in height from 100 to 600 m with the use of tube concrete technology, including regions with dangerous natural and man-made conditions, have been studied. The structural, operational and technological advantages and disadvantages of tube concrete technology are analysed. Methods for calculating the strength of concrete tube elements in the case of central compression are considered: according to the so-called deformation theory, the state of total destruction of both concrete and tube fluidity attained at maximum pressure are indicated by the beginning of "tube flow on the longitudinal axis". The advantages and disadvantages of both methods are shown. Factors constraining the introduction and wider application of tube concrete constructions in Russia are considered. Conclusion While the advantages of concrete tube constructions in their extensive

  14. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Univ. of Minnesota, Minneapolis, MN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  15. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  16. Monomaterial ecological buildings, with Mopatel® and Ecopierra® concrete

    Directory of Open Access Journals (Sweden)

    Livia Miron

    2013-09-01

    Full Text Available This paper presents a case study performed on a pilot building from Gainesti, Suceava county. The constructive system used is unique in that it employs a monomaterial, namely ecological concrete of type MOPATEL® or ECOPIERRA®. These types of concrete, created by eng. Petrache Teleman, possess international patents and have received awards in Brussels, but they are not yet used in Romania. These materials can be used integrally to make all the constructive elements of a building – load-bearing elements (floors, beams, pillars, walls as well as the secondary elements of a partly finished building, such as screeds or non-load-bearing masonry. The constructive system also uses ecological mortars which integrally ensure the interior and exterior finishing. The final result is a building practically made from a single type of material, in which the effect of thermal bridges is reduced to a maximum. The MOPATEL and ECOPIERRA types of concrete have a mechanical resistance similar to regular concrete, but they also have superior thermal insulation qualities (between 0.09 and 0.28 W/mK, they are permeable to the transfer of water vapours from the interior to the exterior of the building, and, in certain compositions, they can also be considered waterproof.

  17. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  18. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  19. Innovative AE and NDT techniques for on-site measurement of concrete and masonry structures state-of-the-art report of the RILEM technical committee 239-MCM

    CERN Document Server

    2016-01-01

    This volume, in which on-site measurements of concrete and masonry structures by NDT techniques are comprehensively summarized, focuses on the visualization procedure of the results measured. The research and its outcomes presented in this book treat applications of NDT techniques to on-site measurements. These on-site measurements have been marginally successful as each technique requires a particular analysis. In this regard, visualization and imaging of results are in great demand for practitioners and engineers for inspection. The book will therefore be of great value to the field. .

  20. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment.

    Science.gov (United States)

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-06-13

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.

  1. Experimental and Numerical Analysis of the Compressive and Shear Behavior for a New Type of Self-Insulating Concrete Masonry System

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2016-08-01

    Full Text Available The developed study aimed at investigating the mechanical behavior of a new type of self-insulating concrete masonry unit (SCMU. A total of 12 full-grouted wall assemblages were prepared and tested for compression and shear strength. In addition, different axial stress ratios were used in shear tests. Furthermore, numerical models were developed to predict the behavior of grouted specimens using simplified micro-modeling technique. The mortar joints were modeled with zero thickness and their behavior was applied using the traction–separation model of the cohesive element. The experimental results revealed that the shear resistance increases as the level of precompression increases. A good agreement between the experimental results and numerical models was observed. It was concluded that the proposed models can be used to deduct the general behavior of grouted specimens.

  2. Innovations in nuclear concrete constructions

    International Nuclear Information System (INIS)

    Tatum, C.B.

    1983-01-01

    The technical requirements and scope of concrete work on nuclear projects present significant engineering and construction challenges. These demands represent the extremes in many areas of construction operations. In meeting these challenges, engineering and construction forces have developed several innovations which can be beneficially applied to other types of construction. Innovative approaches in the general categories of engineering scope, construction input to engineering, work planning, special methods and techniques, and satisfaction of quality assurance requirements are given in this paper. The transfer of this technology to other segments of the construction industry will improve overall performance by avoiding the problem areas encountered on nuclear projects

  3. Concrete and steel construction quality control and assurance

    CERN Document Server

    El-Reedy, Mohamed A

    2014-01-01

    Starting with the receipt of materials and continuing all the way through to the final completion of the construction phase, Concrete and Steel Construction: Quality Control and Assurance examines all the quality control and assurance methods involving reinforced concrete and steel structures. This book explores the proper ways to achieve high-quality construction projects, and also provides a strong theoretical and practical background. It introduces information on quality techniques and quality management, and covers the principles of quality control. The book presents all of the quality control and assurance protocols and non-destructive test methods necessary for concrete and steel construction projects, including steel materials, welding and mixing, and testing. It covers welding terminology and procedures, and discusses welding standards and procedures during the fabrication process, as well as the welding codes. It also considers the total quality management system based on ISO 9001, and utilizes numer...

  4. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  5. Preplaced aggregate concrete application on Fort St. Vrain PCRV construction

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1976-01-01

    Two distinct concreting methods were employed in the construction of the prestressed concrete reactor vessel (PCRV) of the Fort St. Vrain (FSV) Nuclear Generating Station, a 330 MW(e) High Temperature Gas-Cooled Reactor installation near Denver, Colorado. Preplaced aggregate concrete (PAC) techniques were employed in the PCRV bottom head and the core support floor; conventional job-mixed concrete was used in the PCRV sidewall and top head regions. This paper describes the successful application of PAC techniques utilized primarily in solving construction difficulties associated with confined and heavily congested regions of the PCRV. The PAC technique consists of placing coarse aggregate inside the forms, followed by injection of grout under pressure through embedded pipes to fill the interstices in the aggregate mass. Details of the PAC construction method including grout mix development, grouting equipment, grout pipe layout, grouting sequence, grout level monitoring, concrete temperature control, and pre-construction mockups are described. (author)

  6. Department of Energy Construction Safety Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  7. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  8. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  9. The quality control for biological-shield heavy concrete construction of nuclear power project

    International Nuclear Information System (INIS)

    Sun Hongjun; Ma Xinchao

    2012-01-01

    The paper introduces the function and characteristics of biological protective heavy-concrete, and its main application scope and role in Fangjiashan nuclear power project. From the aspects of raw material selection, mixing ratio test, heavy concrete production, the paper discusses the main control points of heavy concrete construction process, points out the basic characteristics of heavy concrete construction, and put forward measures to prevent density non-uniformity during heavy concrete construction and to control slump during transportation. Results prove that reasonable construction process control can assure the engineering quality. (authors)

  10. Analysis of Joist Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  11. Discussion on mass concrete construction of wind turbine generator foundation

    Science.gov (United States)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  12. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    Science.gov (United States)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  13. Determination of the numerical parameters of a continuous damage model for the structural analysis of clay brick masonry

    Directory of Open Access Journals (Sweden)

    Felipe Barbosa Mangueira

    2012-12-01

    Full Text Available Models based on the continuous damage theory present good responses in representing the nonlinear behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, damage theory is rarely employed in the analysis of masonry structures and numerical simulations are currently performed mostly by Finite Element Method formulations. A computational program was designed to determine the numerical parameters of a damage model of the physical properties of masonry components, solid clay brick and mortar. The model was formulated based on the composition of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The results were fed into the computational program based on the Boundary Element Method (BEM for the simulation of masonry walls, and two types of masonry were simulated. The results confirm the good performance of the model and the program based on the BEM.

  14. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  15. Sustainable construction: Composite use of tyres and ash in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R. [University of Glamorgan, Pontypridd (United Kingdom). Faculty of Advanced Technology

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  16. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  17. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  18. Construction of reactor vessel bottom of prestressed reinforced concrete

    International Nuclear Information System (INIS)

    Sitnikov, M.I.; Metel'skij, V.P.

    1980-01-01

    Methods are described for building reactor vessel bottoms of prestressed reinforced concrete during NPPs construction in Great Britain, France, Germany (F.R.) and the USA. Schematic of operations performed in succession is presented. Considered are different versions of one of the methods for concreting a space under a facing by forcing concrete through a hole in the facing. The method provides tight sticking of the facing to the reactor vessel bottom concrete

  19. Concrete Production Using Technogenical, Constructional and Domestic Waste

    Directory of Open Access Journals (Sweden)

    Marija Vaičienė

    2011-04-01

    Full Text Available The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures. Article in Lithuanian

  20. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  1. Study of the Arrangement Effect of Units on the Shear Strength Masonry Walls in Meso-Scale

    Directory of Open Access Journals (Sweden)

    M. Sepehrinia

    2016-12-01

    Full Text Available Masonry is one of the oldest building materials which have been used in most heritage structures and new construction. In this study by using a meso-scale finite element model, the behavior of masonry walls is investigated under monotonic loading by Abaqus software. The most important factor in determining the behavior of masonry structures is discontinuity joints which are interface between unit and mortar. In most previous studies cohesive element is used for modeling of interface element. But in this study, by ignoring cohesive elements that represents the interface element between unit and mortar in masonry structures, it can be seen that while reducing the computational requirements, the results are in good agreement with experimental studies. Another important factor in the behavior of masonry walls is the arrangement of masonry units. In this study the overlapping effect of rows of units on the shear strength and failure mode of masonry walls have been investigated. As a result, it was observed that by increasing overlap, shear resistance of masonry walls increased.

  2. Final Report: Self Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Electric Company, Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Electric Company, Cranberry Township, PA (United States)

    2016-07-29

    This report outlines the development of a self-consolidating concrete (also termed “self-compacting concrete” or SCC) so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The self-roughening concrete produced as part of this research was assessed in SC structures at three scales: small-scale shear-friction specimens, mid-scale beams tested in in-plane and out-of-plane bending, and a full-scale validation test using an SC module produced by Westinghouse as part of the Plant Vogtle expansion. The experiments show that the self-roughening concrete can produce a cold-joint surface of 0.25 inches (6 mm) without external vibration during concrete placement. The experiments and subsequent analysis show that the shear friction provisions of ACI 318-14, Section 22.9 can be used to assess the shear capacity of the cold-joints in SC modular construction, and that friction coefficient of 1.35 is appropriate for use with these provisions.

  3. Damage to historic brick masonry structures. Masonry damage diagnostic system and damage atlas for evaluation of deterioration

    NARCIS (Netherlands)

    Balen, K. van; Binda, L.; Hees, R.P.J. van; Franke, L.

    1996-01-01

    The aim of the research on brick masonry degradation supported by the D.G. XII is presented. The project is delivering the following: ► Damage Atlas of ancient brick masonry, a book with a description of the types of damage, and their possible causes, in ancient brick masonry structures; ► Masonry

  4. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    Science.gov (United States)

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  5. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Tam, Leona; Le, Khoa N.

    2010-01-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that 'increasing overall business competitiveness and strategic business opportunities' was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while 'rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations' was considered as the major benefit from Australian respondents. However, 'lack of clients' support', 'increase in management cost' and 'increase in documentation workload, such as working documents, procedures and tools' were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, 'inclusion of concrete recycling evaluation in tender appraisal' and 'defining clear legal evaluation of concrete recycling' were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  6. Refiring bricks at 540ºC : Hot masonry and magnetic separation close the brick recycling process

    NARCIS (Netherlands)

    Van Dijk, K; Hendriks, C.; Van der Graaf, A.

    2004-01-01

    For many decades, stony debris from building and demolition sites was reused as road building material. Until recently there was no need to look for other uses for this mixture of concrete and masonry rubble. However, now that our supplies of marl and gravel (two of the three ingredients of mortar

  7. Quality assurance and supervision of mass concrete construction under EPC mode

    International Nuclear Information System (INIS)

    Peng Hong

    2013-01-01

    Taking one typical general contraction project-Hainan Changjiang nuclear power project as an example, this paper introduces the mass concrete construction of nuclear island foundation of Unit 1 in its installation phase, elaborates how to conduct quality assurance and supervision for concrete production, construction, supervision and management, detects relevant weak points of quality and management in the mass concrete construction through quality assurance supervision, puts forward management requirements for the supervising organizations, accumulates useful experience on how to promote contractors to implement the contract in line with national laws, regulations and to improve the management in equipment installation, commissioning and acceptance. (authors)

  8. Horizontal impact testing of quarter scale flasks using masonry targets

    International Nuclear Information System (INIS)

    Tufton, E.P.S.

    1985-01-01

    The programme leading up to the Train Crash Demonstration included investigation of flask impacts, in horizontal motion, against masonry targets representing abutment structures. An outline is given of a series of eight tests, of which five are described in detail. All the tests used quarter-scale flasks, and the design and construction of the appropriate brick and stone masonry targets is described. A summary of results is given in terms of damage to the model flask compared with the more severe damage seen in regulatory drop tests. (author)

  9. Analysis of Joint Masonry Moisture Content Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States)

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  10. Study on Construction Technology of Municipal Road and Bridge Concrete

    Science.gov (United States)

    Tang, Fuyong

    2018-03-01

    With the continuous development of social economy and the accelerating process of urbanization, municipal road and bridge projects have also shown a trend of rapid development. Municipal road and bridge work can fully reflect the economic and cultural development level of cities and is also an important symbol of urban development. As a basic material of construction, concrete is widely used in engineering construction. This article will analyze the municipal road and bridge concrete construction technology, put forward corresponding measures.

  11. Empirical studies of flexural strength for dry-stack Interlocking masonry

    African Journals Online (AJOL)

    Tests were carried out to establish the flexural strength of dry-stack masonry under vertical and horizontal bending. Two formats of wallettes were tested. Format 1 made of specimens constructed span normal to bed joints, which were tested under vertical bending and Format 2 specimens constructed span parallel to bed ...

  12. The Significance of Coordination for Industrialised Building System (IBS Precast Concrete in Construction Industry

    Directory of Open Access Journals (Sweden)

    Fitri Othman Mohd Khairul

    2017-01-01

    Full Text Available IBS precast concrete is construction system which is meant to improve the conventional construction process. However IBS precast concrete projects are suffering from serious problems such as cost overrun, delays and less quality of the end product. The absence of coordination is perceived as the reason for this issue. The purpose of this paper is to review the significance of coordination for IBS precast concrete in the construction industry. It if found that the fragmentation which occurs in the construction industry requires continuity of coordination due to the construction activities are intertwined in nature. Coordination is designated to assist stakeholders in completing and complementing each other with the paramount focus of achieving the objective. Proper coordination is required in delivering the desired construction product at the ideal time, cost and quality. As for the findings, the significance of coordination for IBS precast concrete can be seen through the precast concrete construction phases which consist of planning; design; manufacturing; transportation and installation/construction. These phases are meant to complement construction process with the purpose to reduce issues of fragmentation and enhance IBS precast concrete project delivery.

  13. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees

    Science.gov (United States)

    Furtado, André; Rodrigues, Hugo; Arêde, António

    2015-06-01

    Recent earthquakes show that masonry infill walls should be taken into account during the design and assessment process of structures, since this type of non-structural elements increase the in-plane stiffness of the structure and consequently the natural period. An overview of the past researches conducted on the modelling of masonry infilled frame issues has been done, with discussion of past analytical investigations and different modelling approaches that many authors have proposed, including micro- and macro-modelling strategies. After this, the present work presents an improved numerical model, based on the Rodrigues et al. (J Earthq Eng 14:390-416, 2010) approach, for simulating the masonry infill walls behaviour in the computer program OpenSees. The main results of the in-plane calibration analyses obtained with one experimental test are presented and discussed. For last, two reinforced concrete regular buildings were studied and subjected to several ground motions, with and without infills' walls.

  14. Seismic Response of a Half-Scale Masonry Building with Flexible Diaphragms

    National Research Council Canada - National Science Library

    Sweeney, Steven C; Horney, Matthew A; Orton, Sarah L

    2005-01-01

    Unreinforced masonry (URM) buildings constructed on Army installations before the development of modern seismic codes may be susceptible to earthquake damage and therefore could benefit from seismic mitigation measures...

  15. Analyzing crack development pattern of masonry structure in seismic oscillation by digital photography

    Science.gov (United States)

    Zhang, Guojian; Yu, Chengxin; Ding, Xinhua

    2018-01-01

    In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.

  16. The foundation mass concrete construction technology of Hongyun Building B tower raft

    Science.gov (United States)

    Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying

    2017-08-01

    The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness and 2800mm beside side of the core tube. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing.

  17. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review

    Science.gov (United States)

    Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.

    2018-04-01

    Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.

  18. Iowa task report : US 18 concrete overlay construction under traffic.

    Science.gov (United States)

    2012-05-01

    The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways wh...

  19. Lake Robertson hydroelectric project. Construction of a roller compacted concrete dam

    Energy Technology Data Exchange (ETDEWEB)

    Labelle, M.; Robitaille, F. [Hydro-Quebec, Montreal, PQ (Canada)

    1995-12-31

    Construction of the Lake Robertson hydroelectric project on Quebec`s Lower North Shore was discussed in detail. The dam and powerhouse, located on the HaHa River, consists of a 134 m long concrete gravity dam, and a 21 MW powerhouse with two 69 kV transmission lines and four substations. The climate, terrain, and geography of the region, all of them characterized as severe, and the logistics of construction of the dam and power lines, aggravated by the isolation and severe conditions at the site, were described. The roller compacted concrete design and construction were noted, and justification for a concrete dam over an earth-fill dam was provided. Economics, properties, and composition of the roller compacted concrete (RCC) were examined, and control test results for the RCC concrete were provided. The use of RCC for the Lake Robertson development was described as successful in terms of the quality, watertightness, and completion time. The experience gained by the participants will make it possible to offer RCC as an alternative on various other projects. 2 figs.

  20. Behavior of Reinforced Hybrid Concrete Corbel-Column Connection with Vertical Construction Joint

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2017-03-01

    Full Text Available In this paper, shear behavior of reinforced hybrid concrete connection of corbel-column is experimentally investigated. Nine homogenous and hybrid concrete corbel-column connections subjected to vertical applied loads were constructed and tested within two test groups (A, B. The experimental program included the effect of several variables such as type of hybrid concrete;high strength concrete (HSC or steel fiber reinforced concrete (SFRC, monolithic casting of hybrid concrete connection, and presence of construction joint at the interface of corbel-column. Experimental results showed significant effects of concrete hybridization on the structural behavior of connection specimens such as: ultimate strength, cracking loads, cracking patterns, and failure modes. Hybridization process in group (A included hybrid connection of corbel-column with HSC or SFRC corbel instated of NSC. This process led to increase the capacity of connection by (26%, 38% and shear cracking loads by (20%, 120% respectively. Moreover, connections of hybrid concrete corbels cast monolithically improved the shear capacity of corbels by (19%, 42% for HSC or SFRC respectively. In group (B, presence of construction joint at connection region reduced the shear capacity of connectionsby (10% to 22% and cracking loads by (23%-62% compared with connections cast monolithically.

  1. Recycling the construction and demolition waste to produce polymer concrete

    Science.gov (United States)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  2. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  3. Engineering properties of scoria concrete as a construction material ...

    African Journals Online (AJOL)

    The weight and cost of plain concrete are part of the setbacks in its use for construction purposes especially in low-cost housing delivery. This paper reports the experimental results of samples of concrete produced from a mix combination of cement, fine aggregate (sand) and volcanic scoria as coarse aggregate. The scoria ...

  4. Experimental and analytical investigation of the lateral load response of confined masonry walls

    Directory of Open Access Journals (Sweden)

    Hussein Okail

    2016-04-01

    Full Text Available This paper investigates the behavior of confined masonry walls subjected to lateral loads. Six full-scale wall assembles, consisting of a clay masonry panel, two confining columns and a tie beam, were tested under a combination of vertical load and monotonic pushover up to failure. Wall panels had various configurations, namely, solid and perforated walls with window and door openings, variable longitudinal and transverse reinforcement ratios for the confining elements and different brick types, namely, cored clay and solid concrete masonry units. Key experimental results showed that the walls in general experienced a shear failure at the end of the lightly reinforced confining elements after the failure of the diagonal struts formed in the brick wall due to transversal diagonal tension. Stepped bed joint cracks formed in the masonry panel either diagonally or around the perforations. A numerical model was built using the finite element method and was validated in light of the experimental results. The model showed acceptable correlation and was used to conduct a thorough parametric study on various design configurations. The conducted parametric study involved the assessment of the load/displacement response for walls with different aspect ratios, axial load ratios, number of confining elements as well as the size and orientation of perforations. It was found that the strength of the bricks and the number of confining elements play a significant role in increasing the walls’ ultimate resistance and displacement ductility.

  5. Experimental assessment and numerical modeling of the nonlinear behavior of the masonry shear walls under in-plane cyclic loading considering the brickwork-setting effect

    Directory of Open Access Journals (Sweden)

    Amir Hossein Karimi

    2017-08-01

    Full Text Available In this article, the main purpose is nonlinear analysis of the cyclic behavior of the masonry shear walls including brickwork setting using finite element method. Three different brickwork-settings including running bond style, herringbone style and Zarbi style (herreh style were investigated. To this end, the walls (in dimension of 195×1500×1720 mm were tested in the laboratory and then were simulated using macro modeling method by Abaqus software, and their hysteretic curves was drawn. The concrete damaged plasticity criteria in the Abaqus software is a model used in this research.In this method, the main failure mechanisms of fracture are cracking in tension and crushing in compression. The macro modeling method was used for numerical assessment of the masonry walls. After numerical modeling and drawing hysteretic curves and contrasting them with laboratory results, it was proven that the concrete damaged plasticity model, which is behavioral model for simulating concrete material, can be used for modeling masonry materials under seismic loading. However, this model cannot be used to simulate pinching effect in hysteretic curve drawn from seismic loading. The envelope curve resulted from the numerical analysis of all three brickwork layouts had a good agreement with the results of the laboratory tests, but in Hysteretic curve of Herringbone style and Zarbi style the pinching effect did not match experimental results

  6. 'Concrete shell formwork' technology applied to the construction of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Fejes, A.

    1982-01-01

    The conventional formworking technology could not meet the unusual requirements needed in constructing the concrete walls of the nuclear power plant building. A new concrete shell formworking developed in the Soviet Union has been adapted to meet the criteria. Prefabricated concrete shells are mounted separately during construction on separated parts of the reinforcing structure. The steps of the construction process are described with the economic evaluation of this new construction technology. (R.P.)

  7. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  8. Final Report: Self-Consolidating Concrete Construction for Modular Units

    International Nuclear Information System (INIS)

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly; Petrovic, Bojan; Loreto, Giovanni; Van Wyk, Jurie; Canterero-Leal, Carlos

    2016-01-01

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed ''self-compacting concrete'' or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This ''self-roughening'' was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by

  9. Rapid construction of concrete pressure vessels

    International Nuclear Information System (INIS)

    Limbert, D.; Weatherseed, D.C.

    1989-01-01

    This paper opens with a general description of the concrete pressure vessel followed by a more detailed examination of the critical elements of the construction, including choice of methods and plant which were selected to ensure its rapid construction. The pressure vessel construction cannot be treated in isolation, because it is very closely linked with its surrounding structures - namely the reactor hall which surrounds it and the charge hall which tops it, as will be seen in the context of this paper. Rate of progress of construction is not entirely in the civil contractor's hands because so many of the operations affecting the civil works are of a mechanical nature, hence a very close liaison and understanding amongst all contractors concerned was of the utmost importance. (author)

  10. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    Science.gov (United States)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  11. Image-Based Delineation and Classification of Built Heritage Masonry

    Directory of Open Access Journals (Sweden)

    Noelia Oses

    2014-02-01

    Full Text Available Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.

  12. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  13. Construction of Kashiwazaki-Kariwa Nuclear Power Station Results of manufacturing concrete

    International Nuclear Information System (INIS)

    Morishita, Hideki; Tsuchiya, Yoshimasa; Eguchi, Kiyoshi; Hosaka, Hiroshi

    1998-01-01

    The construction of Kashiwazaki-Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc. was completed in July, 1997. Seven nuclear power plants generate about 8.2 million kW, and it is the largest nuclear power station in the world. In the construction, from May, 1980 to August, 1996, the concrete of 2.42 million m 3 for architecture and 1.04 million m 3 for civil engineering, 3.46 million m 3 in total, and the mortar for artificial rock bed of 430,000 m 3 were manufactured and placed. The results of manufacturing concrete from beginning to finish are shown. The specification of concrete was different for No. 1 plant, No. 2 and 5 plants, No. 3 and 4 plants and No. 6 and 7 plants. As to the mixing of concrete, the specification and the materials used are reported. The features of the facilities for manufacturing concrete are explained. The flowchart of the quality control of materials and concrete is shown. The material testing of cement and aggregate, the test of water quality and the material testing of admixtures were carried out. As for concrete, the weight of unit volume, slump, air quantity, concrete temperature, chloride content, strength and alkali reactivity were examined. (K.I.)

  14. Characterization of materials formed by rice husk for construction

    International Nuclear Information System (INIS)

    Portillo-Rodríguez, A M

    2013-01-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc

  15. Characterization of materials formed by rice husk for construction

    Science.gov (United States)

    Portillo-Rodríguez, A. M.

    2013-11-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.

  16. The use of waste materials for concrete production in construction applications

    Science.gov (United States)

    Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY

    2018-04-01

    To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.

  17. PROSPECTS FOR APPLICATION OF COMPLEX-MODIFIED SAND ASPHALT CONCRETE IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov

    2017-01-01

    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  18. The Significance of Coordination for Industrialised Building System (IBS) Precast Concrete in Construction Industry

    OpenAIRE

    Fitri Othman Mohd Khairul; Wan Muhammad Wan Mohd Nurdden; Abd Hadi Nurulhudaya; Azman Mohd Azrai

    2017-01-01

    IBS precast concrete is construction system which is meant to improve the conventional construction process. However IBS precast concrete projects are suffering from serious problems such as cost overrun, delays and less quality of the end product. The absence of coordination is perceived as the reason for this issue. The purpose of this paper is to review the significance of coordination for IBS precast concrete in the construction industry. It if found that the fragmentation which occurs in...

  19. Final Report: Self-Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Inc., Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Inc., Cranberry Township, PA (United States)

    2016-07-29

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to

  20. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  1. Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results

    Directory of Open Access Journals (Sweden)

    C. S. Barbosa

    Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.

  2. Restrained shrinkage of masonry walls

    NARCIS (Netherlands)

    Zijl, G.P.A.G. van; Rots, J.G.

    1998-01-01

    State of the art computational rnechanics, in combination with experimental programmes have a lot to offer in providing insight, characterization of total behaviour and predictive ability of structural masonry. Here numerical research towards rationalizing masonry wall movement joint positioning and

  3. Strengthening of Masonry Columns with BFRCM or with Steel Wires: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Marinella Fossetti

    2016-05-01

    Full Text Available Nowadays, innovative materials are more frequently adopted for strengthening historical constructions and masonry structures. The target of these techniques is to improve the structural efficiency with retrofitting methods while having a reduced aesthetical impact. In particular, the use of basalt fiber together with a cementitious matrix emerges as a new technique. This kind of fiber is obtained by basalt rock without other components, and consequently it could be considered a natural material, compatible with masonry. Another innovative technique for strengthening masonry columns consists of applying steel wires in the correspondence of mortar joints. Both techniques have been recently proposed and some aspects of their structural performances are still open. This paper presents the results of an experimental study on the compressive behavior of clay brick masonry columns reinforced either with Basalt Fiber–Reinforced Cementitious Matrix (BFRCM or with steel wire collaring. Uniaxial compressive tests were performed on eight retrofitted columns and four control specimens until failure. Two masonry grades were considered by varying the mix used for the mortar. Results are presented and discussed in terms of axial stress-strain curves, failure modes and crack patterns of tested specimens. Comparisons with unreinforced columns show the capability of these techniques in increasing ductility with limited strength enhancements.

  4. Assessment of leaching from Construction & Demolition Waste concrete

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas

    2012-01-01

    Construction and demolition waste features two very important properties when considering its management options: the large amounts, and the low environmental hazardousness. Therefore, concrete waste can be recycled relatively easily: most common end-of-life option is utilization as unbound...... approaches exist, often implying unrealistic or not relevant conditions if compared to real life utilization scenarios. A modified version of the CEN/TS 14405 column percolation test has been implemented on four crushed concrete samples, with the purpose of analysing the release of chromium, one...

  5. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  6. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  7. The use of nanomodified concrete in construction of high-rise buildings

    Science.gov (United States)

    Prokhorov, Sergei

    2018-03-01

    Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.

  8. Activity measurements of radon from construction materials.

    Science.gov (United States)

    Fior, L; Nicolosi Corrêa, J; Paschuk, S A; Denyak, V V; Schelin, H R; Soreanu Pecequilo, B R; Kappke, J

    2012-07-01

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Navy User’s Guide for Quality Assurance of New Concrete Construction

    Science.gov (United States)

    2012-06-01

    allowable concrete drying shrinkage for marine concrete in the U.S. Navy is 0.05%. does not predict some concrete properties and degradation mechanisms...service life modeling. A concrete mixture that meets the service life requirements using STADIUM® but fails the shrinkage tests is not acceptable for...TECHNICAL REPORT TR-NAVFAC ESC-CI-1215 A NAVY USER’S GUIDE FOR QUALITY ASSURANCE OF NEW CONCRETE CONSTRUCTION

  10. Development of Interlocking Masonry Bricks and its’ Structural Behaviour: A Review Paper

    Science.gov (United States)

    Al-Fakih, Amin; Mohammed, Bashar S.; Nuruddin, Fadhil; Nikbakht, Ehsan

    2018-04-01

    Conventional bricks are the most elementary building materials for houses construction. However, the rapid growth in today’s construction industry has obliged the civil engineers in searching for a new building technique that may result in even greater economy, more efficient and durable as an alternative for the conventional brick. Moreover, the high demands for having a speedy and less labour and cost building systems is one of the factor that cause the changes of the masonry conventional systems. These changes have led to improved constructability, performance, and cost as well. Several interlocking bricks has been developed and implemented in building constructions and a number of researches had studied the manufacturing of interlocking brick and its structural behaviour as load bearing and non-load bearing element. This technical paper aims to review the development of interlocking brick and its structural behaviour. In conclusion, the concept of interlocking system has been widely used as a replacement of the conventional system where it has been utilized either as load bearing or non-load bearing masonry system.

  11. Numerical Investigation of Masonry Strengthened with Composites

    Directory of Open Access Journals (Sweden)

    Giancarlo Ramaglia

    2018-03-01

    Full Text Available In this work, two main fiber strengthening systems typically applied in masonry structures have been investigated: composites made of basalt and hemp fibers, coupled with inorganic matrix. Starting from the experimental results on composites, the out-of-plane behavior of the strengthened masonry was assessed according to several numerical analyses. In a first step, the ultimate behavior was assessed in terms of P (axial load-M (bending moment domain (i.e., failure surface, changing several mechanical parameters. In order to assess the ductility capacity of the strengthened masonry elements, the P-M domain was estimated starting from the bending moment-curvature diagrams. Key information about the impact of several mechanical parameters on both the capacity and the ductility was considered. Furthermore, the numerical analyses allow the assessment of the efficiency of the strengthening system, changing the main mechanical properties. Basalt fibers had lower efficiency when applied to weak masonry. In this case, the elastic properties of the masonry did not influence the structural behavior under a no tension assumption for the masonry. Conversely, their impact became non-negligible, especially for higher values of the compressive strength of the masonry. The stress-strain curve used to model the composite impacted the flexural strength. Natural fibers provided similar outcomes, but a first difference regards the higher mechanical compatibility of the strengthening system with the substrate. In this case, the ultimate condition is due to the failure mode of the composite. The stress-strain curves used to model the strengthening system are crucial in the ductility estimation of the strengthened masonry. However, the behavior of the composite strongly influences the curvature ductility in the case of higher compressive strength for masonry. The numerical results discussed in this paper provide the base to develop normalized capacity models able to

  12. Critical Quality Source Diagnosis for Dam Concrete Construction Based on Quality Gain-loss Function

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2014-06-01

    Full Text Available In dam concrete construction process, it not only has quality loss arising from quality fluctuation, but also gains quality compensation effect due to the mutual cooperation and adaptation coupling between working procedures (WPs. The calculation and transmission complexity of the quality loss and quality compensation affect the quality management of dam concrete construction. As the quality compensation effect existing in the production practice cannot be described by Taguchi quality loss function, the concept of quality gain-loss function was presented in this paper, which was based on endowing the constant term in the expansion of Taylor series with physical meaning—quality compensation. Based on quality gain-loss function theory, a new quality gain-loss transmission model of dam concrete construction based on GERT network was constructed and its effective algorithm was designed. WP quality gain-loss and its impact on the final product were reasonably measured, and the critical quality routes and critical quality WPs were detected and diagnosed in dam concrete construction network. Summer temperature-controlled concrete construction in the third phase of Three Gorges Project (TGP was taken as an example to carry out the study, and the calculation results showed the validity and practicability of the presented model and algorithm.

  13. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  14. Behaviour of masonry structures during the Bhuj earthquake of ...

    Indian Academy of Sciences (India)

    A variety of masonry structures suffered damage during the recent Bhuj earthquake. Some of the traditional masonry structures had no earthquake resistant features and suffered considerable damage. This paper attempts to evaluate the behaviour of masonry structures based on the type of masonry used in places like Bhuj ...

  15. Chapter 5: Buildings (EERI Earthquake Reconnaissance Team Report: M7.8 Gorkha, Nepal Earthquake on April 25, 2015 and its Aftershocks)

    Science.gov (United States)

    Kaushik, Hemant; Bevington, John; Jaiswal, Kishor; Lizundia, Bret; Shrestha, Surya

    2016-01-01

    The most common building typologies in Nepal are reinforced concrete (RC) frame buildings with masonry infill walls, unreinforced masonry (URM) bearing wall buildings, and wood frame buildings (Figure 5-1). The RC frames with masonry infills are commonly constructed in urban and semi-urban areas. Most of these buildings are three to five stories high, and most privately owned buildings are non-engineered. High rise buildings (up to 17 stories high) are also found in Kathmandu, but their number is limited. Burnt clay bricks are widely used as masonry infill walls; external walls are generally one full brick thick (~ 230 mm), and internal walls are one half brick thick. URM bearing wall buildings are an obvious choice for the population in rural areas and the outskirts of cities, primarily to limit the material expenses. Such buildings are generally two to four stories high and constructed using burnt clay brick masonry or stone masonry with cement, lime, or mud mortar. In some of the older constructions, a different mortar known as Vajra (a mix of lime and brick dust) is also observed. These buildings have either wooden or reinforced concrete flooring. A hybrid type of construction also prevails in semi-urban and rural areas, where wood frames are used in the ground story front façade, and rest of the house is made of unreinforced masonry bearing walls. Wood frame houses (generally two to three stories high) are also observed in rural areas where the material for such construction is easily available.

  16. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    Science.gov (United States)

    Güney, D.; Aydin, E.; Öztürk, B.

    2015-07-01

    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  17. Timbered masonry for earthquake resistance in Europe

    OpenAIRE

    Dutu, A.; Gomes Ferreira, J.; Guerreiro, L.; Branco, F.; Gonçalves, A. M.

    2012-01-01

    Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their struc...

  18. Timbered masonry for earthquake resistance in Europe

    OpenAIRE

    Dutu, A.; Gomes Ferreira, J.; Guerreiro, L.; Branco, F.; Gonçalves, A. M.

    2012-01-01

    Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their str...

  19. Investigation of Hydraulic Binding Characteristics of Lime Based Mortars Used in Historical Masonry Structures

    Science.gov (United States)

    Binal, Adil

    2017-10-01

    In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.

  20. Ground Motion Characteristics of the 2015 Gorkha Earthquake, Survey of Damage to Stone Masonry Structures and Structural Field Tests

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2015-11-01

    Full Text Available On April 25, 2015, a M7.8 earthquake rattled central Nepal; ground motion recorded in Kantipath, Kathmandu, 76.86 km east of the epicenter suggested that the low frequency component was dominant. We consider data from eight aftershocks following the Gorkha earthquake and analyze ground motion characteristics; we found that most of the ground motion records are dominated by low frequencies for events with a moment magnitude greater than 6. The Gorkha earthquake devastated hundreds of thousands of structures. In the countryside, and especially in rural mountainous areas, most of the buildings that collapsed were stone masonry constructions. Detailed damage assessments of stone masonry buildings in Harmi Gorkha had done, with an epicentral distance of about 17 km. Structures were categorized as large, medium and small depending on their plinth area size and number of stories. Most of the structures in the area were damaged; interestingly, all ridge-line structures were heavily damaged. Moreover, Schmidt hammer tests were undertaken to determine the compressive strength of stone masonry, brick masonry with mud mortar for normal buildings and historical monuments. The compressive strengths of stone and brick masonry were found to be 12.38 and 18.75 MPa, respectively. Historical structures constructed with special bricks had a compressive strength of 29.50 MPa. Pullout tests were also conducted to determine the stone masonry-mud mortar bond strength. The cohesive strength of mud mortar and the coefficient of friction were determined.

  1. Rilem TC 203-RHM: Repair mortars for historic masonry. Requirements for repointing mortars for historic masonry

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Hughes, J.J.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, B.

    2012-01-01

    This paper gives a summary of functional and performance requirements for repointing mortars for historic masonry (design, execution and maintenance). Successful performance of repair and conservation of mortar in historic masonry requires more care with design and execution than with modern

  2. Construction safety program for the National Ignition Facility, Appendix A

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction

  3. Construction safety program for the National Ignition Facility, Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  4. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    International Nuclear Information System (INIS)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-01-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall

  5. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    Science.gov (United States)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-07-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards [1]. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards [1] seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

  6. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    Science.gov (United States)

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Fiber Reinfoced Polymer Used for Flooding Protection of Engineering Structures Made of RC and Brick Masonry

    Directory of Open Access Journals (Sweden)

    Gabriel Oprişan

    2008-01-01

    Full Text Available Urban and rural floods are becoming nowadays a frequent problem to be dealt with, by both the population and the authorities. Floods and flood related natural disasters act against the civil, industrial and agricultural structures by the hydrostatic and hydrodynamic pressures of water. A set of protective solutions based on Fiber Reinforced Polymer (FRP composite materials, for structural elements of buildings subjected to flood loadings, is proposed and analysed. These solutions are achieved by using the hand lay-up forming technique utilizing glass, carbon or aramid fibers fabrics pre-impregnated with thermosetting epoxy, polyester or vynilester resins. The application of these FRP composites is carried out on reinforced concrete columns and beams as well as on brick masonry works aiming to increase in the overall load bearing capacity, especially against horizontal loads. An improved protection against excessive humidity is also envisaged. The Finite Elements Method based LUSAS software was used to simulate a partially flooded structure. The numerical modeling was carried out in both the un-strengthened and strengthened conditions of the structure in order to assess the increasing in load and deformation capacities of the structural elements. Volumetric finite elements were used for modeling the concrete and masonry members.

  8. Numerical Models for the Assessment of Historical Masonry Structures and Materials, Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Stefano Invernizzi

    2016-04-01

    Full Text Available The paper reviews some recent numerical applications for the interpretation and exploitation of acoustic emission (AE monitoring results obtained from historical masonry structures and materials. Among possible numerical techniques, the finite element method and the distinct method are considered. The analyzed numerical models cover the entire scale range, from microstructure and meso-structure, up to full-size real structures. The micro-modeling includes heterogeneous concrete-like materials, but mainly focuses on the masonry texture meso-structure, where each brick and mortar joint is modeled singularly. The full-size models consider the different typology of historical structures such as masonry towers, cathedrals and chapels. The main difficulties and advantages of the different numerical approaches, depending on the problem typology and scale, are critically analyzed. The main insight we can achieve from micro and meso numerical modeling concerns the scaling of AE as a function of volume and time, since it is also able to simulate the b-value temporal evolution as the damage spread into the structure. The finite element modeling of the whole structure provides useful hints for the optimal placement of the AE sensors, while the combination of AE monitoring results is crucial for a reliable assessment of structural safety.

  9. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  10. Fine-grain concrete from mining waste for monolithic construction

    Science.gov (United States)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  11. Structural damages of L'Aquila (Italy earthquake

    Directory of Open Access Journals (Sweden)

    H. Kaplan

    2010-03-01

    Full Text Available On 6 April 2009 an earthquake of magnitude 6.3 occurred in L'Aquila city, Italy. In the city center and surrounding villages many masonry and reinforced concrete (RC buildings were heavily damaged or collapsed. After the earthquake, the inspection carried out in the region provided relevant results concerning the quality of the materials, method of construction and the performance of the structures. The region was initially inhabited in the 13th century and has many historic structures. The main structural materials are unreinforced masonry (URM composed of rubble stone, brick, and hollow clay tile. Masonry units suffered the worst damage. Wood flooring systems and corrugated steel roofs are common in URM buildings. Moreover, unconfined gable walls, excessive wall thicknesses without connection with each other are among the most common deficiencies of poorly constructed masonry structures. These walls caused an increase in earthquake loads. The quality of the materials and the construction were not in accordance with the standards. On the other hand, several modern, non-ductile concrete frame buildings have collapsed. Poor concrete quality and poor reinforcement detailing caused damage in reinforced concrete structures. Furthermore, many structural deficiencies such as non-ductile detailing, strong beams-weak columns and were commonly observed. In this paper, reasons why the buildings were damaged in the 6 April 2009 earthquake in L'Aquila, Italy are given. Some suggestions are made to prevent such disasters in the future.

  12. Study of the brickwork masonry cracking with a cohesive fracture model

    Directory of Open Access Journals (Sweden)

    Reyes, E.

    2011-09-01

    Full Text Available This paper presents a numerical procedure to simulate the cracking process of the brickwork masonry under tensile/shear loading. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. The numerical procedure includes two steps: 1 calculation of the crack path with a linear elastic fracture model, 2 after the crack path is obtained, an interface finite element (using the cohesive fracture model is incorporated into the trajectory. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed mode fracture records for different orientations of the brick layers on masonry panels.

    Este artículo presenta un modelo de cálculo que permite simular el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. El modelo extiende el modelo cohesivo formulado por los autores para hormigón, considerando la anisotropía del material. El procedimiento de cálculo consta de dos fases: 1 obtención de la trayectoria de grieta mediante un cálculo elástico lineal, 2 incorporación del modelo cohesivo en la misma mediante elementos de intercara. El modelo se ha implementado en un programa de elementos finitos comercial con una subrutina de usuario y se ha contrastado con los resultados experimentales de los ensayos a escala. Las propiedades mecánicas de la fábrica, en especial las de fractura, se miden con ensayos de caracterización en dos direcciones. Éstas se incorporan al modelo de cálculo para simular los ensayos de fractura en modo mixto, prediciendo los resultados adecuadamente para distintas orientaciones de los tendeles.

  13. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ..., girders, and similar structural supports shall be cleared of all loose material as the masonry demolition... 29 Labor 8 2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854....854 Removal of walls, masonry sections, and chimneys. (a) Masonry walls, or other sections of masonry...

  14. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  15. Masonry Columns Confined by Steel Fiber Composite Wraps

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2011-01-01

    Full Text Available The application of steel fiber reinforced polymer (SRP as a means of increasing the capacity of masonry columns is investigated in this study. The behavior of 23 solid-brick specimens that are externally wrapped by SRP sheets in low volumetric ratios is presented. The specimens are subjected to axial monotonic load until failure occurs. Two widely used types of masonry columns of differing square cross-sections were tested in compression (square and octagonal cross-sections. It is concluded that SRP-confined masonry behaves very much like fiber reinforced polymers (FRP-confined masonry. Confinement increases both the load-carrying capacity and the deformability of masonry almost linearly with average confining stress. A comparative analysis between experimental and theoretical values computed in compliance with the Italian Council of Research (CNR was also developed.

  16. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  17. Timbered masonry for earthquake resistance in Europe

    Directory of Open Access Journals (Sweden)

    Dutu, A.

    2012-12-01

    Full Text Available Europe is a continent that is subject to significant seismic activity. Thus, the buildings’ seismic behaviour must be analysed, including not only the new structures, designed under more rigorous codes, but also older ones. This article examines a traditional type of building that uses timber frame/masonry, which is found in Portugal, Turkey, France, England, Greece, Romania, Italy, Spain, Germany and Scandinavia. Although the structures differ in terms of construction details, their structural system is basically the same: the wooden structural system bears mainly the horizontal loads while the masonry supports the gravity loads. The study includes a brief report on the seismicity of each country where this traditional type of building made of timbered framed masonry is found, together with the description of these buildings’ constructive systems.

    Europa es un continente que está sujeto a una significativa actividad sísmica. Por esta razón, se debe analizar el comportamiento sísmico, no sólo de las nuevas estructuras, diseñadas sobre la base de códigos más exigentes, sino también de los diversos tipos de estructuras antiguas. En este artículo se analizan las estructuras constituidas por mampostería y madera, que se pueden encontrar en Portugal, Turquía, Francia, Inglaterra, Grecia, Rumania, Italia, España, Alemania y Escandinavia. Aunque estas estructuras presentan diferencias en cuanto a detalles constructivos, su sistema estructural es idéntico: el sistema estructural de madera absorbe principalmente las cargas horizontales, mientras que la mampostería garantiza la resistencia a la acción de la gravedad. El estudio presentado incluye un breve informe acerca de la sismicidad de los países en que existe el tipo de construcción mencionado, conjuntamente con la descripción de los sistemas constructivos específicos de cada país.

  18. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    International Nuclear Information System (INIS)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-01-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed

  19. Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Fonti, Roberta, E-mail: roberta.fonti@tum.de; Barthel, Rainer, E-mail: r.barthel@lrz.tu-muenchen.de [TUM University, Chair of Structural Design, Arcisstraße 21, 80333 Munich (Germany); Formisano, Antonio, E-mail: antoform@unina.it [University of Naples “Federico II”, DIST Department, P.le V. Tecchio, 80, 80125 Naples (Italy); Borri, Antonio, E-mail: antonio.borri@unipg.it [University of Perugia, Department of Engineering, Via G. Duranti 95, 06125 Perugia (Italy); Candela, Michele, E-mail: ing.mcandela@libero.it [University of Reggio Calabria, PAU Department, Salita Melissari 1, 89124 Reggio Calabria (Italy)

    2015-12-31

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.

  20. Rubble masonry response under cyclic actions: The experience of L'Aquila city (Italy)

    Science.gov (United States)

    Fonti, Roberta; Barthel, Rainer; Formisano, Antonio; Borri, Antonio; Candela, Michele

    2015-12-01

    Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local response of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different "modes of damage" of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L'Aquila district is discussed.

  1. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    International Nuclear Information System (INIS)

    Ebrahimia, Mahsa; Suha, Kune Y.; Eghbalic, Rahman; Jahan, Farzaneh Asadi malek

    2012-01-01

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran

  2. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  3. Development of construction materials like concrete from lunar soils without water

    Science.gov (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  4. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  5. The professional orientation to the masonry specialty: a system of activities

    Directory of Open Access Journals (Sweden)

    Jóse Andrés Gómez Torres

    2018-03-01

    Full Text Available The specialty Masonry in Technical and Vocational Education is of great importance given the mission that has to train workers who have to use the most efficient and updated techniques and technologies for the construction of buildings and other construction works. In the pedagogical practice manifested a contradiction expressed in the need to raise the quality of the professional training of the workers in the specialty Masonry, however, there were inadequacies in the work of professional guidance with students who attend the first year in the Polytechnical center "Leonides Blanco", reflected in the insufficient inclination towards the study profile, which led to the failure of a percentage of students. The objective of the work was to elaborate a system of activities that perfected the process of professional orientation towards the specialty Albañilería the first year at the "Leonides Blanco" PolytechnicCenter. In the investigative process, the dialectical-materialist method was assumed as the general method, which supported the theoretical methods, the application of statistical techniques that made possible the study and systematization of the theoretical and methodological foundations of the process under investigation. The practical significance is expressed in a system of activities that contributed to the professional orientation of the first-year students of the specialty Masonry, which guarantees a relevant initial training process, depending on the demands of the professional model and the needs educational and social

  6. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  7. Fulltext PDF

    Indian Academy of Sciences (India)

    and often made of brittle material like masonry. They are poor in carrying horizontal earthquake inertia forces along the direction of their thickness. Failures of masonry walls have been observed in many earthquakes in the past (e.g., Figure Sa). Similarly, poorly designed and constructed reinforced concrete columns.

  8. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    Science.gov (United States)

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  9. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    International Nuclear Information System (INIS)

    Güney, D; Aydin, E; Öztürk, B

    2015-01-01

    On March 8 th , 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23 rd , 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9 th , 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings. (paper)

  10. Mechanical Behaviour of the Wood Masonry

    Directory of Open Access Journals (Sweden)

    Fazia FOUCHAL

    2011-09-01

    Full Text Available In this paper we study the walls wood masonry behaviour. First, we propose a regulatory validation of the walls wood masonry behaviour subjected to vertical and horizontal loads according to Eurocode 5. Then we present the numerical application on the wall wood supported two floors level.

  11. Corrosion of the reinforcing steel in the inhibited sawdust concrete construction

    International Nuclear Information System (INIS)

    Kobuliev, Z.V.

    2005-01-01

    In the article described the way of protection of the reinforcing steel in sawdust concrete construction by adding to inhibited sawdust concrete mixture containing nitrate-nitride calcium chloride (NNCC) and (NH 4 ) 2 Cr 2 O 7 , also NaNO 2 + NaNO 3 +NH 4 Cl and CaCl 2 +(NH 4 ) 2 +Cr 2 . There is determined, that the use of these additives increase strength properties of sawdust concrete at 28 day to 40-55% in comparison with sawdust concrete containing CaCl 2 , and decrease its corrosion-resistance activity, and provided reliability under condition of double excess of inhibitor ions (NO 2- , Cr 2 O 7- ) in comparison with ions (Cl-)

  12. Top-down cracking of rigid pavements constructed with fast setting hydraulic cement concrete

    CSIR Research Space (South Africa)

    Heath, AC

    2009-01-29

    Full Text Available Jointed plain concrete pavement (JPCP) test sections were constructed using fast setting hydrualic cement concrete (FSHCC) as part of the California accelerated pavement testing program (CAL/APT). Many of the longer slabs cracked under environmental...

  13. Developing design methods of concrete mix with microsilica additives for road construction

    Science.gov (United States)

    Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga

    2017-10-01

    Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.

  14. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  15. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  16. Needs study of polymer materials concrete constructions; Behovsstudie av polymera material i betongkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blomfeldt, Thomas; Bergsjoe, Petter

    2013-02-15

    Polymeric materials are frequently used in concrete constructions at hydro and nuclear power facilities. They are most commonly used as expansion joints, seals, lead-thought's, coatings and as additives in cement or mortar. Polymeric materials in concrete constructions are difficult to evaluate, since they are often located within the concrete construction. In some cases the materials have been in place for over 30 years. In addition, these materials are also used to a great extent e.g. as protective coating on all concrete in a nuclear power plant or as several kilometres of joints. Replacing these materials is difficult, time consuming and very costly. That is why it is of great importance to evaluate their actual status and life-time expectancy with the largest possible precision. This report summarises the research needs in nuclear and hydro power regarding polymers in concrete constructions. During the project information has been gathered through inspections, interviews and surveys, to obtain the clearest possible picture of which polymeric components that have a need of in-depth research. In this project the nuclear power plants Oskarshamn (O1, O2 and O3), Forsmark (F2) and Ringhals (R1, R2 and R3) were visited. In the field of hydro power the concrete laboratory of Vattenfall R and D in Aalvkarleby and the hydro power plants of Aalvkarleby and Olidan were visited. The studies indicate that there are different needs for hydro and nuclear power. The survey showed that hydro-power facilities have a greater interest in joints. The nuclear power plants are more interested in components that are related to either the plant's security or if the component could lead to high future maintenance costs.

  17. 29 CFR 1926.701 - General requirements.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.701... from a person who is qualified in structural design, that the structure or portion of the structure is...

  18. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    Science.gov (United States)

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction

    Energy Technology Data Exchange (ETDEWEB)

    Sawab, Jamshaid [Univ. of Houston, Houston, TX (United States); Lim, Ing [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Li, Mo [Univ. of Houston, Houston, TX (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guimaraes, Maria [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-04-13

    Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments and mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear

  20. Dynamic research of masonry vault in a technical scale

    Science.gov (United States)

    Golebiewski, Michal; Lubowiecka, Izabela; Kujawa, Marcin

    2017-03-01

    The paper presents preliminary results of dynamic tests of the masonry barrel vault in a technical scale. Experimental studies are intended to identify material properties of homogenized masonry vaults under dynamic loads. The aim of the work is to create numerical models to analyse vault's dynamic response to dynamic loads in a simplest and accurate way. The process of building the vault in a technical scale is presented in the paper. Furthermore a excitation of vibrations with an electrodynamic modal exciter placed on the vault, controlled by an arbitrary waveform function generator, is discussed. Finally paper presents trends in the research for homogenization algorithm enabling dynamic analysis of masonry vaults. Experimental results were compared with outcomes of so-called macromodels (macromodel of a brick masonry is a model in which masonry, i.e. a medium consisting of two different fractions - bricks and mortar, is represented by a homogenized, uniformed, material). Homogenization entail significant simplifications, nevertheless according to the authors, can be a useful approach in a static and dynamic analysis of masonry structures.

  1. Environmental Impacts Assessment of Recycling of Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Butera, Stefania

    .e. soil and stones, concrete, asphalt and masonry, and as such it has the potential to be used as aggregate in the construction sector. A typical application is in an unbound state as filler in road structures. This practice offers evident benefits in terms of resource savings, however it might lead......Construction and demolition waste (C&DW) is waste derived from the construction, demolition and renovation of buildings and civil infrastructure. With 900 million tons generated every year in Europe, it is the largest waste stream on the continent. C&DW is mainly constituted of mineral fractions, i...... be evaluated critically.Owing to its high toxicity and significant mobility, especially at high pH levels, Cr(VI) is one of the elements of concern found in C&DW leachates. Its fate in the sub-soil below road applications was assessed experimentally, and its vertical migration was then predicted through...

  2. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  3. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  4. Basic Deformation Parameters of Solid Clay Bricks and Small Masonry Walls

    Directory of Open Access Journals (Sweden)

    P. Bouška

    2000-01-01

    Full Text Available The basic mechanical properties of clay brick masonry and its components were experimentally investigated in the laboratories of the Klokner Institute. The test specimens of masonry materials and the relevant mechanical properties have been identified in solid clay bricks and cement-lime mortar. The aim of the research activity was to study both the deformability of the prevailing type of clay masonry in the existing buildings, i.e. the masonry made from the solid clay units and the lime-cement mortar, and the most important mechanical properties of masonry components.

  5. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  6. Seismic Performance of Masonry Buildings in Algeria

    OpenAIRE

    F. Lazzali; S. Bedaoui

    2012-01-01

    Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

  7. Repair mortars for historic masonry : Effects of the binder choice on durability

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    2016-01-01

    Factors affecting the design of repair mortars for historic masonry are: the type of masonry, the condition of the masonry and the exposure conditions. Especially in case of low-strength masonry exposed to heavy rain and high salt contents the design of a repair mortar may be a challenge. The most

  8. Author Details

    African Journals Online (AJOL)

    ... proposal for structural concrete using messobo ordinary portland cement. Abstract PDF · Vol 18 (2001) - Articles Properties Of Concrete And Masonry Blocks Made Of Locally Available Scoria And Pumice Aggregates Abstract · Vol 17 (2000) - Articles Insurance requirements and practices of Ethiopia's construction sector

  9. Berlin Brandenburg International (BER: planning and implementation of a concrete supply chain for the airport construction site

    Directory of Open Access Journals (Sweden)

    Guido Riedel

    2012-12-01

    Full Text Available Background: With the decision to extend the airport Berlin-Schönefeld to the new airport Berlin Brandenburg International (BER in 2006, a construction of superlatives has emerged. One of the biggest challenges was the supply of around 2.5 million cubic meters of high quality concrete that had to be produced for the construction of the airport. Due to the scale of this enterprise as well as its environment, the logistic solution of raw material supply has to be found.       Method: The planning of the concrete supply chain for the airport construction site BER had to be carried out with two major goals: the stability of the supply chain to assure that the demands of the construction site are met and delays are prevented, as well as assurance of the high quality standards of the concrete production and to avoid an alkali silica reaction and the resulting unavoidable disaggregation of the concrete. External effects, such as the carbon dioxide emission and the effect of the supply chain on adjoining residents were key factors that had to be integrated in a holistic supply chain concept.  The principle underlying method is an analysis of limiting conditions for two approaches: a centralized supply chain with on-site concrete factory and upstream transport of raw materials versus a decentralized supply chain with off-site factories and downstream transport of ready-mixed concrete. Results: The analysis of constraints and the effects on key requirements of the concrete supply chain for the BER airport construction site lead to the installation of the most modern concrete plant in Europe. The benefits of a centralized supply chain are significant. On one hand, the high quality standards can be met with the on-site mixture of the concrete and centralized quality assurance, on the other hand, the majority of the supply traffic for the construction site was moved from the road to train-bound logistics, meeting the emission requirements of the

  10. Studying of influence of fiber reinforcing at fine-grained concrete applying in transport construction

    Science.gov (United States)

    Begunov, Oleg; Alexandrova, Olga; Solovyov, Vadim

    2017-10-01

    We observed causes of using fiber in nowadays construction industry and its influence on a final product properties, where the fine-grained concrete basing of repairing dry construction mix was used as a base. However, in Russia we do not have such experience. If we’re talking about changes occurring in the fine-grained concrete all of its are known about it, either in concrete, but in dry-construction mixes changes may have another purpose. Advantages and disadvantages of using fiber were oblieved also in that article. The main subject of this research is the influence of fiber on a mechanical properties of fine-grained concrete. The most attention is paid to estimate the influence of a concrete’s properties by metal fibers: casting time (initial and final), workability and strength (tensile strength and compressive strength) in this article. The most popular different type of metal fiber compares for its length and width and the optimum quantity of metal component chooses, which will indicate the maximum possible affirmative result of its using. Dependences comparing properties of fine-grained properties with fiber’s type, measurements and quantity which show the evident result of researching are discussed.

  11. Seismic and Restoration Assessment of Monumental Masonry Structures

    Directory of Open Access Journals (Sweden)

    Panagiotis G. Asteris

    2017-08-01

    Full Text Available Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  12. Seismic and Restoration Assessment of Monumental Masonry Structures

    Science.gov (United States)

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  13. A survey of the mechanical properties of concrete for structural purposes prepared on construction sites

    Directory of Open Access Journals (Sweden)

    R. R. J. RIBEIRO

    Full Text Available Abstract This paper aims to study the concrete dosage conditions for structural purposes in construction sitesl, and the impacts of non-compliance of structural concrete for structural safety, having as study case the city of Angicos / RN. Were analyzed the dynamic elasticity modulus, static elasticity modulus and the compressive strength of concrete samples. Was conducted to collect the survey data, a field research aiming to gather information about dosage of concrete used in the works, as well as the collection of cylindrical specimens of 150 mm diameter by 300 mm of height, prepared according to practice of those professionals. The study indicated a clear necessity to reflection on the subject, since there is no concern, or even, a lack of knowledge by the interviewed professionals regarding the care and procedures necessary for the production of concrete with satisfactory quality, once at least 50% of evaluated construction sites presented compressive strength lower than 20 MPa, minimal strength to structural concrete, as recommended by ABNT-NBR 6118:2014.

  14. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Directory of Open Access Journals (Sweden)

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  15. A PROCEDURAL SOLUTION TO MODEL ROMAN MASONRY STRUCTURES

    Directory of Open Access Journals (Sweden)

    V. Cappellini

    2013-07-01

    Full Text Available The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac – PAM, developed by IGN (Paris. We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France. Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick, this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects and metric measures for restoration purposes.

  16. a Procedural Solution to Model Roman Masonry Structures

    Science.gov (United States)

    Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.

    2013-07-01

    The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.

  17. Vulnerability of historical masonry buildings under exceptional actions

    OpenAIRE

    Florio, Gilda

    2010-01-01

    The topic of this thesis is the vulnerability assessment of historical masonry buildings under exceptional actions. In order to develop the study, the structural performance of masonry aggregates and isolated monumental buildings under extreme loading condition have been investigated.

  18. Earthquake response of heavily damaged historical masonry mosques after restoration

    Science.gov (United States)

    Altunışık, Ahmet Can; Fuat Genç, Ali

    2017-10-01

    Restoration works have been accelerated substantially in Turkey in the last decade. Many historical buildings, mosques, minaret, bridges, towers and structures have been restored. With these restorations an important issue arises, namely how restoration work affects the structure. For this reason, we aimed to investigate the restoration effect on the earthquake response of a historical masonry mosque considering the openings on the masonry dome. For this purpose, we used the Hüsrev Pasha Mosque, which is located in the Ortakapı district in the old city of Van, Turkey. The region of Van is in an active seismic zone; therefore, earthquake analyses were performed in this study. Firstly a finite element model of the mosque was constructed considering the restoration drawings and 16 window openings on the dome. Then model was constructed with eight window openings. Structural analyses were performed under dead load and earthquake load, and the mode superposition method was used in analyses. Maximum displacements, maximum-minimum principal stresses and shear stresses are given with contours diagrams. The results are analyzed according to Turkish Earthquake Code (TEC, 2007) and compared between 8 and 16 window openings cases. The results show that reduction of the window openings affected the structural behavior of the mosque positively.

  19. Investigation of interior post-insulated masonry walls with wooden beam ends

    DEFF Research Database (Denmark)

    Morelli, Martin; Svendsen, Svend

    2013-01-01

    The preponderant number of multistorey buildings constructed in Denmark in the period between 1850 and 1930 were built with masonry walls incorporating wooden floor beams. Given the nature of this construction, it is supposed that significant energy savings could be achieved by simply insulating...... the facades of such buildings. To maintain the exterior appearance of the facade, the only possible means of installing the required insulation is placing it on the interior of the wall. However, the installation of insulation on the interior of the wall assembly reduces the overall drying potential...

  20. Production and construction technology of C100 high strength concrete filled steel tube

    Science.gov (United States)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  1. Research on Mechanical Properties of Concrete Constructs Based on Terrestrial Laser Scanning Measurement

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2016-05-01

    Full Text Available Terrestrial laser scanning (TLS technology is broadly accepted as a structural health monitoring device for reinforced concrete (RC composite structures. Both experiments and numerical analysis are considered. In this submit, measurements were conducted for the composite concrete beams. The emphasis in numerical simulation is given on finite element methods (FEM which is corrected by the response surface methodology (RSM. Aspects considered are effects of material parameters and variation in geometry. This paper describes our recent progress on FEM modeling of damages in concrete composite structures based on the TLS measurement. We also focus on the research about mechanical properties of concrete constructs here.

  2. Comparison of different approaches of modelling in a masonry building

    Science.gov (United States)

    Saba, M.; Meloni, D.

    2017-12-01

    The present work has the objective to model a simple masonry building, through two different modelling methods in order to assess their validity in terms of evaluation of static stresses. Have been chosen two of the most commercial software used to address this kind of problem, which are of S.T.A. Data S.r.l. and Sismicad12 of Concrete S.r.l. While the 3Muri software adopts the Frame by Macro Elements Method (FME), which should be more schematic and more efficient, Sismicad12 software uses the Finite Element Method (FEM), which guarantees accurate results, with greater computational burden. Remarkably differences of the static stresses, for such a simple structure between the two approaches have been found, and an interesting comparison and analysis of the reasons is proposed.

  3. Post-tensioned Discrete Concrete Elements Developed For Free-form Construction

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole; Larsen, Niels Martin; Pigram, Dave

    2015-01-01

    This paper presents a method for the construction of non-uniform precast concrete shell structures from unique parts. A novel method of discontinuous post-tensioning is introduced which allows tension to be taken through the connections. This increases the formal possibilities of the system beyon...

  4. Masonry structures between mechanics and architecture

    CERN Document Server

    Pedemonte, Orietta; Williams, Kim

    2015-01-01

    This book provides an overview of state of the art research in the mechanics of masonry structures. It continues the series Between Mechanics and Architecture, initially launched in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto and Patricia Radelet-de Grave.   The contributions in this volume represent the main approaches to the complex topic of masonry structures. In addition to historical studies, the mechanical behavior of masonry arches and structures is studied using different approaches (structural analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.), at times difficult to reconcile, at others intertwined and complementary.   Readers will have the opportunity to compare different theoretical lines of inquiry and thus explore new horizons of research.   Contributions by: Danila Aita Andrea Bacigalupo Riccardo Barsotti Stefano Bennati Antonio Brencich Mario Como Salvatore D’Agostino Luigi Gambarotta Jacques Heyman Santiago Huer...

  5. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [NorthernSTAR, St. Paul, MN (United States); Goldberg, L. [NorthernSTAR, St. Paul, MN (United States); Jacobson, R. [NorthernSTAR, St. Paul, MN (United States)

    2015-05-01

    Basements in climates 6 and 7 can account for a fraction of a home's total heat loss when fully conditioned. Such foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with it. Because below-grade basements are increasingly used for habitable space, cold foundation walls pose challenges for moisture contribution, energy use, and occupant comfort.

  6. Application of Non-pressure Reinforced Concrete Pipes in Modern Construction and Reconstruction of Highways

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    Modern highway construction technologies provide for the quality water discharge systems to increase facilities’ service life. Pipeline operating conditions require the use of durable and reliable materials and structures. The experience in using reinforced concrete pipes for these purposes shows their utilization efficiency. The present paper considers the experience in the use of non-pressure reinforced concrete pipes manufactured by the German company SCHLOSSER-PFEIFFER under the Ural region geological and climatic conditions. The authors analyzed the actual operation of underground pipelines and effective loads upon them. A detailed study of the mechanical properties of reinforced concrete pipes is necessary to improve their production technology and to enhance their serviceability. The use of software-based methods helped to develop a mathematical model and to estimate the strength and crack resistance of reinforced concrete pipes at different laying depths. The authors carried out their complex research of the strain-stress behaviour of reinforced concrete pipes and identified the most hazardous sections in the structure. The calculations performed were confirmed by the results of laboratory tests completed in the construction materials, goods, and structures test center. Based on the completed research, the authors formulated their recommendations to improve the design and technology of non-pressure reinforced concrete pipes.

  7. Structural Evaluation Procedures for Heavy Wood Truss Structures

    National Research Council Canada - National Science Library

    Issa, Mohsen

    1998-01-01

    .... An evaluation procedure for wood structures differs from conventional methods used in steel, concrete, and masonry structures because, in wood construction, the allowable stresses used in design...

  8. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  9. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  10. Resistance to the destruction of concrete in constructions of height buildings at dynamic loads

    Directory of Open Access Journals (Sweden)

    Berlinov Mikhail

    2018-01-01

    Full Text Available The analysis of the criterion of strength of concrete in structures of high-rise buildings under vibration and shock impacts is presented. The idea of an energy approach to ensuring the strength of concrete and the durability of building structures from reinforced concrete under the influence of shock impacts on the life of such structures is presented in a high-rise construction. A method for determining the strength and durability of concrete in load-bearing building structures made of reinforced concrete for irreversible thermodynamic processes has been developed. Dependences that determine the behavior of concrete in reinforced concrete structures of high stores on the load-bearing structures of a building under the influence of damped oscillations from the operation of air transport on the landing site are determined, taking into account the impact arising from its landing.

  11. Resistance to the destruction of concrete in constructions of height buildings at dynamic loads

    Science.gov (United States)

    Berlinov, Mikhail; Berlinova, Marina; Tvorogov, Alexandr

    2018-03-01

    The analysis of the criterion of strength of concrete in structures of high-rise buildings under vibration and shock impacts is presented. The idea of an energy approach to ensuring the strength of concrete and the durability of building structures from reinforced concrete under the influence of shock impacts on the life of such structures is presented in a high-rise construction. A method for determining the strength and durability of concrete in load-bearing building structures made of reinforced concrete for irreversible thermodynamic processes has been developed. Dependences that determine the behavior of concrete in reinforced concrete structures of high stores on the load-bearing structures of a building under the influence of damped oscillations from the operation of air transport on the landing site are determined, taking into account the impact arising from its landing.

  12. SELF-CONSOLIDATING CONCRETE USED IN THE MONOLITHIC CONSTRUCTION OF EARTHQUAKE-RESISTANT TALL BUILDING

    Directory of Open Access Journals (Sweden)

    S. A. Aliev

    2016-01-01

    Full Text Available Objectives. The development of high-strength concrete based on experience both with domestic and foreign concretes has led to the production of a self-consolidating concrete (SCC formula. Method. Raw materials sourced from the Chechen Republic were used in the SUBconcrete formula, based on materials having different classes of compressive strength as well as the incorporation of polycarboxylate as an additive. Results. An investigation was carried out on natural and technogenic raw materials from the Chechen Republic and other regions of the country. Compositions of high-grade SCC with a compressive strength of B100 and higher are achieved with an integrated approach using both natural and man-made raw materials. The formulae of the basic concrete reinforcing technology are examined together with their physico-mechanical properties. The results of the study of locally sourced concrete, as well as that purchased from "Pavlovskgranit" and OOO "Progress" for testing from the Republic of North Ossetia–Alania, are provided. Of the various manufacturers' cements investigated, the highest quality Portland cement CEM I 4.5N was selected from the Tula cement manufacturers in the town of Chiri-Yurt. The fillers used were microsilica sourced from the Novokuznetsk plant, inactivated MP-1 mineral powder produced in Kaluga and fly ash sourced from Nevinnomyssk. Conclusion. The results of the studies show that the raw material potential of our country allows for the production of self-consolidating concrete from class B 25 to B100 and higher for use in monolithic construction, including high-rise. The concrete compositions arrived at are characterised by their high physical and mechanical properties and can be used in high-rise concrete construction sites operating in earthquake-prone areas. 

  13. A construction method of reinforced-concrete very high stacks and natural draft cooling towers

    International Nuclear Information System (INIS)

    Miyamoto, Takao; Hosokawa, Osamu

    1978-01-01

    The new Shimizu flex-lip system was developed by the Shimizu Construction Co., Ltd. for constructing very high (about 200 m) towers made of reinforced concrete. Utilizing this system, towers of any shape, circular, triangular, square and polygonal, can be constructed. The wall thickness can be varied from 200 mm to 1 m. The diameter of towers can be enlarged from 3 m to any valve and the inclination of tower walls can be designed in any way between +1/5 and -1/5. The advantage of this system is to use the jack down mechanism, to test concrete strength without sampling, to reduce the connections of reinforcing steel bars and to adopt the continuous, and to use automatic measuring system using laser for checking up positional error. The design and analysis of high tower structures were systemized and automated with the development of the flex-lip construction method. The several past records of having applied this method to industrial areas are shown. As for natural draft cooling towers, the Shimizu jump-up system has been studied for the cooling water capacity of 60,000 m 3 /h. The towers are 120 m high, 110 m in diameter at the bottom and 65 m in diameter at the top. The advantage of this construction method, the plan of concrete jump-up and the construction test are explained. (Nakai, Y.)

  14. Natural radioactivity levels and danger ratio in cements, concretes and mortars used in construction

    International Nuclear Information System (INIS)

    Meneses, J.; Pacheco, C.; Avila, J. M.; Miro, C.

    2010-01-01

    We have determined the natural radiation level in three types of adhesive cements, five types of concrete and two types of mortars of different strength normally used in the construction field. Of these materials, both concrete and mortars were prepared in our laboratories, cements the contrary were of a commercial nature.

  15. Initiation of Failure for Masonry Subject to In-Plane Loads through Micromechanics

    Directory of Open Access Journals (Sweden)

    V. P. Berardi

    2016-01-01

    Full Text Available A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads. Masonry material is viewed as a composite with periodic microstructure and, therefore, a unit cell with suitable boundary conditions is assumed as a representative volume element of the masonry. The finite element method is used to determine the average stress on the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation of damage and failure in both clay brick masonry and adobe masonry are provided.

  16. New Frontiers on Seismic Modeling of Masonry Structures

    Directory of Open Access Journals (Sweden)

    Salvatore Caddemi

    2017-07-01

    Full Text Available An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and efficient numerical tools, whose complexity and computational demand should be suitable for practical purposes. For these reasons, the formulation and the validation of simplified numerical strategies represent a very important issue in masonry computational research. In this paper, an innovative macroelement approach, developed by the authors in the last decade, is presented. The proposed macroelement formulation is based on different, plane and spatial, macroelements for the simulation of both the in-plane and out-of-plane behavior of masonry structures also in presence of masonry elements with curved geometry. The mechanical response of the adopted macroelement is governed by non-linear zero-thickness interfaces, whose calibration follows a straightforward fiber discretization, and the non-linear internal shear deformability is ruled by equivalence with a corresponding geometrically consistent homogenized medium. The approach can be considered as “parsimonious” since the kinematics of the adopted elements is controlled by very few degrees of freedom, if compared to a corresponding discretization performed by using non-linear finite element method strategies. This innovative discrete element strategy has been implemented in two user-oriented software codes 3DMacro (Caliò et al., 2012b and HiStrA (Historical Structures Analysis (Caliò et al., 2015, which simplify the modeling of buildings and historical structures by means of several wizard generation tools and input/output facilities. The proposed approach, that represents a powerful tool for the

  17. The implementation of unit price of work standard SNI 7394: 2008 for the construction of reinforced concrete beam

    Science.gov (United States)

    Tripoli; Mubarak; Nurisra; Mahmuddin

    2018-05-01

    This paper discusses the implementation of Indonesian National Standard (SNI) 7394: 2008 on procedures for calculating the unit price of concrete work for the construction of building and housing. The standard provides some reinforced concrete constructions unit price (UP) analysis by specified the total number of reinforcing uses. Related to reinforced concrete beam work (Analysis No. 6.31), the reinforcement requirement is stated at 200 kg/m3 of concrete. Once the implementation considers various earthquake zoning, the question will arise about the extent to which the standard is feasible to apply. Therefore, this research aimed to analyze the possibility of UP standard implementation by certain earthquake zonation. This research is focused on the construction of reinforced concrete beam for buildings with function as educational, residential and office buildings. The data used are sourced from 21 buildings in two zones in Aceh Province, covering Zone 10 and Zone 15 based on earthquake map of SNI 1726: 2012. The analysis results indicate that the UP standard for reinforced concrete beam cannot be applied to all zoning. The UP standard is only possible on buildings constructed in Zone 10 or zonation with seismic spectral response 0.6g to 0.7g or lower.

  18. Structural Behaviors of Reinforced Concrete Piers Rehabilitated with FRP Wraps

    Directory of Open Access Journals (Sweden)

    Junsuk Kang

    2017-01-01

    Full Text Available The use of fiber-reinforced polymer (FRP wraps to retrofit and strengthen existing structures such as reinforced concrete piers is becoming popular due to the higher tensile strength, durability, and flexibility gained and the method’s ease of handling and low installation and maintenance costs. As yet, however, few guidelines have been developed for determining the optimum thicknesses of the FRP wraps applied to external surfaces of concrete or masonry structures. In this study, nonlinear pushover finite element analyses were utilized to analyze the complex structural behaviors of FRP-wrapped reinforced rectangular piers. Design parameters such as pier section sizes, pier heights, pier cap lengths, compressive strengths of concrete, and the thicknesses of the FRP wraps used were thoroughly tested under incremental lateral and vertical loads. The results provide useful guidelines for analyzing and designing appropriate FRP wraps for existing concrete piers.

  19. Safety risk assessment for vertical concrete formwork activities in civil engineering construction.

    Science.gov (United States)

    López-Arquillos, Antonio; Rubio-Romero, Juan Carlos; Gibb, Alistair G F; Gambatese, John A

    2014-01-01

    The construction sector has one of the worst occupational health and safety records in Europe. Of all construction tasks, formwork activities are associated with a high frequency of accidents and injuries. This paper presents an investigation of the activities and related safety risks present in vertical formwork for in-situ concrete construction in the civil engineering sector. Using the methodology of staticized groups, twelve activities and ten safety risks were identified and validated by experts. Every safety risk identified in this manner was quantified for each activity using binary methodology according to the frequency and severity scales developed in prior research. A panel of experts was selected according to the relevant literature on staticized groups. The results obtained show that the activities with the highest risk in vertical formwork tasks are: Plumbing and leveling of forms, cutting of material, handling materials with cranes, and climbing or descending ladders. The most dangerous health and safety risks detected were falls from height, cutting and overexertion. The research findings provide construction practitioners with further evidence of the hazardous activities associated with concrete formwork construction and a starting point for targeting worker health and safety programmes.

  20. Construction of precast high performance concrete segmental bridges.

    OpenAIRE

    Ruiz Ripoll, Lidia

    2016-01-01

    The construction of both medium and long span precast concrete segmental bridges is widely spread throughout Spain. Usually, the segments have multiple-keyed epoxy joints, and are assembled by internal prestressing. Yet, there is a more recent type of bridge with dry joints and external prestressing. In these last ones, shear is transferred through physical support between keys and friction between faces of the compressed joint. This shear force is evaluated using friction coefficients from t...

  1. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  2. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    The purpose of project is the long-term accumulation of knowledge related to the status of existing structures in order to facilitate answers to questions that may arise in the future. We have visited all the power stations in Sweden and in conjunction with these visits we have gone through all the relevant documents relating to the constructional concrete. An assessment of the structural integrity, related to the question of cracking and hence seepage, has been conducted. Currently, the work has only been done on a random sampling basis as in many cases important information is still missing. Generally, it can be said that the relevant constructions are, from a structural integrity point-of-view, correctly designed and detailed and have very high safety margins for the load cases which constitute the functional demands placed upon the installation. Each containment structure (vessel) appears to have been designed and built using the best available knowledge at the time of construction. It may be of interest to note that when these structures were built there was a very high level of competence and experience of how to design, detail, and construct large concrete structures. The cement used for the majority of these large concrete structures forming nuclear power stations, namely a slowly hardening cement (LH cement), had very good properties, perhaps even better than those available today. Later structures were built with other cements and concrete mixes, although this has been partly compensated for by a choice of a higher nominal quality. The environment is favourable regarding potential degradation of the concrete, the reinforcement steel and the steel liner. Questions remain regarding the uncertainties of the methods used for continuous inspection of the cement injected prestressing steel. This is even the case for possibly insufficient injection around grouting mounting parts for manholes and other openings. Assessment of prestressing losses may also require

  3. Losses due to weather phenomena in the bituminous concrete construction industry in Wisconsin

    Science.gov (United States)

    Kuhn, H. A. J.

    1973-01-01

    The losses (costs) due to weather phenomena as they affect the bituminous concrete industry in Wisconsin were studied. The bituminous concrete industry's response to precipitation, in the form of rain, is identified through the use of a model, albeit crude, which identifies a typical industry decision-response mechanism. Using this mechanism, historical weather data and 1969 construction activity, dollar losses resulting from rain occurrences were developed.

  4. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  5. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  6. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  7. NVENTIONS IN THE NANOTECHNOLOGICAL AREA PROVIDE INCREASED RESISTANCE OF CONSTRUCTION MATERIALS AND PRODUCTS TO OPERATIONAL LOAD

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2013-12-01

    Full Text Available The invention «Dispersion of Carbon Nanotubes (RU 2494961» can be used in production of modifying additives for construction materials. Dispersion of carbon nanotubes contains, mass %: carbon nanotubes 1–20; surface active agent – sodium chloride of sulfonated derived naphthalene 1–20; fumed silica 5–15; water – the rest. Dispersion can additionally contain ethylene glycol as antifreeze. Dispersion is steady in storage, it is soluble in water, provides increased strength of construction materials. Invention «Building Structures Reinforcement Composition (RU 2493337» can beused in construction to reinforce concrete, brick and masonry structures. Composition contains glass or basalt roving taken in quantity 90÷100 parts by weight, soaked in polymer binder based on epoxy taken in quantity 0,001÷1,5 parts by weight. This invention provides high resistance to operational load.

  8. Production of environmentally friendly aerated concrete with required construction and operational properties

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya

    2018-01-01

    Full Text Available The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C; frost resistance – F75.

  9. Application of selected modern technology systems to strengthen the damaged masonry dome of historical St. Anna’s Church in Wilanów (Poland

    Directory of Open Access Journals (Sweden)

    Ryszard Chmielewski

    2015-12-01

    Full Text Available The aim of the paper is to present a study on the cracked brick masonry dome of the historical church of St. Anna in Wilanów (Poland, founded in 1772 and entered in the Polish register of monuments in 1965. The calculation of static-strength for strengthening the dome was carried out taking into account the characteristics of the vaulted construction works and a relevant existing structure with designed elements of the strengthening construction works based on using carbon tape SIKA CarboDur and spiral steel rods in the HELIFIX system. The use of a three-dimensional structural model of the masonry dome allowed a detailed determination of the internal force distribution and the adoption of an appropriate repair and strengthening regime for this load-bearing structure. The correctness of the design solutions and calculation assumptions is reflected in the fact that, after a period of more than three years, no damage to the repaired elements of the masonry dome occurred.

  10. Activity measurements of radon from construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  11. Study on construction method of concrete in the underground research laboratory. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Akiyoshi, Kenji; Uegaki, Yoshiaki

    2002-02-01

    The underground research laboratory, which will be constructed in Horonobe, plays a role of demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for repositories as a cementitious material in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed a low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. However workability which is required for construction procedure of repositories has not been studied enough yet. This study shows if requirements in actual construction, such as shotcreting, self-compacting, and, grouting, are fulfilled, and if the workability is preferable for tunneling construction. It is demonstrated that HFSC is applicable for shotcreting by testing in a modeled tunnel. It is pointed out that re-bars have a possibility of corrosion in low alkalinity cement. In-site test for saline water which may accelerate corrosion is started by setting specimen made in last year. Analyzing and assessing will be done next year. Construction method of tunnel lining is investigated in case of applying pre-cast segments. Self-compacting concrete is adopted, since added silica-fume needs superplasticizer and its workability is very flowable. Two piece of segment were made for the section which designed for a ordinary urban tunnel. It is noted that pre-casting concrete can be made by HFSC. Super fine cement powder for grouting which indicate low alkalinity can be selected by combination of grinned lime stone powder and silica fume with grinned ordinary Portland cement. The items to be improved toward using in Horonobe construction are pointed out by results of this study and summarized a study plan is described. Major problem to be solved is delaying compressive strength generation of HFSC. It is recognized in shotcrete and self-compacting concrete. Selecting types of fly ash and

  12. Barriers and Motivations for Construction Waste Reduction Practices in Costa Rica

    Directory of Open Access Journals (Sweden)

    Lilliana Abarca-Guerrero

    2017-12-01

    Full Text Available Low- and middle-income countries lag behind in research that is related to the construction industry and the waste problems that the sector is facing. Literature shows that waste reduction and recycling have received a continuous interest from researchers, but mainly from developed countries. Few reports from low- and middle-income countries are concerned about the reuse of masonry, concrete, and mortar in clay based building ceramics or recycling construction waste, but mostly in relation to concrete aggregates. Furthermore, few authors have described the major barriers and motivations for construction waste reduction. The objective of this paper is to report the findings on a research performed in Costa Rica with the objective to determine the barriers and motivations that the construction sector is facing to improve the management of the construction materials. The study is based on data collected in two phases. During the first phase, a survey was sent via e-mail to 419 main contractors registered at the School Federation of Engineers and Architects (CFIA. The second phase consisted of a focus group discussion with 49 professionals from the construction industry to analyse and validate the findings from the survey. Descriptive statistic methods helped to draw the conclusions. The result of the research is a comprehensive list of observed barriers and motivations for waste reduction practices in the construction sector. These are not only applicable to Costa Rica, but can be used as a guide for similar studies in other low- and middle-income countries.

  13. A tool for the calculation of rockfall fragility curves for masonry buildings

    Science.gov (United States)

    Mavrouli, Olga

    2017-04-01

    Masonries are common structures in mountainous and coastal areas and they exhibit substantial vulnerability to rockfalls. For big rockfall events or precarious structures the damage is very high and the repair is not cost-effective. Nonetheless, for small or moderate rockfalls, the damage may vary in function of the characteristics of the impacting rock blocks and of the buildings. The evaluation of the expected damage for masonry buildings, and for different small and moderate rockfall scenarios, is useful for assessing the expected direct loss at constructed areas, and its implications for life safety. A tool for the calculation of fragility curves for masonry buildings which are impacted by rock blocks is presented. The fragility curves provide the probability of exceeding a given damage state (low, moderate and high) for increasing impact energies of the rock blocks on the walls. The damage states are defined according to a damage index equal to the percentage of the damaged area of a wall, as being proportional to the repair cost. Aleatoric and epistemic uncertainties are incorporated with respect to the (i) rock block velocity, (ii) rock block size, (iii) masonry width, and (iv) masonry resistance. The calculation of the fragility curves is applied using a Monte Carlo simulation. Given user-defined data for the average value of these four parameters and their variability, random scenarios are developed, the respective damage index is assessed for each scenario, and the probability of exceedance of each damage state is calculated. For the assessment of the damage index, a database developed by the results of 576 analytical simulations is used. The variables range is: wall width 0.4 - 1.0 m, wall tensile strength 0.1 - 0.6 MPa, rock velocity 1-20 m/s, rock size 1-20 m3. Nonetheless this tool permits the use of alternative databases, on the condition that they contain data that correlate the damage with the four aforementioned variables. The fragility curves can

  14. Experimental evaluation of the structural behaviour of adobe masonry structural elements

    OpenAIRE

    Varum, H.; Costa, A.; Pereira, H.; Almeida, J.; Rodrigues, H.; Silveira, D.

    2007-01-01

    Rehabilitation and strengthening of existing adobe masonry constructions have been neglected during the last decades. In Aveiro, Portugal, many adobe buildings present an important level of structural damage and, in many cases, are even near to ruin, having the majority a high vulnerability to seismic actions. To face the lack of information concerning the mechanical properties and structural behaviour of adobe elements, it was developed an experimental campaign. The composition and mechanica...

  15. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  16. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  17. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  18. Effective way to reconstruct arch bridges using concrete walls and transverse strands

    Science.gov (United States)

    Klusáček, Ladislav; Pěkník, Robin; Nečas, Radim

    2017-09-01

    There are more than 500 masonry arch bridges in the Czech Road system and about 2500 in the Czech Railway system. Many of them are cracked in the longitudinal (span) direction. The barrel vaults are separated by the cracks into partial masonry arches without load bearing connection in transverse direction. These constructions are about 150 years old and they are also too narrow for the current road system. This paper presents a strengthening method for masonry arch bridges using transverse post-tensioning. This method is very useful not only for strengthening in the transverse direction, but widening of masonry arches can be taken as secondary effect especially in case of road bridges. Several bridges were successfully repaired with the use of this system which seems to be effective and reliable.

  19. Role of masonry infill in seismic resistant resistance of RC structures

    International Nuclear Information System (INIS)

    Taher, Salah El-Din F.; Afefy, Hamdy Mohy El-Din

    2008-01-01

    The influence of partial masonry infilling on the seismic lateral behavior of low, medium and high rise buildings is addressed. The most simple equivalent frame system with reduced degrees of freedom is proposed for handling multi-story multi-bay infilled frames. The system is composed of a homogenized continuum for the reinforced concrete members braced with unilateral diagonal struts for each bay, which are only activated in compression. Identification of the equivalent characteristics and nonlinear material properties is accomplished from the concepts of inverse analysis, along with statistical tests of the hypotheses, employed to establish the appropriate filtering scheme and the proper accuracy tolerance. The suggested system allows for nonlinear finite element static and dynamic analysis of sophisticated infilled reinforced concrete frames. Sensitivity analysis is undertaken to check the suitability of the proposed system to manipulate various structural applications. The effect of number of stories, number of bays, infill proportioning and infill locations are investigated. Geometric and material nonlinearity of both infill panel and reinforced concrete frame are considered in the nonlinear finite element analysis. Energy consideration using modified Rayleigh's method is employed to figure out the response parameters under lateral dynamic excitations. The results reflect the significance of infill in increasing the strength, stiffness and frequency of the entire system depending on the position and amount of infilling. Lower infilling is noted to provide more stiffness for the system as compared with upper locations. (author)

  20. Agrèment South Africa certification as assistance to the roads engineer

    CSIR Research Space (South Africa)

    Odhiambo, JO

    2007-05-01

    Full Text Available or clay brick or block masonry walls, with timber roof construction and metal or fibre-cement roof sheeting, or concrete or pressed metal roof tiles. For multi-storey commercial, business or residential construction, reinforced concrete framing... not only building systems, construction related materials and products but also a number of sanitation products and various types of plumbing pipes and fittings, bathtubs, bathroom and toilet units, as well as sanitary disposal systems. The evaluations...

  1. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  2. Concrete for the construction of No. 1 nuclear power generator of Tokyo Denryoku Co.'s Kashiwazaki, Kariha nuclear power station

    International Nuclear Information System (INIS)

    Suzuki, Yasuyoshi; Eguchi, Kiyoshi; Nakakomi, Akira.

    1985-01-01

    The construction of the No.1 power generator of Kariha nuclear power generator was completed on March 1985, and the installations of equipments are on their way aiming the start in October 1960. About 900,000 m 3 of concrete was produced and used for whole work and about 500,000 m 3 out of total was used for the construction of plant building. For constructing reactor building and turbin building, the concrete must have shielding property against radiation. The specific gravity no less than 2.5 was required for dry state of laid concrete. In order to supply very large amount of concrete with stable quality, preliminary investigation on raw materials including aggregates, fly-ash and surface active agents, were made. Aggregates were stored in underground bins to keep the temperature constant for the purpose of obtaining mixed concrete with constant temperature. For determining the mixing rate of concrete, physical test such as slump test, determination of air content, determinations of strengths and specific gravities of solidified concrete. Quality control committee was established to observe the optimum condition, which were confirmed by preliminary tests, of concrete preparation. As the results of detailed preliminary investigation on respective raw material and strict quality control from the source of raw material to mixed concrete, the supply of concrete with stable quality which conforms every requirement of standard, was possible. (Ishimitsu, A.)

  3. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  4. An efficient Bouc & Wen approach for seismic analysis of masonry tower

    Directory of Open Access Journals (Sweden)

    Luca Facchini

    2014-07-01

    Full Text Available The assessment of existing masonry towers under exceptional loads, such as earthquake loads, requires reliable, expedite and efficient methods of analysis. These approaches should take into account both the randomness that affects the masonry properties (in some cases also the distribution of the elastic parameters and, of course, the nonlinear behavior of masonry. Considering the need of simplified but effective methods to assess the seismic response of such structures, the paper proposes an efficient approach for seismic assessment of masonry towers assuming the material properties as a stochastic field. As a prototype of masonry towers a cantilever beam is analyzed assuming that the first modal shape governs the structural motion. With this hypothesis a nonlinear hysteretic Bouc & Wen model is employed to reproduce the system response which is subsequently employed to evaluate the response bounds. The results of the simplified approach are compared with the results of a finite element model to show the effectiveness of the method.

  5. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    Science.gov (United States)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  6. 29 CFR Appendix A to Subpart Q of... - References to subpart Q of Part 1926

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction Pt. 1926, Subpt. Q, App. A Appendix A to Subpart Q of Part 1926—References to subpart.... • Accident Prevention Manual for Industrial Operations; Eighth Edition; National Safety Council. • Building...

  7. Partnering with a local concrete block manufacturing plant to improve quality of construction materials in Haiti’s Central Plateau

    Directory of Open Access Journals (Sweden)

    Aaron Gordon

    2016-09-01

    Full Text Available This paper presents a successful ongoing partnership between Clemson Engineers for Developing Countries (CEDC and a concrete masonry unit (CMU manufacturing plant in rural Haiti. The infrastructure destruction and resulting loss of life of the 2010 earthquake in Haiti highlighted the need for improved building materials and codes. This partnership has helped to improve the strength of CMUs in the plant, both creating a safer local built environment and expanding the economic opportunities for this plant. Using samples of aggregate and cement from the site in Haiti, students in Clemson performed experiments to optimise the CMU mix design and made other suggestions to improve efficiency and quality of their product. Consistency continues to be a challenge for the CMU plant, and this paper also describes proposed procedures to help the plant implement quality control and quality assurance plans.

  8. Autoclaved aerated concrete : shaping the evolution of residential construction in the United States.

    OpenAIRE

    Bukoski, Steven C.

    1998-01-01

    CIVINS (Civilian Institutions) Thesis document Precast Autoclaved Aerated Concrete (AAC) is a proven construction material used in Europe for over 70 years. Introduced to the United States in 1990, construction thus far is limited to commercial and custom borne applications. Premium benefits include energy efficiency and resistance to natural disaster and pests. Despite being the leading residential construction material in Europe and Japan, lumber is the leading material of choice in the ...

  9. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    OpenAIRE

    B. V. Savchinskiy

    2010-01-01

    On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  10. The influence of local mechanisms on large scale seismic vulnerability estimation of masonry building aggregates

    Science.gov (United States)

    Formisano, Antonio; Chieffo, Nicola; Milo, Bartolomeo; Fabbrocino, Francesco

    2016-12-01

    The current paper deals with the seismic vulnerability evaluation of masonry constructions grouped in aggregates through an "ad hoc" quick vulnerability form based on new assessment parameters considering local collapse mechanisms. First, a parametric kinematic analysis on masonry walls with different height (h) / thickness (t) ratios has been developed with the purpose of identifying the collapse load multiplier for activation of the main four first-order failure mechanisms. Subsequently, a form initially conceived for building aggregates suffering second-mode collapse mechanisms, has been expanded on the basis of the achieved results. Tre proposed quick vulnerability technique has been applied to one case study within the territory of Arsita (Teramo, Italy) and, finally, it has been also validated by the comparison of results with those deriving from application of the well-known FaMIVE procedure.

  11. A masonry heater, a large thermal flywheel and constant temperatures : the winter of 1996/1997 of the Alberta Sustainable Home/Office

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowski, J.; Fofonoff, B.

    1997-07-01

    A masonry heater using scrapwood and firewood as the only source of back-up heat in this 1820 sq ft single-family live-in demonstration home/office, was described. The heater also contributed significantly to the thermal flywheel of the house. Together with other forms of thermal mass within the building (concrete slab, wood studs, drywall, tiles, furniture, plants, etc), the masonry heater was sufficient to see the occupants through the severe and long winter of 1996/97 with comfortable indoor temperatures. The masonry heater is located near the center of the house with a sunny view towards the south. On sunny winter days it operates as a passive solar heat sink, with the sun charging up the brick face by about five degrees C. In the evening, a 40 pound load of scrap and firewood will take about 1.25 hours to penetrate through the refractory interior core and brick exterior. This provides a cosy fireplace for the occupants, while storing heat in its mass for slow release during the next 1.5 to 3 days. It heats water for storage in the hot water tank. During the period of September 1996 to May 1997 one cord of wood was burned, which is about 12 per cent of the energy pumped into the average single family home in Calgary during the same period. Experience to-date suggests that the masonry heater performs very well as a back-up heater, maintaining an ambient temperature of about 20 degrees C throughout the winter. Some flat plate solar collectors might be necessary to provide for radiant floor heating of the mass since floor temperatures were lower than most occupants found comfortable.

  12. Study on construction method of concrete in the underground research laboratory. 4

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Tajima, Takatoshi; Noda, Masaru

    2004-02-01

    Low alkaline cement is planned to use in construction of Horonobe Underground Research Center as one of in situ experiments. These experiments will be carried out in a part of the vertical shafts and horizontal excavated tunnels. The problems in actual using should be solved and improved until starting construction. This study has been carried out in order to improve the HFSC taking the Horonobe environment into account. Model analysis and preliminary laboratory experiment on hyper alkaline alteration of bentonite and rock have been carried out. And a long term permeability experiment on procedure. (author)or the superfluous exposure dose prevention in IVRbased on results of pH measuring for 546 days and geo-chemical code. Open data and undefined reaction were pointed out in order to accomplish the model on low alkalinity cement with high pozollan content. The effects on fresh concrete properties and harden concrete due to changing properties of fly ash were investigated. Experimental basic planning in situ test of low alkaline cement in Horonobe are proposed. And finally, procedure of improvement HFSC in Horonobe construction are investigated and proposed. It is concluded that HFSC can be applied for construction work of Horonobe underground research center. (author)

  13. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH 2 ) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na 2 SO 4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  14. Experimental Data and Guidelines for Stone Masonry Structures: a Comparative Review

    International Nuclear Information System (INIS)

    Romano, Alessandra

    2008-01-01

    Indications about the mechanical properties of masonry structures contained in many Italian guidelines are based on different aspects both concerning the constituents material (units and mortar) and their assemblage. Indeed, the documents define different classes (depending on the type, the arrangement and the unit properties) and suggest the use of amplification coefficients for taking into account the influence of different factors on the mechanical properties of masonry. In this paper, a critical discussion about the indications proposed by some Italian guidelines for stone masonry structures is presented. Particular attention is addressed to the classification criteria of the masonry type and to the choice of the amplification factors. Finally, a detailed analytical comparison among the suggested values and some inherent experimental data recently published is performed

  15. Seismic Safety Of Simple Masonry Buildings

    International Nuclear Information System (INIS)

    Guadagnuolo, Mariateresa; Faella, Giuseppe

    2008-01-01

    Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have to be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements

  16. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    Directory of Open Access Journals (Sweden)

    B. V. Savchinskiy

    2010-03-01

    Full Text Available On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  17. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  18. The use of concrete-filled steel structures for modular construction of advanced reactors

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-01-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules

  19. Structural Identification And Seismic Analysis Of An Existing Masonry Building

    International Nuclear Information System (INIS)

    Del Monte, Emanuele; Galano, Luciano; Ortolani, Barbara; Vignoli, Andrea

    2008-01-01

    The paper presents the diagnostic investigation and the seismic analysis performed on an ancient masonry building in Florence. The building has historical interest and is subjected to conservative restrictions. The investigation involves a preliminary phase concerning the research of the historic documents and a second phase of execution of in situ and laboratory tests to detect the mechanical characteristics of the masonry. This investigation was conceived in order to obtain the 'LC2 Knowledge Level' and to perform the non-linear pushover analysis according to the new Italian Standards for seismic upgrading of existing masonry buildings

  20. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  1. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  2. Study of the reuse of construction residues in concrete employed by blocks manufacture

    Directory of Open Access Journals (Sweden)

    R. C. C. Lintz

    Full Text Available The use of construction and demolition waste (CDR comes as an alternative for recycling, for costs reduction and for raw material. The CONAMA Resolution 307 (National Council for the Environment establishes that all cities should find an environmentally correct destination to CDR. In this research the mechanical properties of the concrete containing CDR were analyzed aiming its use in the production of concrete blocks. Here, increasing percentages of aggregates of CDR with the same granulometry an substitute the natural aggregate, and then concrete blocks were molded. Tests were then performed in order to determine the compression strength according to NBR 12118:2007, at ages of 14 days and 28 days. It was noticed that the values resulting from the compression strength test were also influenced by the increasing substitution of CDR percentages to the mixture. This research discusses the great potential of using this material in substitution to the natural aggregates used in the production of concrete based materials such as blocks.

  3. The influence of materials characteristics and workmanship on rain penetration in historic fired clay brick masonry

    NARCIS (Netherlands)

    Groot, C.J.W.P.; Gunneweg, J.T.M.

    2010-01-01

    Moisture is a major source of damage in historic solid masonry. Therefore, control of moisture movement in masonry is instrumental to the durability of masonry buildings. From research and practical experience it is known that many factors may play a role regarding permeability problems in masonry.

  4. INVESTIGATION OF RECYCLED TIRE CHIPS FOR USE IN GDOT CONCRETE USED TO CONSTRUCT BARRIER WALLS AND OTHER APPLIATIONS–PHASE I

    Science.gov (United States)

    2017-09-01

    In 2013, GDOT constructed more than 42,000 LF of concrete barrier utilizing a Class A concrete mixture design (3000 psi). There may be potential for the beneficial utilization of recycled tire chips in concrete barrier applications which can possibly...

  5. Influence of the mechanical properties of lime mortar on the strength of brick masonry

    OpenAIRE

    PAVIA, SARA

    2013-01-01

    PUBLISHED This paper aims at improving the quality of lime mortar masonry by understanding the mechanics of mortars and masonry and their interaction. It investigates how the mortar?s compressive and flexural strengths impact the compressive and bond strength of clay brick masonry bound with calcium lime (CL) and natural hydraulic lime (NHL) mortars. It concludes that the strength of the bond has a greater impact on the compressive strength of masonry than the mortar?s st...

  6. La costruzione di edifici in muratura di pietra: aspetti sinergici tra prevenzione sismica, prestazioni acustiche ed energetiche - The construction of stone masonry buildings: synergy aspects between seismic safety, acoustic and energy performances

    Directory of Open Access Journals (Sweden)

    Alessandro Schiavi

    2018-02-01

    Full Text Available Le murature portanti realizzate con materiali lapidei naturali possono costituire una risorsa per la ricostruzione di aree devastate da eventi sismici nella misura in cui si chieda di recuperare,oltre ad una maggiore sicurezza antisismica, anche un’identità storico-tipologica e tecnologica del tessuto urbano, unitamente alla possibilità di rilanciare le attività edilizie artigianali delle economie locali, altrimenti tagliate fuori dal processo di ricostruzione spesso basato sull’importazione di tecniche costruttive avulse dal contesto in cui si affermano.Se da un lato l’emergenza impone l’uso di sistemi costruttivi a secco solitamente basati su legno e acciaio, che consentono in tempi rapidi di dare ricovero a persone e cose, appare tuttavia evidente chequeste, unitamente al cemento armato,non possono essere imposte come la soluzione valida ovunque e comunque per la ricostruzione di antichi borghi completamente distrutti,dei quali deve essere tramandata la memoria storica anche in base alle recenti direttive ministeriali. Nella memoria si indagano sinteticamente le tecnologie costruttive in muratura ammesse dalle normative antisismiche, alla luce del fatto chele stesse offrono interessanti prestazioni acustiche ed energetiche, grazie all’elevata massa ed inerzia termica, aspetti anch’essi oggetto di specifiche normative cogenti. --- Natural stone masonry is a fundamental resource for buildings reconstruction or renovation in areas devastated by seismic events, in order to recover the historical-typological identity of Central Italy urban landscape. As a matter of facts, this kind of building material,united with the new seismic safety technologies, allows to relaunch local handcrafts, otherwise cut off from the reconstruction process based on foreign constructive techniques. Whereas, on the one hand, emergency requires the use of wood and steel building systems or reinforced concrete, allowing rapid provision of shelter to people

  7. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  8. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  9. New Ideas for School Construction.

    Science.gov (United States)

    Producers' Council, Inc., Washington, DC.

    Present educators, architects, engineers, and building product manufacturers with a medium of common interest for discussion of mutual school construction problems, objectives, needs, ideas, capabilities and limitations. Contents include--(1) modern wood construction, (2) school room in a steel mill, (3) masonry in new school design, (4) the…

  10. Understanding the tensile behaviour of masonry parallel to the bed joints: A numerical approach

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Pluijm, R. van der

    1999-01-01

    The lack of experimental data for the complete characterisation of the inelastic behaviour of masonry is a key issue in numerical modelling of masonry structures. A solution to obtain the material properties of masonry at the macro-level is to derive them on the basis of the geometrical and material

  11. SCHOOLS OF PRESTRESSED CONCRETE. PLANNING, DESIGN AND CONSTRUCTION OF EDUCATIONAL FACILITIES FOR SCHOOLS AND COLLEGES.

    Science.gov (United States)

    LYMAN, ROBERT J.

    THE USE OF PRESTRESSED CONCRETE IS EMPHASIZED IN THE AREAS OF SCHOOL PLANNING, DESIGN, AND CONSTRUCTION. THE PLANNING SECTION INCLUDES--(1) ROLES OF ACTIVE PARTIES AND RELATED ORGANIZATIONS, (2) PROCEDURES, AND (3) CONCEPTUAL DATA FOR SITE AND BUILDING. THE DESIGN SECTION CONTAINS--(1) DEVELOPMENT OF CONSTRUCTION SYSTEMS, (2) INTEGRATION OF…

  12. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    Science.gov (United States)

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  13. Collapse Mechanisms Of Masonry Structures

    International Nuclear Information System (INIS)

    Zuccaro, G.; Rauci, M.

    2008-01-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  14. SIMULATION MODELS OF RESISTANCE TO CONCRETE MOVEMENT IN THE CONCRETE CONVEYING PIPE OF THE AUTOCONCRETE PUMP

    OpenAIRE

    Anofriev, P. G.

    2015-01-01

    Purpose. In modern construction the placing of concrete is often performed using distribution equipment of concrete pumps. Increase of productivity and quality of this construction work requires improvement of both concrete pumps and their tooling. The concrete pumps tooling consists of standardized concrete conveying pipes and connector bends radius of up to 2 m. A promising direction of tooling improvement is the reduce of resistance to movement of the concrete in the concrete conveying pip...

  15. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  16. Document turn-over analysis to determine need of NPP construction in build-up structures of reinforced concrete

    International Nuclear Information System (INIS)

    Vojpe, D.K.; Lyubavin, V.K.

    1986-01-01

    Document turn-over to determine used of NPP construction in build-up structures of reinforced concrete is carried out. Ways of improving determination of needs of NPP construction board in the mentioned structures are pointed out

  17. Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures

    International Nuclear Information System (INIS)

    Liberatore, Laura; Tocci, Cesare; Masiani, Renato

    2008-01-01

    In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls

  18. Review of constructive models for concrete

    International Nuclear Information System (INIS)

    Xiaoping, Y.; Ottosen, N.S.; Thelandersson, S.; Nielsen, M.P.

    1989-11-01

    This report has been prepared for the Commission of the European Communities, Joint Research Centre, ISPRA. The report reviews the constitutive models for concrete and is a part of a survey of the status of the analytical capabilities for predicting the structural response of NPP concrete containment buildings to severe loading conditions

  19. Geo-electric measurements – internal state of historic masonry

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    A geophysical resistivity measuring device was modified to perform automatic monitoring of historical masonry structures before, during and after grout injection for consolidation purposes. The obtained image is called a geo-electrical tomography. The technique was used to evaluate the deteriorated masonry of the recently partly collapsed Maagdentoren in Zichem,(B). Geo-electric measuring techniques have been adapted from application in geology to be used as a non-destructive technique for t...

  20. Concrete blocks. Analysis of UNE, ISO en standards and comparison with other international standards

    Directory of Open Access Journals (Sweden)

    Álvarez Alonso, Marina

    1990-12-01

    Full Text Available This paper attempts to describe the recently approved UNE standards through a systematic analysis of the main specifications therein contained and the values considered for each of them, as well as the drafts for ISO and EN concrete block standards. Furthermore, the study tries to place the set of ISO standards in the international environment through a comparative analysis against a representative sample of the standards prevailing in various geographical regions of the globe to determine the analogies and differences among them. PALABRAS CLAVE: albañilería, análisis de sistemas, bloque de hormigón, muros de fábrica, normativa KEY WORDS: masonry, system analysis, concrete blocks, masonry walls, standards

    En este trabajo se pretende describir la reciente aprobada normativa UNE, analizando sistemáticamente las principales prescripciones contempladas y los valores considerados para cada una de ellas, así como los proyectos de Norma ISO, y EN sobre bloques de hormigón. Asimismo se intenta situar la normativa UNE en al ámbito internacional, haciendo un análisis comparativo con una representación de Normas de distintas regiones geográficas del mundo, determinando sus analogías y diferencias.

  1. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  2. Effect of Rice Husk Ash and Fly Ash on the workability of concrete mixture in the High-Rise Construction

    Science.gov (United States)

    Van Tang, Lam; Bulgakov, Boris; Bazhenova, Sofia; Aleksandrova, Olga; Pham, Anh Ngoc; Dinh Vu, Tho

    2018-03-01

    The dense development of high-rise construction in urban areas requires a creation of new concretes with essential properties and innovative technologies for preparing concrete mixtures. Besides, it is necessary to develop new ways of presenting concrete mixture and keeping their mobility. This research uses the mathematical method of two-factors rotatable central compositional planning to imitate the effect of amount of rice husk (RHA) and fly ash of thermal power plants (FA) on the workability of high-mobility concrete mixtures. The results of this study displays regression equation of the second order dependence of the objective functions - slump cone and loss of concrete mixture mobility due to the input factors - the amounts RHA (x1) and FA (x2), as well as the surface expression image of these regression equations. An analysis of the regression equations also shows that the amount of RHA and FA had a significant influence on the concrete mixtures mobility. In fact, the particles of RHA and FA will play the role as peculiar "sliding bearings" between the grains of cement leading to the dispersion of cement in the concrete mixture. Therefore, it is possible to regulate the concrete mixture mobility when transporting fresh concrete to the formwork during the high-rise buildings construction in the hot and humid climate of Vietnam. Although the average value of slump test of freshly mixed concrete, measured 60 minutes later after the mixing completion, decreased from 18.2 to 10.52 cm, this value still remained within the allowable range to maintain the mixing and and the delivery of concrete mixture by pumping.

  3. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  4. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  5. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    Science.gov (United States)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  6. Porous Concrete and Its Application

    Directory of Open Access Journals (Sweden)

    V. V. Opekunov

    2005-01-01

    Full Text Available Some aspects of resource saving problem in the process of mass construction and operation of heated construction installations are considered in the paper. A special attention is paid to necessary application of porous concrete products in the process of the housing construction. The preference is given to the products made of autoclave cellular concrete and cement hydrophobisized cement perlite concrete.

  7. Masonry structures built with fictile tubules: Experimental and numerical analyses

    Science.gov (United States)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  8. Smart bricks for strain sensing and crack detection in masonry structures

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  9. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  10. Basic Hand Tools for Bricklaying and Cement Masonry [and] Basic Hand Tools of the Carpenter.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Intended for student use, this unit discusses and illustrates the tools used in brick and masonry and carpentry. Contents of the brick and masonry section include informative materials on bricklaying tools (brick trowels, joint tools, levels, squares, line and accessories, rules, hammers and chisels, tool kits) and cement masonry tools (tampers,…

  11. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  12. Quality control of concrete in construction of No.2 and No.5 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamashita, Toshio; Nukui, Yasushi; Nojiri, Takaharu.

    1990-01-01

    The construction site and its weather condition are outlined. In the Nuclear Power Station, No.1 plant and No.5 plant with 1100 MWe output each have been already in operation, and No.2 plant with 1100 MWe output is about to start the operation. In this report, the quality control of about 700,000 m 3 of concrete used for No.2 and No.5 plants construction from October, 1983 to November, 1989 is described. The features of the concrete used are shown. The facilities for producing the concrete, which were set up in the construction site, the mixing of the concrete and the quality control are reported. The system for carrying out the quality control of materials and concrete is shown with a flowchart. The material testing on cement, aggregate, water quality, fly ash and chemical additives was carried out. The slump, air quantity, temperature, strength and specific gravity of concrete were tested. (K.I.)

  13. A Review on the Development of New Materials for Construction of Prestressed Concrete Railway Sleepers

    Science.gov (United States)

    Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.

  14. State of the art and further development of reinforced concrete wall cells for nuclear power plant construction

    International Nuclear Information System (INIS)

    Uhlemann, E.; Wartenberg, J.

    1985-01-01

    Reinforced concrete wall cells have been developed for nuclear power plant construction by the USSR and GDR. In this article, a new type of these cells, which will be used for constructing auxiliary equipment of the Stendal nuclear power plant, is described

  15. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  16. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  17. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Goldberg, L. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Jacobson, R. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  18. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  19. Two approaches for the analysis of masonry structures : Micro and macro-modeling

    NARCIS (Netherlands)

    Laurenco, P.B.; Rots, J.G.; Blaauwendraad, J.

    1995-01-01

    Two models for the micro- and macro-analysis of masonry structures are presented. For the micromodeling of masonry, an interface failure criterion that includes a straight tension cut-off, the Coulomb friction law and an elliptical cap is proposed. The inelastic behavior includes tensile strength

  20. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    International Nuclear Information System (INIS)

    Coz Diaz, J.J. del; Garcia Nieto, P.J.; Betegon Biempica, C.; Prendes Gero, M.B.

    2007-01-01

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed

  1. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Coz Diaz, J.J. del; Betegon Biempica, C.; Prendes Gero, M.B. [Edificio Departamental Viesques, No 7, 33204 Gijon (Asturias) (Spain); Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo (Asturias) (Spain)

    2007-06-15

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed. (author)

  2. Influence of Additives on Masonry and Protective Paints’ Quality

    Science.gov (United States)

    Kostiunina, I. L.; Vyboishchik, A. V.

    2017-11-01

    The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.

  3. Evaluation of masonry wall design at nuclear power plants

    International Nuclear Information System (INIS)

    Con, V.N.; Subramonian, N.; Chokshi, N.

    1983-01-01

    The structural integrity of safety-related masonry walls in operating nuclear power plants may not be maintained when subjected to certain loads and load combinations. The paper presents some findings based upon the review of the design and analysis procedures used by the licensees in the reevaluation of safety-related masonry walls. The design criteria developed by the Structural Engineering Branch (SEB) of the United States Nuclear Regulatory Commission (NRC) along with other standard codes such as the Uniform Building Code, ACI 531-79, ATC 3-06, and NCMA were used as guidance in evaluating the design criteria developed by the licensees. The paper deals with the following subject areas: loads and load combinations, allowable stresses, analytical procedures, and modification methods. The paper concludes that, in general, the masonry walls in nuclear power plants comply with the working stress design requirements. In some cases, certain nonlinear analysis methods were used. The applicability of these methods is discussed. (orig.)

  4. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  5. Use of polymer concrete for construction materials

    International Nuclear Information System (INIS)

    Vrtanoski, Gligorche; Dukovski, Vladimir; Yamaguchi, Kitazumi

    2002-01-01

    Polymer concrete (PC), or resin concrete, consists of a polymer binder, which may be a thermoplastic but more frequently is a thermosetting polymer, and a mineral filler such as aggregate, gravel and crushed stone. PC has higher strength, greater resistance to chemicals and corrosive agents, lower water absorption and higher freeze-thaw stability than the conventional Portland cement concrete and Cast Iron. This paper is a review of the key features of PC materials as a bases for comparison with the cast iron. (Original)

  6. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.

    Science.gov (United States)

    Mastella, Miguel Angelo; Gislon, Edivelton Soratto; Pelisser, Fernando; Ricken, Cláudio; da Silva, Luciano; Angioletto, Elídio; Montedo, Oscar Rubem Klegues

    2014-08-01

    The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study on vulnerability matrices of masonry buildings of mainland China

    Science.gov (United States)

    Sun, Baitao; Zhang, Guixin

    2018-04-01

    The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.

  8. The use of joint reinforcement in qualifying masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Harris, H.G.; Becica, I.J.; Chokshi, N.C.; Con, V.N.; Hamid, A.A.

    1984-01-01

    Wire joint reinforcement has been traditionally used in block masonry walls for crack control and to provide continuity for multiple wythe walls. In a number of nuclear power plants, vertically unreinforced masonry walls that failed to meet the code allowable stresses for unreinforced masonry were qualified using joint reinforcement as a structural steel to carry lateral loads in the horizontal direction. It is the objective of this paper to examine the adequacy of this approach for seismic load application. A state-of-the-art review of available test data and code design provisions will be presented. It is concluded that the use of joint reinforcement to resist tensile stresses due to seismic loading is questionable because of the lack of test data available and especially the characterization of the cyclic behavior of joint reinforced masonry walls. Further research in this area is recommended

  9. A Survey of a System of Methods for Fire Safety Design of Traditional Concrete Constructions

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2000-01-01

    constructions DS411. And the bases for many of the methods have been distributed by CIB W14 reports. But a survey of all the methods in coherence has never been presented, and much of this documentation and the additional documentation produced for the work with the codes needs still to be printed in papers......During the years since 1978 the author has been developing a series of calculation methods and sup-porting test methods for the fire safety design of concrete constructions. The basic methods have been adopted in the fire chapters of the Eurocode ENV1992-1-2 and the Danish code for concrete.......It is the aim of this paper to give a coherent presentation of the design methods, their degree of documentation and the available references in order to facilitate the application of them....

  10. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  11. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  12. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  13. PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops at Giza

    International Nuclear Information System (INIS)

    Demortier, Guy

    2004-01-01

    The mystery of the construction of the great pyramids of Egypt could be elucidated by physico-chemical measurements on small pieces of the material. In this paper, we give several arguments against the present point of view of most Egyptologists who do not admit another method than hewn blocks. We give several pieces of evidence that the masonry was entirely built by a moulding procedure involving the use of ingredients that were all available in the region of Cairo

  14. PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops at Giza

    Science.gov (United States)

    Demortier, Guy

    2004-11-01

    The mystery of the construction of the great pyramids of Egypt could be elucidated by physico-chemical measurements on small pieces of the material. In this paper, we give several arguments against the present point of view of most Egyptologists who do not admit another method than hewn blocks. We give several pieces of evidence that the masonry was entirely built by a moulding procedure involving the use of ingredients that were all available in the region of Cairo.

  15. The construction features of the deformation and force model of concrete and reinforced concrete resistance

    Directory of Open Access Journals (Sweden)

    Romashko Vasyl

    2017-01-01

    Full Text Available The main features of the deformation and force model of deformation of reinforced concrete elements and structures based on generalized diagrams of their state are considered in the article. Particular attention is focused on the basic methodological problems and shortcomings of modern "deformation" models. It is shown that in the most cases these problems can be solved by the generalized diagrams of reinforced concrete elements and structures real state. Thanks to these diagrams, the developed method: provides a single methodological approach to the calculation of reinforced concrete elements and structures normal sections for limit states; allows to reveal the internal static indeterminacy of heterogeneously deformable elements and structures in their ultimate limit state calculation; justifies the application of the basic and derived criteria of reinforced concrete elements and structures bearing capacity exhaustion; retains the essence of the physical processes of concrete and reinforced concrete structures deformation. The defining positions of the generalized (universal methodology for calculating reinforced concrete elements and structures are stated.

  16. Determinatin dúne application des betons de balles de riz dans le ...

    African Journals Online (AJOL)

    The obtained concretes are light and have compressive strength between 1 and 8 MPa. An application of these concretes is their use for the manufacture of masonry blocks and interjoists entering in the realization of walls and coffer floor. Key words: Rice husks, lightweight concrete, compressive strength, Masonry blocks, ...

  17. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty; M., El-Kashef; E., Fahmy; M., Abou-Zeid; M., Haroun

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal

  18. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  19. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  20. Estudio experimental del Sistema de Albañilería Integral en la construcción de viviendas sismorresistentes. Experimental study of the Integral Masonry System in the construction of earthquake resistant houses

    OpenAIRE

    Bustamante Montoro, Rosa; Orta Rial, María Belén; Adell Argiles, Josep Maria

    2012-01-01

    This paper presents the application of the Integral Masonry System (IMS) to the construction of earthquake resistant houses and its experimental study. To verify the security of this new type of building in seismic areas of the third world two prototypes have been tested, one with adobe and the other with hollow brick. In both cases it’s a two-story 6x6x6 m3 house built to scale 1/2. The tests are carried out at the Laboratory of Antiseismic Structures of the Departmen...

  1. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed; Hendam, Ahmed; Fahmy, Ezzat; Abou Zeid, Mohamed; Haroun, Medhat

    2012-01-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  2. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  3. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    Science.gov (United States)

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

  4. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  5. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  6. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  7. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... insulation on north-orientated walls, since the drying potential is reduced. Additionally, caution should be exercised also with west-orientated walls....

  8. Performance estimation for concretes made with recycled aggregates of construction and demolition waste of some Brazilian cities

    Directory of Open Access Journals (Sweden)

    Antonio Eduardo Bezerra Cabral

    2012-12-01

    Full Text Available The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA of construction and demolition wastes (CDW on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.

  9. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  10. Nonlinear Analyses of Adobe Masonry Walls Reinforced with Fiberglass Mesh

    Directory of Open Access Journals (Sweden)

    Vincenzo Giamundo

    2014-02-01

    Full Text Available Adobe constructions were widespread in the ancient world, and earth was one of the most used construction materials in ancient times. Therefore, the preservation of adobe structures, especially against seismic events, is nowadays an important structural issue. Previous experimental tests have shown that the ratio between mortar and brick mechanical properties (i.e., strength, stiffness and elastic modulus influences the global response of the walls in terms of strength and ductility. Accurate analyses are presented in both the case of unreinforced and reinforced with fiberglass mesh when varying the mechanical properties of the materials composing the adobe masonry structure. The main issues and variability in the behavior of seismic resisting walls when varying the mechanical properties are herein highlighted. The aim of the overall research activity is to improve the knowledge about the structural behavior of adobe structural members unreinforced and reinforced with fiberglass mesh inside horizontal mortar joints.

  11. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  12. The masonry behaviour under contact detonation

    Directory of Open Access Journals (Sweden)

    Marin Lupoae

    2017-03-01

    Full Text Available Breaching in masonry wall as a process of quick intervention of special forces in emergency cases, may require the use of explosive charges. In order to maximize the explosive effects on the wall and to minimize the shock wave and fragments propulsion, such breaching systems usually use a water layer which cover the explosive charge. The thickness of the water layer has a significant influence both on the mitigation of unwanted effects and enhancing the demolition effect, but also increases the mass of the system which can have negative consequences on the maneuverability and rapidity of intervention, respectivly. In this respect, the paper under consideration addresses numerical and experimental research on masonry walls to determine the behavior of mortar and brick under contact detonation and to establish an optimal water layer thickness to balance the breaching system requirement related to the mass on the one hand and effects and offered protection on the other hand.

  13. A proposal for improving sustainability practice through the implementations of reuse and recycle technique in Malaysian construction industry

    Science.gov (United States)

    Osman, Wan Nadzri; Nawi, Mohd Nasrun Mohd; Saad, Rohaizah; Anuar, Herman Shah; Ibrahim, Siti Halipah

    2016-08-01

    Construction and demolition waste is often seen as the major contributor to the solid waste stream that is going to landfill, hence, making it the area of focus for improvement. In the construction industry, reuse and recycle principles have been promoted in order to reduce waste and protect the environment. Construction and demolition waste including demolished concrete, bricks and masonry, wood and other materials such as dry wall, glass, insulation, roofing, wire, pipe, rock and soil constitute a significant component of the total waste. Without proper reuse and recycle policies, these construction and demolition wastes would quickly fill all the remaining landfill space, which has already been growing in scarce around this region. Based on the feedback received, on average, a third of respondents said they currently have a lotto benefit from the use of reduce and reuse. In addition, they also agreed that the existing policies help and support the min carrying out the reduce and reuse practices. Respondents also agreed that other stakeholders in the construction industry currently have an excellent awareness in term of implementation of the reduce and reuse in their practices.

  14. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-03-01

    Full Text Available The seismic performance of recycled aggregate concrete (RAC composite shear walls with different expandable polystyrene (EPS configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC protective layer (EPS modules as the external insulation layer, and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.

  15. Massive use of pulverized fuel ash in concrete for the construction of a U.K. power station

    International Nuclear Information System (INIS)

    Davies, D.R.; Kitchener, J.N.

    1996-01-01

    This paper describes the incorporation and benefits of pulverized fuel ash (PFA) in nearly 620,000 m 2 of concrete used in the construction of the UK's first commercial pressurized light water nuclear reactor power station, Sizewell B, Suffolk. Overall nearly 100,000 t of PFA, 1,300 t of sintered fly ash lightweight aggregate, and nearly 137,000 t of Ordinary Portland Cement (OPC) were used in the works. Generally in the construction of the main power station buildings, structural concrete with a characteristic strength of 45 N/mm 2 was placed and included fly ash as 40% of the cementitious component. Also, concrete with fly ash as 50% of the cementitious component was placed as mass fill. The program of research is reported, including sulfate resistance, heat of hydration,elastic properties, alkali-silica reaction, and long-term strength test results. Test and field results are presented and discussed. Strict quality assurance procedures were enforced and statistical summaries are offered to give an insight into the quality of control exercised. Test work and long-term results are also outlined

  16. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  17. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  18. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  19. Specifications for Supplementary Classroom Units, Stressed Skin Panel.

    Science.gov (United States)

    Waring, Robert B.; And Others

    Complete outline specifications are given for the construction of supplementary classroom units using stressed skin panels. Sections included are--(1) concrete and related work, (2) masonry, (3) structural and miscellaneous metal, (4) curtain walls and metal windows, (5) carpentry and related work, (6) roofing, sheet metal, and related work, (7)…

  20. Investigation of combined effect of mixture variables on mechanical properties of cement treated demolition waste

    NARCIS (Netherlands)

    Xuan, D.; Houben, L.J.M.; Molenaar, A.A.A.; Shui, Z.

    2012-01-01

    One of high efficient ways to reuse the recycled construction and demolition waste (CDW) is to consider it as a road base material. The recycled CDW however is mainly a mix of recycled masonry and concrete with a wide variation in composition. This results that the mechanical properties of cement

  1. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  2. Masonry Infilling Effect On Seismic Vulnerability and Performance Level of High Ductility RC Frames

    International Nuclear Information System (INIS)

    Ghalehnovi, M.; Shahraki, H.

    2008-01-01

    In last years researchers preferred behavior-based design of structure to force-based one for designing and construction of the earthquake-resistance structures, this method is named performance based designing. The main goal of this method is designing of structure members for a certain performance or behavior. On the other hand in most of buildings, load bearing frames are infilled with masonry materials which leads to considerable changes in mechanical properties of frames. But usually infilling wall's effect has been ignored in nonlinear analysis of structures because of complication of the problem and lack of simple logical solution. As a result lateral stiffness, strength, ductility and performance of the structure will be computed with less accuracy. In this paper by use of Smooth hysteretic model for masonry infillings, some high ductile RC frames (4, 8 stories including 1, 2 and 3 spans) designed according to Iranian code are considered. They have been analyzed by nonlinear dynamic method in two states, with and without infilling. Then their performance has been determined with criteria of ATC 40 and compared with recommended performance in Iranian seismic code (standard No. 2800)

  3. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    for ECC in order to assess its distinctive mechanical properties such as tensile stress–strain behavior and multiple cracking. To investigate the influence of a thin layer of ECC on plain masonry in terms of changes in stiffness, strength, and deformability, small scale tests have been conducted...... and strength properties, including the post-peak softening behavior in view of seismic applications. The obtained resultsindicate that the proposed ECC-strengthening technique can effectively increase the shear capacity of masonry panels, improve their deformability, enhance their energy absorption capacity......, and prevent the brittle failure mode. Furthermore, the superior deformability of ECC is clearly reflected by cracks development in the ECC layer, which was monitored by a high resolution camera and was analyzed using Digital Image Correlation (DIC) technique....

  4. Concrete debris assessment for road construction activities : summary.

    Science.gov (United States)

    2016-09-01

    University of Florida researchers studied the possible : impact of recycled concrete aggregate (RCA) used in : roadway base layers on the acid/base balance of the : subsurface environment. They also examined a related : issue: management of concrete ...

  5. EFFECT OF HCL CONCENTRATION ON NORMAL CONCRETE AND ADMIXTURED CONCRETE MADE WITH AND WITHOUT MANUFACTURED SAND

    OpenAIRE

    K. Pradeep*, K. Ramudu

    2017-01-01

    Concrete is considered to be the most widely used and versatile material of construction all over the world. One of the important ingredients of conventional concrete is natural sand or river sand, which is on the verge of exhausting due to abundant usage. In India, the conventional concrete is produced by using natural sand obtained from riverbeds as fine aggregate. However, due to the increased use of concrete in almost all types of construction works, the demand of natural or river sand ha...

  6. Evaluation of the reinforcing steel corrosion in concrete mixes that will be used for constructing mid activity disposal repositories

    International Nuclear Information System (INIS)

    Moreno, Manuel; Alvarez, Marta G.; Duffo, Gustavo S.

    2000-01-01

    This study presents an evaluation of the reinforcing steel bars (rebars) corrosion behavior embedded in high performance concrete's prepared with three different cement types (normal Portland, Sulfate resistant and with furnace slag). The results of the study will provide the basis to select the materials used for constructing the mid activity radioactive disposals containers. The effect of aggressive ions such as chlorides and sulfates, as well as concrete carbonation, on the rebar corrosion process is evaluated using concrete specimens containing rebar segments. The electrochemical parameters that characterize the rebar corrosion process (corrosion potential (E corr ), polarization resistance (Rp) and electrical resistivity of concrete (ρ)) where periodically monitored after a conditioning period of 100 days. The results show that under all exposure conditions evaluated the rebar segments in contact with the three concrete mixes achieve a passive state of corrosion. Due to the continuos curing process of concrete the values of ρ present an increasing trend within time, even in the specimens exposed to the immersed conditions. (author)

  7. Study on construction method of concrete in the underground research laboratory. 3

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Takeda, Nobufumi; Akiyoshi, Kenji

    2003-02-01

    The Horonobe underground research laboratory project doesn't carry on only safety assessment study but also demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for engineered barrier in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. Effect on variety of quality of fly ash and monitoring corrosion of rebars in off-shore condition has been studied. In-situ test for actual use of HFSC in constructing the facility was planned. The results are summarized as below. Effects of variety of flay ash upon lower pH are relatively small by testing two type of fly ash and several fly as content. Variety of fly ash effects properties of fresh concrete but its effect is not significant. And it little effects on mechanical behavior. However, it doesn't effect on properties of shotcrete. Although rebars corrode in HFSC in spite of no intrusion of chloride, increment of corrosion is not significant in half an year until an year. Applicability for structural members is demonstrated by loading test of tunnel concrete segments of HFSC. Pre-mixed HFSC can be supplied by mixing fly ash and silica fume in Sapporo and carry to Horonobe by cement truck. (author)

  8. Measures against concrete cracking in underground type light oil tank pit construction work

    International Nuclear Information System (INIS)

    Koike, Takeo; Kadowaki, Kazuhiko; Date, Masanao

    2017-01-01

    The underground type light oil tank pit set at Onagawa Nuclear Power Station is a tripartite underground pit structure made of reinforced concrete. This is a mass concrete made of deck slab / outer wall of 1.5 m in thickness and inner wall / top slab of 1.0 m in thickness. Since concrete placement season was July for the deck slab and October for the walls, the occurrence of thermal cracking was highly conceivable. As a result of investigating crack suppression measures based on the crack width of 0.2 mm or less as a guide, the application of fly ash cement and the addition of expansion material to the walls were judged effective and adopted. Thanks to these preliminary studies and careful construction control, it was possible to minimize the occurrence of cracks, but several through cracks of 0.2 mm or less were confirmed on part of the outer walls. As a countermeasure, repair by means of surface impregnation method was adopted, and quality and schedule could be secured. This paper outlines crack suppression measures and repair of the cracks that occurred after the implementation. (A.O.)

  9. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  10. Statistical study on the strength of structural materials and elements

    International Nuclear Information System (INIS)

    Blume, J.A.; Dalal, J.S.; Honda, K.K.

    1975-07-01

    Strength data for structural materials and elements including concrete, reinforcing steel, structural steel, plywood elements, reinforced concrete beams, reinforced concrete columns, brick masonry elements, and concrete masonry walls were statistically analyzed. Sample statistics were computed for these data, and distribution parameters were derived for normal, lognormal, and Weibull distributions. Goodness-of-fit tests were performed on these distributions. Most data, except those for masonry elements, displayed fairly small dispersion. Dispersion in data for structural materials was generally found to be smaller than for structural elements. Lognormal and Weibull distributions displayed better overall fits to data than normal distribution, although either Weibull or lognormal distribution can be used to represent the data analyzed. (auth)

  11. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  12. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  13. Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.

    2018-04-01

    Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.

  14. Performance evaluation of clay fly ash brick masonry

    Energy Technology Data Exchange (ETDEWEB)

    Kute, S.; Deodhar, S.V. [K.K. Wagh College of Engineering, Panchavati (India). Dept. of Civil Engineering

    2003-07-01

    Despite inexorable trends of automation in manufacturing industry throughout the world, the conventional brick manufacturing practices have remained largely unchanged since the dawn of civilization in India. This has imposed restrictions on quality of bricks in general. The paper highlights the results derived from an extensive experimental work on performance evaluation of brick masonry. Four types of bricks, three values of joint thickness and fineness modulus of sand, and two grades of mortar with four different proportions were used as samples. Fly ash was from Nashik Thermal Power Station in Maharashtra, India. The results show that the brick masonry of 40% fly ash bricks and mortar with 20% fly ash as replacement to cement with 1:4 and 1:6 proportion gives optimum strength and advocates use of fly ash for this combination. 8 tabs.

  15. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  16. Chapter K: Progress in the Evaluation of Alkali-Aggregate Reaction in Concrete Construction in the Pacific Northwest, United States and Canada

    Science.gov (United States)

    Shrimer, Fred H.

    2005-01-01

    The supply of aggregates suitable for use in construction and maintenance of infrastructure in western North America is a continuing concern to the engineering and resources-management community. Steady population growth throughout the region has fueled demand for high-quality aggregates, in the face of rapid depletion of existing aggregate resources and slow and difficult permitting of new sources of traditional aggregate types. In addition to these challenges, the requirement for aggregates to meet various engineering standards continues to increase. In addition to their physical-mechanical properties, other performance characteristics of construction aggregates specifically depend on their mineralogy and texture. These properties can result in deleterious chemical reactions when aggregate is used in concrete mixes. When this chemical reaction-termed 'alkali-aggregate reaction' (AAR)-occurs, it can pose a major problem for concrete structures, reducing their service life and requiring expensive repair or even replacement of the concrete. AAR is thus to be avoided in order to promote the longevity of concrete structures and to ensure that public moneys invested in infrastructure are well spent. Because the AAR phenomenon is directly related to the mineral composition, texture, and petrogenesis of the rock particles that make up aggregates, an understanding of the relation between the geology and the performance of aggregates in concrete is important. In the Pacific Northwest, some aggregates have a moderate to high AAR potential, but many others have no or only a low AAR potential. Overall, AAR is not as widespread or serious a problem in the Pacific Northwest as in other regions of North America. The identification of reactive aggregates in the Pacific Northwest and the accurate prediction of their behavior in concrete continue to present challenges for the assessment and management of geologic resources to the owners and operators of pits and quarries and to the

  17. Characterization of the response of quasi-periodic masonry : geometrical investigation, homogenization and application to the Guimarães castle, Portugal

    OpenAIRE

    Milani, G.; Esquivel Fernández, Yhosimi Washington; Lourenço, Paulo B.; Riveiro, Belén; Oliveira, Daniel V.

    2013-01-01

    In many countries, historical buildings were built with masonry walls constituted by random assemblages of stones of variable dimensions and shapes. The analysis of historic masonry structures requires often complex and expensive computational tools that in many cases are difficult to handle, given this large variability of masonry. The present paper validates a methodology for the characterization of the ultimate response of quasi periodic masonry. For this purpose, the behaviour at colla...

  18. Microencapsulation of Self-healing Concrete Properties

    Science.gov (United States)

    2012-08-01

    design and development. Other factors that can affect concrete and its lifespan include shrinkage , design flaws or poor quality of construction...possible shrinkage , design flaws or poor quality of construction materials, reinforced concrete will eventually develop cracks. Inevitable damage to...SELF-HEALING CONCRETE PROPERTIES N00244-l 0-G-0004 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER James Gilford III

  19. Seismic assessment of ancient masonry buildings : shaking table tests and numerical analysis

    OpenAIRE

    Mendes, N.

    2012-01-01

    Tese de doutoramento em Estruturas - Engenharia Civil Ancient masonry buildings were built for many centuries taking into account only vertical static loads, without reference to any particular seismic code. The different types of masonry present common features that are directly related to the high seismic vulnerability of this type of buildings, such as the high specific mass, the low tensile strength, low to moderate shear strength and low ductility (brittle behaviour). Besi...

  20. Glass Masonry - Experimental Verification of Bed Joint under Shear

    Science.gov (United States)

    Fíla, J.; Eliášová, M.; Sokol, Z.

    2017-10-01

    Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.

  1. Modeling of lintel-masonry interaction using COMSOL

    NARCIS (Netherlands)

    Vermeltfoort, A.T.; Schijndel, van A.W.M.

    2008-01-01

    Usually, when using Finite Element Models, structures are subdivided into elements and uniform properties are assigned to each material. However, in masonry, like in many other materials, properties vary over the volume of the structure. Therefore an attempt was made, as described in this paper, to

  2. Metrology Needs for Predicting Concrete Pumpability

    Directory of Open Access Journals (Sweden)

    Myoungsung Choi

    2015-01-01

    Full Text Available With the increasing use of pumping to place concrete, the development and refinement of the industry practice to ensure successful concrete pumping are becoming important needs for the concrete construction industry. To date, research on concrete pumping has been largely limited to a few theses and research papers. The major obstacle to conduct research on concrete pumping is that it requires heavy equipment and large amounts of materials. Thus, developing realistic and simple measurement techniques and prediction tools is a financial and logistical challenge that is out of reach for small research labs and many private companies in the concrete construction industry. Moreover, because concrete pumping involves the flow of a complex fluid under pressure in a pipe, predicting its flow necessitates detailed knowledge of the rheological properties of concrete, which requires new measurement science. This paper summarizes the technical challenges associated with concrete pumping and the development in concrete pumping that have been published in the technical literature and identifies future research needed for the industry to develop best practices for ensuring successful concrete pumping in the field.

  3. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  4. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  5. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  6. Numerical Analysis of a Masonry Panel Reinforced with Pultruded FRP Frames

    Science.gov (United States)

    Casalegno, C.; Russo, S.; Sciarretta, F.

    2018-05-01

    The paper presents a numerical study on the retrofit of traditional masonry with pultruded GFRP profile frames adjacent to a wall and connected to it by mechanical fasteners. This kind of retrofit solution, not having been explored yet either in theory or practice, is similar to the common steel frame retrofits, but offers the advantages of lightness and durability of FRP composite materials. The retrofit system proposed, once proven effective and advantageous, would bring a considerable potential innovation into its available options. Three different frame geometries and two cases of masonry thickness were considered to investigate the effectiveness of the retrofit GFRP frame on the inplane static response of the wall to horizontal loads. The global and local (connection) failure behavior of the wall-frame system was investigated using the 3D finite-element method. A general increase in strength after the retrofit, up to about 130%, was found, and a switch from rocking to the diagonal tension failure mode was observed. The strength hierarchy of the retrofitted systems was also analyzed to clarify the effectiveness of the retrofit in imparting a residual strength to masonry. A thinner masonry structure was clearly recognized to have got the greatest benefits, but the retrofit could also significantly improve the inplane shear strength of a thicker wall. A comparison with steel structures of analogous capacity in terms of weight and natural vibration frequencies supported the viability of composite FRP frames for retrofit.

  7. Evaluation of mechanical properties of construction joint between new and old concrete under combined tensile and shear stresses; Shinkyu concrete no uchitsugime no incho sendan oryokuka no kyodo tokusei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ujiike, I. [Ehime University, Ehime (Japan). Faculty of Engineering; Yoshida, N. [Shikoku Railway Company, Kagawa (Japan); Morishita, S. [Oriental Construction Co. Ltd., Tokyo (Japan)

    1998-01-15

    The objective of this study is to examine the mechanical properties of construction joints between existing and newly placed concrete under combined tensile and shear stresses. Loading tests are conducted by using push off type specimens. The joint surface of existing concrete is roughened by shot blast and a half of the specimen is reconstructed by new concrete using ultra rapid hardening cement. The insufficient treatment of joint surface of the old concrete causes the lowering of tensile rigidity, while shearing rigidity is almost the same as that of the other specimen. The shearing and tensile rigidities of non jointed concrete and concrete shot blasted properly are not dependent on the combination of shearing and tensile forces. For the jointed concrete shot blasted insufficiently, the shearing rigidity decreases with the increase of tensile force and the tensile digidity also becomes lower by the action of shearing force. Both the tensile strength and shearing strength of jointed concrete become small compared to those of non jointed concrete. The ratio of reduction in tensile strength is larger than that in shearing strength. The strength of jointed concrete under combined tensile and shear stresses can be evaluated by Mohr`s failure envelope expressed by parabola tangent to both tensile strength circle and compressive strength circle. 7 refs., 12 figs., 2 tabs.

  8. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  9. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  10. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  11. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  12. Engineering Behavior of Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    Ayob Afizah

    2017-01-01

    Full Text Available Concrete is extensively used as construction materials in Malaysia. Concrete contributes suitable feature for construction industry for instance durability, adequate compressive strength, fire resistance, availability and is economic as compared to other construction materials. Depletion of natural resources and disposal of construction and demolition waste remarkably claim environmental threat. In this paper, the engineering behavior, durability, and concrete microstructure of recycled concrete aggregates (RCA on short-term concrete properties were investigated. The studied concrete at design mix proportion of 1:0.55:2.14:2.61 (weight of cement :coarse aggregates :sand :water used to obtain medium-high compressive strength with 20%, 50%, and 100% of RCA. Results show that for the same water/cement ratio, RCA replacement up to 50% still achieved the targeted compressive strength of 25 MPa at 28 curing days. Addition, at similar RCA replacement, the highest carbonation depth value was found at 1.03 mm which could be attributed to the pozzolanic reaction, thus led to lower carbonation resistance. Scanning electron microscopy microstructure shows that the RCA surface was porous and covered with loose particles. Moreover, the interfacial transition zone was composed of numerous small pores, micro cracks, and fissures that surround the mortar matrix. On the basis of the obtained results, recommendable mineral admixtures of RCA are necessary to enhance the quality of concrete construction.

  13. Influence of light masonry mortar on the thermal insulation of a solid brick wall

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C

    1980-12-01

    For calculations of the thermal insulation of structural components according to DIN 4108 and to the Thermal Insulation Ordinance, characteristic data of thermal conductivity are used which are contained in DIN 4108 and in the Bundesanzeiger in Supplements to the publication of material characteristics for the calculation of thermal insulation according to the Thermal Insulation Ordinance. For masonry, this value is equivalent to the thermal conductivity of the bricks, including mortar joints. The mortar considered is standard mortar, group II, according to DIN 1053. In the last few years, in order to improve the thermal insulation, mortars of low thermal conductivity and low volume weight - so-called light masonry mortars - have been used to an increasing extent. The improvement in thermal conductivity as compared with standard mortar is referred to as ..delta..lambda; it depends mostly on the thermal conductivity of the light mortar and the bricks. In the article, the laws governing the influence of light masonry mortar on the thermal insulation of masonry of solid bricks and solid blocks are reviewed.

  14. Design and construction of the prestressed concrete boiler closures for the Hartlepool and Heysham pressure vessels

    International Nuclear Information System (INIS)

    Crowder, R.; Howells, R.M.; Paton, A.A.

    1976-01-01

    At a relatively late stage in the station design, the boiler closures for the reactor vessels at Hartlepool and Heysham were changed from steel to prestressed concrete. This paper sets out the criteria which were finally evolved for the new style of closure and describes the way in which the prestressed concrete closure's parts were designed to satisfy these criteria. With both the civil and mechanical components of the closure having their own specific requirements, close co-operation was necessary between these disciplines to ensure that a compatible and practical closure design resulted. This close interrelationship has been carried through into the construction stage and a special concreting and prestressing factory has been built adjacent to the works of the mechanical component fabricator. This enabled an optimum manufacturing cycle to be followed and the important aspects of this are described in the paper. (author)

  15. Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings

    Directory of Open Access Journals (Sweden)

    J. Toti

    2014-07-01

    Full Text Available In the present work, the damage propagation of a masonry arch induced by slow cyclic and dynamic loadings is studied. A two-dimensional model of the arch is proposed. A nonlocal damage-plastic constitutive law is adopted to reproduce the hysteretic characteristics of the masonry material, subjected to cyclic static loadings or to harmonic dynamic excitations. In particular, the adopted cohesive model is able to take into account different softening laws in tension and in compression, plastic strains, stiffness recovery and loss due to crack closure and reopening. The latter effect is an unavoidable feature for realistically reproducing hysteretic cycles. In the studied case, an inverse procedure is used to calibrate the model parameters. Then, nonlinear static and dynamic responses of the masonry arch are described together with damage propagation paths.

  16. A two-phase moisture transport model accounting for sorption hysteresis in layered porous building constructions

    DEFF Research Database (Denmark)

    Johannesson, Björn; Janz, Mårten

    2009-01-01

    Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water and exhi......Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water....... The model is developed by carefully examining the mass balance postulates for the two considered constituents together with appropriate and suitable constitutive assumptions. A test example is solved by using an implemented implicit finite element code which uses a modified Newton-Raphson scheme to tackle...

  17. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    Science.gov (United States)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  18. Compatible dilation limits of masonry joint mortars

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Beran, Pavel

    2010-01-01

    Roč. 4, č. 2 (2010), s. 155-176 ISSN 1558-3058 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : material characteristics * stone masonry * thermal expansion Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.500, year: 2010

  19. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  20. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  1. Development of Electrode Units for Electrokinetic Desalination of Masonry and Pilot Scale Test at Three locations for Removal of Chlorides

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Skibsted, Gry

    2010-01-01

    which allows continuous pressure between clay and masonry so good electrical contact is remained. The electrode units were tested at three different locations, two on baked brick masonry (inside in a heated room and outside on a masonry with severe plaster peeling) and the third pilot scale experiment...

  2. Comparative study on diagonal equivalent methods of masonry infill panel

    Science.gov (United States)

    Amalia, Aniendhita Rizki; Iranata, Data

    2017-06-01

    Infrastructure construction in earthquake prone area needs good design process, including modeling a structure in a correct way to reduce damages caused by an earthquake. Earthquakes cause many damages e.g. collapsed buildings that are dangerous. An incorrect modeling in design process certainly affects the structure's ability in responding to load, i.e. an earthquake load, and it needs to be paid attention to in order to reduce damages and fatalities. A correct modeling considers every aspect that affects the strength of a building, including stiffness of resisting lateral loads caused by an earthquake. Most of structural analyses still use open frame method that does not consider the effect of stiffness of masonry panel to the stiffness and strength of the whole structure. Effect of masonry panel is usually not included in design process, but the presence of this panel greatly affects behavior of the building in responding to an earthquake. In worst case scenario, it can even cause the building to collapse as what has been reported after great earthquakes worldwide. Modeling a structure with masonry panel as consideration can be performed by designing the panel as compression brace or shell element. In designing masonry panel as a compression brace, there are fourteen methods popular to be used by structure designers formulated by Saneinejad-Hobbs, Holmes, Stafford-Smith, Mainstones, Mainstones-Weeks, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Al-Chaar, Papia and Chen-Iranata. Every method has its own equation and parameters to use, therefore the model of every method was compared to results of experimental test to see which one gives closer values. Moreover, those methods also need to be compared to the open frame to see if they can result values within limits. Experimental test that was used in comparing all methods was taken from Mehrabi's research (Fig. 1), which was a prototype of a frame in a structure with 0.5 scale and the

  3. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  4. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  5. Retrofitting unreinforced masonry | Ngowi | Botswana Journal of ...

    African Journals Online (AJOL)

    Unreinforced masonry (URM) walls are prone to failure and collapse when subjected to out-of-plane loads caused by earthquake or high wind pressures. This represents one of the main causes of injuries and loss of human lives and property in different parts of the world. Recent catastrophic earthquake events have ...

  6. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  7. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  8. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  9. Salt Induced Decay of Masonry and Electrokinetic Repair

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    in brick depending on its water content and salts may be precipitated on the outer wall or concentrated under paint layers covering the surface of the brick. Different types of damage may appear in masonry walls due to these concentrating phenomena. Bricks themselves can be destroyed and the mortar can...... of bricks without increased salt content is very low compared to soils in general. Furthermore in a masonry wall there are boundaries with different chemistry (e.g. pH) that the ions must pass, brick-mortar boundaries. From initial experiments with electrokinetic removal of Ca2+ ions from bricks good......Salt induced decay of bricks is caused when salts exert internal pressures, which exceed the strength of the stone. The presence of aqueous electrolyte solutions in the capillary pores of brick materials can under changing climate conditions cause deterioration of wall structures. Ions move...

  10. Análisis comparativo en base a la sostenibilidad ambiental entre bóvedas de albañileria y estructuras de hormigón Comparative analysis on environmental sustainability between masonry vaults and concrete structures

    Directory of Open Access Journals (Sweden)

    Justo García Sanz Calcedo

    2012-01-01

    Full Text Available En este trabajo se compara desde una perspectiva de sostenibilidad, el impacto medioambiental de una estructura de fábrica horizontal de albañilería mediante bóveda de arista, respecto a un forjado estructural de hormigón armado de tipo reticular, utilizando técnicas basadas en el Análisis del Ciclo de Vida para cuantificar la energía consumida en el proceso de fabricación de los materiales y construcción de la estructura. Se ha detectado que la bóveda consume un 75% menos de energía en el proceso de construcción, emite un 69% menos de OO2 a la atmósfera, tienen un coste medio de fabricación para pequeñas luces similar al de un forjado convencional e inferior cuando se trata de salvar grandes luces, genera un 171% menos de residuos procedentes de embalaje en obra, aunque es necesario mas cantidad de mano de obra y que ésta sea más especializada. Se demuestra que la construcción abovedada satisface con creces las exigencias actuales en cuanto a sostenibilidad, así como que esta técnica constructiva puede convivir con la tecnología propia de la sociedad actual, dando como resultado un producto de altas prestaciones económicas, funcionales y energéticas.This paper compares, from a sustainability perspective, the environmental impact of a masonry arris vault with respect to a reticulated reinforced concrete slab, using techniques based on the Life Cycle Assessment to quantify the energy used in the manufacturing process of materials and in the construction of the structure. It has been detected that the vault consumes 75% less energy in the construction process, it emits 69% less CO2 into the atmosphere, it has an average manufacturing cost for short spans similar to a conventional slab, but much lower when large spans have to be covered, and it generates 171% less packaging waste from works, but it needs a larger and more skilled labor force. This paper shows that the vaulted building fully meets the current sustainability

  11. Tests and Analysis of the Compressive Performance of an Integrated Masonry Structure of a Brick-Stem-Insulating Layer

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-05-01

    Full Text Available This paper proposes, for low buildings, an integrated wall structure of a brick-stem-insulating layer, which plays a major part in both heat preservation and force bearing. The research team has tested the thermal performance of the structure, the results of which are satisfying. To further study the force-bearing performance, the paper carries out compressive tests of specimens of different structural design, with two types of bricks, i.e., clay and recycled concrete bricks; three types of stems, i.e., square-shaped wood, square-shaped steel pipe and circular steel pipe; and one type of insulating layer, i.e., fly ash masonry blocks. Afterward, the force bearing performance, damage that occurred, compressive deformation and ductility of all of the specimens are compared. On the sideline, the structure is applied in the construction of a pilot residence project, yielding favorable outcomes. The results indicate that in comparison with a brick wall with an insulating layer sandwiched in between, the integrated wall structure of bricks and fly ash blocks is a more preferable choice in terms of compressive performance and ductility. The integrated wall structure of brick-stem-fly ash blocks delivers much better performance to this end. Note that regarding the stem’s contribution to compressive strength, circular steel pipe is highest, followed by square-shaped steel pipe and then square-shaped wood. The compressive performance of the sandwiched blocks surpasses that of the two brick wall pieces combined by a large margin.

  12. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1982-02-01

    The calculations are valid for point cources of 60 Co with an average photon energy of 1,25 MeV. They may also be applied to line or volume sources. In these cases the concrete densities or wall ticknesses are on the safe side. For sources showing a marked line or volume character a special calculation for line or volume sources is recommended. (orig./HP) [de

  13. Integrating a vented airspace into a spray-foam insulated solid masonry historic building in a cold climate: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tzekova, Ekaterina; Pressnail, K.D.; Binkley, Clarissa [Department of Civil Engineering, University of Toronto (Canada); Pearson, Nastassja [Halsall Associates Limited (Canada); Pasqualini, Paul [Engineering Link Inc (Canada); Aikin, Craig [Halcrow Yolles (Canada)

    2011-07-01

    Thermal insulation was not included during the construction of historic brick buildings in Canada. Although thermal retrofits can improve building energy performance and occupant comfort, heritage requirements restrict the use of internal insulation. This paper presents an innovative Vented Masonry Retrofit (VMR), which consists of creating a vented airspace by incorporating Mortairvent between the insulation and the masonry. A numerical model and a field trial involving a three-storey heritage building were performed to compare the hygrothermal performance of the VMR with that of standard interior insulation. Temperature and relative humidity were collected during the winter months in foam-insulated, side-by-side wall assemblies along the east and south facing walls using both approaches. Modeling results predicted that using VMR assemblies would reduce the moisture content in both east and south elevations to below that obtained with standard insulation. However, the field trial showed improvement only along the south facade. Long term performance evaluation is required far a better evaluation of the VMR approach.

  14. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  15. Study Concerning Characterization of Some Recycled Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    Robu Ion

    2016-03-01

    Full Text Available Using recycled concrete aggregates (RCA is a matter of high priority in the construction industry worldwide. In countries like the Netherlands, Denmark, Germany, USA, Japan, France recycled concrete aggregates obtained from demolition are valorized up to 90%, mainly for road construction and less in the manufacture of new concrete.

  16. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    Science.gov (United States)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  17. Concrete debris assessment for road construction activities : final report.

    Science.gov (United States)

    2016-08-01

    Two distinct but related issues of importance to FDOT were investigated: (1) the possible impact of : recycled concrete aggregate (RCA) used as road base on the subsurface environment and (2) the : management of concrete grinding residuals (CGR) resu...

  18. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    Directory of Open Access Journals (Sweden)

    I. I. Soto

    Full Text Available Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers, which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.

  19. Concrete Waste as a Cement Replacement Material in Concrete Blocks for Optimization of Thermal and Mechanical Properties

    OpenAIRE

    Rosman M.S.; Abas N.F.; Othuman Mydin M.A.

    2014-01-01

    The sustainability of the natural environment and eco-systems is of great importance. Waste generated from construction forces mankind to find new dumping grounds and at the same time, more natural resources are required for use as construction materials. In order to overcome this problem, this study was conducted to investigate the use of concrete waste in concrete blocks with a special focus on the thermal and mechanical properties of the resulting products. Three varieties of concrete mixt...

  20. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  1. Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation.

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Armando, Sr. (Arquin Corporation, La Luz, NM); Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2008-08-01

    Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph winds (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).

  2. Automatic dam concrete placing system; Dam concrete dasetsu sagyo no jidoka system

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Y; Hori, Y; Nakayama, T; Yoshihara, K; Hironaka, T [Okumura Corp., Osaka (Japan)

    1994-11-15

    An automatic concrete placing system was developed for concrete dam construction. This system consists of the following five subsystems: a wireless data transmission system, an automatic dam concrete mixing system, a consistency determination system, an automatic dam concrete loading and transporting system, and a remote concrete bucket opening and closing system. The system includes the following features: mixing amount by mixing ratio and mixing intervals can be instructed from a concrete placing site by using a wireless handy terminal; concrete is mixed automatically in a batcher plant; a transfer car is started, and concrete is charged into a bucket automatically; the mixed concrete is determined of its properties automatically; labor cost can be reduced, the work efficiency improved, and the safety enhanced; and the system introduction has resulted in unattended operation from the aggregate draw-out to a bunker line, manpower saving of five persons, and reduction in cycle time by 10%. 11 figs., 2 tabs.

  3. Global analyses of historical masonry buildings: Equivalent frame vs. 3D solid models

    Science.gov (United States)

    Clementi, Francesco; Mezzapelle, Pardo Antonio; Cocchi, Gianmichele; Lenci, Stefano

    2017-07-01

    The paper analyses the seismic vulnerability of two different masonry buildings. It provides both an advanced 3D modelling with solid elements and an equivalent frame modelling. The global structural behaviour and the dynamic properties of the compound have been evaluated using the Finite Element Modelling (FEM) technique, where the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. A sensitivity analysis is done to evaluate the effect of the choice of the structural models.

  4. FACTORS PROVIDING THE STRENGHT AND DURABILITY OF CONCRETE

    Directory of Open Access Journals (Sweden)

    Bahattin KÜÇÜK

    2000-01-01

    Full Text Available In this study, it has been stated that the project strenght of concrete structures assumed in static and reinforced concrete calculations should also be provided for the concrete produced in construction sites. The effective factors for the production of high quality concrete are explained by interpreting previously made experimantal studies. In this way, by giving preference to scientific studies, engineers, architects, contractors and subcontractors in construction sector are provided to gain practical experience.

  5. Structural damage in masonry : Developing diagnostic decision support

    NARCIS (Netherlands)

    De Vent, I.A.E.

    2011-01-01

    This thesis deals with the diagnosis of structural damage in traditional masonry: cracks, deformations and tilts. Establishing the cause of this type of damage can be difficult. This research project has aimed to improve and facilitate the diagnostic process by offering support in the initial phase

  6. Hygrothermal analysis of surface layers of historical masonry

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Keppert, Martin; Černý, Robert

    2017-11-01

    The paper deals with the hygrothermal analysis of surface layers of historical masonry. Solid brick provided with a traditional and two modified lime-based plasters is studied. The heat and moisture transport in the envelope is induced by an exposure of the wall from the exterior side to dynamic climatic conditions of Olomouc, Czech Republic. The transport processes are described using diffusion type of mathematical model based on experimentally determined material properties. The computational results indicate that hygric transport and accumulation properties of exterior plasters affect the hygrothermal performance of the underlying solid brick in a very significant way, being able to regulate the amount of transported moisture. The modified lime plasters are not found generally superior to the traditional lime plasters in that respect. Therefore, their suitability for historical masonry should be assessed case by case, with a particular attention to the climatic conditions and to the properties of the load bearing structure.

  7. Excavation-caused extra deformation of existing masonry residence in soft soil region

    Science.gov (United States)

    Tang, Y.; Franceschelli, S.

    2017-04-01

    Growing need for construction of infrastructures and buildings in fast urbanization process creates challenges of interaction between buildings under construction and adjacent existing buildings. This paper presents the mitigation of contradiction between two parties who are involved the interaction using civil engineering techniques. Through the in-depth analysis of the results of monitoring surveys and enhanced accuracy and reliability of surveys, a better understanding of the behavior of deformable buildings is achieved. Combination with the original construction documents, the two parties agree that both of them are responsible for building damages and a better understanding for the rehabilitation of the existing buildings is focused on. Two cases studies are used to demonstrate and describe the importance of better understanding of the behavior of existing buildings and their rehabilitations. The objective of this study is to insight into mechanisms of soil-structure interaction for buildings adjacent to deep excavations, which can result in a damage in existing masonry residence, and to take the optimized measures to make deep excavations safety and economic and adjacent buildings keep good serviceability in urban areas with soft soil conditions.

  8. FIRE INSURANCE AND WOOD SCHOOL BUILDINGS.

    Science.gov (United States)

    PURCELL, FRANK X.

    A COMPARISON OF FIRE INSURANCE COSTS OF WOOD, MASONRY, STEEL AND CONCRETE STRUCTURES SHOWS FIRE INSURANCE PREMIMUMS ON WOOD STRUCTURES TEND TO BE HIGHER THAN PREMIUMS ON MASONRY, STEEL AND CONCRETE BUILDINGS, HOWEVER, THE INITIAL COST OF THE WOOD BUILDINGS IS LOWER. DATA SHOW THAT THE SAVINGS ACHIEVED IN THE INITIAL COST OF WOOD STRUCTURES OFFSET…

  9. Evaluation of concrete inlay for continuously reinforced concrete pavement rehabilitation.

    Science.gov (United States)

    2010-06-01

    In 1996, WisDOT constructed a concrete inlay test section on I43 in Manitowoc County. The existing pavement was CRCP constructed in 1978 and was badly deteriorated with punchouts. In the area of the 2777foot test section, the existing paveme...

  10. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  11. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  12. COULD A MASONRY HEATER BE THE MAIN HEAT SOURCE IN A TIGHT HOUSE?

    OpenAIRE

    Kasiliauskas, Jonas

    2017-01-01

    Masonry heaters are the oldest heating method for one family houses. Earlier houses had high leakage air-flow rates because thermal efficient insulation material was combustible by that time /20/. The masonry heater perfectly fits for air leaky houses. Nowadays, houses are more insulated and have an air tight envelope. People don’t want to spend time for supervising heating systems, that’s the reason they choose a heating system with automatism. The main aim of my thesis is to evaluate if...

  13. Processor farming method for multi-scale analysis of masonry structures

    Science.gov (United States)

    Krejčí, Tomáš; Koudelka, Tomáš

    2017-07-01

    This paper describes a processor farming method for a coupled heat and moisture transport in masonry using a two-level approach. The motivation for the two-level description comes from difficulties connected with masonry structures, where the size of stone blocks is much larger than the size of mortar layers and very fine finite element mesh has to be used. The two-level approach is suitable for parallel computing because nearly all computations can be performed independently with little synchronization. This approach is called processor farming. The master processor is dealing with the macro-scale level - the structure and the slave processors are dealing with a homogenization procedure on the meso-scale level which is represented by an appropriate representative volume element.

  14. Behaviour of masonry structures during the Bhuj earthquake of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... were essentially made of well-cut sandstone units in lime mortar. All such .... Sathish Kumar R 1999 Natural frequencies and mode shapes of brick masonry buildings; M. E dissertation report,. Dept. of Civil Engg., IISc, ...

  15. Results of lichenometric dating of masonry in the outskirts of Kandalaksha city (Russia, Murmansk region

    Directory of Open Access Journals (Sweden)

    Melekhin Alexey

    2014-11-01

    Full Text Available The lichenometric dating of masonry in the area of Kandalaksha city was carried out. For more accurate dating, the reference sites with known age (70 years were laid in Pechenga district (Murmansk region. According to our calculations, the age of masonry was in the range of 60 to 80 years, that is consistent with dendrochronology data (75 years.

  16. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  17. Radiometric assessment of quality of concrete mix with respect to hardened concrete strength

    International Nuclear Information System (INIS)

    Czechowski, J.

    1983-01-01

    The experiments have confirmed the relationship between the intensity of backscattered gamma radiation and the density of fresh concrete, and also between the flow of backscattered fast neutrons and the water content. From the said two parameters it is possible to derive the compression strength of concrete over the determined period of mix hardening, e.g., after 28 days. For a certain composition of concrete it is possible to derive empirical relations between the intensity of backscattered gamma radiation and neutrons and concrete strength after hardening and to construct suitable nomograms. (Ha)

  18. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  19. Numerical Modeling of Local Penetration of Chloride-Containing Medium into Construction Elements Made of Reinforced Concrete

    Science.gov (United States)

    Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.

    2017-11-01

    The task of modeling the kinetics of chloride-containing medium penetration into construction elements out of reinforced concrete that have partially damaged anti-corrosion protective coatings is being discussed. As a result, chlorides penetrate the construction element via local surface areas which leads to irregularities between chloride dispersion volumes. The kinetics of chloride penetration is described by the equation of diffusion to solve which the CONDUCT software complex by professor S. Patankar was used. The methodology used to solve the diffusional equation is described. The results of the evaluation of concentration field in the axial section of a cylindrical construction element, which was centrally reinforced, are given. The chloride diffusion was symmetrical to the axis, the medium was applied through the central ring area equal to one third of the side surface area while the rest of the surface was isolated. It was shown that the methodology of evaluation and its algorithm allow one to evaluate the concentration field of chlorides in reinforced concrete structural elements under local or asymmetrical action of the chloride - containing medium. The example given illustrates that after a certain time interval critical the concentration of chlorides develops even in protected areas which are located far from the initial damaged area. This means that the corrosion destruction of reinforced elements develops not only in the immediate damage area, but also further away from it.

  20. Test of workability of concrete for PCCV

    International Nuclear Information System (INIS)

    Fujii, Tadayoshi; Nagase, Tetsuo; Yoshimori, Yoshinari

    1987-01-01

    The construction of the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. is the first case in Japan, and since the concrete having high strength and low slump is placed, the test of concrete placing by taking out a part of a full size test wall and the test of workability regarding the vibration compacting of concrete using a vibrator were carried out beforehand, and the results were reflected to the actual construction works. In this report, the workability test on the concrete is described. As difficulty is expected in the actual placing of the concrete having high strength and low slump, for the purpose of confirming the property of placing of the concrete in the cylindrical wall, and obtaining the basic data for the management of the actual concrete works and the quality control, the concrete placing test was carried out. At the time of concrete placing, the compacting of concrete is important, therefore, the basic data on the effect that the type, diameter, vibrating time and vibration propagation range of vibrators exert on the compacting of concrete were obtained, and reflected to the actual compacting. The purpose, testing method, results and the reflection to the actual works of these tests are reported. (Kako, I.)

  1. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  2. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards

  3. Comparison of fundamental natural period of masonry and reinforced concrete buildings retrieved from experimental campaigns performed in Italy, Greece and Spain

    Science.gov (United States)

    Nigro, Antonella; Ponzo, Felice C.; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Domenico S.; Soupios, Pantelis; García-Fernández, Mariano; Jimenez, Maria-Jose

    2017-04-01

    Aim of this study is the experimental estimation of the dynamic characteristics of existing buildings and the comparison of the related fundamental natural period of the buildings (masonry and reinforced concrete) located in Basilicata (Italy), in Madrid (Spain) and in Crete (Greece). Several experimental campaigns, on different kind of structures all over the world, have been performed in the last years with the aim of proposing simplified relationships to evaluate the fundamental period of buildings. Most of formulas retrieved from experimental analyses provide vibration periods smaller than those suggested by the Italian Seismic Code (NTC2008) and the European Seismic Code (EC8). It is known that the fundamental period of a structure play a key role in the correct estimation of the spectral acceleration for seismic static analyses and to detect possible resonance phenomena with the foundation soil. Usually, simplified approaches dictate the use of safety factors greater than those related to in depth dynamic linear and nonlinear analyses with the aim to cover any unexpected uncertainties. The fundamental period calculated with the simplified formula given by both NTC 2008 and EC8 is higher than the fundamental period measured on the investigated structures in Italy, Spain and Greece. The consequence is that the spectral acceleration adopted in the seismic static analysis may be significantly different than real spectral acceleration. This approach could produces a decreasing in safety factors obtained using linear seismic static analyses. Based on numerical and experimental results, in order to confirm the results proposed in this work, authors suggest to increase the number of numerical and experimental tests considering also the effects of non-structural components and soil during small, medium and strong motion earthquakes. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4

  4. The influence of hardening conditions on the properties of masonry cement mortar prisms made in brick moulds

    NARCIS (Netherlands)

    Bertram, G.; Lourenco, P.B.; Hasseltine, B.A.; Vasconseles, G.

    2014-01-01

    One aspect of our investigation into the spacing of movement joints involved the short and long term deformation of mortar embedded in masonry. In this research the influence of hardening conditions on the physical and mechanical properties of masonry cement mortar [M5] were studied. Mortar prisms

  5. Life Cycle Assessment of Completely Recyclable Concrete.

    Science.gov (United States)

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  6. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  7. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  8. Effects of FRP application on the seismic response of a masonry church in Emilia-Romagna (Italy)

    Science.gov (United States)

    Milani, Gabriele; Shehu, Rafael; Valente, Marco

    2016-12-01

    The paper presents some preliminary results of advanced Finite Element (FE) analyses on the upgrading of old masonry constructions by means of Fiber Reinforced Polymers (FRPs). The case study is a masonry Romanesque church, located in Ferrara, Emilia Romagna (Italy). The church exhibits widespread damage caused by the recent earthquake sequence occurred in 2012 about 60 km far from Ferrara with two major seismic events of magnitude 5.8 and 5.9. The main damage involved mainly the columns of the central nave and the apse. A partial detachment of the façade was observed too. First, gravity load analyses and non-linear static and dynamic analyses are performed on the church in the unretrofitted configuration. Numerical results put in evidence the insufficient strength of the apse and the columns of the naves, and the detachment of the façade. A strengthening intervention conducted by means of FRP strips is numerically analysed, assuming the behavior of the strips, especially for what concerns delamination, in agreement with Italian Guidelines. Numerical results show a quite reasonable strength improvement of the weak structural elements due to FRP application, with levels of strength higher than the minimum ones required by Italian Code.

  9. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  10. On the dynamics of viscous masonry beams

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.

    2015-01-01

    Roč. 27, č. 3 (2015), s. 349-365 ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.849, year: 2015 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y

  11. 76 FR 34890 - Track Safety Standards; Concrete Crossties

    Science.gov (United States)

    2011-06-15

    ...-0007, Notice No. 3] RIN 2130-AC01 Track Safety Standards; Concrete Crossties AGENCY: Federal Railroad... effective concrete crossties, for rail fastening systems connected to concrete crossties, and for automated inspections of track constructed with concrete crossties. The Track Safety Standards were amended via final...

  12. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gregerova, Miroslava; Vsiansky, Dalibor

    2009-01-01

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

  13. On the Numerical Modeling of Confined Masonry Structures for In-plane Earthquake Loads

    Directory of Open Access Journals (Sweden)

    Mircea Barnaure

    2015-07-01

    Full Text Available The seismic design of confined masonry structures involves the use of numerical models. As there are many parameters that influence the structural behavior, these models can be very complex and unsuitable for the current design purposes of practicing engineers. Simplified models could lead to reasonably accurate results, but caution should be given to the simplification assumptions. An analysis of various parameters considered in the numerical modeling of confined masonry structural walls is made. Conclusions regarding the influence of simplified procedures on the results are drawn.

  14. Maintenance management balancing performance maintenance and cost balance at reinforced concrete constructions of the fossil-fuel and nuclear power stations

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Benno, Hiroshi; Ozaki, Mitsuhiro

    2003-01-01

    Life elongation of concrete constructions (CCs) is a very important needs for supporting future safe supply of electric power. However, some CCs constructed and used for a long term at fossil-fuel and nuclear power stations had reduction of their required performance by deterioration based on environmental and using conditions represented by salt-damage. As such constructions are anxious to increase in future, it is necessary to keep reliability of their establishments by providing desired rehabilitation to persist supplying effect of their facilities. On the other hand, as it is also essential to progress keeping and reducing cost of power generation together with development of recent liberalization of electric power, it is an important subject how to keep their performance maintenance and cost balance. Therefore, here were outlined on required performance setting method, inspection method, long-term deterioration forecasting and evaluating methods, selection method of countermeasure scenarios minimizing LCC, inspection period setting method, introduction of database and deterioration forecasting system, and so on, to economically maintain and manage already built reinforced concrete constructions at suitable materials and places to elongate their lives. (G.K.)

  15. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    Science.gov (United States)

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  16. The issues and discussion of modern concrete science

    CERN Document Server

    Yang, Wenke

    2015-01-01

    This book is devoted to two primary objectives. The first is to present the errors, inadaptability, and mistakes arising when the current theory on concrete is applied to explaining practical construction of concrete; the second is to put forward viewpoints in modern concrete science. Taking a number of engineering cases as examples, we experimentally studied and theoretically analyzed the errors, inadaptability, and mistakes when the current theory on concrete is applied to explaining practical construction of concrete. Moreover, we investigated the use of mixing ratios, aggregates, cement, high-performance concrete and fibers, as well as the frost resistance, cracking behavior, durability, dry shrinkage and autogenous healing to address and remedy the shortcomings in today’s concrete science, put forward new proposals, and make a number of innovative achievements in the field, particularly in modern theory on concrete science. The results and topics which will be of particular interest to engineers and...

  17. The issues and discussion of modern concrete science

    CERN Document Server

    Yang, Wenke

    2015-01-01

    This book is devoted to two primary objectives. The first is to present the errors, inadaptability, and mistakes arising when the current theory on concrete is applied to explaining practical construction of concrete; the second is to put forward viewpoints in modern concrete science. Taking a number of engineering cases as examples, we experimentally studied and theoretically analyzed the errors, inadaptability, and mistakes when the current theory on concrete is applied to explaining practical construction of concrete. Moreover, we investigated the use of mixing ratios, aggregates, cement, high-performance concrete and fibers, as well as the frost resistance, cracking behavior, durability, dry shrinkage and autogenous healing to address and remedy the shortcomings in today’s concrete science, put forward new proposals, and make a number of innovative achievements in the field, particularly in modern theory on concrete science. The results and topics which will be of particular interest to engineers and re...

  18. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  19. Postearthquake safety evaluation of buildings at DOE (Department of Energy) facilities

    International Nuclear Information System (INIS)

    Gallagher, R.

    1989-01-01

    New postearthquake building safety evaluation procedures have been developed. The procedures cover inspection and safety assessment of the principal types of building construction found in the US, including wood, masonry, tilt-up, concrete, and steel frame structures. Guidelines are also provided for appraising the structural safety significance of ground movements resulting from geologic hazards and for the inspection of nonstructural elements for falling and other hazards

  20. Drying brick masonry by electro-osmosis

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2006-01-01

    When a fine grained, porous medium is applied an electric DC field, transport of matter occurs, and the transport mechanism in focus of the present study is electro-osmosis, which is transport of water. In laboratory it was shown possible to transport water inside a brick and brick/mortar system...... movement of water towards the cathode was seen. Thus the basis for utilizing the electro-osmotic effect for drying brick masonry is present, but proper electrodes still needs to be developed....