WorldWideScience

Sample records for concrete containment wall

  1. Tension tests of concrete containment wall elements

    International Nuclear Information System (INIS)

    Schultz, D.M.; Julien, J.T.; Russel, H.G.

    1984-01-01

    Tension tests of concrete containment wall elements were conducted as part of a three-phase research program sponsored by the Electric Power Research Institute (EPRI). The objective of the EPRI experimental/analytical program is twofold. The first objective is to provide the utility industry with a test-verified analytical method for making realistic estimates of actual capacities of reinforced and prestressed concrete containments under internal over-pressurization from postulated degraded core accidents. The second objective is to determine qualitative and quantitative leak rate characteristics of typical containment cross-sections with and without penetrations. This paper covers the experimental portion to the EPRI program. The testing program for Phase 1 included eight large-scale specimens representing elements from the wall of a containment. Each specimen was 60-in (1525-mm) square, 24-in (610-mm) thick, and had full-size reinforcing bars. Six specimens were representative of prototypical reinforced concrete containment designs. The remaining two specimens represented prototypical prestressed containment designs. Various reinforcement configurations and loading arrangements resulted in data that permit comparisons of the effects of controlled variables on cracking and subsequent concrete/reinforcement/liner interaction in containment elements. Subtle differences, due to variations in reinforcement patterns and load applications among the eight specimens, are being used to benchmark the codes being developed in the analytical portion of the EPRI program. Phases 2 and 3 of the test program will examine leak rate characteristics and failure mechanisms at penetrations and structural discontinuities. (orig.)

  2. Concrete as secondary containment for interior wall embedded waste lines

    International Nuclear Information System (INIS)

    Porter, C.L.

    1993-01-01

    Throughout the Department of Energy (DOE) complex are numerous facilities that handle hazardous waste solutions. Secondary containment of tank systems and their ancillary piping is a major concern for existing facilities. The Idaho Division of Environmental Quality was petitioned in 1990 for an Equivalent Device determination regarding secondary containment of waste lines embedded in interior concrete walls. The petition was granted, however it expires in 1996. To address the secondary containment issue, additional studies were undertaken. One study verified the hypothesis that an interior wall pipe leak would follow the path of least resistance through the naturally occurring void found below a rigidly supported pipe and pass into an adjacent room where detection could occur, before any significant deterioration of the concrete takes place. Other tests demonstrated that with acidic waste solutions rebar and cold joints are not an accelerated path to the environment. The results from these latest studies confirm that the subject configuration meets all the requirements of secondary containment

  3. The moisture conditions of nuclear reactor concrete containment walls - an example for a BWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L.O.; Johansson, P. [Lund Institute of Technology, Laboratory of Building Materials, PO Box 118, 221 00 Lund (Sweden)

    2006-07-01

    A method is presented on how to quantify the moisture conditions of nuclear concrete containment walls. The method is based on first quantifying the boundary conditions at the outer and inner surfaces and then describing the moisture fixation and moisture transport within the concrete wall. The temperature and humidity conditions of the outdoor air and of the air close to the wall surfaces are monitored for a period of time and the vapour contents in the different points are compared. From the differences between the vapour contents the sources of moisture are identified and quantified. The previous and future climatic conditions are then predicted. An example is given for the conditions in the containment walls at Barsebaeck nuclear power plant, where moisture measurements have been performed in situ and on samples taken from the walls. (authors)

  4. Cyclic behavior of low rise concrete shear walls containing recycled coarse and fine aggregates

    NARCIS (Netherlands)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-01-01

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied:

  5. Reliability assessment and probability based design of reinforced concrete containments and shear walls

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-03-01

    This report summarizes work completed under the program entitled, ''Probability-Based Load Combinations for Design of Category I Structures.'' Under this program, the probabilistic models for various static and dynamic loads were formulated. The randomness and uncertainties in material strengths and structural resistance were established. Several limit states of concrete containments and shear walls were identified and analytically formulated. Furthermore, the reliability analysis methods for estimating limit state probabilities were established. These reliability analysis methods can be used to evaluate the safety levels of nuclear structures under various combinations of static and dynamic loads. They can also be used to generate analytically the fragility data for PRA studies. In addition to the development of reliability analysis methods, probability-based design criteria for concrete containments and shear wall structures have also been developed. The proposed design criteria are in the load and resistance factor design (LRFD) format. The load and resistance factors are determined for several limit states and target limit state probabilities. Thus, the proposed design criteria are risk-consistent and have a well-established rationale. 73 refs., 18 figs., 16 tabs

  6. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  7. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Qiyun Qiao

    2017-12-01

    Full Text Available In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  8. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  9. Experimental study of the leakage rate through cracked reinforced concrete wall elements for defining the functional failure criteria of containment buildings

    International Nuclear Information System (INIS)

    Choun, Young Sun; Cho, Nam So

    2004-01-01

    Containment buildings in nuclear power plants should maintain their structural safety as well as their functional integrity during an operation period. To maintain the functional integrity, the wall and dome of the containment buildings have to maintain their air tightness under extreme loading conditions such as earthquakes, missile impact, and severe accidents. For evaluating the functional failure of containments, it is important to predict the leak amount through cracked concrete walls. The leakage through concrete cracks has been studied since 1972. Buss examined the flow rate of air through a pre-existing crack in a slab under air pressure. Rizkalla el al. initiated an experimental study for the leakage of prestressed concrete building segments under uniaxial and biaxial loadings to simulate the loading condition of containment buildings under an internal pressure. Recently, Salmon el al. initiated an experimental program for determining the leak rates in typical reinforced concrete shear walls subjected to beyond design basis earthquakes. This study investigates the cracking behavior of reinforced concrete containment wall elements under a uniaxial tension and addresses the outline of the leakage test for unlined containment wall elements

  10. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  11. Another Concrete In the Wall

    OpenAIRE

    Meric, Asli Duru

    2015-01-01

    concrete has a memory. It stores the construction sequences. It shows what it is made of and how it is made. The texture of the formwork, the color difference of the pours, and the shadows of the metal ties combine to layer the beauty of concrete. The aim of this study is to explore the instruments of a concrete surface in order to enhance this multi-sensory experience. This study began with the design of a concrete wall and evolved into the design of a single-family home. MARCH

  12. CONCRETE REACTOR CONTAINMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Ralph F.; Hall, William F.; Fruchtbaum, Jacob

    1963-06-15

    The results of various leak-rate tests demonstrate the practicality of concrete as primary containment for the maximum credible accident for a research reactor employing plate-type fuel and having a power in excess of one megawatt. Leak-test time was shortened substantially by measuring the relaxation time for overpressure decay, which is a function of leak rate. (auth)

  13. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  14. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  15. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV

  16. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  17. Monitoring localized cracks on under pressure concrete nuclear containment wall using linear and nonlinear ultrasonic coda wave interferometry

    Science.gov (United States)

    Legland, J.-B.; Abraham, O.; Durand, O.; Henault, J.-M.

    2018-04-01

    Civil engineering is constantly demanding new methods for evaluation and non-destructive testing (NDT), particularly to prevent and monitor serious damage to concrete structures. Tn this work, experimental results are presented on the detection and characterization of cracks using nonlinear modulation of coda waves interferometry (NCWT) [1]. This method consists in mixing high-amplitude low-frequency acoustic waves with multi-scattered probe waves (coda) and analyzing their effects by interferometry. Unlike the classic method of coda analysis (CWT), the NCWT does not require the recording of a coda as a reference before damage to the structure. Tn the framework of the PTA-ENDE project, a 1/3 model of a preconstrained concrete containment (EDF VeRCoRs mock-up) is placed under pressure to study the leakage of the structure. During this evaluation protocol, specific areas are monitored by the NCWT (during 5 days, which correspond to the protocol of nuclear power plant pressurization under maintenance test). The acoustic nonlinear response due to the high amplitude of the acoustic modulation gives pertinent information about the elastic and dissipative nonlinearities of the concrete. Tts effective level is evaluated by two nonlinear observables extracted from the interferometry. The increase of nonlinearities is in agreement with the creation of a crack with a network of microcracks located at its base; however, a change in the dynamics of the evolution of the nonlinearities may indicate the opening of a through crack. Tn addition, as during the experimental campaign, reference codas have been recorded. We used CWT to follow the stress evolution and the gas leaks ratio of the structure. Both CWT and NCWT results are presented in this paper.

  18. Contribution to the study of fluids transfers within a concrete wall: application to the case of a containment wall subjected to air tightness tests conditions and to accidental situation conditions

    International Nuclear Information System (INIS)

    Billard, Y.

    2003-01-01

    The correlation between the leak rate of a containment wall of nuclear power plants reactor buildings measured during periodic airtightness tests and the leak rate during a Loss Of Coolant Accident (LOCA) is a fundamental element in the security analysis of reactor building. The aim of this work is to contribute to the study of the transfers of fluids induced by these two types of loading in the case of a concrete wall integrating inhomogeneities and singularities capable to exist within the containment wall. In a first experimental phase, the development of a test rig allowing to work with concrete specimens having the same height as the thickness of containment wall of future nuclear power plant (1.3 m) permits to develop concrete compositions representative of these high air permeability zones. Their characterization is focused on the types of gaseous flow being able to exist within these high diffuse permeability concretes and on the structuring of their porous network. This step is completed by water vapour sorption measurements and by mercury porosimetry tests in the case of a concrete qualified according a leak flow criterion. In a second experimental phase, this concrete is subjected to air tightness tests conditions and to an accidental situation of LOCA type (141 deg C, effective humid air pressure equal to 4,2 bar) always with a thickness of 1.3 m. The analysis of pressure and temperature fields and the water content distributions is performed by an appropriate instrumentation which also permits the study of kinetics of the mass flux (both gaseous and liquid) crossing to the extrados of the wall. The numerical investigation is carried out with the Thermal-Hydro-Mechanic of non-saturated porous media model, recently implemented in Code Aster (developed by EDF). This model allows to consider all the fluid phases in presence. From a interpretation work of experimental data according to hypotheses of the model, notably towards the particular aspects bound up

  19. Ageing management of CANDUtm concrete containment buildings

    International Nuclear Information System (INIS)

    Philipose, K.E.; Gregor, F.E.

    2009-01-01

    The containment system in a Nuclear Power Plant (NPP) provides the final physical barrier against release of radioactive materials to the external environment. Even though there are different physical configurations to meet this fundamental safety function in various reactor types, a common feature is the use of a thick-walled concrete structure as part of the containment system commonly referred to as 'Concrete Containment Building'. In order for the concrete containment buildings to continue to provide the required safety function, it has to maintain its structural integrity. As well, its leak rates under test pressures must be maintained below acceptable limits. As some of the containment buildings of the CANDU nuclear power plants are approaching their fourth decade of successful operation, questions regarding the impact of ageing on their ultimate useful service life emerge. Ageing Management has become the tool for addressing those questions. In this paper, the ageing and ageing management of the CANDU concrete containments are discussed, including the specific programs being implemented to monitor and trend the ageing conditions. Specifically, the usefulness of the embedded strain gauges as a tool for the assessment of the condition of the containment concrete structure is discussed. Some of the operational and test data accumulated over the last 30 years have been evaluated and trended to provide some results and conclusions regarding the satisfactory long-term behaviour of the concrete containment buildings. (authors)

  20. Degradation tests for C 32/40 concrete used for perimetral wall, reactor base and components of Cernavoda NPP containment, under thermal stress conditions and liner degradation

    International Nuclear Information System (INIS)

    Carlan, P.; Paraschiv, I.; Dinu, A.; Stanciulescu, M.; Olteanu, A. M.; Voica, I.; Stelian, R.; Buc, G.

    2016-01-01

    In order to evaluate the effect of thermal degradation on C 32/40 concrete used in nuclear constructions at Cernavoda NPP, continuous thermal stress tests were performed at 65, 80 and 100°C and cyclic thermal stress tests at 65°C in dry conditions. This paper presents the macroscopic properties of concrete, obtained after these treatments and also the microstructural changes that occur in the cement paste from the concrete composition, which has been tested in the same conditions as the concrete samples. Determinations performed for macroscopic properties of concrete included: compressive strength, loss of density, permeability and modulus of elasticity. Cement paste samples were analysed by XRD (for mineralogical composition) and SEM (for morphology). The obtained results shown an appropriate behaviour of the concrete used in this study; changes are insignificant and follow the normal evolution process of concrete, proving that concrete will preserve its safety functions, as part of the containment structure. (authors)

  1. Roles of concrete technology for containment of radioactive contaminants

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori; Imamoto, Keiichi

    2014-01-01

    A large amount of radioactive materials was emitted in the environment by the reactor accident at Fukushima Daiichi Nuclear Power Plant. Nuclear debris still remains in the reactor container. An investigative committee was organized in Japan Concrete Institute to study on the containment of radioactive materials and the safe utilization of concrete materials. We have investigated the effect of the hydrogen explosion upon the property of concrete and the transfer of materials into the concrete. We also present the outline of the advice made by Japan Concrete Institute about technologies on the concrete materials for the waterproofing in buildings and for water-shielding walls. (J.P.N.)

  2. Analysis of prestressed concrete wall segments

    International Nuclear Information System (INIS)

    Koziak, B.D.P.; Murray, D.W.

    1979-06-01

    An iterative numerical technique for analysing the biaxial response of reinforced and prestressed concrete wall segments subject to combinations of prestressing, creep, temperature and live loads is presented. Two concrete constitutive relations are available for this analysis. The first is a uniaxially bilinear model with a tension cut-off. The second is a nonlinear biaxial relation incorporating equivalent uniaxial strains to remove the Poissons's ratio effect under biaxial loading. Predictions from both the bilinear and nonlinear model are compared with observations from experimental wall segments tested in tension. The nonlinear model results are shown to be close to those of the test segments, while the bilinear results are good up to cracking. Further comparisons are made between the nonlinear analysis using constant membrane force-moment ratios, constant membrane force-curvature ratios, and a nonlinear finite difference analysis of a test containment structure. Neither nonlinear analysis could predict the reponse of every wall segment within the structure, but the constant membrane force-moment analysis provided lower bound results. (author)

  3. The PACE-1450 experiment - Crack and leakage behavior of a pre-stressed concrete containment wall considering ageing

    International Nuclear Information System (INIS)

    Hermann, N.; Mueller, H.S.; Niklasch, C.; Michel-Ponnelle, S.; Bento, C.; Masson, B.

    2015-01-01

    As an intermediate sized experiment the PACE-1450 experiment aims to investigate the behavior of a curved specimen (length: 3.5 m, width: 1.8 m, height: 1.2 m) which is representative for a 1450 MWe nuclear power plant containment under accidental loading conditions. One focus of this experimental test campaign is the consideration of the ageing of the structure which among other effects leads to a pre-stressing loss. The crack behavior of the realistically reinforced specimen is of as much interest as it is the leakage behavior when an inner pressure occurs within the containment. The reinforcement layout of the specimen is very similar to the original geometry and consists mainly of reinforcement meshes of bars near the inner and outer surface and four pre-stressing cables in the circumferential direction. During the tests the specimen is loaded by pressure which simulates the internal accidental containment pressure of up to 6 bars (absolute pressure). The resulting ring tensile stress in the cylindrical part of the containment is externally applied by hydraulic jacks. An initial pre-stressing of the specimen of 12 MPa is realized in such a way that decreasing the pre-stressing force for the purpose of simulating the ageing of the structure is possible. The facility allows for the cracking of the pre-stressed specimen and for leakage measurements at different controlled crack widths. The specimen is equipped with embedded optical fiber strain and temperature sensors and a sound detection system to record the initiation of cracks. The paper explains the test set-up and presents results of the ongoing test series regarding the cracking and leakage behavior of the specimen

  4. Concrete and prestressing process, container made with this concrete

    International Nuclear Information System (INIS)

    Gerard, M.

    1992-01-01

    Shape memory alloy fibers or heat shrinking fibers are encapsulated in a standard concrete. Prestressed concrete is obtained by heat treatment. Application is made to the fabrication of radioactive waste containers

  5. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  6. Spalling of concrete walls under blast load

    International Nuclear Information System (INIS)

    Kot, C.A.

    1977-01-01

    A common effect of the detonation of explosives in close proximity of concrete shield walls is the spalling (scabbing) of the back face of the wall. Spalling is caused by the free surface reflection of the shock wave induced in the wall by high pressure air blast and occurs whenever the dynamic tensile rupture strength is exceeded. While a complex process, reasonable analytical spall estimates can be obtained for brittle materials with low tensile strengths, such as concrete, by assuming elastic material behavior and instantaneous spall formation. Specifically, the spall thicknesses and velocities for both normal and oblique incidence of the shock wave on the back face of the wall are calculated. The complex exponential decay wave forms of the air blast are locally approximated by simple power law expressions. Variations of blast wave strength with distance to the wall, charge weight and angle of incidence are taken into consideration. The shock wave decay in the wall is also accounted for by assuming elastic wave propagation. For explosions close-in to the wall, where the reflected blast wave pressures are sufficiently high, multiple spall layers are formed. Successive spall layers are of increasing thickness, at the same time the spall velocities decrease. The spall predictions based on elastic theory are in overall agreement with experimntal results and provide a rapid means of estimating spalling trends of concrete walls subjected to air blast. (Auth.)

  7. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  8. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results of the mea...

  9. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  10. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  11. Leakage tests of wall segments of reactor containments

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.; MacGregor, J.G.

    1979-10-01

    Two prestressed concrete wall segments simulating portions of containment walls were loaded by axial tensile forces to cause cracking of the concrete. At each load increment air pressure was applied in steps up to 21 psi to one side of the segment and the rate of leakage of air through the cracked concrete section was measured. A theoretical equation for the flow of air through concrete cracks is developed and the results from one leakage test are used to determine the dimensionless constant required for this equation. (author)

  12. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  13. Behaviour of concrete containment under over-pressure conditions

    International Nuclear Information System (INIS)

    Atchison, R.J.; Asmis, G.J.K.; Campbell, F.R.

    1979-01-01

    The Atomic Energy Control Board of Canada initiated June, 1975, a major study of the behaviour of concrete containment under over-pressure conditions. Although extensive theoretical and experimental work has been carried out for thick-walled Prestressed Concrete Reactor Vessels (PCRV's), there is a want of information on the non-linear response of thin-walled structures typical of the CANDU, 600 MW(e) cylindrical/spherical, post-tensioned containment shells. The purpose of this paper is to provide an overview of the total program, to present the reasons behind the research contract, and the specification and implementation of the work. The results of the theoretical and experimental work and their implications with respect to Canadian Concrete Containment practice are discussed. This study is unique, and, as far as is known, has no world-wide precedence. (orig.)

  14. Towards improved modeling of steel-concrete composite wall elements

    International Nuclear Information System (INIS)

    Vecchio, Frank J.; McQuade, Ian

    2011-01-01

    Highlights: → Improved analysis of double skinned steel concrete composite containment walls. → Smeared rotating crack concept applied in formulation of new analytical model. → Model implemented into finite element program; numerically stable and robust. → Models behavior of shear-critical elements with greater ease and improved accuracy. → Accurate assessments of strength, deformation and failure mode of test specimens. - Abstract: The Disturbed Stress Field Model, a smeared rotating crack model for reinforced concrete based on the Modified Compression Field Theory, is adapted to the analysis of double-skin steel-concrete wall elements. The computational model is then incorporated into a two-dimensional nonlinear finite element analysis algorithm. Verification studies are undertaken by modeling various test specimens, including panel elements subject to uniaxial compression, panel elements subjected to in-plane shear, and wall specimens subjected to reversed cyclic lateral displacements. In all cases, the analysis model is found to provide accurate calculations of structural load capacities, pre- and post-peak displacement responses, post-peak ductility, chronology of damage, and ultimate failure mode. Minor deficiencies are found in regards to the accurate portrayal of faceplate buckling and the effects of interfacial slip between the faceplates and the concrete. Other aspects of the modeling procedure that are in need of further research and development are also identified and discussed.

  15. Fragility assessment method of Concrete Wall Subjected to Impact Loading

    International Nuclear Information System (INIS)

    Hahm, Daegi; Shin, Sang Shup; Choi, In-Kil

    2014-01-01

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, recently, the regulation and the assessment of the safety of the nuclear power plants (NPPs) against to an aircraft impact are strongly encouraged to adopt a probabilistic approach, i.e., the probabilistic risk assessment of an aircraft impact. In Korea, research to develop aircraft impact risk quantification technology was initiated in 2012 by Korea Atomic Energy Research Institute (KAERI). In this paper, for the one example of the probabilistic safety assessment approach, a method to estimate the failure probability and fragility of concrete wall subjected to impact loading caused by missiles or engine parts of aircrafts will be introduced. This method and the corresponding results will be used for the total technical roadmap and the procedure to assess the aircraft impact risk (Fig.1). A method and corresponding results of the estimation of the failure probability and fragility for a concrete wall subjected to impact loadings caused by missiles or engine parts of aircrafts was introduced. The detailed information of the target concrete wall in NPP, and the example aircraft engine model is considered safeguard information (SGI), and is not contained in this paper

  16. Structural optimization of reinforced concrete container for radioactive wastes

    International Nuclear Information System (INIS)

    Tamura, M.

    1984-01-01

    A structural optimization study of reinforced concrete container for transportation and disposal of the low level radioactive waste generated in Brazilian nuclear power plants. The code requires the structural integrity of these containers when subjected to fall from specified height, avoiding environmental contamination. The structural optimization allows material and transportation cost reduction by container wall thickness reduction. The structural analysis is performed by tridimensional mathematical model using finite element method. (Author) [pt

  17. Effectiveness of Horizontal Rebar on Concrete Block Retaining Wall Strength

    OpenAIRE

    Krishpersad Manohar; Rikhi Ramkissoon

    2016-01-01

    The effectiveness of including a horizontal rebar compared to only a vertical rebar in concrete filled core interlocking concrete block retaining wall sections was investigated with respect to the horizontal retaining force. Experimental results for three specimens of interlocking blocks with vertical rebar and concrete filled cores showed an average horizontal retaining force of 24546 N ± 5.7% at an average wall deflection of 13.3 mm. Experimental results for three wall specimens of interloc...

  18. Behaviour of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    MacGregor, J.G.; Murray, D.W.; Simmonds, S.H.

    1980-05-01

    The most significant finds from a study to assess the response of prestressed concrete secondary containment structures for nuclear reactors under the influence of high internal overpressures are presented. A method of analysis is described for determining the strains and deflections including effects of inelastic behaviour at various points in the structure resulting from increasing internal pressures. Experimentally derived relationships between the strains and crack spacing, crack width and leakage rate are given. These procedures were applied to the Gentilly-2 containment building to obtain the following results: (1) The first through-the-wall cracks would occur in the dome at 48 psi or 2.3 times the proof test pressure. (2) At this pressure leakage would begin and would increase exponentially as the pressure increases such that at 93% of the predicted failure load the calculated leakage rate would be approximately equal to the volume of the containment each second. (3) Assuming the pressurizing medium could be supplied sufficiently rapidly, failure would occur due to rupture of the horizontal tendons at approximately 77 psi. (author)

  19. A model to predict moisture conditions in concrete reactor containments

    International Nuclear Information System (INIS)

    Ahs, M.; Nilsson, L.O.; Poyet, S.; L'Hostis, V.

    2015-01-01

    Moisture has an impact in many of the degradation mechanisms that appear in the structures of a nuclear power plant. Moisture conditions in a reactor containment wall have been simulated by using a hygro-thermal model of drying concrete. Methods to estimate the temperature dependency of the sorption isotherms and moisture transport properties is suggested and applied in the model. This temperature dependency is included as there is a temperature gradient present through the containment wall. The hygro-thermal model was applied on a full scale 3D model of a real reactor containment building and the concrete relative humidity has been computed at 4 different moments: 1, 10, 20 and 30 years. The results show that the major part of the concrete is not dried at all even after 30 years of operation. It is also clear that the temperature distribution inside the whole concrete volume is affected by the variable boundary conditions. It was concluded that the suggested hygro-thermal model was appropriate to use as a method to estimate the existing conditions in a PWR reactor containment wall

  20. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  1. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  2. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  3. Ageing degradation in the Gentilly-1 concrete containment building

    International Nuclear Information System (INIS)

    Jaffer, S.; Pentecost, S.; Angell, P.; Shenton, B.

    2015-01-01

    Concrete containment buildings (CCBs) are designed for a service life up to 40 years, but nuclear power plant (NPP) refurbishment can extend service life beyond 60 years. Only limited testing can be conducted on an in-service CCB. The Gentilly-1 (G-1) NPP is in a safe, sustainable shutdown state and the G-1 CCB was available for testing to determine age-related degradation that may be relevant to operating CCBs. Visual observation of the G-1 CCB helped to identify various signs of degradation. However, field testing, via concrete removal, was performed to: (i) examine reinforcing bars and concrete to determine their condition and in-situ stresses and (ii) examine condition of post-tensioned (P-T) wires. The concrete was also subjected to laboratory tests to evaluate its physical, mechanical and chemical properties such as compressive strength, carbonation depth, chloride content and presence of internal degradation. The degradation mechanisms that were clearly visible include macro- and micro-cracking, efflorescence, and weathering. The reinforcing bars in the perimeter wall and dome exposed during the program showed no evidence of active corrosion. Corrosion products were observed on the surfaces of most exposed P-T wires in the perimeter wall, but none were present on P-T wires exposed in the dome. Laboratory testing on the concrete cores extracted from the CCB revealed compressive strength in excess of the design requirements, low carbonation depths (< 10 mm) and no appreciable chlorides. Micro-cracking was observed in the samples recovered from the wall and dome. To date, the observed micro-cracking has had no apparent visible affect on the performance of the CCB concrete. (authors)

  4. Thermal effects in concrete containment analysis

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1988-01-01

    Analyses of the thermo-mechanical response of the 1:6-scale reinforced concrete containment are presented. Three temperature- pressure scenarios are analyzed to complete loss of the pressure integrity. These results are compared to the analysis of pressure alone, to assess the importance of thermal effects. 19 refs., 9 figs., 8 tabs

  5. The Backscattering of Gamma Radiation from Spherical Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo technique has been applied to investigate the effect of wall curvature on the backscattering properties of concrete. The wall was considered infinitely thick and the source radiation was normally incident. Monte Carlo calculations were only performed at 1 MeV source energy but an analytical formula was derived to facilitate extrapolations to other energies as well as materials. The results show that for practical purposes the plane wall albedo is a sufficient, and conservative, approximation, 90 % of its value being reached at a concrete wall radius of about 100 cm for source energies up to 10 MeV.

  6. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    Science.gov (United States)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  7. Research works on contamination transfers through cracked concrete walls

    International Nuclear Information System (INIS)

    Gelain, T.; Vendel, J.

    2006-01-01

    This study takes place within the framework of nuclear facilities containment assessment. The objectives are to determine gaseous and two-phase flow laws, aerosol deposition correlations into crack network, further to accidental situation (e.g. seism) and the real crack network characteristics considering the cracks as two infinite parallel plates. At first, we performed air flow experiments on three concrete walls (128 cm in width, 75 cm in height and 10 cm in thickness), cracked by shear stresses. Using 'aeraulic' crack network characteristics, the results are in good agreement with the Poiseuille law in laminar flow, but in the case of transition flow it has been necessary to determine a specific correlation for the friction factor. Then, we performed aerosol deposition experiments with one of the previous concrete walls to determine global aerosol deposition model in a crack network. Using these previous experiments and an experiment consisting in calculating the crack network volume by measuring transfer time, we could determine the real crack network characteristics in a good agreement with characteristics calculated by a structural mechanical code for our experimental configuration. (authors)

  8. Numerical investigation of the leakage behaviour of reinforced concrete walls

    International Nuclear Information System (INIS)

    Christoph Niklasch; Laurent Coudert; Gregory Heinfling; Chantal Hervouet; Benoit Masson; Nico Herrmann; Lothar Stempniewski

    2005-01-01

    Full text of publication follows: For the verification of nuclear power plant safety, the leakage behaviour of the containment walls is of decisive importance. Extreme temperatures well over the water boiling temperature accompanied by high internal pressures can occur during an severe accident. In case of cracks through the entire thickness of the containment wall, an air-steam-water mixture may be released. In order to improve the knowledge of the leakage behaviour through cracks during such abnormal occurrences an experimental setup was developed at IfMB and several tests with different parameters were performed. The details of the experimental facility and the performed tests will be described in a separate paper. To improve the understanding of the behaviour of the tested wall elements during the tests numerical simulations of the performed leakage experiments are necessary. Reliable numerical tools provide a basis for the transfer of the leakage behaviour from the tested specimens to the behaviour of whole containment structures. To address the task of developing tools for the numerical simulation of the leakage behaviour of reinforced containment structures, EDF and IfMB decided to cooperate. During this cooperation two different numerical approaches had been made basing on existing tools and models of EDF and IfMB. In the following sections a short overview about the two different models will be given. For the numerical investigation of the leakage phenomena IfMB used the commercial Finite-Element- Program ADINA with ADINA's capability to solve coupled fluid-structure-interaction (FSI) problems. For the investigation of the moving of the specimen and the change of the crack profiles during the tests, it is important to take into account the heating of the specimen by the fluid flowing through the cracks. This is done by an iterative calculation of the fluid model and the structural model of the specimen. The thermo-dynamic boundary conditions representing

  9. Concrete containment modeling and management, Conmod

    International Nuclear Information System (INIS)

    Jovall, O.; Larsson, J.-A.; Shaw, P.; Touret, J.-P.; Karlberg, G.

    2003-01-01

    The CONMOD project aims to create a system which will ensure that safety requirements for concrete containment structures will be up-held during the entire planned lifetime of plants and possibly during an extended lifetime. An important part of the project is to develop the application and understanding of Non-Destructive Testing (NDT) techniques for the assessment of conformity and condition of concrete reactor containments and to integrate this with state-of-the-art and developed Finite Element (FE) modelling techniques and analysis of structural behaviour. The objective being to create a diagnostic method for evaluation of ageing and degradation of concrete containments. This method, the C ONMOD-methodology , will help in the planning and execution of actions that will improve safety in a manner which is optimal both in terms of economy and safety. The knowledge gained during the project will be presented in a handbook of best practice. The decommissioned Barsebaeck unit 1 reactor containment will be accessible for non-destructive examination throughout the duration of the project. Intrusive investigations will also be made including coring and material tests as a valuable complement to NDT. (author)

  10. Depleted uranium concrete container feasibility study

    International Nuclear Information System (INIS)

    Haelsig, R.T.

    1994-09-01

    The purpose of this report is to consider the feasibility of using containers constructed of depleted uranium aggregate concrete (DUCRETE) to store and transport radioactive materials. The method for this study was to review the advantages and disadvantages of DUCRETE containers considering design requirements for potential applications. The author found that DUCRETE is a promising material for onsite storage containers, provided DUCRETE vessels can be certified for one-way transport to disposal sites. The author also found that DUCRETE multipurpose spent nuclear fuel storage/transport packages are technically viable, provided altered temperature acceptance limits can be developed for DUCRETE

  11. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  12. Structure simulation of a pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Grebner, H.; Sievers, J.

    2004-01-01

    An axisymmetric Finite-Element-Model of the 1:4 pre-stressed containment model tested at SANDIA was developed. The model is loaded by the pre-stressing of the tendons and by increasing internal pressure (up to 1.3 MPa). The analyses results in terms of displacements and strains in the liner, the rebars, the tendons and the concrete of the cylindrical part agree well with measured data up to about 0.6 MPa internal pressure (i.e. 1.5 times design pressure). First circumferential micro-cracks in the concrete are found at about 0.75 MPa. With increasing pressure micro-cracks are present through the whole wall. Above about 0.9 MPa the formation of micro-cracks in radial and meridional direction is calculated. At the maximum load (1.3 MPa) almost all concrete parts of the model have micro-cracks which may cause leaks. Nevertheless the failure of the containment model is not expected for loads up to 1.3 MPa without consideration of geometric inhomogeneities due to penetrations in the wall. Although the calculated strains in liner, rebars and tendons show some plastification, the maximum values are below the critical ones. The safety margin against failure is smallest in some hoop tendons. At present parametric studies are performed to investigate the differences between calculations and measured data. Furthermore three-dimensional models are developed for a better simulation of the meridional tendons in the dome region. (orig.)

  13. Development of prestressed concrete containment vessels

    International Nuclear Information System (INIS)

    Yuji, Hideo; Kuniyoshi, Mutsumu; Nagata, Kaoru

    1983-01-01

    This paper presents a summary of evaluations for the selection of the structural and prestressing system type to be employed for the first domestic Prestressed Concrete Containment Vessel (PCCV) in Japan. This paper also discusses characteristic features in the design of the liner plate system provided on the PCCV inner surface to assure its leak-tight integrity. Prestressed concrete containment vessels so far constructed in foreign countries are to a considerable extent of different structural types, depending on differences in dome shapes, prestressing systems and number of buttresses. These differences are caused not only by differences in design philosophy and construction practices, but also by difference in the level of technology of the times when the individual containment vessels are being constructed. In the investigation reported herein, the most suitable types of PCCV and Prestressing Systems were determined as the results of an overall comparative evaluation of data and information obtained from PCCV's so far constructed from the design, construction and cost aspects, taking into consideration the seismic criteria, available technology, construction practices, regulations and technical standards in Japan. The function of the liner plate system requires the liner to have enough deformability so that the liner deformation can be consistent with the PCCV concrete deformation. Therefore, in the design of the liner plate system a method for evaluating liner deformability was employed, instead of the stress evaluation method which is widely used in the design of ordinary structures. (author)

  14. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  15. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  16. Proof testing of CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-05-01

    Prior to commissioning of a CANDU reactor, a proof pressure test is required to demonstrate the structural integrity of the containment envelope. The test pressure specified by AECB Regulatory Document R-7 (1991) was selected without a rigorous consideration of uncertainties associated with estimates of accident pressure and conatinment resistance. This study was undertaken to develop a reliability-based philosophy for defining proof testing requirements that are consistent with the current limit states design code for concrete containments (CSA N287.3).It was shown that the upodated probability of failure after a successful test is always less than the original estimate

  17. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  18. Concrete containment integrity program at EPRI

    International Nuclear Information System (INIS)

    Winkleblack, R.K.; Tang, Y.K.

    1984-01-01

    Many in the nuclear power plant business believe that the catastrophic failure mode for reactor containment structures is unrealistic. One of the goals of the EPRI containment integrity program is to demonstrate that this is true. The objective of the program is to provide the utility industry with an experimental data base and a test-validated analytical method for realistically evaluating the actual over-pressure capability of concrete containment buildings and to predict leakage behavior if higher pressures were to occur. The ultimate goal of this research effort is to characterize the containment leakage mode and rate as a function of internal pressure and time so that the risk can be realistically assessed for hypothetical degraded core accidents. Progress in the first and second phases of the three-phase analytical and testing efforts is discussed

  19. Emission of ammonia from indoor concrete wall and assessment of human exposure.

    Science.gov (United States)

    Bai, Z; Dong, Y; Wang, Z; Zhu, T

    2006-04-01

    Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same

  20. Gas leakage rate through reinforced concrete shear walls: Numerical study

    International Nuclear Information System (INIS)

    Wang Ting; Hutchinson, Tara C.

    2005-01-01

    Unlined reinforced concrete shear walls are often used as 'tertiary boundaries' in the United States Department of Energy (DOE) to house dangerous gases. An unanticipated event, such as an earthquake, may cause gases stored inside the walls to disperse into the environment resulting in excess pollution. To address this concern, in this paper, a methodology to numerically predict the gas leakage rate through these shear walls under lateral loading conditions is proposed. This methodology involves finite element and flow rate analysis. Strain distributions are obtained from the finite element analysis, and then used to simulate the crack characteristics on the concrete specimen. The flow rate through the damaged concrete specimen is then estimated using flow rate formulas available from the literature. Results from an experimental specimen are used to evaluate the methodology, and particularly its robustness in the flow rate estimation

  1. Analysis of failures in concrete containments

    International Nuclear Information System (INIS)

    Moreno-Gonzalez, A.

    1989-09-01

    The function of Containment, in an accident event, is to avoid the release of radioactive substances into the surroundings. Containment failure, therefore, is defined as the appearance of leak paths to the external environment. These leak paths may appear either as a result of loss of leaktightness due to degradation of design conditions or structural failure with containment material break. This document is a survey of the state of the art of Containment Failure Analysis. It gives a detailed description of all failure mechanisms, indicating all the possible failure modes and their causes, right from failure resulting from degradation of the materials to structural failure and linear breake failure. Following the description of failure modes, possible failure criteria are identified, with special emphasis on structural failure criteria. These criteria have been obtained not only from existing codes but also from the latest experimental results. A chapter has been dedicated exclusively to failure criteria in conventional structures, for the purpose of evaluating the possibility of application to the case of containment. As the structural behaviour of the containment building is very complex, it is not possible to define failure through a single parameter. It is therefore advisable to define a methodology for containment failure analysis which could be applied to a particular containment. This methodology should include prevailing load and material conditions together with the behaviour of complex conditions such as the liner-anchorage-cracked concrete interaction

  2. Exposure rates from concrete covered cylindrical units containing radioactive waste

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1983-03-01

    Exposure rates from cylindrical waste units containing the nuclides 60 Co, 134 Cs and 137 Cs homogeneously mixed in a solidification product have been calculated. Analyses have been made for single drums and for two disposal geometries, one with the units placed below ground near the surface in a circular geometry, and one with the units placed on the ground in a pile behind a concrete wall. Due to self-shielding of the units, the exposure rate from the two geometries will be a factor of only 10 - 20 higher than from a single unit, even without soil or wall shielding. With one meter of soil above the circular pile below ground, a reduction factor of 5.10 3 to 5.10 4 can be achieved, depending on the nuclide considered. Placing a one-meter concrete wall in front of the drum pile on the ground gives rise to a reduction factor in the range of 5.10 5 to 2.10 7 . (author)

  3. Preliminary Analysis of Reinforced Concrete Waffle Walls

    National Research Council Canada - National Science Library

    Shugar, Theodore

    1997-01-01

    A preliminary analytical method based upon modified plate bending theory is offered for structural analysis of a promising new construction method for walls of small buildings and residential housing...

  4. Seismic Performance and Modeling of Reinforced Concrete and Post-Tensioned Precast Concrete Shear Walls

    OpenAIRE

    Tanyeri, Ahmet Can

    2014-01-01

    Past earthquakes have shown examples of unsatisfactory performance of buildings using reinforced concrete structural walls as the primary lateral-force-resisting system. In the 1994 Northridge earthquake, examples can be found where walls possessed too much overstrength, leading to unintended failure of collectors and floor systems, including precast and post-tensioned construction. In the 2010 Maule Chile earthquake, many structural wall buildings sustained severe damage. Although Chilean de...

  5. Investigation of the Effective Thermal Conductivity in Containment Wall of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of)

    2016-05-15

    Many computational codes used for analyzing pressure of containment was developed such as CAP (Containment Analysis Package). These computational codes consider concrete conductivity instead of thermal conductivity of containment wall which have special geometry as heat sink. For precise analysis, effective thermal conductivity of containment wall has to be measured in individual NPPs. Thermal properties of concrete such as thermal conductivity have been investigated as function of chemical composition and temperature. Generally, containment of OPR1000 is constructed by Prestressed (PS) concrete-a composite material. Containment wall of OPR1000 is made up of steel liner, tendon, rebar and concrete as shown in Figure 1. Role of steel liner protects release of radioactive materials so called leak tightness. The effective thermal conductivity of containment wall in OPR1000 is analyzed by numerical tool (CFD) and compared with thermal conductivity models in composite solids. The effective thermal conductivity of containment wall of OPR1000 is investigated by numerical analysis (CFD). The thermal conductivity of reinforced concrete is 18.6% higher than that of concrete only. Several models were compared with CFD results. Rayleigh-Parallel liner model agrees well with CFD results. Experiment results will be compared with CFD result and models. CFD result was calculated in low steel volume fraction (0.0809) than that of OPR1000 (0.1043). The effective thermal conductivity in OPR1000 has slightly higher than CFD result because of different volume fraction.

  6. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  7. Properties of slag concrete for low-level waste containment

    International Nuclear Information System (INIS)

    Langton, C.A.; Wong, P.B.

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 x 100 x 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10 -7 cm/sec; and effective nitrate, chromium and technetium diffusivities of 10 -8 , 10 -12 and 10 -12 cm 2 /sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr +6 to Cr +3 and Tc +7 to Tc +4 and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site

  8. The Backscattering of Gamma Radiation from Plane Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    Monte Carlo calculations have been performed for source energies from 1 to 10 MeV, and normally incident radiation, showing that 90 % of the infinite-barrier energy flux albedo is reached with a 40 cm concrete wall. The spectrum of backscattered energy flux is presented for the above sources and wall thicknesses ranging from 5 to 50 cm, An analytical expression, based on a single-scattering approximation, is shown to produce good fits to the Monte Carlo results.

  9. The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls

    Directory of Open Access Journals (Sweden)

    Samir A. Al-Mashhadi

    2017-07-01

    Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively

  10. Behavior of cracked concrete nuclear containment vessels during earthquakes

    International Nuclear Information System (INIS)

    Gergely, P.; Stanton, J.F.; White, R.N.

    1975-01-01

    When pressure builds up in a reinforced concrete nuclear containment shell, its cylindrical wall cracks vertically and horizontally at intervals of about five feet. If an earthquake occurs simultaneously with this pressurization, inertia forces are transmitted across the horizontal crack planes. The forces and deformations must be small enough to maintain the integrity of the steel liner. A typical containment shell has a radius of about 65 ft. and a wall thickness of about 4 ft. It is heavily reinforced with vertical, horizontal, and sometimes diagonal bars. A steel shell of about 3 / 8 in. thickness is attached to the concrete with anchors. The seismic shear forces are transmitted across the horizontal cracks by interface shear transfer (combination of shear friction and aggregate interlocking), by dowel action of the bars, and by diagonal bars if they are used. One important question in the design of such vessels is whether the diagonal bars are necessary. In the experimental portion of the current investigation several types of tests were conducted to study the load-slip characteristics of interface shear transfer under high intensity cyclic loading. In some cases external bars provided the clamping action of reinforcement, in more recent tests large diameter embedded bars were used. This presentation summarizes the analytical part of the investigation. A representative load-slip curve has been used in the analyses to assess the intensity of the stresses and deformations, and to study the importance of the variables as an aid in planning future tests

  11. Random thermal stress in concrete containments

    International Nuclear Information System (INIS)

    Singh, M.P.; Heller, R.A.

    1980-01-01

    Currently, the overly conservative thermal design forces are obtained on the basis of simplified assumptions made about the temperature gradient across the containment wall. Using the method presented in this paper, a more rational and better estimate of the design forces can be obtained. Herein, the outside temperature is considered to consist of a constant mean on which yearly and daily harmonic changes plus a randomly varying part are superimposed. The random part is modeled as a stationary random process. To obtain the stresses due to random and harmonic temperatures, the complex frequency response function approach has been used. Numerical results obtained for a typical containment show that the higher frequency temperature variations, though of large magnitude, induce relatively small forces in a containment. Therefore, in a containment design, a rational separation of more effective, slowly varying temperatures, such as seasonal cycle from less effective but more frequently occuring daily and hourly changes, is desirable to obtain rational design forces. 7 refs

  12. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  13. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  14. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  15. Construction of concrete hot cells; requirements for shielding windows for concrete walls with different densities

    International Nuclear Information System (INIS)

    1987-10-01

    The shielding windows form part of the basic equipment of hot cells for remote handling, as defined in standard DIN 25 420 part 1. The draft standard in hand is intended to specify the design and manufacture requirements, especially with regard to main dimensions, sight quality, shielding effects, and radiation resistance. The standard refers to three types of shielding window with surface area design (product of density and wall thickness) corresponding to concrete walls of the densities 2.4, 3.4, and 4.0 g/cm 3 . The windows fit to three types of concrete of common usage, and the design is made for Co-60 radiation, with attenuation factors of about 10 4 , 10 6 , or 10 7 . For concrete walls with densities between these data, a shielding window suitable to the next higher density data is to be chosen. (orig./HP) [de

  16. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  17. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  18. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  19. Damage Detection of Reinforced Concrete Shear Walls Using Mathematical Transformations

    Directory of Open Access Journals (Sweden)

    Hosein Naderpour

    2017-02-01

    Full Text Available Structural health monitoring is a procedure to provide accurate and immediate information on the condition and efficiency of structures. There is variety of damage factors and the unpredictability of future damage, is a necessity for the use of structural health monitoring. Structural health monitoring and damage detection in early stages is one of the most interesting topics that had been paid attention because the majority of damages can be repaired and reformed by initial evaluation ,thus the spread of damage to the structures, building collapse and rising of costs can be avoided .Detection of concrete shear wall damages are designed to withstand the lateral load on the structure is critical .Because failures and  malfunctions of shear walls can lead to serious damage or even progressive dilapidation of concrete structures .Change in stiffness and frequency can clearly show the damage occurrence. Mathematical transformation is also a tool to detect damage. In this article, with non- linear time history analysis, the finite element model of structures with concrete shear walls subject to four earthquakes have extracted and using Fourier and wavelet transform, the presence of shear walls is detected at the time of damage.

  20. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  1. Assessment of seismic design response factors of concrete wall buildings

    Science.gov (United States)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  2. Tritium contamination of concrete walls and floors in tritium-handling laboratory

    International Nuclear Information System (INIS)

    Kawano, T.; Kuroyanagi, M.; Tabei, T.

    2006-01-01

    A tritium handling laboratory was constructed at the National Institute for Fusion Science about twenty years ago and it was recently closed down. We completed the necessary work that is legally required in Japan at the laboratory, when the use of radioisotopes is discontinued, involving measurements of radioactive contamination. We mainly used smear and direct-immersion methods for the measurements. In applying the smear method, we used a piece of filter paper to wipe up the tritium staining the surfaces. The filter paper containing the tritium was placed directly into a dedicated vial, a scintillation cocktail was then poured over it, and the tritium was measured with a liquid scintillation counter. With the direct-immersion method, a piece of concrete was placed directly into a vial containing a scintillation cocktail, and the tritium in the concrete was measured with a liquid scintillation counter. As well as these measurements, we investigated water-extraction and heating-cooling methods for measuring tritium contamination in concrete. With the former, a piece of concrete was placed into water in a tube to extract the tritium, the water containing the extracted tritium was then poured into a dedicated vial containing a scintillation cocktail, and the tritium contamination was measured. With the latter, a piece of concrete was placed into a furnace and heated to 800 degrees centigrade to vaporize the tritiated water into flowing dry air. The flowing air was then cooled to collect the vaporized tritiated water in a tube. The collected water was placed in a vial for scintillation counting. To evaluate the direct-immersion method, ratios were determined by dividing the contamination measured with the heating-cooling method by that measured with the direct-immersion method. The average ratio was about 2.5, meaning a conversion factor from contamination obtained with the direct-immersion method to that with the heating-cooling method. We also investigated the

  3. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  4. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  5. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  6. Limit load analysis of thick-walled concrete structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Faust, G.; Willam, K.J.

    1975-01-01

    The paper illustrates the interaction of constitutive modeling and finite element solution techniques for limit load prediction of concrete structures. On the constitutive side, an engineering model of concrete fracture is developed in which the Mohr-Coulomb criterion is augmented by tension cut-off to describe incipient failure. Upon intersection with the stress path the failure surface collapses for brittle behaviour according to one of three softening rules, no-tension, no-cohesion, and no-friction. The stress transfer accompanying the energy dissipation during local failure is modelled by several fracture rules which are examined with regard to ultimate load prediction. On the numerical side the effect of finite element idealization is studied first as far as ultimate load convergence is concerned. Subsequently, incremental tangential and initial load techniques are compared together with the effect of step size. Limit load analyses of a thick-walled concrete ring and a lined concrete reactor closure conclude the paper with examples from practical engineering. (orig.) [de

  7. Nonlinear failure analysis of a reinforced concrete containment under internal pressure

    International Nuclear Information System (INIS)

    Sharma, S.; Wang, Y.K.; Reich, M.

    1984-01-01

    A detailed nonlinear finite element model is used to investigate the failure response of the Indian Point containment building under severe accident pressures. Refined material models are used to describe the complex stress-strain behavior of the liner and rebar steels, the plain concrete and the reinforced concrete. Structural geometry of the containment is idealized by eight layers of axisymmetric finite elements through the wall thickness in order to closely model the actual placement of the rebars. Soil stiffness under the containment base mat is modeled by a series of nonlinear spring elements. Numerical results presented in the paper describe cracking and plastic deformation (in compression) of the concrete, yielding of the liner and rebar steels and eventual loss of the load carrying capacity of the containment. The results are compared with available data from the previous studies for this containment. 8 references, 9 figures

  8. Influence of temperature on strain monitoring of degradation in concrete containment buildings

    International Nuclear Information System (INIS)

    Ding, Y.; Jaffer, S.; Angell, P.

    2015-01-01

    Concrete containment buildings (CCBs) are important safety structures in a nuclear power plant (NPP). The CCBs can be made of reinforced and post-tensioned (P-T) concrete. Post-tensioning concrete induces compressive stresses, which have to be overcome for the concrete to crack under tensile loads. However, post-tensioned CCBs may undergo pre-stressing losses as they age, which could affect their performance under accident conditions. CANDU 6 reactor buildings contain grouted post-tensioned tendons as the primary reinforcement. The grouting of the tendons makes direct monitoring of pre-stressing losses via lift-off testing impossible. Therefore, instruments have been installed on an existing reactor building to measure and monitor strains and stresses in the concrete and the deformation of the concrete structure to detect aging degradation and indirectly evaluate the pre-stressing losses. However, the instrumentation readings are affected by temporary volume changes in the concrete caused by the influence of environmental factors, particularly temperature, on concrete. In this work, the focus is on developing an understanding of the effect of temperature on the interpretation of instrumentation data from a reactor building. Vibrating Wire Strain Gauge (VWSG) data has been analysed. The influence of concrete coefficient of thermal expansion and temperature distribution within the reactor building walls, on VWSG data, is discussed based on the analysis of the available instrumentation data and available numerical simulation results. The present study demonstrates that temperature distribution within the containment concrete has a significant impact on the VWSG measurements and the coefficient of thermal expansion of concrete is an important factor in the correction of VWSG data for thermal strain. It is recommended that VWSG data obtained over small temperature variations be considered for interpretation to assess pre-stressing losses. (authors)

  9. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  10. Concrete Flow in Diaphragm Wall Panels : A Full-Scale In-Situ Test

    NARCIS (Netherlands)

    Van Dalen, J.H.; Bosch, J.W.; Broere, W.

    2015-01-01

    Flow processes, taking place during the concreting of diaphragm wall panels (D-wall panels), are of great importance for the quality of the wall. During this phase, the bentonite, present in the excavated trench, should be completely replaced by concrete in a controlled way. In literature several

  11. Analysis and design of column reinforced masonry and concrete walls

    International Nuclear Information System (INIS)

    Doyle, J.M.; Roy, S.B.; Fang, S.J.

    1983-01-01

    Fundamental frequencies, maximum moments and maximum shear forces are determined as a function of the governing parameters, for several different boundary conditions. The quantities are obtained for uniform panels, for walls with openings typical of doorways and other penetrations, and for panels having a region of degraded stiffness. In addition to the internal forces and moment due to out-of-plane action, the stresses due to in-plane loading are also found. From the results curves are constructed which allow for easy computation of flexural frequency, and bending moments and shears due to dynamic loads normal to the wall. Furthermore, based on the studies of panels with geometric or material discontinuities, corrections to results for uniform panels are found which can be used if openings or weakened areas exist in the wall. Several conclusions are presented concerning effects on behavior due to varied column location, critical stiffness ratio for columns to be effective, and the effect of openings on overall behavior. A number of design recommendations are presented. While the motivation for the study came from the need to design masonry walls, the analysis results are applicable to solid concrete walls reinforced by vertical columns. (orig./HP)

  12. Automobile impact forces on concrete wall panels. Technical report

    International Nuclear Information System (INIS)

    Chiapetta, R.L.; Pang, E.C.

    1982-06-01

    The objective of this study was to develop force-time impact signature data for use in the design or evaluation of nuclear power plant structures subject to tornado-borne automotive vehicle impact. The approach was based on the use of analytical vehicle models to calculate imact forces. To assess the significance of vehicle/structure interaction for head-on impact force-histories, a lumped-mass model of a reinforced concrete wall panel was coupled to a one-dimensional vehicle model for numerous panel design configurations within the range of practical interest. Vehicle-structure interaction was found to have relatively little effect on the force histories

  13. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    Science.gov (United States)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  14. Concrete containment integrity software: Procedure manual and guidelines

    International Nuclear Information System (INIS)

    Dameron, R.A.; Dunham, R.S.; Rashid, Y.R.

    1990-06-01

    This report is an executive summary describing the concrete containment analysis methodology and software that was developed in the EPRI-sponsored research to predict the overpressure behavior and leakage of concrete containments. A set of guidelines has been developed for performing reliable 2D axisymmetric concrete containment analysis with a cracking concrete constitutive model developed by ANATECH. The software package developed during this research phase is designed for use in conjunction with ABAQUS-EPGEN; it provides the concrete model and automates axisymmetric grid preparation, and rebar generation for 2D and 3D grids. The software offers the option of generating pre-programmed axisymmetric grids that can be tailored to a specific containment by input of a few geometry parameters. The goal of simplified axisymmetric analysis within the framework of the containment leakage prediction methodology is to compute global liner strain histories at various locations within the containment. A simplified approach for generating peak liner strains at structural discontinuities as function of the global liner strains has been presented in a separate leakage criteria document; the curves for strain magnification factors and liner stress triaxiality factors found in that document are intended to be applied to the global liner strain histories developed through global 2D analysis. This report summarizes the procedures for global 2D analysis and gives an overview of the constitutive model and the special purpose concrete containment analysis software developed in this research phase. 8 refs., 10 figs

  15. Properties of Pervious Concrete Containing Scrap Tyre Tubes

    Directory of Open Access Journals (Sweden)

    Boon Koh Heng

    2017-01-01

    Full Text Available There is a huge quantity of waste tyre tubes generated every year due to the increasing of motorcycle user. Therefore, recycling of the waste tyre tubes is become mandatory. The aim of this research was to study the properties of pervious concrete containing scrap tyre tube (STT rubber particles with percentages of 3%, 5% and 7% of the cement content. The properties studied are void content, compressive strength measured at 7, 14 and 28 days, flexural strength and flow rate which were determined at 28 day. The experimental results showed that, there were increased in void content and flow rate of pervious concrete containing STT. Both compressive strength and flexural strength of pervious concrete containing STT showed a lower value compared to the control mix without STT. The reductions of the mechanical strengths are likely due to the increase of void content. Overall, pervious concrete which contains 7% STT has shown an increment of mechanical strengths and flow rate compared to other STT pervious concrete. Nonetheless, the results indicate that there are potentials for use of STT in pervious concrete, especially for use in pervious concrete applications such as pavements, driveways and parking lots.

  16. Fire resistance of a steel plate reinforced concrete bearing wall

    International Nuclear Information System (INIS)

    Kodaira, Akio; Kanchi, Masaki; Fujinaka, Hideo; Akita, Shodo; Ozaki, Masahiko

    2003-01-01

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c σ b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c σ b) = 2.21 x (1/t) 0.323 (1), .N/(Ac x c σ b) 2.30 x (1/t) 0.378 (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  17. Development of polymer concrete radioactive waste management containers

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.; Lee, M. S.; Ahn, D. H.; Won, H. J.; Kang, H. S.; Lee, H. S.; Lim, S.P.; Kim, Y. E.; Lee, B. O.; Lee, K. P.; Min, B. Y.; Lee, J.K.; Jang, W. S.; Sim, W. B.; Lee, J. C.; Park, M. J.; Choi, Y. J.; Shin, H. E.; Park, H. Y.; Kim, C. Y

    1999-11-01

    A high-integrity radioactive waste container has been developed to immobilize the spent resin wastes from nuclear power plants, protect possible future, inadvertent intruders from damaging radiation. The polymer concrete container is designed to ensure safe and reliable disposal of the radioactive waste for a minimum period of 300 years. A built-in vent system for each container will permit the release of gas. An experimental evaluation of the mechanical, chemical, and biological tests of the container was carried out. The tests showed that the polymer concrete container is adequate for safe disposal of the radioactive wastes. (author)

  18. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  19. Effect of high temperature on integrity of concrete containment structures

    International Nuclear Information System (INIS)

    Bhat, P.D.

    1986-01-01

    The effect of high temperature on concrete material properties and structural behavior are studied in order to relate these effects to the performance of concrete containment structures. Salient data obtained from a test program undertaken to study the behavior of a restrained concrete structure under thermal gradient loads up to its ultimate limit are described. The preliminary results indicate that concrete material properties can be considered to remain unaltered up to temperatures of 100 0 C. The presence of thermal gradients did not significantly affect the structures ultimate mechanical load capacity. Relaxation of restraint forces due to creep was found to be an important factor. The test findings are compared with the observations made in available literature. The effect of test findings on the integrity analysis of a containment structure are discussed. The problem is studied from the viewpoint of a CANDU heavy water reactor containment

  20. Concrete containment tests: Phase 2, Structural elements with liner plates: Interim report

    International Nuclear Information System (INIS)

    Hanson, N.W.; Roller, J.J.; Schultz, D.M.; Julien, J.T.; Weinmann, T.L.

    1987-08-01

    The tests described in this report are part of Phase 2 of the Electric Power Research Institute (EPRI) program. The overall objective of the EPRI program is to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The Phase 2 testing included seven large-scale specimens representing structural elements from reinforced and prestressed concrete reactor containment buildings. Six of the seven test specimens were square wall elements. Of these six specimens, four were used for biaxial tension tests to determine strength, deformation, and leak-rate characteristics of full-scale wall elements representing prestressed concrete containment design. The remaining two square wall elements were used for thermal buckling tests to determine whether buckling of the steel liner plate would occur between anchorages when subjected to a sudden extreme temperature differential. The last of the seven test specimens for Phase 2 represented the region where the wall and the basemat intersect in a prestressed concrete containment building. A multi-directional loading scheme was used to produce high bending moments and shear in the wall/basemat junction region. The objective of this test was to determine if there is potential for liner plate tearing in the junction region. Results presented include observed behavior and extensive measurements of deformations and strains as a function of applied load. The data are being used to confirm analytical models for predicting strength and deformation of containment structures in a separate parallel analytical investigation sponsored by EPRI

  1. Load-carrying capacity of lightly reinforced, prefabricated walls of lightweight aggregate concrete with open structure

    DEFF Research Database (Denmark)

    Goltermann, Per

    2009-01-01

    The paper presents and evaluates the results of a coordinated testing of prefabricated, lightly reinforced walls of lightweight aggregate concrete with open structure. The coordinated testing covers all wall productions in Denmark and will therefore provide a representative assessment...

  2. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  3. Tests on concrete containing cork powder admixtures

    Directory of Open Access Journals (Sweden)

    Guerra, I.

    2007-06-01

    Full Text Available The present study aimed to determine the physical and mechanical properties of laboratory concrete made with different proportions of cork powder. While the resulting material lacked the mechanical strength characteristic of concrete, its properties may prove to be apt for certain hardscaping and agricultural uses, such as in the manufacture of pavement for playgrounds and parks, or certain kinds of structures used in livestock raising. These findings need to be analyzed and verified.Este trabajo de investigación tiene por objeto conocer algunas propiedades físicas y mecánicas de un hormigón elaborado en laboratorio, adicionándole diversas proporciones de polvo de corcho. Las propiedades del material resultante, si bien carecen de la resistencia mecánica que caracteriza al hormigón, parecen interesantes para su uso en ciertas aplicaciones de la ingeniería agronómica tales como en la fabricación de piezas para solados de parques infantiles y jardines, o en los cubículos de ciertas construcciones ganaderas, extremos que es preciso analizar y comprobar.

  4. Determining prestressing forces for inspection of prestressed concrete containments

    International Nuclear Information System (INIS)

    1990-07-01

    General Design Criterion 53, ''Provisions for Containment Testing and Inspection,'' of Appendix A, ''General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, ''Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. Regulatory Guide 1.35, ''Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures,'' describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. This guide expands and clarifies the NRC staff position on determining prestressing forces to be used for inservice inspections of prestressed concrete containment structures

  5. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  6. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  7. Shield design of concrete wall between decay tank room and primary pump room in TRIGA facility

    International Nuclear Information System (INIS)

    Khan, M. J. H.; Rahman, M.; Haque, A.; Zulquarnain, A.; Ahmed, F. U.; Bhuiyan, S. I.

    2007-01-01

    The objective of this study is to recommend the radiation protection design parameters from the shielding point of view for concrete wall between the decay tank room and the primary pump room in TRIGA Mark-II research reactor facility. The shield design for this concrete wall has been performed with the help of Point-kernel Shielding Code Micro-Shield 5.05 and this design was also validated based on the measured dose rate values with Radiation Survey Meter (G-M Counter) considering the ICRP-60 (1990) recommendations for occupational dose rate limit (10 μSv/hr). The recommended shield design parameters are: (i) thickness of 114.3 cm Ilmenite-Magnetite Concrete (IMC) or 129.54 cm Ordinary Reinforced Concrete (ORC) for concrete wall A (ii) thickness of 66.04 cm Ilmenite-Magnetite Concrete (IMC) or 78.74 cm Ordinary Reinforced Concrete (ORC) for concrete wall B and (iii) door thickness of 3.175 cm Mild Steel (MS) on the entrance of decay tank room. In shielding efficiency analysis, the use of I-M concrete in the design of this concrete wall shows that it reduced the dose rate by a factor of at least 3.52 times approximately compared to ordinary reinforced concrete

  8. Influence of Silicon-Containing Additives on Concrete Waterproofness Property

    Science.gov (United States)

    Butakova, M. D.; Saribekyan, S. S.; Mikhaylov, A. V.

    2017-11-01

    The article studies the influence of silicon-containing additives on the property of the water resistance of concrete samples. It provides a review of the literature on common approaches and technologies improving concrete waterproofness and reinforced concrete structures. Normal hardening samples were obtained on the basis of concretes containing microsilica, aerosil or ash, or the combinations thereof. This research is aimed at the study of the complex modifier effect r on the basis of metakaolin, superplasticizer and silicon containing additives on the property of concrete water resistance. The need to use a superplasticizer to reduce the water-cement ratio and metakaolin as a hardening accelerator along with the set of strength is substantiated. This article describes a part of the results of the experiment conducted to find alternative options for colmatizing expensive additives used in the concreting foundations of private house-building. The implementation of the scientific work will not only clarify this area but will also broaden the knowledge of such additive as aerosol.

  9. Soft impact testing of a wall-floor-wall reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Vepsä, Ari, E-mail: ari.vepsa@vtt.fi; Calonius, Kim; Saarenheimo, Arja; Aatola, Seppo; Halonen, Matti

    2017-01-15

    Highlights: • A wall-floor-wall reinforced concrete structure was built. • The structure was subjected to three almost identical soft impact tests. • Response was measured with accelerometers, displacement sensors and strain gauges. • Modal tests was also carried out with the same structure in different conditions. • The results are meant to be used for validation of computational methods and models. - Abstract: Assessing the safety of the reactor building of a nuclear power plant against the crash of an airplane calls for valid computational tools such as finite element models and material constitutive models. Validation of such tools and models in turn calls for reliable and relevant experimental data. The problem is that such data is scarcely available. One of the aspects of such a crash is vibrations that are generated by the impact. These vibrations tend to propagate from the impact point to the internal parts of the building. If strong enough, these vibrations may cause malfunction of the safety-critical equipment inside the building. To enable validation of computational models for this type of behaviour, we have conducted a series of three tests with a wall-floor-wall reinforced concrete structure under soft impact loading. The response of the structure was measured with accelerometers, displacement sensors and strain gauges. In addition to impact tests, the structure was subjected to modal tests under different conditions. The tests yielded a wealth of useful data for validation of computational models and better understanding about shock induced vibration physics especially in reinforced concrete structures.

  10. Concrete containment vessels (CCV) for nuclear power plants, (1)

    International Nuclear Information System (INIS)

    Ibe, Yukimi; Kitajima, Masatake

    1977-01-01

    Containment vessels (CV) and the construction of concrete containment vessels (CCV) for nuclear power plants are described generally, and their use and techniques in foreign countries are illustrated, in connection with the introduction of CCV to Japanese nuclear power plants. The introduction deals with the construction plan of Japanese nuclear power plants, and with the difficulties in the steel CV for large scale construction. The investigations, tests and researches are not yet sufficient. The prompt establishment of safety supported by technical criteria, analytical methods and experiments is desired. The second part deals with the consideration for aseismatic design, construction, function and characteristics of CCV. The classification and currently employed CCV, which is mainly reinforced concrete containment vessels (RCCV), are described, and the typical CCV employed for BWR is illustrated. Further, the typical arrangement of reinforcing steels at the cylindrical portion and the dome portion of RCCV is illustrated. The third part deals with the present state of CCV abroad. A prestressed concrete containment vessel (PCCV) of Turkey Point power plant is illustrated as a typical example of CCV. The tests reported in the international meeting for the design, construction and operation of concrete pressure vessels and concrete containment vessels at York University in England in 1975 are reviewed. Typical examples of the design conditions, the size and form, and the construction procedure for PCCV and RCCV abroad are reviewed. (Iwakiri, K.)

  11. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxiliary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embedded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. (Auth.)

  12. Leakage of pressurized gases through unlined concrete containment structures

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.

    1983-01-01

    Eight reinforced concrete specimens were fabricated and subjected to tensile membrane forces and air pressure to study the air leakage characteristics in cracked reinforced concrete members. A mathematical expression for the rate of pressurized air flowing through an idealized crack is presented. The mathematical expression is refined by using the experimental data to describe the air flow rate through any given crack pattern. Graphical charts are also presented for the calculation of the air leakage rate through concrete cracks. The concept of equivalent crack width for a given crack pattern is introduced. The mathematical expression and graphical charts are modified to include this equivalent crack width concept. The proposed technique is applicable for the prediction of the leakage from concrete containment structures or any similar structures due to high internal pressure sufficient to initiate cracking. (orig.)

  13. Concrete Walls Crumble as Tunnel TI8 Breaks Through

    CERN Multimedia

    2001-01-01

    On Wednesday, October 3rd, the excitement in the tunnels deep beneath CERN was high as an exuberant crowd watched the second and last transfer tunnel (TI8) from the SPS break through to the LHC. The Director-General with the Mayors of Meyrin and Prévessin at the breakthrough point. The area where the break through was to occur did not look particularly special, just a concrete wall with bright orange paint sprayed in the centre. But the austere surroundings quickly faded from importance as a tremendous ruckus filled the corridor. Just minutes later the first pieces of the wall started popping off. The suspense in the room grew and eventually the spinning drill became readily visible to the entire crowd.... and that's when the real noise started, the noise of applause! 'This is the second time I have seen this happen but it is always moving because it shows our steps forward.' said Prof. Luciano Maiani. Technicians, physicists, and engineers chatted excitedly as the tunnel team climbed through...

  14. Failure/leakage predictions of concrete structures containing cracks

    International Nuclear Information System (INIS)

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1984-06-01

    An approach is presented for studying the cracking and radioactive release of a reactor containment during severe accidents and extreme environments. The cracking of concrete is modeled as the blunt crack. The initiation and propagation of a crack are determined by using the maximum strength and the J-integral criteria. Furthermore, the extent of cracking is related to the leakage calculation by using a model developed by Rizkalla, Lau and Simmonds. Numerical examples are given for a three-point bending problem and a hypothetical case of a concrete containment structure subjected to high internal pressure during an accident

  15. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  16. Behaviours of reinforced concrete containment models under thermal gradient and internal pressure

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Ohnuma, H.; Yoshioka, Y.; Okada, K.; Ueda, M.

    1979-01-01

    The provisions for design concepts in Japanese Technical Standard of Concrete Containments for Nuclear Power Plants require to take account of thermal effects into design. The provisions also propose that the thermal effects could be relieved according to the degree of crack formation and creep of concrete, and may be neglected in estimating the ultimate strength capacity in extreme environmental loading conditions. This experimental study was carried out to clarify the above provisions by investigating the crack and deformation behaviours of two identical reinforced cylindrical models with dome and basement (wall outer diameter 160 cm, and wall thickness 10 cm). One of these models was hydraulically pressurized up to failure at room temperature and the other was subjected to similar internal pressure combined with the thermal gradient of approximately 40 to 50 0 C across the wall. Initial visual cracks were recognized when the stress induced by the thermal gradient reached at about 85% of bending strength of concrete used. The thermal stress of reinforcement calculated with the methods proposed by the authors using an average flexural rigidity considering the contribution of concrete showed good agreement with test results. The method based on the fully cracked section, however, was recognized to underestimate the measured stress. These cracks considerably reduced the initial deformation caused by subsequent internal pressure. (orig.)

  17. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  18. Instrumentation and testing of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Pace, D.W.; Klamerus, E.W.

    1997-01-01

    Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs

  19. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    Directory of Open Access Journals (Sweden)

    I. I. Soto

    Full Text Available Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a block produced with plain concrete. Herein are reported the results of a study on the post-cracking behavior of blocks, prisms, and small walls reinforced with sisal fibers (lengths of 20 mm and 40 mm added at volume fractions of 0.5% and 1%. Tests were performed to characterize the fibers and blocks and to determine the compressive strength of the units, prisms, and small walls. The deformation modulus of the elements was calculated and the stress-strain curves were plotted to gain a better understanding of the values obtained. The compression test results for the small walls reinforced with fibers were similar to those of the reference walls and better than the blocks and prisms with added fibers, which had resistances lower than those of the corresponding conventional materials. All elements prepared with the addition of sisal exhibited an increase in the deformation capacity (conferred by the fibers, which was observed in the stress-strain curves. The failure mode of the reference elements was characterized by an abrupt fracture, whereas the reinforced elements underwent ductile breakage. This result was because of the presence of the fibers, which remained attached to the faces of the cracks via adhesion to the cement matrix, thus preventing loss of continuity in the material. Therefore, the cement/plant fiber composites are advantageous in terms of their ductility and ability to resist further damage after cracking.

  20. Behaviour of concrete nuclear containment structures upto ultimate failure with special reference to MAPP-1 containment

    International Nuclear Information System (INIS)

    Appa Rao, T.V.S.R.

    1975-01-01

    Theoretical and experimental methods for investigating the behaviour of concrete secondary containment structures subjected to loads upto their ultimate failure have been discussed in the paper. Need for inelastic nonlinear analysis of containments has been emphasized. Different contitutive models of concrete that can be employed in the nonlinear analysis of concrete structures were briefly reviewed. Based on the experimental results obtained in a 1:12 scale model test conducted at the Structural Engineering Research (Regional) Centre, Madras, behaviour of the MAPP-1 containment to internal pressure loading upto its ultimate failure has been discussed. (author)

  1. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    International Nuclear Information System (INIS)

    Balomenos, Georgios P.; Pandey, Mahesh D.

    2017-01-01

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  2. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    Energy Technology Data Exchange (ETDEWEB)

    Balomenos, Georgios P., E-mail: gbalomen@uwaterloo.ca; Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca

    2017-01-15

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  3. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  4. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  5. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  6. Ultimate internal pressure capacity of concrete containment structures

    International Nuclear Information System (INIS)

    Krishnaswamy, C.N.; Namperumal, R.; Al-Dabbagh, A.

    1983-01-01

    Lesson learned from the accident at Three-Mile Island nuclear plant has necessitated the computation of the ultimate internal pressure capacity of containment structures as a licensing requirement in the U.S. In general, a containment structure is designed to be essentially elastic under design accident pressure. However, as the containment pressure builds up beyond the design value due to a more severe postulated accident, the containment response turns nonlinear as it sequentially passes through cracking of concrete, yielding of linear plate, yielding of rebar, and yielding of post-tensioning tendon (if the containment concrete is prestressed). This paper reports on the determination of the ultimate internal pressure capacity and nonlinear behavior of typical reinforced and prestressed concrete BWR containments. The probable modes of failure, the criteria for ultimate pressure capacity, and the most critical sections are described. Simple equations to hand-calculate the ultimate pressure capacity and the nonlinear behavior at membrane sections of the containment shell are presented. A nonlinear finite element analysis performed to determine the nonlinear behavior of the entire shell including nonmembrane sections is briefly discribed. The analysis model consisted of laminated axisymmetric shell finite elements with nonlinear stress-strain properties for each material. Results presented for typical BWR concrete containments include nonlinear response plots of internal pressure versus containment deflection and strains in the liner, rebar, and post-tensioning tendons at the most stressed section in the shell. Leak-tightness of the containment liner and the effect of thermal loads on the ultimate capacity are discussed. (orig.)

  7. Transient analysis of LMFBR reinforced/prestressed concrete containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Belytschko, T.B.; Bazant, Z.P.

    1979-01-01

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containments must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. Furthermore, for the sake of convenience, all of these features should be available in a single computer code. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. The use of explicit time integration has the advantage that it can easily treat the complicated constitutive model which arises from the considerations of concrete cracking and it can handle the slip between reinforcing tendons and the concrete through the use of the well known sliding interface options. However, explicit time integration programs are usually not well suited to the simulation of static processes such as prestressing. Nevertheless, explicit time integration programs can handle static processes through the introduction of damping by what is known as a dynamic relaxation procedure. For this reason, the dynamic relaxation procedure was refined through the introduction of lumped mass, viscous damping. This provision made the prestressing operation of the concrete structures by means of the explicit formulation rather convenient. (orig.)

  8. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  9. 77 FR 69508 - Inservice Inspection of Prestressed Concrete Containment Structures With Grouted Tendons

    Science.gov (United States)

    2012-11-19

    ... Containment Structures With Grouted Tendons AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... (RG) 1.90, ``Inservice Inspection of Prestressed Concrete Containment Structures with Grouted Tendons... appropriate surveillance program for prestressed concrete containment structures with grouted tendons...

  10. Biaxial behavior of plain concrete of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Keun E-mail: sklee0806@bcline.com; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f{sub 1}=f{sub 2}, is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension.

  11. Aging of concrete containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Yasuhiro; Arndt, E.G.

    1992-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants in the US Pertinent concrete structures are described in terms of their importance design, considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. Current inservice inspection requirements for concrete containments are summarized. A review of the performance history of the concrete components in nuclear power plants is provided. A summary is presented. A summary is presented of the Structural Aging (SAG) Program being conducted at the Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved bases for their continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitiative methodology for continued service conditions. Objectives and a summary of accomplishments under each of these tasks are presented

  12. Biaxial behavior of plain concrete of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Sang-Keun; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f 1 =f 2 , is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension

  13. Design, analysis and construction of the prestressed concrete containment of the nuclear power station Gundremmingen

    International Nuclear Information System (INIS)

    Mueller, W.F.; Ick, U.

    1977-01-01

    Kraftwerk Union AG is presently constructing at Gundremmingen (Bavaria) on the River Danube a BWR twin-plant (KRB Units B and C) with a capacity of 2x1300 MWe. Owing to the wall thickness/diameter ratio the containment can be calculated as a thin-walled shell. Areas of discontinuity are subjected to three-dimensional investigations. For the design of the concrete structure different fracture safety margins are defined for the load conditions occurring in operation in the event of a loss-of-coolant accident and as a result of an aircraft or an earthquake. From this results that in the cross sectional areas without discontinuities of the prestressed outer cylinder no resultant tensions occur. For the steel liner different limits of strain are permitted for the various load conditions, bearing in mind that the integrity of the liner must remain ensured at any time. In order to keep the stresses resulting from the constraint of the containment outer cylinder in the foundation slab low, the cylindrical wall is placed on bearings. The suppression pool top slab is constrained at the containment outer cylinder and at the containment inner cylindrical wall. The inlets of the vent pipes are integrated in the slab in a way resulting in a double slab. The liner consists of 8 mm thick steel plate and is anchored in the concrete via steel sections. Mechanical equipment anchoring in the concrete is provided by welding anchor plates into the liner after the section concerned has been completed. The carcass work on the reactor building is scheduled to be completed within

  14. Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

    Directory of Open Access Journals (Sweden)

    Hyung Gyun Noh

    2017-04-01

    Full Text Available The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  15. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  16. Experimental study on the leakage of gas through cracked concrete walls

    International Nuclear Information System (INIS)

    Suzuki, T.; Takiguchi, K.; Hotta, H.; Kojima, N.; Fukuhara, M.; Kimura, K.

    1989-01-01

    The air-tightness of concrete walls is important for nuclear-related facilities. A concrete wall has very high probabilities of developing cracks due to shrinkage, seismic forces or other factors. It is therefore essential to be able to predict the amount of gas which will leak through a cracked concrete wall. In the previous paper published in SmiRT-9, the experimental equation on the gas leakage through a single crack occurred in concrete was presented based on two-dimensional Poiseuille's flow. In this paper, the experimental results were examined again considering the compressibility of gas, and new equation is presented. The experiments which were similar to ones in the previous paper were carried out on several kinds of concrete using several kinds of gases, and the effects of the kinds of gaseous body, particle size of aggregates and shape of aggregates were examined

  17. NFAP calculation of the response of a 1/6 scale reinforced concrete containment model

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1989-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction

  18. Study of air and steam leak rate through damaged concrete wall

    International Nuclear Information System (INIS)

    Abdeslam Laghcha; Gerard Debicki; Benoit Masson

    2005-01-01

    Full text of publication follows: The leak rate prediction of air and steam through a cracked concrete wall is an extremely important issue in assessing the safety of nuclear reactor containment building. Furthermore the relation between air leak rate and steam leak rate on the same wall could have some interest for safety prediction. This laboratory study investigates the transfer of fluids through a wall of 1.3 m of thickness, with a focus on two cases: one on a mechanically damaged concrete by compressive stress and another one on a crossing artificial flaw in a construction joint realized in the concrete specimen (cylindrical / section 0.1925 m 2 / length 1.3 m). The both specimens were made of ordinary concrete (compressive strength: 35 MPa). To initiate residual compressive cracks, the specimen (A) was loaded in compression under controlled strains until a level of 90% of the failure strain was reached. To create a crossing artificial flaw in a construction joint, the concrete was set in the mould in two times, the second time, a water saturated sand bed was placed on the surface of the hardened concrete to realize the flaw along a diameter of the specimen (B). The permeability of damaged concrete wall was studied comparatively under two conditions, but without appreciable stresses applied on. The first condition was at ambient temperature, a reference test of permeability, with dry air, gave the characteristics of permeability and the type of flow through the specimen. In this case, the used method consisted to proceed by stages. The imposed pressures on the exposed face were successively 0.1, 0.18, 0.23, 0.28, 0.34 and 0.42 MPa, the other face was at atmospheric pressure. The second condition was an accidental scenario with simultaneous effects of temperature and gas (a mix of air and steam) pressure applied on a face, the other one remaining at atmospheric pressure and temperature. During the test, the lateral face of the cylindrical specimen was thermally

  19. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  20. Design basis and requirements for 241-SY Modular Exhauster concrete pad and retaining wall

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1994-01-01

    The purpose of this document is to serve as the design and functional requirements for a concrete pad for the new 241-SY Modular Exhauster and for a retaining wall to be built near the new ventilation systems

  1. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty; M., El-Kashef; E., Fahmy; M., Abou-Zeid; M., Haroun

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal

  2. Prestressed concrete nuclear reactor containment structures. Revision 3

    International Nuclear Information System (INIS)

    Reuter, H.R.; Chang-Lo, P.L.C.; Pfeifer, B.W.; Shah, G.H.; Whitcraft, J.S.

    1975-02-01

    A discussion of the techniques and procedures used for the design of prestressed concrete nuclear reactor containment structures is presented. A physical description of Bechtel designed containment structures is presented. The design bases and load combinations are given for anticipated conditions of service. Reference design documents which include industry codes, specifications, AEC Regulatory Guides, Bechtel Topical Reports and additional criteria as appropriate to containment design are listed. Stepwise procedures typically followed by Bechtel for design of containments is discussed and design examples are presented. A description of currently used analytical methods and the practical application of these methods for containment design is also presented. The principal containment construction materials are identified and codes of practice pertaining to construction procedures are listed. Preoperational structural testing procedures and post-operational surveillance programs are furnished along with results of tests on completed containment structures. (U.S.)

  3. Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

    OpenAIRE

    Musa H. Arslan

    2016-01-01

    Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing th...

  4. Nonlinear finite element analysis of nuclear reinforced prestressed concrete containments up to ultimate load capacity

    International Nuclear Information System (INIS)

    Gupta, A.; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-01-01

    For safety evaluation of nuclear structures a finite element code ULCA (Ultimate Load Capacity Assessment) has been developed. Eight/nine noded isoparametric quadrilateral plate/shell element with reinforcement as a through thickness discrete but integral smeared layer of the element is presented to analyze reinforced and prestressed concrete structures. Various constitutive models such as crushing, cracking in tension, tension stiffening and rebar yielding are studied and effect of these parameters on the reserve strength of structures is brought out through a number of benchmark tests. A global model is used to analyze the prestressed concrete containment wall of a typical 220 MWe Pressurized Heavy Water Reactor (PHWR) up to its ultimate capacity. This demonstrates the adequacy of Indian PHWR containment design to withstand severe accident loads

  5. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Hyung Kui [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level.

  6. Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Hyung Kui

    2015-01-01

    Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcement was shown to be more effective at a high pressure loading and a low prestress level

  7. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-03-01

    Full Text Available The seismic performance of recycled aggregate concrete (RAC composite shear walls with different expandable polystyrene (EPS configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC protective layer (EPS modules as the external insulation layer, and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.

  8. Mark III Containment vessel/annulus concrete design

    International Nuclear Information System (INIS)

    Chang, P.S.; Moussa, M.M.

    1981-01-01

    Recently, engineers have been considering the significant dynamic impact of safety/relief valve (S/RV) discharge loads on the containment structures, safety equipment, and piping systems in BWR type reactors. For a plant in the construction stage, extensive modifications will be made to qualify these new loads. The lower portion of the containment vessel serves as a suppression pool pressure boundary and is designed to sustain the effects of postulated loss of coolant accidents, seismic occurrences, S/RV discharge loads, and other effects. Extremely high spectral peak accelerations of the free-standing steel containment vessel can be obtained during the air dearing process of the S/RV discharge. Parametric studies indicated that a substantial reduction in response can be obtained by increasing the stiffness of the steel containment vessel in the lover area. A concrete backing configuration in the suppression pool area of Mark III Containment is proposed in this paper. A composite action is assumed between the steel containment vessel shell and the concrete section. The system is physically separated from the shield building. This approach warrants an early erection of the shield building and a late installation of piping systems in the containment vessel suppression pool area. Finite element analyses are performed by using ASHSD2 and EASE2 computer codes. The results of the analyses have shown the proposed stress criteria are satisfied. The approach pressented is justified to be a workable system for a new plant design. (orig./HP)

  9. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  10. Concrete containers in radioactive waste management: a review

    International Nuclear Information System (INIS)

    Tavares, Bárbara L.; Tello, Clédola Cássia O. de

    2017-01-01

    Nuclear power is considered a clean energy, because it does not produce the gases responsible for greenhouse effect. However, like all human activities, it is susceptible to waste generation. With increasing demand for energy in Brazil, the use of nuclear power is being expanded, as a result, the implementation of correct treatment and disposal are a necessity, in order to ensure the non-contamination of the public or environment and that exposure doses are lower than limits by legislation. Most of waste produced in Brazil are classified as low and intermediate radiation level; consequently, the national repository will be near surface, in accordance with the legislation. Considering the multi-barrier concept for the repository, the radioactive waste product is the first barrier. To have a qualified radioactive waste product, it should be solid or solidified using an inert material. With the intention of standardize the disposal process, all radioactive waste products will be placed in concrete containers. These containers will be settled in a concrete cell, the final engineered barrier of the repository. The state of the art is the first part of the study of the concrete containers and its specific criteria acceptation. Since the repository’s operational and surveillance period is 60 and 300 years, respectively, tests still need to be fulfilled in order to ensure the stability and resistance of the material. (author)

  11. Concrete containers in radioactive waste management: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Bárbara L.; Tello, Clédola Cássia O. de, E-mail: barbaralacerdat@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil)

    2017-07-01

    Nuclear power is considered a clean energy, because it does not produce the gases responsible for greenhouse effect. However, like all human activities, it is susceptible to waste generation. With increasing demand for energy in Brazil, the use of nuclear power is being expanded, as a result, the implementation of correct treatment and disposal are a necessity, in order to ensure the non-contamination of the public or environment and that exposure doses are lower than limits by legislation. Most of waste produced in Brazil are classified as low and intermediate radiation level; consequently, the national repository will be near surface, in accordance with the legislation. Considering the multi-barrier concept for the repository, the radioactive waste product is the first barrier. To have a qualified radioactive waste product, it should be solid or solidified using an inert material. With the intention of standardize the disposal process, all radioactive waste products will be placed in concrete containers. These containers will be settled in a concrete cell, the final engineered barrier of the repository. The state of the art is the first part of the study of the concrete containers and its specific criteria acceptation. Since the repository’s operational and surveillance period is 60 and 300 years, respectively, tests still need to be fulfilled in order to ensure the stability and resistance of the material. (author)

  12. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  13. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  14. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  15. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  16. Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multi walled Carbon Nano tubes in Keeping the Plain Concrete Properties

    International Nuclear Information System (INIS)

    Adresi, M.; Hassani, A.; Javadian, S.; Tulliani, J. M.

    2016-01-01

    A new surfactant combination compatible with concrete formulation is proposed to avoid unwanted air bubbles created during mixing process in the absence of a defoamer and to achieve the uniform and the maximum possible dispersion of multi walled carbon nano tubes (MWCNTs) in water and subsequently in concrete. To achieve this goal, three steps have been defined: (1) concrete was made with different types and amount of surfactants containing a constant amount of MWCNTs (0.05 wt%) and the air bubbles were eliminated with a proper defoamer. (2) Finding a compatible surfactant with concrete compositions and eliminating unwanted air bubbles in the absence of a common defoamer are of fundamental importance to significantly increase concrete mechanical properties. In this step, the results showed that the poly carboxylate super plasticizer (SP-C) (as a compatible surfactant) dispersed MWCNTs worse than SDS/DTAB but unwanted air bubbles were removed, so the defoamer can be omitted in the mixing process. (3) To solve the problem, a new compatible surfactant composition was developed and different ratios of surfactants were tested and evaluated by means of performance criteria mentioned above. The results showed that the new surfactant composition (SDS and SP-C) can disperse MWCNTs around 24% more efficiently than the other surfactant compositions.

  17. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    Science.gov (United States)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  18. Capacity of Prestressed Concrete Containment Vessels with Prestressing Loss

    International Nuclear Information System (INIS)

    SMITH, JEFFREY A.

    2001-01-01

    Reduced prestressing and degradation of prestressing tendons in concrete containment vessels were investigated using finite element analysis of a typical prestressed containment vessel. The containment was analyzed during a loss of coolant accident (LOCA) with varying levels of prestress loss and with reduced tendon area. It was found that when selected hoop prestressing tendons were completely removed (as if broken) or when the area of selected hoop tendons was reduced, there was a significant impact on the ultimate capacity of the containment vessel. However, when selected hoop prestressing tendons remained, but with complete loss of prestressing, the predicted ultimate capacity was not significantly affected for this specific loss of coolant accident. Concrete cracking occurred at much lower levels for all cases. For cases where selected vertical tendons were analyzed with reduced prestressing or degradation of the tendons, there also was not a significant impact on the ultimate load carrying capacity for the specific accident analyzed. For other loading scenarios (such as seismic loading) the loss of hoop prestressing with the tendons remaining could be more significant on the ultimate capacity of the containment vessel than found for the accident analyzed. A combination of loss of prestressing and degradation of the vertical tendons could also be more critical during other loading scenarios

  19. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  20. Aging management of light water reactor concrete containments

    International Nuclear Information System (INIS)

    Shah, V.N.; Hookhman, C.J.

    1994-01-01

    This paper evaluates aging of light water reactor concrete containments and identifies three degradation mechanisms that have potential to cause widespread aging damage after years of satisfactory experience: alkali-silica reaction, corrosion of reinforcing steel, and sulfate attack. The evaluation is based on a comprehensive review of the relevant technical literature. Low-alkali cement and slow-reacting aggregates selected according to ASTM requirements cause deleterious alkali-silica reactions. Low concentrations of chloride ions can initiate corrosion of the reinforcing steel if the hydroxyl ions are sufficiently reduced by carbonation, leaching, or magnesium sulfate attack. Magnesium sulfate attack on concrete can cause loss of strength and cementitious properties after long exposure. Techniques to detect and mitigate these long-term aging effects are discussed

  1. Analysis of chloride diffusivity in concrete containing red mud

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud is a solid waste produced in the alumina production process and, due to its high pH, is classified as hazardous. Its incorporation in concrete mixtures, acting as filler due to the particles fineness, might be an interesting reuse alternative. The focus of this paper is to study the chloride diffusivity of concrete mixtures containing red-mud. The concentration of chlorides was monitored by measuring the conductivity of the anolyte, which was distilled water initially. In addition, the estimation of the chloride ions diffusion coefficients in steady and non-steady conditions, Ds and Dns, was obtained from the ''time-lag'' and ''equivalent time'' between diffusion and migration experiments. Due to superfine particle-size distribution and the "filler" effect, the red mud addition seems to assure lower chloride diffusivity.

  2. Thermo-elastic stress analysis of containment wall penetrations using improved finite element formulation

    International Nuclear Information System (INIS)

    Ramani, D.T.; Dimopoulos, A.; Heglin, B.M.

    1979-01-01

    An increased application of finite element techniques, particularly in evaluating structural integrity of nuclear containment walls around penetration points, has aroused considerable interest. Due to extreme thermal effects in the vicinity of penetrations, the concrete containment wall is subject to unwarranted cracking effects, which must be controlled in accordance with ASME-III Code. This paper essentially deals with a unique finite element method of analysis in which nonlinear heat transfer problem across the penetration assembly in the nuclear containment drywell wall, is formulated. Using this technique, thermal analysis, dealing with an evaluation of temperature distribution around axisymmetric penetration assembly accomodating main steam lines or other vital piping at 600 0 F, is carried out. The method of analysis considers steady-state heat transfer energy balance across the process-pipe, insulation layer, guard-pipe sleeve, two intermediate air layers and an axisymmetric opening in the concrete containment wall, the outer faces of which are maintained at ambient temperature of 120 0 F. (orig.)

  3. Revision of Sustainable Criteria of Concrete Walls for Earthquake-Resistant Housing

    Directory of Open Access Journals (Sweden)

    Alcocer S.M.

    2012-10-01

    Full Text Available The seismic performance of low-rise housing has been noticeably inadequate during the most recent earthquakes occurred in Latin American countries. Moreover, the literature review revealed that some traditional techniques do not contribute to building sustainable housing. In the last decade, construction of concrete walls housing has become a preferred choice because of the speed of construction and availability of materials in most of these countries. Aimed at improving seismic design methods for this type of construction, an extensive analytical and experimental program was carried out. The experimental program included quasi-static and shaking-table tests of 47 walls with different height-to-length ratios and walls with openings. Variables studied were type of concrete, web steel ratio and type of web reinforcement. The paper presents and discusses the main results of the research program and evaluates the technical and environmental feasibility for using concrete walls for sustainable and earthquake-resistant housing. Performance of concrete walls housing is assessed in terms of key environmental and earthquake-resistant requirements. It was found that concrete wall housing is not only safe under earthquakes and easily adaptable to climate, but also it stimulates environmental conservation and promotes reducing the costs of construction, operation and maintenance.

  4. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  5. Evaluation of Tritium Behavior in the Epoxy Painted Concrete Wall of ITER Hot Cell

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka

    2005-01-01

    Tritium behavior released in the ITER hot cell has been investigated numerically using a combined analytical methods of a tritium transport analysis in the multi-layer wall (concrete and epoxy paint) with the one dimensional diffusion model and a tritium concentration analysis in the hot cell with the complete mixing model by the ventilation. As the results, it is revealed that tritium concentration decay and permeation issues are not serious problem in a viewpoint of safety, since it is expected that tritium concentration in the hot cell decrease rapidly within several days just after removing the tritium release source, and tritium permeation through the epoxy painted concrete wall will be negligible as long as the averaged realistic diffusion coefficient is ensured in the concrete wall. It is also revealed that the epoxy paint on the concrete wall prevents the tritium inventory increase in the concrete wall greatly (two orders of magnitudes), but still, the inventory in the wall is estimated to reach about 0.1 PBq for 20 years operation

  6. The Heat Transfer Coefficient of Recycled Concrete Bricks Combination with EPS Insulation Board Wall

    Directory of Open Access Journals (Sweden)

    Jianhua Li

    2015-01-01

    Full Text Available Four tectonic forms samples were conducted to test their heat transfer coefficients. By analyzing and comparing the test values and theoretical values of the heat transfer coefficient, a corrected-value calculation method for determining the heat transfer coefficient was proposed; the proposed method was proved to be reasonably correct. The results indicated that the recycled concrete brick wall heat transfer coefficient is higher than that of the clay brick wall, the heat transfer coefficient of recycled concrete brick wall could be effectively reduced when combined with the EPS insulation board, and the sandwich insulation type was better than that of external thermal insulation type.

  7. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Choun, Young Sun; Hahm, Dae Gi

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests

  8. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests.

  9. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  10. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  11. Sensitivity analysis of numerical model of prestressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Bílý, Petr, E-mail: petr.bily@fsv.cvut.cz; Kohoutková, Alena, E-mail: akohout@fsv.cvut.cz

    2015-12-15

    Graphical abstract: - Highlights: • FEM model of prestressed concrete containment with steel liner was created. • Sensitivity analysis of changes in geometry and loads was conducted. • Steel liner and temperature effects are the most important factors. • Creep and shrinkage parameters are essential for the long time analysis. • Prestressing schedule is a key factor in the early stages. - Abstract: Safety is always the main consideration in the design of containment of nuclear power plant. However, efficiency of the design process should be also taken into consideration. Despite the advances in computational abilities in recent years, simplified analyses may be found useful for preliminary scoping or trade studies. In the paper, a study on sensitivity of finite element model of prestressed concrete containment to changes in geometry, loads and other factors is presented. Importance of steel liner, reinforcement, prestressing process, temperature changes, nonlinearity of materials as well as density of finite elements mesh is assessed in the main stages of life cycle of the containment. Although the modeling adjustments have not produced any significant changes in computation time, it was found that in some cases simplified modeling process can lead to significant reduction of work time without degradation of the results.

  12. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  13. Probability based load factors for design of concrete containment structures

    International Nuclear Information System (INIS)

    Hwang, H.; Kagami, S.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper describes a procedure for developing probability-based load combinations for the design of concrete containments. The proposed criteria are in a load and resistance factor design (LRFD) format. The load factors and resistance factors are derived for use in limit states design and are based on a target limit state probability. In this paper, the load factors for accident pressure and safe shutdown earthquake are derived for three target limit state probabilities. Other load factors are recommended on the basis of prior experience with probability-based design criteria for ordinary building construction. 6 refs

  14. Seismic reliability assessment methodology for CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Stephens, M.J.; Nessim, M.A.; Hong, H.P.

    1995-05-01

    A study was undertaken to develop a reliability-based methodology for the assessment of existing CANDU concrete containment structures with respect to seismic loading. The focus of the study was on defining appropriate specified values and partial safety factors for earthquake loading and resistance parameters. Key issues addressed in the work were the identification of an approach to select design earthquake spectra that satisfy consistent safety levels, and the use of structure-specific data in the evaluation of structural resistance. (author). 23 refs., 9 tabs., 15 figs

  15. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    Science.gov (United States)

    Philipose, K.; Shenton, B.

    2011-04-01

    The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  16. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    Directory of Open Access Journals (Sweden)

    Shenton B.

    2011-04-01

    Full Text Available The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA. To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1, Quebec, Canada (250 MWe was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  17. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  18. Measured Prestress Loss of over 20-Year-Old Prestressed Concrete Containment Vessels

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil

    2010-01-01

    Most nuclear reactors, both in Korea and worldwide, are enclosed by a prestressed concrete containment vessels(PCCVs). The containment wall is approximately 1 m thick and is prestressed in two directions by large prestressing tendons. The main purpose of the containment is to maintain the structural integrity of the containment in the event of a major internal accident. The main accidental scenario, which the containment is designed to withstand, is a so-called loss of coolant accident (LOCA). A LOCA is initiated by a pipe rupture in the cooling system, discharging hot steam into the containment. The escape of steam increases both the temperature and pressure inside the containment. The increased internal pressure arising from a LOCA is referred to as the design pressure. The prestressing system is designed to counterbalance the tensile forces arising from the design pressure. The status of the containment is gradually changed due to environmental factors and by alterations in the micro structure of the material. The prestress will be reduced due to shrinkage and creep in the concrete and relaxation in the tendons. The corrosion protection of tendons are for Korean containments arranged in two different ways, either by cement grouting (bonded tendons) or e.g. by grease injection (unbonded tendons). The major advantage using unbonded tendons is the possibilities of assessing their status (e.g. prestress losses or corrosion damages) which is not possible using bonded tendons. Both bonded and unbonded tendons are used worldwide. For example in the U.S. almost all tendons are unbonded, whereas in France almost all tendons are bonded. For Korean reactor containments with unbonded tendons (14 containments) the tendon force is monitored at regular in-service inspections. The power plant Wolsung in Korea has bonded tendons and several prestressed concrete beams were constructed with the single purpose to follow up the prestress losses. The remaining tendon forces in some

  19. Finite element modeling of tornado missile impact on reinforced concrete wall panels

    International Nuclear Information System (INIS)

    Zhang, Y.; Vallabhan, C.V.G.; McDonald, J.R.

    1993-01-01

    This paper describes a finite element model for the impact of large tornado-generated missiles with reinforced concrete wall panels. The analysis predicts the dynamic response of a wall panel when impacted by a missile with a large contact area such as an automobile. Quadratic finite elements are used to discretize the domain of the wall panel. Fundamental assumptions are based on the Mindlin and the related Reinsser plate theories. An 'embedded' model is employed to account for the reinforcing bars. The nonlinear behavior of concrete and steel bars are analyzed by means of time-dependent constitutive relationships. A model is proposed to describe the initial and subsequent yield surfaces of concrete material, which avoids underestimation of the effect of high hydrostatic stresses on the yielding behavior of concrete. Ottosen's four-parameter failure criterion is used to define the failure surface of concrete. A crack monitoring algorithm accounts for post-cracking and post-crushing behavior of concrete. Explicit time step integration of nonlinear dynamic equations are carried out using the finite element discretization of a concrete wall panel. As a practical application of the analysis technique, the contact failure pressure for a particular panel geometry can be calculated. The contact failure pressure and the elapsed time to failure after missile contact define a rectangular or triangular impulse loading to produce failure of the panel. Since automobile crashes are known to produce triangular impulse loads, the two pulses (failure and impact) can be compared to determine if a particular impact will fail the panels. Thus, a particular concrete panel can be analyzed to determine if it will fail under a postulated missile impact

  20. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  1. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  2. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  3. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers.

  4. Evaluation of Ultimate Pressure Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi

    2014-01-01

    Fiber reinforced concrete (FRC) includes thousands of small fibers that are distributed randomly in the concrete. Fibers resist the growth of cracks in concrete through their bridging at the cracks. Therefore, FRC fails in tension only when the fibers break or are pulled out of the cement matrix. For this reason, the addition of fibers in concrete mixing increases the tensile toughness of concrete and enhances the post-cracking behavior. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity of a prestressed concrete containment building (PCCB). In this study, the effects of steel or polyamide fiber reinforcement on the ultimate pressure capacity of a PCCB are evaluated. When R-SFRC contains hooked steel fibers in a volume fraction of 1.0%, the ultimate pressure capacity of a PCCB can be improved by 17%. When R-PFRC contains polyamide fibers in a volume fraction of 1.5%, the ultimate pressure capacity of a PCCB can be enhanced by 10%. Further studies are needed to determine the strain limits acceptable for PCCBs reinforced with fibers

  5. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    Directory of Open Access Journals (Sweden)

    MAJID MATOUQ ASSAS

    2016-06-01

    Full Text Available All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used as partial replacement of cement by weight. Each one replaced 10% of cement weight to give a total replacement of 30%. The durability performance was assessed by means of water absorption, chloride ion permeability at 28 and 90 days, and resistance to sulphuric acid attack at 1, 7, 14 and 28 days. Also to the compression behaviors for the tested specimens at 7, 14, 28 and 90 days were detected. The results show the existence of ternary cementitious system, silica fly ash and Cement Kiln Dust minimizes the strength loss associated to the use of rubber waste. In this way, up to 10% rubber content and 30% ternary cementious system an adequate strength class value (30 MPa, as required for a wide range of common structural uses, can be reached both through natural aggregate concrete and recycled aggregate concrete. Results also show that, it is possible to use rubber waste up to 15% and still maintain a high resistance to acid attack. The mixes with 10%silica fume, 10% fly ash and 10% Cement Kiln Dust show a higher resistance to sulphuric acid attack than the reference mix independently of the rubber waste content. The mixes with rubber waste and ternary cementious system was a lower resistance to sulphuric acid attack than the reference mix.

  6. Non destructive measurement for the penetration of contamination inside concrete walls

    International Nuclear Information System (INIS)

    Rottner, B.

    1998-01-01

    The scope of this work is to determine the penetration depth of the contamination inside materials like concrete, only using external measurements, avoiding for instance to drill holes in the concrete wall. When dismantling NPP, concrete represents a significant part of the amount of waste. It is then interesting to segregate concrete into different types of waste: ordinary waste, very low level active waste,... This method makes it possible to generate a three dimensional map of the contamination in a concrete wall; this map car be used to adapt the dismantling scenario, and the tools, in order to: - first: decontaminate the wall by scraping the identified contaminated parts, which generates a small quantity of active waste; - second: break down the wall using non nuclear specific methods, generating a large quantity of ordinary waste. The method is based on spectrometric measurements, using two types of information: - the peak to peak ratios for a single radio-nuclide; - the ratio of the peak surface to the baseline enhancement under the peak. Both ratios vary with the penetration depth of the contamination, but rot in the same way. Therefore, the information which is used, will preferably depends on the depth. The correlation of the two ratios to the penetration depth is computed, using two specific calculation codes. One computes the sensitivity of the detector to the direct rays and the other computes the spectrum shape. (author)

  7. Stiffness of reinforced concrete walls resisting in-place shear -- Tier 2: Aging and durability of concrete used in nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Monteiro, P.J.M.; Moehle, J.P.

    1995-12-01

    Reinforced concrete walls are commonly used in power-plant construction to resist earthquake effects. Determination of wall stiffness is of particular importance for establishing design forces on attached equipment. Available experimental data indicate differences between the measured and calculated stiffness of walls in cases where concrete mechanical properties are well defined. Additional data indicate that in-situ concrete mechanical properties may differ significantly from those specified in design. The work summarized in this report was undertaken to investigate the mechanical properties of concrete considering aging and deterioration. Existing data on mechanical properties of concrete are evaluated, and new tests are carried out on concrete cylinders batched for nuclear power plants and stored under controlled conditions for up to twenty years. It is concluded that concretes batched for nuclear power plants commonly have 28-day strength that exceeds the design value by at least 1000 psi. Under curing conditions representative of those in the interior of thick concrete elements, strength gain with time can be estimated conservatively using the expression proposed by ACI Committee 209, with strengths at 25 years being approximately 1.3 times the 28-day strength. Young's modulus can be estimated using the expression given by ACI Committee 318. Variabilities in mechanical properties are identified. A review of concrete durability identified the main causes and results of concrete deterioration that are relevant for the class of concretes and structures commonly used in nuclear power plants. Prospects for identifying the occurrence and predicting the extent of deterioration are discussed

  8. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Nitrate Diffusional Releases from the Saltstone Facility, Vault 2, with Respect to Different Concrete Wall Thicknesses

    International Nuclear Information System (INIS)

    ROBERT, HIERGESELL

    2005-01-01

    To assist the Saltstone Vault 2 Design Team, an investigation was conducted to evaluate the effectiveness of alternative concrete wall thicknesses in limiting nitrate diffusion away from the planned facility. While the current design calls for 18-inch concrete walls, alternative thicknesses of 12-in, 8-in, and 6-in were evaluated using a simplified 1-D numerical model. To serve as a guide for Saltstone Vault 2 conceptual design, the results of this investigation were applied to Saltstone Vault 4 to determine what the hypothetical limits would be for concrete wall thicknesses thinner than the planned 18-inches. This was accomplished by adjusting the Vault 4 Limits, based on the increased nitrate diffusion rates through the thinner concrete walls, such that the 100-m well limit of 44 mg/L of nitrate as nitrate was not exceeded. The implication of these preliminary results is that as thinner vault walls are implemented there is a larger release of nitrate, thus necessitating optimal vault placement to minimize the number of vaults placed along a single groundwater flow path leading to the discharge zone

  10. Experimental determination of damping factors for walls of masonry and reinforced concrete

    International Nuclear Information System (INIS)

    Buttman, P.

    1983-01-01

    'Damping' is a fundamental parameter for the determination of the internal force with a given acceleration response spectrum when designing and dimensioning masonry and reinforced concrete walls for the loading case earthquake. The actual dampings of masonry and reinforced concrete walls are determined on a scale of 1:1 by means of a horizontal excitation at a chosen test setup. The test specimen have the dimensions b/h/d=100/200/11,5 cm and 24 cm. The horizontal and sinusoidal excitation of the test specimen is effected by a dynamic oscillating excitation with a maximum power of 20 kN. The evaluation of the measurements shows that the assumed damping values of 4% for the operating basis earthquake are realistic. In case of amplitudes corresponding to the loadings of the safe shutdown earthquake, however, dampings of 11% for reinforced concrete walls and of 24% for masonry walls were determined. This real damping behavior of reinforced concrete and masonry walls was documented by means of measurements, films and pictures. (orig.)

  11. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    International Nuclear Information System (INIS)

    Zhang, Kai; Varma, Amit H.; Malushte, Sanjeev R.; Gallocher, Stewart

    2014-01-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t p ) and yield stress (F y ), and the shear connector spacing (s), stiffness (k s ), and strength (Q n ) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t p ) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis

  12. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)

    2014-04-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.

  13. Experimental study on concrete shear wall behavior under seismic loading

    International Nuclear Information System (INIS)

    Gantenbein, F.; Queval, J.C.; Epstein, A.; Dalbera, J.

    1991-01-01

    An experimental program has been undertaken on the dynamic behavior of shear walls with and without openings. The experimental set-up, the test program and the main results will be detailed in the paper

  14. Instrumentation of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Rightley, M.J.; Matsumoto, T.

    1995-01-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. At present, two tests are being planned: a test of a model of a steel containment vessel (SCV) that is representative of an improved, boiling water reactor (BWR) Mark II design; and a test of a model of a prestressed concrete containment vessel (PCCV). This paper discusses plans and the results of a preliminary investigation of the instrumentation of the PCCV model. The instrumentation suite for this model will consist of approximately 2000 channels of data to record displacements, strains in the reinforcing steel, prestressing tendons, concrete, steel liner and liner anchors, as well as pressure and temperature. The instrumentation is being designed to monitor the response of the model during prestressing operations, during Structural Integrity and Integrated Leak Rate testing, and during test to failure of the model. Particular emphasis has been placed on instrumentation of the prestressing system in order to understand the behavior of the prestressing strands at design and beyond design pressure levels. Current plans are to place load cells at both ends of one third of the tendons in addition to placing strain measurement devices along the length of selected tendons. Strain measurements will be made using conventional bonded foil resistance gages and a wire resistance gage, known as a open-quotes Tensmegclose quotes reg-sign gage, specifically designed for use with seven-wire strand. The results of preliminary tests of both types of gages, in the laboratory and in a simulated model configuration, are reported and plans for instrumentation of the model are discussed

  15. Finite element elasto-plastic analysis of thin walled structures of reinforced concrete as applied to reactor facilities

    International Nuclear Information System (INIS)

    Fujita, F.; Tsuboi, Y.

    1981-01-01

    The authors developed a new program of elasto-plastic analysis of reinforced concrete shells, in which the simplest model of shell element and an orthotropic constitutive relation are adopted, and verified its validity with reference to the results of model experiments of containers and box-wall structures with various loading conditions. For the two-dimensional stress-strain relationship of concrete, an orthotropic nonlinear formula proposed by one of the authors was adopted. For concrete, the octahedral shear failure and tension cut-off criteria were also imposed. The Kirchhoff-Love's assumptions were assumed to be valid for the whole range of the analysis and the layered approach of elasto-plastic stiffness evaluation. Derivation of the shell element is outlined with examination of its accuracy in elastic range and the assumption of elasto-plastic material property and the procedure of nonlinear analysis are described. As examples, the method is applied to the analysis of a cylindrical container and a box-wall structure. Comparison of the computed results with the corresponding experimental data indicates the applicability of the proposed method. (orig./HP)

  16. Bonded or Unbonded Technologies for Nuclear Reactor Prestressed Concrete Containments

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Tcherner, Julia; Barre, Francis; Borgerhoff, Michael; Bumann, Urs; Calonius, Kim; Courtois, Alexis; Debattista, Jean-Marc; Gallitre, Etienne; Isard, Cedric; Elison, Oscar; Graves, Herman; Sircar, Madhumita; Huerta, Alejandro; White, Andrew; ); Jackson, Paul; Kjellin, Daniel; Lillhoek, Sofia; Louhivirta, Jari; Myllymaeki, Jukka; Vaelikangas, Pekka; Martin, Jose; Nakano, Makio; Puttonen, Jari; Rambach, Jean-Mathieu; Tarallo, Francois; Smith, Leslie; Stepan, Jan; Touret, Jean-Pierre; Varpasuo, Pentti

    2015-01-01

    OECD/NEA/CSNI Working Group on Integrity and Ageing of Components and Structures (WGIAGE) has the main mission to advance the current understanding of those aspects relevant to ensuring the integrity of structures, systems and components under design and beyond design loads, to provide guidance in choosing the optimal ways of dealing with challenges to the integrity of operating as well as new nuclear power plants, and to make use of an integrated approach to design, safety and plant life management. The work related to the risks of the loss of pre-stressing force in concrete structures has been in high priority during the activities of the concrete sub-group of WGIAGE. Therefore, the CAPS of WGIAGE: Study on post-tensioning methodologies in containments, was approved by CSNI in June 2009. In this study the two post-tensioning methodologies: bonded and un-bonded methods and their technological features are analysed. In the bonded technology, the tendon cannot slide in its duct due to the cement grouting which is injected after tensioning. In the un-bonded technology, the tendon can slide inside its duct, the corrosion protection is given by grease, wax or dry air. A key point concerning the assessment of durability and safety of prestressed concrete containments is the technology chosen for tendon protection: bonded with cement grout or un-bonded and protected by grease or soft products. The mechanical behaviour of the containment is directly influenced by the adherence of the tendons to the concrete, locally and under high stresses in case of severe accident. The bonded or un-bonded tendons of post-tensioned concrete containment of the Nuclear Power Plants have the major role of containment (balance of the pressure effect during design basis and beyond design accident). Many difficulties around the design, the construction and the in service inspection are related to the tendons. The main goal of the CAPS work was to clarify the consequences and necessary

  17. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin

    Science.gov (United States)

    Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.

    2017-11-01

    The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.

  18. High temperature concrete composites containing organosiloxane crosslinked copolymers

    Science.gov (United States)

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  19. Development of fast reactor containment safety analysis code, CONTAIN-LMR. (3) Improvement of sodium-concrete reaction model

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya

    2015-01-01

    A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)

  20. Sensitization of the analytical methods for photoneutron calculations to the wall concrete composition in radiation therapy

    International Nuclear Information System (INIS)

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    The effect of wall material on photoneutron production in radiation therapy rooms was studied using Monte Carlo (MC) simulations. An analytical formula was proposed to take into account the concrete composition in photoneutron dose calculations. Using the MCNPX MC code, the 18 MV photon beam of the Varian Clinac 2100 and a typical treatment room with concrete compositions according to report No. 144 of National Council of Radiation Protection (NCRP) were simulated. Number of room produced photoneutrons per Gray of X-ray at the isocenter was determined for different types of concrete and named as “Q W ”. This new factor was inserted in the used formula for photoneutron fluence calculations at the inner entrance of maze. The photoneutron fluence was calculated using new proposed formula at the inner entrance of maze for all studied concretes. The difference between conventional and proposed equations varied from 11% to 46% for studied concretes. It was found that room produced photoneutrons could be significant for high density concretes. Additionally, applying the new proposed formula can consider the effect of wall material composition on the photoneutron production in high energy radiation therapy rooms. Further studies to confirm the accuracy of newly developed method is recommended.

  1. Nonlinear seismic analysis of a thick-walled concrete canyon structure

    International Nuclear Information System (INIS)

    Winkel, B.V.; Wagenblast, G.R.

    1989-01-01

    Conventional linear seismic analyses of a thick-walled lightly reinforced concrete structure were found to grossly underestimate its seismic capacity. Reasonable estimates of the seismic capacity were obtained by performing approximate nonlinear spectrum analyses along with static collapse evaluations. A nonlinear time history analyses is planned as the final verification of seismic adequacy

  2. AUTOMATIC THICKNESS AND VOLUME ESTIMATION OF SPRAYED CONCRETE ON ANCHORED RETAINING WALLS FROM TERRESTRIAL LIDAR DATA

    Directory of Open Access Journals (Sweden)

    J. Martínez-Sánchez

    2016-06-01

    Full Text Available When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain, resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  3. PRE-CAST WALL PRODUCTS MADE FROM LIGHTWEIGHT CONCRETE FOR ENCLOSING STRUCTURES OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    M. R. Hadgiev

    2014-01-01

    Full Text Available The paper is devoted to the actual problem waste dismantling of buildings and structures in the form of brick waste with reception the secondary fine and coarse aggregate and concrete based on them for the manufacture of small-piece wall products. 

  4. Automatic Thickness and Volume Estimation of Sprayed Concrete on Anchored Retaining Walls from Terrestrial LIDAR Data

    Science.gov (United States)

    Martínez-Sánchez, J.; Puente, I.; GonzálezJorge, H.; Riveiro, B.; Arias, P.

    2016-06-01

    When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain), resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  5. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    -destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ......The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non...

  6. HEAT INSULATING LIME DRY MORTARS FOR FINISHING OF WALLS MADE OF FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-05-01

    Full Text Available Different aerated mortars are used for pargeting of walls made of aerated concrete. Though the regulatory documents don’t specify the dependence of plaster density from the density grade of gas-concrete blocks. In case of facing of gas-concrete blocks with the grade D500 using plaster mortars with the density 1400…1600 km/m3 there occurs a dismatch in the values of thermal insulation and vapor permeability of the plaster and base. The authors suggest using dry mortars for finishing of gas-concrete block of the grades D500 и D600, which allow obtaining facing thermal insulating coatings. The efficiency of using four different high-porous additives in the lime dry mortar was compared. They were: hollow glass microspheres, aluminosilicate ash microspheres, expanded vermiculite sand, expanded pearlitic sand. The high efficiency of hollow glass microspheres in heat insulating finishing mortars compared to other fillers is proved.

  7. Seismic analysis of a reinforced concrete containment vessel model

    International Nuclear Information System (INIS)

    Randy, James J.; Cherry, Jeffery L.; Rashid, Yusef R.; Chokshi, Nilesh

    2000-01-01

    Pre-and post-test analytical predictions of the dynamic behavior of a 1:10 scale model Reinforced Concrete Containment Vessel are presented. This model, designed and constructed by the Nuclear Power Engineering Corp., was subjected to seismic simulation tests using the high-performance shaking table at the Tadotsu Engineering Laboratory in Japan. A group of tests representing design-level and beyond-design-level ground motions were first conducted to verify design safety margins. These were followed by a series of tests in which progressively larger base motions were applied until structural failure was induced. The analysis was performed by ANATECH Corp. and Sandia National Laboratories for the US Nuclear Regulatory Commission, employing state-of-the-art finite-element software specifically developed for concrete structures. Three-dimensional time-history analyses were performed, first as pre-test blind predictions to evaluate the general capabilities of the analytical methods, and second as post-test validation of the methods and interpretation of the test result. The input data consisted of acceleration time histories for the horizontal, vertical and rotational (rocking) components, as measured by accelerometers mounted on the structure's basemat. The response data consisted of acceleration and displacement records for various points on the structure, as well as time-history records of strain gages mounted on the reinforcement. This paper reports on work in progress and presents pre-test predictions and post-test comparisons to measured data for tests simulating maximum design basis and extreme design basis earthquakes. The pre-test analyses predict the failure earthquake of the test structure to have an energy level in the range of four to five times the energy level of the safe shutdown earthquake. The post-test calculations completed so far show good agreement with measured data

  8. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs

  9. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  10. Investigation into the behaviour of concrete anchored diaphragm walls under earthquake condition

    International Nuclear Information System (INIS)

    Saba, H. R.; Rahaii, A. R.

    2003-01-01

    Diaphragm walls are frequently used in civil Engineering projects. Considering the variety and important volume of consumed materials (concrete, anchors and soil), one of the important factors for design and construction of these walls, are their behaviour under different executive, and loading conditions. In this paper, various models of concrete diaphragms with different number of anchors and soil parameters under static and dynamic loading have been investigated using finite element method with nonlinear models. Results including the internal forces in diaphragm walls, variation of forces in the anchors, shape of the sliding surface and variation of pressure in soil are obtained and compared. An experimental tool with suitable measurement systems for determining the pressure and internal forces was designed and realised. Also with similitude and dimensional analyses, diaphragms with different number of anchors were built and set on the shaking table test and experimented under different accelograms. Finally results of nonlinear dynamic analysis were compared with experimental results

  11. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  12. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  13. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Directory of Open Access Journals (Sweden)

    Wanlin Cao

    2014-08-01

    Full Text Available Recycled concrete brick (RCB is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  14. Long-term properties of concrete in nuclear containment structures

    International Nuclear Information System (INIS)

    Field, S.N.; Bamforth, P.B.

    1991-01-01

    Over the last thirty years a large volume of testing has been carried out on concretes used in prestressed concrete pressure vessels and similar structures. The main aim of the work has been to provide the designers with a prediction method for elastic moduli and creep deformation which takes into account temperature and age at loading. This paper summarises and reviews the results from the six concretes tested by Taywood Engineering Ltd (T.E.L.), comparing mixes with and without PFA. (author)

  15. Containers, particularly prestressed concrete pressure vessels for nuclear reactor plants

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.; Mitterbacher, P.

    1986-01-01

    Pressure and temperature changes act on the liner, which cause differential expansion between the liner and the prestressed concrete. So that there will be no overload or damage to the liner, its anchoring or the concrete structure, cutouts are provided in the concrete at deflection positions of the steel cladding, connections and penetrations. These cut-outs are filled with inserts made of elastic or plastic material. (DG) [de

  16. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  17. Fiber reinforced concrete as a material for nuclear reactor containment buildings

    International Nuclear Information System (INIS)

    Mallikarjuna; Banthia, N.; Mindess, S.

    1991-01-01

    The fiber reinforced concrete as a constructional material for nuclear reactor containment buildings calls for an examination of its individual characteristics and potentialities due to its inherent superiority over normal plain and reinforced concrete. In the present investigation, first, to study the static behavior of straight, hooked-end and crimped fibers, recently developed nonlinear three-dimensional interface (contact) element has been used in conjunction with the eight nodded hexahedron and two nodded bar elements for concrete and steel fiber respectively. Then impact tests were carried out on fiber reinforced concrete beams with an instrumented drop weight impact machine. Two different concrete mixes were tested: normal strength and high strength concrete specimens. Fibers in the concrete mix found to significantly increase the ductility and the impact resistance of the composite. Deformed fibers increase peak pull-out load and pull-out distance, and perform better in the steel fiber reinforced concrete (SFRC) structures. (author)

  18. Axisymmetric global structural analysis of BARC prestressed concrete containment model for beyond design pressure

    International Nuclear Information System (INIS)

    Singh, Tarvinder; Singh, R.K.; Ghosh, A.K.

    2008-10-01

    In order to check the adequacy of the Indian Pressurized Heavy Water Reactor (PHWR) containment structure to withstand severe accident induced internal pressure load, the ultimate load capacity assessment is required. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC) has initiated an experimental program at BARC Tarapur Containment Test Facility to evaluate the ultimate load capacity of Indian PHWR containment. For this study, BARC Containment Model (BARCOM), which is 1:4 scale representation of Tarapur Atomic Power Station (TAPS) unit-3 and 4 540 MWe PHWR Inner Containment of Pre-stressed Concrete has been constructed. The model includes all the important major design features of the prototype containment and simulates Main Air Lock (MAL), Steam Generator (SG), Emergency Air Lock (EAL) and Fueling Machine Air Lock (FMAL) openings. The design pressure (Pd) of BARCOM is 1.44kg/cm 2 (g), which is same as the prototype. The pretest analysis of BARCOM has been performed with finite element axi-symmetric modeling. The objective of this simulation was to understand the behavior of containment model under internal pressure and find out the various failure modes and critical locations important for instrumentation during the experiment. The structural response of the containment model is assessed in terms of wall and dome displacement; cracking of concrete, longitudinal and hoop strains and stresses. Another objective of the analysis was to predict the various failure modes of BARCOM with regard to the concrete cracking, reinforcement yielding and tendon inelastic behavior along with the estimation of the ultimate load capacity of the containment model. It is noted that the BARCOM has an ultimate load capacity factor of 3.54 Pd. However, further analysis is needed to quantify the factor of safety with detail 3D model, which should account for the local structural behavior due to various openings. Meanwhile, this preliminary simplified analysis helps to

  19. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin; Jeon, Se Jin

    2012-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  20. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of); Jeon, Se Jin [Ajou University, Suwon (Korea, Republic of)

    2012-05-15

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  1. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Kwak, Hyo Gyong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jung, Rae Young; Noh, Sang Hoon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-06-15

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

  2. Effects of no stiffness inside unbonded tendon ducts on the behavior of prestressd concrete containment vessels

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kwak, Hyo Gyong; Jung, Rae Young; Noh, Sang Hoon

    2016-01-01

    The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading

  3. Quality control in high thickness concrete walls for shielding

    International Nuclear Information System (INIS)

    Arcama, J.A.; San Pedro, Marcelo; Cannistracci, C.A.

    1983-01-01

    After evaluating different methods of non-destructive testing, of fast execution and quick results, with low operative cost, and suitable to verify the homogeneity and the shielding power of the walls of process cells for radiochemical use, under construction in the Centro Atomico Ezeiza, it was decided to employ the ultrasound method over the whole surface to be examined, with subsequent verification of the results on isolated zones by means of radiometry and gammagraphy. This procedure proved to be satisfactory. The cell's characteristics, the tests performed and their results, which were statistically evaluated by means of a computer program, implemented to his effect, are described. (C.A.K.) [es

  4. Experimental evaluation of the interaction between strength concrete block walls under vertical loads

    Directory of Open Access Journals (Sweden)

    L. O. CASTRO

    Full Text Available Abstract This paper aims to evaluate the interaction between structural masonry walls made of high performance concrete blocks, under vertical loads. Two H-shaped flanged wall series, all full scale and using direct bond, have been analyzed experimentally. In one series, three flanged-walls were built with the central wall (web supported and, in the other one, three specimens were built without any support at the central web. The load was applied on the central wall and vertical displacements were measured by means of displacement transducers located at eighteen points in the wall-assemblages. The results showed that the estimated load values for the flanges were close to those supported by the walls without central support, where 100% of the load transfer to the flanges occur. The average transfer load rate calculated based on the deformation ratio in the upper and lower section of the flanged-walls, with the central web support, were 37.65% and 77.30%, respectively, showing that there is load transfer from the central wall (web toward the flanges, particularly in the lower part of the flanged walls. Thus, there is indication that the distribution of vertical loads may be considered for projects of buildings for service load, such as in the method of isolated walls group. For estimation of the failure load, the method that considers the walls acting independently showed better results, due to the fact that failure started at the top of the central wall, where there is no effect of load distribution from the adjacent walls.

  5. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  6. Constitutive relation of concrete containing meso-structural characteristics

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy

  7. A preliminary study on the local impact behavior of Steel-plate Concrete walls

    International Nuclear Information System (INIS)

    Kim, Kap-sun; Moon, Il-hwan; Choi, Hyung-jin; Nam, Deok-woo

    2017-01-01

    International regulations for nuclear power plants strictly prescribe the design requirements for local impact loads, such as aircraft engine impact, and internal and external missile impact. However, the local impact characteristics of Steel-plate Concrete (SC) walls are not easy to evaluate precisely because the dynamic impact behavior of SC walls which include external steel plate, internal concrete, tie-bars, and studs, is so complex. In this study, dynamic impact characteristics of SC walls subjected to local missile impact load are investigated via actual high-speed impact test and numerical simulation. Three velocity checkout tests and four SC wall tests were performed at the Energetic Materials Research and Testing Center (EMRTC) site in the USA. Initial and residual velocity of the missile, strain and acceleration of the back plate, local failure mode (penetration, bulging, splitting and perforation) and deformation size, etc. were measured to study the local behavior of the specimen using high speed cameras and various other instrumentation devices. In addition, a more advanced and applicable numerical simulation method using the finite element (FE) method is proposed and verified by the experimental results. Finally, the experimental results are compared with the local failure evaluation formula for SC walls recently proposed, and future research directions for the development of a refined design method for SC walls are reviewed.

  8. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    Science.gov (United States)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  9. Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns

    Directory of Open Access Journals (Sweden)

    A. P. Tramontin

    Full Text Available Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of "electrowelded wire mesh without steel angles" is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.

  10. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  11. General requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This standard provides the general requirements used in the design, construction, testing, and commissioning of concrete containment structures for CANDU nuclear power plants designated as class containment and is directed to the owners, designers, manufacturers, fabricators, and constructors of the concrete components and parts

  12. High-impact concrete for fill in US Department of Transportation type shipping containers

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Cash, R.J.

    1990-01-01

    This report describes the use of light-weight, high-impact concrete in U.S. Department of Transportation-type shipments. The formulations described are substantially lighter in weight (20 to 50 percent) than construction concrete, but product test specimens generally yield superior impact characteristics. The use of this specialty concrete for container fill, encapsulations, or liquid-waste solidification can be advantageous. Use of the material for container or cask construction has the advantage of lighter weight for easier handling, and the container consistently exhibits better performance on drop tests. High-impact concrete does have the disadvantage of less gamma radiation shielding per volume, but some formulation changes discussed in this report can be used to prepare better shielding concrete. Test characteristics of high-impact concrete are included. 3 refs., 6 figs., 7 tabs

  13. Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber

    OpenAIRE

    Soto, I. I.; Ramalho, M. A.; Izquierdo, O. S.

    2013-01-01

    Structural masonry using concrete blocks promotes the rationalization of construction projects, lowering the final cost of a building through the elimination of forms and the reduction of the consumption of reinforcement bars. Moreover, production of a block containing a combination of concrete and vegetable fiber sisal results in a unit with properties such as mechanical strength, stiffness, flexibility, ability to absorb energy, and post-cracking behavior that are comparable to those of a b...

  14. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-05-27

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.

  15. Evaluation of Coating Removal and Aggressive Surface Removal Surface Technologies Applied to Concrete Walls, Brick Walls, and Concrete Ceilings

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Lagos, L.E.

    1997-01-01

    The purpose of this investigation was to test and evaluate innovative and commercially available technologies for the surface decontamination of walls and ceilings. This investigation supports the DOE's objectives of reducing risks to human health and the environment through its restoration projects at FEMP and MEMP. This project was performed at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), where one innovative and four commercially available decontamination technologies were evaluated under standard, non-nuclear testing conditions. The performance data generated by this project will assist DOE site managers in the selection of the safest, most efficient, and most cost-effective decontamination technologies to accomplish their remediation objectives

  16. Study of the ruining behaviour of a structure with reinforced concrete carrying walls

    International Nuclear Information System (INIS)

    Manas, B.

    1998-06-01

    Nuclear facility buildings must be constructed with the respect of para-seismic rules. These rules are defined according to the most probable seismic risk estimated for the sites. This study concerns the ruining behaviour of a structure made of reinforced concrete walls. In a first part, a preliminary study on reinforced concrete is performed with the Castem 2000 finite elements code. This study emphasizes the non-linear phenomena that take place inside the material, such as the cracking of concrete and the plasticization of steels. In a second part, predictive calculations were performed on a U-shape structure. This structure was submitted to earthquakes of various magnitudes and the response of the structure was analyzed and interpreted. (J.S.)

  17. Water content monitoring for Flamanville 3 EPR trademark prestressed concrete containment. An application for TDR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Alexis; Clauzon, Timothee [EDF DPIH DTG, Lyon (France); Taillade, Frederic [EDF R and D, Chatou (France); Martin, Gregoire [EDF CNEN, Montrouge (France)

    2015-07-01

    Long term operation of nuclear power plant requires an appropriate monitoring of containment structures. For prestressed concrete containment vessels, a key parameter for ageing analysis is the evolution of the amount of water remaining within the concrete pores. EDF decides to launch a development program, in order to determine what sensor technologies are able to achieve such kind of monitoring on large concrete structures. One of the main parts of this program is to determine the maximum allowable uncertainty for the measurement. Another stake is the calibration process of sensors dedicated to water content measurement in concrete structures and the management of the parameters which have the largest influence on the measurement process.

  18. Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure

    Science.gov (United States)

    Zhang, Zhuangnan; Zhang, Yan

    2018-03-01

    With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.

  19. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  20. Experimental Study on the Hygrothermal Behavior of a Coated Sprayed Hemp Concrete Wall

    Directory of Open Access Journals (Sweden)

    Anthony Magueresse

    2013-01-01

    Full Text Available Hemp concrete is a sustainable lightweight concrete that became popular in the field of building construction because of its thermal and environmental properties. However; available experimental data on its hygrothermal behavior are rather scarce in the literature. This paper describes the design of a large-scale experiment developed to investigate the hygrothermal behavior of hemp concrete cast around a timber frame through a spraying process; and then coated with lime-based plaster. The equipment is composed of two climatic chambers surrounding the tested wall. The experiment consists of maintaining the indoor climate at constant values and applying incremental steps of temperature; relative humidity or vapor pressure in the outdoor chamber. Temperature and relative humidity of the room air and on various depths inside the wall are continuously registered during the experiments and evaporation phenomena are observed. The influence of the plaster on the hygrothermal behavior of hemp concrete is investigated. Moreover; a comparison of experimental temperatures with numerical results obtained from a purely conductive thermal model is proposed. Comparing the model with the measured data gave satisfactory agreement.

  1. Evaluation of Coating Removal and Aggressive Surface Removal Surface Technologies Applied to Concrete Walls, Brick Walls, and Concrete Ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L.E.; Ebadian, M.A.

    1997-11-01

    The purpose of this investigation was to test and evaluate innovative and commercially available technologies for the surface decontamination of walls and ceilings. This investigation supports the DOE's objectives of reducing risks to human health and the environment through its restoration projects at FEMP and MEMP. This project was performed at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), where one innovative and four commercially available decontamination technologies were evaluated under standard, non-nuclear testing conditions. The performance data generated by this project will assist DOE site managers in the selection of the safest, most efficient, and most cost-effective decontamination technologies to accomplish their remediation objectives.

  2. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  3. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    OpenAIRE

    Li, Weiwei; Liu, Weiqing; Wang, Shuguang; Du, Dongsheng

    2017-01-01

    The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification f...

  4. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

    International Nuclear Information System (INIS)

    Bangash, Y.

    1987-01-01

    Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

  5. The nonlinear finite element analysis program NUCAS (NUclear Containment Analysis System) for reinforced concrete containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Lee, Hong Pyo; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The maim goal of this research is to develop a nonlinear finite element analysis program NUCAS to accurately predict global and local failure modes of containment building subjected to internal pressure. In this report, we describe the techniques we developed throught this research. An adequate model to the analysis of containment building such as microscopic material model is adopted and it applied into the development Reissner-Mindlin degenerated shell element. To avoid finite element deficiencies, the substitute strains based on the assumed strain method is used in the shell formulation. Arc-length control method is also adopted to fully trace the peak load-displacement path due to crack formation. In addition, a benchmark test suite is developed to investigate the performance of NUCAS and proposed as the future benchmark tests for nonlinear analysis of reinforced concrete. Finally, the input format of NUCAS and the examples of input/output file are described. 39 refs., 65 figs., 8 tabs. (Author)

  6. Cracked reinforced concrete walls of chimneys, silos and cooling towers as result of using formworks

    Directory of Open Access Journals (Sweden)

    Maj Marek

    2018-01-01

    Full Text Available There are presented in this paper some problems connected with reinforced concrete shell objects operation in the aggressive environment and built in method of formworks. Reinforced concrete chimneys, cooling towers, silos and other shells were built for decades. Durability of cracked shells are one of the most important parameters during process of designing, construction and exploitation of shells. Some reasons of appearance of horizontal and vertical cracks as temperature, pressure of stored material, live loads e.g. dynamic character of wind, moisture, influence of construction joints, thermal insulation, chemistry active environmental etc. reduce the carrying capacity of the walls. Formworks, as is occurred recently, are the reason for technological joints with leaking connection, imperfections of flexible formworks slabs and as result can initiate cracks. Cracked surface of this constructions causes decreasing capacity and lower the state of reliability. Horizontal, vertical cracks can caused corrosion of concrete and steel bars, decreasing stiffness of contraction, increasing of deflection and carbonation of concrete cover. Local and global imperfactions of concrete shells are increasing according to greater number of cracks...

  7. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  8. Calculations of concrete containment tight loss: Studies of a reinforced concrete slab with non uniform thickness

    International Nuclear Information System (INIS)

    Jamet, P.; Berriaud, C.; Humbert, J.M.; Millard, A.; Nahas, G.

    1983-01-01

    A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data. (orig.)

  9. Calculations of concrete containment tight loss: studies of a reinforced concrete SLAB with non uniform thickness

    International Nuclear Information System (INIS)

    Jamet, P.

    1983-08-01

    A study was carried out in order to investigate the validity of a concrete model including tensile fracture and strain-softening under compressive loading. Triaxial tests were performed on micro-concrete specimens, and the post-peak behaviour of the material was characterized. The parameters required by the model were therefore obtained. The case of a circular slab loaded up to failure was then considered, in order to compare the numerical results obtained by a finite elements analysis including the concrete model, to the experimental data

  10. Mechanical Properties of Fiber Reinforced Lightweight Concrete Containing Surfactant

    Directory of Open Access Journals (Sweden)

    Yoo-Jae Kim

    2010-01-01

    Full Text Available Fiber reinforced aerated lightweight concrete (FALC was developed to reduce concrete's density and to improve its fire resistance, thermal conductivity, and energy absorption. Compression tests were performed to determine basic properties of FALC. The primary independent variables were the types and volume fraction of fibers, and the amount of air in the concrete. Polypropylene and carbon fibers were investigated at 0, 1, 2, 3, and 4% volume ratios. The lightweight aggregate used was made of expanded clay. A self-compaction agent was used to reduce the water-cement ratio and keep good workability. A surfactant was also added to introduce air into the concrete. This study provides basic information regarding the mechanical properties of FALC and compares FALC with fiber reinforced lightweight concrete. The properties investigated include the unit weight, uniaxial compressive strength, modulus of elasticity, and toughness index. Based on the properties, a stress-strain prediction model was proposed. It was demonstrated that the proposed model accurately predicts the stress-strain behavior of FALC.

  11. Durability of conventional concretes containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A Review of the Mechanical Properties of Concrete Containing Biofillers

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  13. Optimisation by mathematical modeling of physicochemical characteristics of concrete containers in radioactive waste management

    Directory of Open Access Journals (Sweden)

    Plećaš Ilija

    2013-01-01

    Full Text Available A method for obtaining an optimal concrete container composition used for storing radioactive waste from nuclear power plants is developed. It is applied to the radionuclides 60Co, 137Cs, 85Sr, and 54Mn. A set of recipes for concrete composition leading to an optimal solution is given.

  14. Strategy for 100-year life of the ACR-1000 concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.; Elgohary, M.

    2006-01-01

    The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-1000 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for 100-year plant life including 60-year operating life and additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In the design phase, in addition to strength and serviceability, durability is a major requirement during the service life and decommissioning phase of the ACR structure. Parameters affecting durability design include: a) concrete performance, b) structural application, and c) environmental conditions. Due to the complex nature of the environmental effects acting on structures during the service life of project, it is considered that true improved performance during the service life can be achieved by improving the material characteristics. Many recent innovations in advanced concrete materials technology have made it possible to produce modern concrete such as high-performance concrete with exceptional performance characteristics. In this paper, the PLiM strategy for the ACR-1000 concrete containment is presented. In addition to addressing the design methodology and material performance areas, a systematic approach for ageing management program for the concrete containment structure is presented. (author)

  15. HECLA experiments on interaction between metallic melt and hematite-containing concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sevon, Tuomo, E-mail: tuomo.sevon@vtt.f [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kinnunen, Tuomo; Virta, Jouko; Holmstroem, Stefan; Kekki, Tommi; Lindholm, Ilona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland)

    2010-10-15

    In a hypothetical severe accident in a nuclear power plant, molten materials may come into contact with concrete, causing concrete ablation. In five HECLA experiments the interaction between metallic melt and concrete was investigated by pouring molten stainless steel at almost 1800 {sup o}C into cylindrical concrete crucibles. The tests were transient, i.e. no decay heat simulation was used. The main objective was to test the behavior of the FeSi concrete, containing hematite (Fe{sub 2}O{sub 3}) and siliceous aggregates. This special concrete type is used as a sacrificial layer in the Olkiluoto 3 EPR reactor pit, and very scarce experimental data is available about its behavior at high temperatures. It is concluded that no clear differences between the ablation of FeSi concrete and ordinary siliceous concrete were observed. The ablation depths were small, 25 mm at maximum. No dramatic effects, such as cracking of large pieces of concrete due to the thermal shock, took place. An important side result of the test series was gaining knowledge of the properties of the special concrete type. Chemical analyses were conducted and mechanical properties were measured.

  16. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  17. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  18. Deflection Prediction of No-Fines Lightweight Concrete Wall Using Neural Network Caused Dynamic Loads

    Directory of Open Access Journals (Sweden)

    Ridho Bayuaji

    2018-04-01

    Full Text Available No-fines lightweight concrete wall with horizontal reinforcement refers to an alternative material for wall construction with an aim of improving the wall quality towards horizontal loads. This study is focused on artificial neural network (ANN application to predicting the deflection deformation caused by dynamic loads. The ANN method is able to capture the complex interactions among input/output variables in a system without any knowledge of interaction nature and without any explicit assumption to model form. This paper explains the existing data research, data selection and process of ANN modelling training process and validation. The results of this research show that the deformation can be predicted more accurately, simply and quickly due to the alternating horizontal loads.

  19. Analytical capability for predicting structural response of NPP concrete containments to severe loads

    International Nuclear Information System (INIS)

    Planas, J.; Guinea, G.; Trbojevic, V.M.; Marti, J.; Martinez, F.; Cortes, P.

    1989-12-01

    A survey has been conducted on the state-of-the-art of analytical techniques for predicting the structural response of concrete containment buildings under severe accident conditions. The validity of inelastic analysis is often limited by the inadequacy of the material models adopted. This is specially true in the case of materials which undergo localization phenomena in the course of the deformation process. Because of this, the Joint Research Centre at Ispra has given a high priority to the review of existing constitutive models for concrete. Such models must be able to describe concrete behaviour with and without steel reinforcement across the complete stress range, from initial elastic behaviour to and beyond the point of failure. For reinforced and prestressed concrete, segregated models (where concrete and steel are independently simulated) are preferred. A review of existing constitutive models for mass concrete has been conducted. The review focused on necessary features for describing the near-peak and post-peak stages of deformation. Special attention was dedicated to the localization of strains in tension and the post-peak softening behaviour. Existing models for representing the concrete steel bond were also reviewed. These models are still relatively simplistic and incorporate seldom a number of effects of considerable importance: sustained, dynamic and cyclic loading, environmental effects, etc. Finally, the computational procedures currently available for modelling problems involving the ultimate capacity of concrete containments have also been reviewed. This includes methodologies for modelling amongst other mass concrete, cracking procedures, bond behaviour, in existing computer codes

  20. Corrosion Measurements in Reinforced Fly Ash Concrete Containing Steel Fibres Using Strain Gauge Technique

    Directory of Open Access Journals (Sweden)

    V. M. Sounthararajan

    2013-01-01

    Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.

  1. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  2. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  3. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  4. Modelling of film condensation on the reactor containment walls

    International Nuclear Information System (INIS)

    Leduc, Christian

    1995-01-01

    A containment code used in nuclear plant safety analysis must be able to predict evolutions of steam, air and hydrogen concentrations and pressure in the containment of a pressurized water reactor in an accidental situation. Steam condensation on cold walls is an essential factor for these evolutions as it allows the release of an important heat flow, and locally reduces steam concentration. In this research thesis, the author proposes a film condensation model in presence of un-condensable gases. The film flow is supposed to be laminar. Three different approaches are used to model transfers in boundary layers: global correlations in which a hybrid Grashof number is used which expresses the mass and thermal nature of convection, a boundary layer calculation using wall rules for a forced convection regime, and a boundary layer calculation using a k-epsilon model with a low Reynolds number for a natural convection regime. Each approach requires very different mesh fineness at the vicinity of the wall. Models are implemented in the 3-D TRIO-VF thermo-hydraulic code. The obtained theoretical heat transfer coefficients are compared with experimental results [fr

  5. The study on the mechanical characteristics of concrete of nuclear reactor containment structure

    International Nuclear Information System (INIS)

    Jung, W. S.; Kwon, K. J.; Cho, M. S.; Song, Y. C.

    2000-01-01

    Reactor containment structure of nuclear power plant designed by prestressed concrete causes time-dependent prestress loss due to the mechanical characteristics of concrete. Prestress loss strongly affects to the safety factor of structure under the circumstances of designing, construction and inspection. Thus, this study is to investigate the mechanical characteristics of reactor containment concrete structure of Yonggwang No. 5 and 6. In this study, the compressive strength, modulus of elasticity, poisson's ratio and creep test followed by ASTM code are performed to investigate the mechanical characteristics of concrete made by V type cement. Additionally, since creep causes more time-dependent prestress loss than the other, the measurement value from the creep test is compared with the results from the creep prediction equations by KSCE, JSCE, Hansen, ACI and CEB-FIP model for the effective application. Hereafter, the results of this study may enable to assist the calculation effective stress considering time-dependent prestress loss of the prestressed concrete structures

  6. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    International Nuclear Information System (INIS)

    Ulm, Franz-Josef

    2000-01-01

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  7. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  8. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-11-01

    Full Text Available We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  9. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  10. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  11. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls

    International Nuclear Information System (INIS)

    Vanniamparambil, Prashanth Abraham; Carmi, Rami; Kontsos, Antonios; Bolhassani, Mohammad; Khan, Fuad; Bartoli, Ivan; Moon, Franklin L; Hamid, Ahmad

    2014-01-01

    This paper presents a data fusion approach based on digital image correlation (DIC) and acoustic emission (AE) to detect, monitor and quantify progressive damage development in reinforced concrete masonry walls (CMW) with varying types of reinforcements. CMW were tested to evaluate their structural behavior under cyclic loading. The combination of DIC with AE provided a framework for the cross-correlation of full field strain maps on the surface of CMW with volume-inspecting acoustic activity. AE allowed in situ monitoring of damage progression which was correlated with the DIC through quantification of strain concentrations and by tracking crack evolution, visually verified. The presented results further demonstrate the relationships between the onset and development of cracking with changes in energy dissipation at each loading cycle, measured principal strains and computed AE energy, providing a promising paradigm for structural health monitoring applications on full-scale concrete masonry buildings. (paper)

  12. Evaluation of the Influence of Wind-Driven Rain on Moisture in Cellular Concrete Wall Boards

    Directory of Open Access Journals (Sweden)

    Alsabry A.

    2017-08-01

    Full Text Available The non-stationary moisture level of a cellular concrete wall board in a heated utility building located in the northern part of the town of Brest (Belarus, depending on the climatic influence, was assessed in this work. The results were obtained both in a calculation experiment and a physical test. It was observed that the main reason for the high moisture levels in cellular concrete is wind-driven rain intensifying the process of free capillary moisture transfer. A comparative analysis of the results of the physical test and the calculation experiment showed that the THSS software elaborated by the authors was able to predict the actual moisture levels of the shielding structure under study accurately enough when precise data concerning the thermal and physical characteristics of the materials as well as the occurring climatic influences were submitted.

  13. Floors number influence on the instability parameter of reinforced concrete wall- or core-braced buildings

    Directory of Open Access Journals (Sweden)

    R. J. Ellwanger

    Full Text Available This work aims to investigate the floors number influence on the instability parameter limit α1 of buildings braced by reinforced concrete walls and/or cores. Initially, it is showed how the Beck and König discrete and continuous models are utilized in order to define when a second order analysis is needed. The treatment given to this subject by the Brazilian code for concrete structures design (NBR 6118 is also presented. It follows a detailed analytical study that led to the derivation of equations for the limit α1 as functions of the floors number; a series of examples is presented to check their accuracy. Results are analyzed, showing the precision degree achieved and topics for continuity of research in this field are indicated.

  14. Evaluation of the Influence of Wind-Driven Rain on Moisture in Cellular Concrete Wall Boards

    Science.gov (United States)

    Alsabry, A.; Nikitsin, V. I.; Kofanov, V. A.; Backiel-Brzozowska, B.

    2017-08-01

    The non-stationary moisture level of a cellular concrete wall board in a heated utility building located in the northern part of the town of Brest (Belarus), depending on the climatic influence, was assessed in this work. The results were obtained both in a calculation experiment and a physical test. It was observed that the main reason for the high moisture levels in cellular concrete is wind-driven rain intensifying the process of free capillary moisture transfer. A comparative analysis of the results of the physical test and the calculation experiment showed that the THSS software elaborated by the authors was able to predict the actual moisture levels of the shielding structure under study accurately enough when precise data concerning the thermal and physical characteristics of the materials as well as the occurring climatic influences were submitted.

  15. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  16. The permeability of concrete for reactor containment vessels

    International Nuclear Information System (INIS)

    Mills, R.H.

    1983-07-01

    Review of the literature pertaining to water, water vapour and gas transmission through concrete revealed conflicting views on the mechanisms involved and the influence of mix design parameters such as initial porosities and water/cement ratio. Consideration of the effects of ageing and of construction defects in field concrete were totally neglected in published work. Permeability data from three published papers were compared with permeability calculated according to Powers. The ratio of calculated to observed permeability varied from 40 x 10 -3 to 860 x 10 -3 for one group: from 0.17 x 10 3 to 8.6 x 10 3 in the second; and from 24 x 10 3 to 142 x 10 3 for the third. There were therefore wide discrepancies within each group of data and between groups. A bibliography was prepared and an exploratory experimental programme was mounted to determine the relative importance of key parameters such as cement type, porosity and water/cement ratio. Contrary to frequently cited references it was found that permeability of concrete was not significantly influenced by water/cement ratio when the starting porosity was constant. If water/cement ratio was held constant, however, the permeability was strongly influenced by starting porosity. It was also found that with constant water/cement ratio permeability increased with cement content. The value of fly ash and blast furnace slag in partial substitution for Portland cement is neglected in the literature but it is important since such substitutions alleviate alkali-silicate reactions. Permeability of concrete was significantly decreased by partial substitution of Portland cement with fly ash but there was no benefit in the use of blast furnace slag

  17. Computation of shrinkage stresses in prestressed concrete containments

    International Nuclear Information System (INIS)

    Wu, R.F.; Ouyang, H.

    1989-01-01

    According to a survey, surface cracking on PCRVs and PCCs under the investigations is confined to drying shrinkage and thermal strain effects and no instances of structurally significant cracking was been found. In this paper, the authors use FEM to compute humidity distribution in drying concrete and shrinkage stresses by internal restraint. Since PCC is built segment by segment in several years, a computational model taking into account construction sequence is presented and shrinkage stresses by external restraints are calculated with the model

  18. A method for three-dimensional structural analysis of reinforced concrete containment

    International Nuclear Information System (INIS)

    Kulak, R.F.; Fiala, C.

    1989-01-01

    A finite element method designed to assist reactor safety analysts in the three-dimensional numerical simulation of reinforced concrete containments to normal and off-normal mechanical loadings is presented. The development of a lined reinforced concrete plate element is described in detail, and the implementation of an empirical transverse shear failure criteria is discussed. The method is applied to the analysis of a 1/6th scale reinforced concrete containment model subjected to static internal pressurization. 11 refs., 14 figs., 1 tab

  19. The durability of concrete containing recycled tyres as a partial replacement of fine aggregate

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Othman, Nurulain; Shamsuddin, Shamrul-mar; Ibrahim, M. H. W.; Zuki, S. S. Mohd

    2017-11-01

    Nowadays, uncontrolled disposal of waste materials such as tyres can affect the environment. Therefore, careful management of waste disposal must be done in order to conserve the environment. Waste tyres can be use as a replacement for both fine aggregate and coarse aggregate in the production of concrete. This research was conducted to assess the durability of concrete containing recycled tyres which have been crushed into fine fragments to replace fine aggregate in the concrete mix. This study presents an overview of the use of waste rubber as a partial replacement of natural fine aggregate in a concrete mix. 36 concrete cubes measuring 100mm × 100mm × 100mm and 12 concrete cubes measuring 150mm × 150mm × 150mm were prepared and added with different percentages of rubber from recycled tyres (0%, 3%, 5% and 7%) as fine aggregate replacement. The results obtained show that the replacement of fine aggregate with 7% of rubber recorded a compressive strength of 43.7MPa while the addition of 3% of rubber in the concrete sample recorded a high compressive strength of 50.8MPa. This shows that there is a decrease in the strength and workability of concrete as the amount of rubber used a replacement for fine aggregate in concrete increases. On the other hand, the water absorption test indicated that concrete which contains rubber has better water absorption ability. In this study, 3% of rubber was found to be the optimal percentage as a partial replacement for fine aggregate in the production of concrete.

  20. Serviceability design load factors and reliability assessments for reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Han Bong Koo

    1998-01-01

    A reinforced concrete nuclear power plant containment structure is subjected to various random static and stochastic loads during its lifetime. Since these loads involve inherent randomness and other uncertainties, an appropriate probabilistic model for each load must be established in order to perform reliability analysis. The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops probability-based load factors for the limit state design of reinforced concrete containment structures. The purpose of constructing reinforced concrete containment structure is to protect against radioactive release, and so the use of a serviceability limit state against crack failure that can cause the emission of radioactive materials is suggested as a critical limit state for reinforced concrete containment structures. Load factors for the design of reinforced concrete containment structures are proposed and carried out the reliability assessments. (orig.)

  1. An overview of an experimental program for testing large reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.

    1989-01-01

    The Seismic Category I Structures Program is being carried out at the Los Alamos National Laboratory under sponsorship of the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. In the class of structure being investigated, the primary lateral load-resisting structural element is the reinforced concrete shear wall. Previous results from microconcrete models indicated that these structures responded to seismic excitations with initial frequencies that were reduced by factors of 2 or more over those calculated based on an uncracked cross-section strength-of-materials approach. Furthermore, though the structures themselves were shown to have sufficient reserve margins, the equipment and piping are designed to response spectra that are based on uncracked cross-sectional member properties, and these spectra may not be inappropriate for actual building responses. The current phase of the program is aimed at verification of these conclusions using conventional concrete structures to demonstrate that previous microconcrete results can be scaled to prototype structures. A new configuration of a shear wall structure was designed and tested to investigate the analytical-experimental differences observed during the previous model testing. Shear wall height-to-length aspect ratios were to vary from 1 to 0.25. Percentage steel ratios were to vary from 0.25% to 0.6% by area, in both horizontal and vertical directions. The test structures are shown in Fig. 1. TRG-1 and -2 were constructed with microconcrete. TRG-3, -4, -5, and -6 were constructed with conventional (19-mm aggregate) concrete. 11 refs., 4 figs

  2. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  3. Improved design of special boundary elements for T-shaped reinforced concrete walls

    Science.gov (United States)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  4. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  5. Shake-table testing of a self-centering precast reinforced concrete frame with shear walls

    Science.gov (United States)

    Lu, Xilin; Yang, Boya; Zhao, Bin

    2018-04-01

    The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.

  6. Simulation of LOCA and ageing effect with containment liner mockup for analysis of liner-concrete interaction

    International Nuclear Information System (INIS)

    Wienand, B.; Fila, A.; Hermann, N.; Mueller, M.

    2015-01-01

    The investigation of the pre-stressed concrete wall behavior including the liner during LOCA conditions is important for the assessment of the structural integrity of the structure and the leak tightness of the liner. In the frame of the NUGENIA ACCEPPT project WP1 G4 'Structural interaction of liner with the concrete', a load test on a reactor containment liner mockup was carried out. The pre-stressed mockup represents a cylindrical part of the liner, embedded in the concrete wall, but without the wall curvature which is not test relevant. It correlates in material and geometrical properties to the EPR containment. The purpose of the test was to check the liners structural behavior and its integrity for Loss of Coolant Accident (LOCA) load combination considering pre-stressing forces and ageing effects due to creep and shrinkage including liner buckling. The test was carried out at the Karlsruhe Institute of Technology (KIT) in September 2013. This article presents the measurement technology, the results and the development of a calculation method for the embedded liner structure. It appears that the liner deformation results are exemplarily shown at the locations of the imperfections, where the liner buckling is anticipated. The measured liner surface strains ranged between +2 and -10 per thousand. The compressive strains are higher than the tensile strains due to the compressive membrane strains caused by pre-stressing and heating. Although the liner got plastic deformations, the liner strains are still far below the elongation at rupture, which indicates that the liner integrity is ensured. We can conclude that the liner mockup test proceeded as planned. The evaluation results show that the purpose of the liner mockup to simulate LOCA + ageing conditions and liner buckling has fully been achieved

  7. In-Plane Strengthening Effect of Prefabricated Concrete Walls on Masonry Structures: Shaking Table Test

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2017-01-01

    Full Text Available The improvement effect of a new strengthening strategy on dynamic action of masonry structure, by installing prefabricated concrete walls on the outer facades, is validated by shaking table test presented in this paper. We carried out dynamic tests of two geometrically identical five-story reduced scaled models, including an unstrengthened and a strengthened masonry model. The experimental analysis encompasses seismic performances such as cracking patterns, failure mechanisms, amplification factors of acceleration, and displacements. The results show that the strengthened masonry structure shows much more excellent seismic capacity when compared with the unstrengthened one.

  8. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  9. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  10. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  11. Design of reinforced concrete containment structures for thermal gradients effects

    International Nuclear Information System (INIS)

    Bhat, P.D.; Vecchio, F.

    1983-01-01

    The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)

  12. An international data base of nuclear concrete containment ageing

    International Nuclear Information System (INIS)

    Seni, C.; Ianko, L.

    1994-01-01

    The ageing of nuclear structures is of special interest because of the extended service life expected of these structures, and the potential impact of their deterioration on safety and reliability. Although there are databases about concrete, they address properties in general, not performance. In 1992, the IAEA, in collaboration with AECL, set out to create a new database that would fill the gap. Functional ageing, i.e. deterioration of leak-tightness, was to be included, not just structural ageing, i.e. deterioration of load-bearing capacity. This paper outlines the project of creating the database

  13. Flexural Behaviour Of Reinforced Concrete Beams Containing Expanded Glass As Lightweight Aggregates

    Directory of Open Access Journals (Sweden)

    Khatib Jamal

    2015-12-01

    Full Text Available The flexural properties of reinforced concrete beams containing expanded glass as a partial fine aggregate (sand replacement are investigated. Four concrete mixes were employed to conduct this study. The fine aggregate was replaced with 0%, 25%, 50% and 100% (by volume expanded glass. The results suggest that the incorporation of 50% expanded glass increased the workability of the concrete. The compressive strength was decreasing linearly with the increasing amount of expanded glass. The ductility of the concrete beam significantly improved with the incorporation of the expanded glass. However, the load-carrying capacity of the beam and load at which the first crack occurs was reduced. It was concluded that the inclusion of expanded glass in structural concrete applications is feasible.

  14. A realistic structural analysis of the integrity of the liner of reinforced and prestressed concrete containments

    International Nuclear Information System (INIS)

    Buchhardt, F.; Brandl, P.

    1979-01-01

    The BWR Gundremmingen II is the first German nuclear power plant with a concrete containment having a thin steel plate liner directly attached to the interior concrete surface to provide an air-tight seal. Due to this monolithic way of anchorage a bonded system of concrete and metal liner membrane is obtained so that the same deformations of the loading or strain conditions are induced to the very stiff concrete hull as well as to the liner. Because of the complex structural behaviour of the bonded system the evaluation is carried out by the finite element method. The overall system is decoupled in several steps. Due to its considerable stiffness the concrete structure can be regarded as the liner supporting basis. The liner system itself might be subdivided into perfect and imperfect sections discretized by plain or curved elements which are supported by point-wise spring elements representing the stud anchors. (orig.)

  15. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  16. Performance of Screen Grid Insulating Concrete Form Walls under Combined In-Plane Vertical and Lateral Loads

    KAUST Repository

    Abdel Mooty, Mohamed

    2010-12-01

    Insulating Concrete Forms (ICF) walls generally comprise two layers of Expanded Polystyrene (EPS), steel reinforcement is placed in the center between the two layers and concrete is poured to fill the gap between those two layers. ICF\\'s have many advantages over traditional methods of wall construction such as reduced construction time, noise reduction, strength enhancement, energy efficiency, and compatibility with any inside or outside surface finish. The focus of this study is the Screen Grid ICF wall system consisting of a number of beams and columns forming a concrete mesh. The performance of ICF wall systems under lateral loads simulating seismic effect is experimentally evaluated in this paper. This work addresses the effect of the different design parameters on the wall behavior under seismic simulated loads. This includes different steel reinforcement ratio, various reinforcement distribution, wall aspect ratios, different openings sizes for windows and doors, as well as different spacing of the grid elements of the screen grid wall. Ten full scale wall specimens were tested where the effects of the various parameters on wall behavior in terms of lateral load capacity, lateral displacement, and modes of failure are presented. The test results are stored to be used for further analysis and calibration of numerical models developed for this study. © (2011) Trans Tech Publications.

  17. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    Science.gov (United States)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  18. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  19. Overview of concrete containment design practice in the U.S.A

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1976-01-01

    This paper presents a historical summary of the engineering practices and their evolution applied to the design of concrete containment structures in the U.S.A. during the period 1965 to 1974. It reviews the broad spectrum of concrete containment designs developed for the three major Nuclear Steam Supply Systems, Pressurized Water Reactor, Boiling Water Reactor and High Temperature Gas Reactor employed or planned in the U.S.A. during this period. The development of deformed rebar and one way prestress as well as fully prestressed reinforced concrete containment is discussed. Particular attention is paid to base mat-containment shell joint design details as well as the design of reinforcement around large penetrations and those penetrations subject to large pipe thrust loads. In addition to the historical summary, current trends in containment design are identified and projections of future developments are presented. Finally, potential innovations such as plastic liners are discussed. (author)

  20. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  1. Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available Nowadays, the usage amount of the concrete is increasing drastically. The construction industry is a huge consumer of natural consumer. It is also producing the huge wastage products. The usage of concrete has been charged to be not environmentally friendly due to depletion of reserve natural resources, high energy consumption and disposal issues. The conservation of natural resources and reduction of disposal site by reuse and recycling waste material was interest possibilites. The aim of this study is to determine the physical and mechanical properties of sand cement brick containing recycled concrete aggregate and to determine the optimum mix ratio containing recycled concrete aggregate. An experiment done by comparing the result of control specimen using 100% natural sand with recycled concrete aggregate replacement specimen by weight for 55%, 65%, and 75%. The sample was tested under density, compressive strength, flexural strength and water absorption to study the effect of using recycled concrete aggregate on the physical and mechanical properties of bricks. The result shows that the replacement of natural sand by recycled concrete aggregate at the level of 55% provide the highest compressive and flexural strength compared to other percentage and control specimen. However, if the replacement higher than 55%, the strength of brick was decreased for compressive and flexural strength, respectively. The relationship of compressive-flexural strength is determined from statistical analysis and the predicted result can be obtained by using equation ff,RCA = 0.5375 (fc0.3272.

  2. The Application of Buckling Reinforced Bracing and Shear Wall in Retrofitting of Existing Concrete Building

    Directory of Open Access Journals (Sweden)

    Mahdi Izadi

    2015-06-01

    Full Text Available Vulnerable buildings and their rehabilitation are important problems for earthquake regions. In recent decades the goal of building rehabilitation and strengthening has gained different rehabilitation systems. However, most of these strengthening techniques disturb the occupants, who must vacate the building during renovation. Several retrofitting techniques such as addition masonry infill wall, application of buckling restrained braces and local modification of components has been studied in order to improve the overall seismic performance of such buildings. In response to many of the practical issues and economic considerations, engineers use often convergent unbuckling steel bracing frames as the lateral load resisting system during an earthquake.This kind of bracings increases the hardness and strength of concrete structures.The aim of the present study is the evaluation and comparison of seismic performance and retrofitting of an existing 7-storeys concrete structure with buckling restrained bracings and shear walls by nonlinear static procedure (NSP and accordance with cod-361. The results show that the buckling restrained bracing, decreased drift to acceptable levels and Structure behaves on the life safety of performance level.

  3. Substructure hybrid testing of reinforced concrete shear wall structure using a domain overlapping technique

    Science.gov (United States)

    Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen

    2017-10-01

    An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.

  4. Three dimensional non-linear cracking analysis of prestressed concrete containment vessel

    International Nuclear Information System (INIS)

    Al-Obaid, Y.F.

    2001-01-01

    The paper gives full development of three-dimensional cracking matrices. These matrices are simulated in three-dimensional non-linear finite element analysis adopted for concrete containment vessels. The analysis includes a combination of conventional steel, the steel line r and prestressing tendons and the anisotropic stress-relations for concrete and concrete aggregate interlocking. The analysis is then extended and is linked to cracking analysis within the global finite element program OBAID. The analytical results compare well with those available from a model test. (author)

  5. Behavior of Equipment Support Beam Joint Directly Connected to A Steel-plate Concrete(SC) Wall

    International Nuclear Information System (INIS)

    Kim, K. S.; Kwon, K. J.

    2008-01-01

    To decrease the time for building nuclear power plants, a modular construction method, 'Steel-plate Concrete(SC)', has been investigated for over a decade. To construct a SC wall, a pair of steel plates are placed in parallel similar to a form-work in conventional reinforced concrete (RC) structures, and concrete is filled between the steel plates. Instead of removing the steel plates after the concrete has cured, the steel plates serve as components of the structural member. The exposed steel plate of SC structures serves as the base plate for the equipment support, and the headed studs welded to the steel plates are used as anchor bolts. Then, a support beam can be directly welded to the surface of the steel plate in any preferred position. In this study, we discuss the behavior and evaluation method of the equipment support joint directly connected to exposed steel plate of SC wall

  6. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  7. Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room.

    Science.gov (United States)

    Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi

    2015-01-01

    Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.

  8. Study on effective prestressing effects on concrete containment under the design-basis pressure condition

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Wang Lu; Mao Huan; Yang Yu

    2013-01-01

    Prestressing technology is widely used in nuclear power plant containment building, and the durability of containment structure is affected directly by the distribution and loss of prestressing value under design-basis pressure. Containment structure and the distribution of prestressing system are introduced briefly. Furthermore, the calculating process of horizontal prestressing bunch loss near the equipment hatch hole is put forward in details, and the containment structure prestressing loss when 5-year pressure test is obtained. Based above analysis, the finite element model of the prestressed concrete containment structure is built by using ANSYS code, the prestressing effect on concrete containment is analysed. The results show that most of the design pressure is bore by the prestressing system under the design-basis pressure, so the containment structure is safe. These conclusions are consistent with prestressing containment system design concepts, which can provide reference to the engineering staff. (authors)

  9. Prediction of failure modes for concrete nuclear-containment buildings

    International Nuclear Information System (INIS)

    Butler, T.A.

    1982-01-01

    The failure modes and associated failure pressures for two common generic types of PWR containments are predicted. One building type is a lightly reinforced, posttensioned structure represented by the Zion nuclear reactor containment. The other is the normally reinforced Indian Point containment. Two-dimensional models of the buildings developed using the finite element method are used to predict the failure modes and failure pressures. Predicted failure modes for both containments involve loss of structural integrity at the intersection of the cylindrical sidewall with the base slab

  10. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs.

  11. Examination and testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This Standard provides the examination and testing requirements that will apply to the work of any organization participating in the construction, installation, and fabrication of parts or components of concrete containment structures, or both, that are defined as class containment. 2 tabs

  12. Capacity assessment of concrete containment vessels subjected to aircraft impact

    International Nuclear Information System (INIS)

    Andonov, Anton; Kostov, Marin; Iliev, Alexander

    2015-01-01

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  13. Capacity assessment of concrete containment vessels subjected to aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Andonov, Anton, E-mail: anton.andonov@mottmac.com; Kostov, Marin; Iliev, Alexander

    2015-12-15

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  14. Leaching studies of heavy concrete material for nuclear fuel waste immobilization containers

    International Nuclear Information System (INIS)

    Onofrei, M.; Raine, D.; Brown, L.; Hooton, R.D.

    1989-08-01

    The leaching behaviour of a high-density concrete was studied as part of a program to evaluate its potential use as a container material for nuclear fuel waste under conditions of deep geologic disposal. Samples of concrete material were leached in deionized distilled water, Standard Canadian Shield Saline Solution (SCSSS), SCSSS plus 20% Na-bentonite, and SCSSS plus granite and 20% Na-bentonite under static conditions at 100 degrees celsius for periods up to 365 days. The results of these leaching experiments suggest that the stability of concrete depends on the possible internal structural changes due to hydration reactions of unhydrated components, leading to the formation of C-S-H gel plus portlandite (Ca(OH) 2 ). The factors controlling the concrete leaching process were the composition of the leachant and the concentration of elements in solution capable of forming precipitates on the concrete surface, e.g., silicon, Mg 2+ and Ca 2+ . The main effect observed during leaching was an increase in groundwater pH (from 7 to 9). However, the addition of Na-bentonite suppressed the normal tendency of the pH of the groundwater in contact with concrete to rise rapidly. It was shown that the solution concentration of elements released from the concrete, particularly potassium, increased in the presence of Na-bentonite

  15. Corrosion on reinforced concrete structures. An application for the intermediate level radioactive waste container

    International Nuclear Information System (INIS)

    Arva, Alejandro; Alvarez, Marta G.; Duffo, Gustavo S.

    2003-01-01

    The behavior of steel reinforcement bars (rebars) for a high performance reinforced concrete made of sulfate resistant portland cement was evaluated from the rebars corrosion point of view. The results from the present work will be used to evaluate the materials properties to be used in the construction of the intermediate level radioactive waste disposal containers. The study is carried out evaluating the incidence of chloride and sulfate ions, as well as, concrete carbonation in the rebar corrosion process. The electrochemical parameters that characterize the corrosion process (corrosion potential [E corr ], polarisation resistance [Rp] and concrete electrical resistivity [ρ]) were monitored on specially designed reinforced concrete specimens. The results up to date (about 1000 days of exposure) reveal that the concrete under study provides to the steel reinforcement bars of a passive state against corrosion under the test conditions. An increasing tendency as a function of time of ρ is observed that corroborates the continuous curing process of concrete. The chloride and carbonation diffusion coefficients were also determined, and their values are comparable with those of high quality concrete. (author)

  16. Microstructure of ultra high performance concrete containing lithium slag.

    Science.gov (United States)

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Analysis of radioactivity increase of rad waste filled in fibre-reinforced concrete container regarding external exposure of workers

    International Nuclear Information System (INIS)

    Baratova, D.; Hrncir, T.; Necas, V.

    2012-01-01

    The paper deals with the assessment of the external radiation exposure of workers performing the individual tasks associated with disposal of the fibre-reinforced concrete containers in the National Radioactive Waste Repository in Mochovce. Models for fibre-reinforced concrete containers with maximum activity allowable for transport and for fibre-reinforced concrete containers contained radionuclides at the common level of activity concentration were created in order to analyze the option of fibre-reinforced concrete containers radioactivity increase. Calculations of individual effective doses have been carried out for three workers who work in the control area of the waste disposal facility dosimetrist, assistant and crane worker. (Authors)

  18. Observations on analysis, testing and failure of prestressed concrete containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1984-01-01

    The paper reviews the mechanics which indicate that a bursting failure with large energy release is the failure mechanism to be expected from ductile lined containment structures pressurized to failure. It reviews a study which shows that, because of leakage, this is not the case for unlined prestressed containments. It argues that current practice, since it does not specifically address the bursting failure problem for lined prestressed containments, is inadequate to ensure that this type of failure could not occur. It concludes that, in view of the inadequacy of the current state-of-the-art to predict leakage from lined structures, the logical remedy is to eliminate all possibility of bursting failure by making provision for venting of containments. (orig.)

  19. Ultimate Pressure Capacity of Prestressed Concrete Containment Vessels with Steel Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The ultimate pressure capacity (UPC) of the prestressed concrete containment vessel (PCCV) is very important since the PCCV are final protection to prevent the massive leakage of a radioactive contaminant caused by the severe accident of nuclear power plants (NPPs). The tensile behavior of a concrete is an important factor which influence to the UPC of PCCVs. Hence, nowadays, it is interested that the application of the steel fiber to the PCCVs since that the concrete with steel fiber shows an improved performance in the tensile behavior compared to reinforced concrete (RC). In this study, we performed the UPC analysis of PCCVs with steel fibers corresponding to the different volume ratio of fibers to verify the effectiveness of steel fibers on PCCVs

  20. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  1. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  2. Transmission loss of double wall panels containing Helmholtz resonators

    Science.gov (United States)

    Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.

    Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.

  3. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.

    Science.gov (United States)

    Mastella, Miguel Angelo; Gislon, Edivelton Soratto; Pelisser, Fernando; Ricken, Cláudio; da Silva, Luciano; Angioletto, Elídio; Montedo, Oscar Rubem Klegues

    2014-08-01

    The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  5. The Aesthetical quality of SSA-containing mortar and concrete

    DEFF Research Database (Denmark)

    Kappel, Annemette; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2014-01-01

    that gives a characteristic red colour. The process of grinding SSA has shown to improve the compressive strength of SSA- containing mortar (Donatello et al. 2010). Thus, in this study SSA was grinded in 6 different intervals ranging from 0 – 10 min, and then added to the mortar mix replacing 20% of cement....... The experiment revealed that the colour of the SSA-containing mortar intensified as the time interval of the grinding process increased. Each of the 6 steps within the time interval provided an additional colour tone and generated a colour scale consisting of mortar samples ranging from greyish to a more...

  6. Advances in the analysis and design of concrete structures, metal containments and liner plate for extreme loads

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Eibl, J.; Curbach, M.; Johnson, T.E.; Daye, M.A.; Riera, J.D.; Nemet, J.; Iyengar, K.T.S.

    1992-01-01

    The material presented in this paper summarizes the progress that has been made in the analysis, design, and testing of concrete structures. The material is summarized in the following documents: Part I: Containment Design Criteria and Loading Combinations; Part II: Reinforced and Prestressed Concrete Behavior; Part III: Concrete Containment Analysis, Design and Related Testing; Part IV: Impact and Impulse Loading and Response Prediction; Part V: Metal Containments and Liner Plate Systems; Part VI: Prestressed Reactor Vessel Design, Testing and Analysis. (orig.)

  7. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    International Nuclear Information System (INIS)

    Rouelle, P.; Roy, F.

    1998-01-01

    The Electricite de France's N4 CHOOZ B nuclear power plant, two units of the world's largest PWR model (1450 Mwe each), has earned the Electric Power International's 1997 Powerplant Award. This lead NPP for EDF's N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building's inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter

  8. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    Science.gov (United States)

    Helou, S. H.; Touqan, A. R.

    2008-07-01

    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended.

  9. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    International Nuclear Information System (INIS)

    Helou, S. H.; Touqan, A. R.

    2008-01-01

    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended

  10. Structural performance of new thin-walled concrete sandwich panel system reinforced with bfrp shear connectors

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    This paper presents a new thin-walled concrete sandwich panel system reinforced with basalt fiber-reinforced plastic (BFRP) with optimum structural performances and a high thermal resistance developed by Connovate and Technical University of Denmark. The shear connecting system made of a BFRP grid...... is described and provides information on the structural design with its advantages. Experimental and numerical investigations of the BFRP connecting systems were performed. The experimental program included testing of small scale specimens by applying shear (push-off) loading and semi-full scale specimens...... on finite element modelling showed that the developed panel system meets the objectives of the research and is expected to have promising future....

  11. Calculation on cosmic-ray muon exposure rate in non-walled concrete buildings

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Abe, Siro

    1984-01-01

    Computer simulations on the exposure indoors from cosmic ray muons were practiced in the framework of non-scattering and non-cascade assumptions. The model buildings were two-dimensional, rectangular, and were made of a normal concrete. A stratified structure was assumed in each building, where no mezzanine was considered. Walls were not taken into account yet. The distributions of the exposure rates in 26-story buildings were illustrated in contour maps for various sets of parameters. All of them gave basically archlike patterns. Analyses of the results showed that the exposure rate is affected most largely by the floor board thickness. The ceiling height would be an insignificant factor for short buildings. The min/max ratio of the muon exposure rate in a moderate size building was estimated to be more than 0.7. (author)

  12. Optimization process for thin-walled high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    with the specifications of the design constrains and variables. The tool integrates the processes of HPCSP design, quantity take-off and cost estimation into a single system that would provide different costs for different HPCSP designs. The proposed multi-objective optimisation scheme results into derivation of basic......A Nearly zero energy buildings are to become a requirement as part of the European energy policy. There are many ways of designing nearly zero energy buildings, but there is a lack of knowledge on optimization processes in the sense of structurally and thermally efficient design with an optimal...... economical solution. The present paper aims to provide multi-objective optimisation procedure addressed to structural precast thin-walled High Performance Concrete Sandwich Panels (HPCSP). The research aim is concerned with developing a tool that considers the cost of HPCSP materials along...

  13. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    International Nuclear Information System (INIS)

    Weatherby, J.R.

    1987-09-01

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs

  14. Strength and deformational characteristics of three-way reinforced concrete containment models subjected to lateral forces

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Yamada, K.; Takahashi, T.

    1981-01-01

    With a view to investigating the earthquake resistance characteristics of reinforced concrete containments two cylindrical models with three-way system of bars were made and loaded laterally up to failure combined with or without internal pressures, simulating the conditions in which containments were subjected to earthquake forces at a simultaneous LOCA or at normal operation. The main conclusions obtained withing the limit of the experiments are as follows. (1) Stresses in reinforcements in three-way reinforced concrete plate elements can reasonably be estimated by the equations proposed by Baumann. It is, however, necessary to take into consideration the contributions of concrete between cracks to the deformation in order to accurately estimate the average strains in the plate elements, applying such a formula as CEB as reformed by the authors. (2) The strength capacity of three-way reinforced concrete containments against lateral forces combined with internal pressure is somewhat inferior to that of orthogonally reinforced one if compared on the condition that the volumetric reinforcement ratios are the same for the two cases of reinforcement arrangements. However, three-way reinforcement improves initial shear rigidity as well as ultimate horizontal deformability for lateral forces. (3) The ability for three-way reinforced concrete containment to absorb strain energy in the range of large deformations is superior to that of orthogonally reinforced one. The equivalent viscous damping coefficient for the former is markedly larger than that for the latter, especially at the increased deformational stages. These experimental evidences suggent that three-way system of reinforcement may constitute one of the prospective measures to improve the earthquake resistance of reinforced concrete containments. (orig./HP)

  15. Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe

    Science.gov (United States)

    Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.

    2018-04-01

    Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.

  16. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    Energy Technology Data Exchange (ETDEWEB)

    Ile, Nicolas; Frau, Alberto, E-mail: alberto.frau@cea.fr

    2017-04-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  17. Use of response envelopes for seismic margin assessment of reinforced concrete walls and slabs

    International Nuclear Information System (INIS)

    Ile, Nicolas; Frau, Alberto

    2017-01-01

    Highlights: • Proposal of a method for application of the elliptical envelope to RC shell elements. • Proposal of new algorithms for the seismic margin evaluation for RC shell elements. • Verification of a RC wall 3D structure, using the proposed assessment approach. - Abstract: Seismic safety evaluations of existing nuclear facilities are usually based on the assumption of structural linearity. For the design basis earthquake (DBE), it is reasonable to apply a conventional evaluation of the seismic safety of building structures and carry out a linear elastic analysis to assess the load effects on structural elements. Estimating the seismic capacity of a structural element requires an estimation of the critical combination of responses acting in this structural element and compare this combination with the capacity of the element. By exploiting the response-spectrum-based procedure for predicting the response envelopes in linear structures formulated by Menun and Der Kiureghian (2000a), algorithms are developed for the seismic margin assessment of reinforced concrete shell finite elements. These algorithms facilitate the comparison of the response-spectrum-based envelopes to prescribed capacity surfaces for the purpose of assessing the safety margin of this kind of structures. The practical application of elliptical response envelopes in case of shell finite elements is based on the use of layer models such as those developed by Marti (1990), which transfer the generalized stress field to three layers under the assumption that the two outer layers carry membrane forces and the internal layer carries only the out-of-plane shears. The utility of the assessment approach is discussed with reference to a case study of a 3D structure made of reinforced concrete walls.

  18. Pre-operational proof and leakage rate testing requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1994-02-01

    This Standard provides the requirements for pre-operational proof tests and leakage rate tests of concrete containment structures of a containment system designed as Class Containment components. 1 fig

  19. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    International Nuclear Information System (INIS)

    Ebrahimia, Mahsa; Suha, Kune Y.; Eghbalic, Rahman; Jahan, Farzaneh Asadi malek

    2012-01-01

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran

  20. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  1. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  2. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  3. Utilization of crushed radioactive concrete for mortar to fill waste container void space

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Ohnishi, Kazuhiko; Oguri, Daiichiro; Ueki, Hiroyuki

    2004-01-01

    Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in a shallow burial disposal facility as low level radioactive waste must be solidified by cement or other materials with adequate strength and must provide no harmful opening. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete for fine aggregate for mortars to fill void space in waste containers. Tests were performed with pre-placed concrete waste and with filling mortar using recycled fine aggregate produced from concrete. It was estimated that the improved method substantially increases the waste fill ratio in waste containers, thereby decreasing the total volume of disposal waste. (author)

  4. Documentation for Calculations of Standard Fire Resistance of Slabs and Walls of Concrete with Expanded Clay Aggregate

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection with the calcula......A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection...... with the calculation methods used for other load cases. In addition the methods are shown to be valid for heavy concrete constructions by cooperation with tests for beams and columns, and a few slabs and walls. The two test series phase 1 and 2 of this report can therefore be seen as a necessary supplement to show...... that the methods are applicable for slabs and walls of light weight aggregate concrete. It is shown that the temperatures for standard fire exposed cross sections can be calculated, that the ultimate moment capacity can be calculated for slabs, and that the anchorage capacity and the shear tension capacity can...

  5. Energy conservation and recycling of wall and concrete may give large environmental profits in the construction industry. Environment taken seriously

    International Nuclear Information System (INIS)

    Nestvold, Veslemoey

    2000-01-01

    The article reviews some results from the 5 year project ''Oekobygg'', started in 1998, which studies energy conservation and recycling of wall and concrete in the construction industry. Reduction of the waste amounts, industrial recycling and ''smart housing'' are discussed. Recycling will result in the largest environmental benefits

  6. State of the art and further development of reinforced concrete wall cells for nuclear power plant construction

    International Nuclear Information System (INIS)

    Uhlemann, E.; Wartenberg, J.

    1985-01-01

    Reinforced concrete wall cells have been developed for nuclear power plant construction by the USSR and GDR. In this article, a new type of these cells, which will be used for constructing auxiliary equipment of the Stendal nuclear power plant, is described

  7. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    Science.gov (United States)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  8. Assessment of aggregates- cement paste border in concretes containing silica fume and fly ash

    Directory of Open Access Journals (Sweden)

    Ali Sademomtazi

    2017-12-01

    Full Text Available The bond between aggregate and cement paste, called the interfacial transition zone (ITZ is an important parameter that effect on the mechanical properties and durability of concrete. Transition zone microstructure and porosity (pores of cement paste or concrete are affected by the type and properties of materials used which evaluated in this research. On the other hand, the use of efficient, low-cost and reliable method is particularly important for evaluating of concrete performance against the chloride ion penetration and its relationships with transition zone as a suitable index to assess the durability. So far, various methods to approach the electrical Indices are presented. In this research, the effect of pozzolanic materials fly ash (10%, 20% and 30% and silica fume (5% and 10% as substitute of cement by weight in binary and ternary mixtures on the fresh and hardened concrete properties were investigated. To determine mechanical properties, the compressive strength, splitting tensile strength and modulus of elasticity tests were performed. Also, water penetration depth, porosity, water sorptivity, specific electrical resistivity, rapid chloride penetration test (RCPT and rapid chloride migration test (RCMT tests were applied to evaluate concrete durability. To examine the border of aggregate and cement paste morphology of concrete specimens, scanning electron microscope images (SEM was used. The fresh concrete results showed that the presence of silica fume in binary and ternary mixtures reduced workability and air content but fly ash increased them. Adding silica fume to mixtures of containing flay ash while increasing mechanical strength reduced the porosity and pores to 18%. The presence of pozzolanic materials in addition to increasing bond quality and uniformity of aggregate-cement matrix border a considerably positive effect on the transport properties of concrete.

  9. In situ stabilization wall for containment and hot spot retrieval

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1996-01-01

    This paper presents the results of a full scale field demonstration of a in situ stabilization technology applicable to buried transuranic waste. The technology involves creating a jet grouted wall around selected regions or hot spots within a buried waste site. The resulting wall provides a barrier against further horizontal migration of the contaminants and allows vertical digging of material inside the wall, thus minimizing waste during a hot spot removal action. The demonstration involved creating a open-quotes Uclose quotes shaped wall in the interior of a full sized, simulated waste pit. The wall simulated the main features of a four sided wall. The demonstration also involved a destructive examination and a stability test for a hot spot retrieval scenario

  10. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  11. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    Science.gov (United States)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  12. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the Sizewell-B prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with ''bonded'' and ''unbonded'' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plan stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. 5 refs., 7 figs

  13. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the 'Sizewell-B' prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with 'bonded' and 'unbonded' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plane stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. (author)

  14. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    International Nuclear Information System (INIS)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak; Park, Young Soo

    2010-01-01

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  15. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Park, Young Soo [Korea Hydro and Nuclear Power Co., Busan (Korea, Republic of)

    2010-10-15

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  16. Research status and needs for shear tests on large-scale reinforced concrete containment elements

    International Nuclear Information System (INIS)

    Oesterle, R.G.; Russell, H.G.

    1982-01-01

    Reinforced concrete containments at nuclear power plants are designed to resist forces caused by internal pressure, gravity, and severe earthquakes. The size, shape, and possible stress states in containments produce unique problems for design and construction. A lack of experimental data on the capacity of reinforced concrete to transfer shear stresses while subjected to biaxial tension has led to cumbersome if not impractical design criteria. Research programs recently conducted at the Construction Technology Laboratories and at Cornell University indicate that design criteria for tangential, peripheral, and radial shear are conservative. This paper discusses results from recent research and presents tentative changes for shear design provisions of the current United States code for containment structures. Areas where information is still lacking to fully verify new design provisions are discussed. Needs for further experimental research on large-scale specimens to develop economical, practical, and reliable design criteria for resisting shear forces in containment are identified. (orig.)

  17. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    von Riesemann, W.A.; Parks, M.B.

    1993-01-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions)

  18. COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL. MILESTONE No.145 ''CONTAINING PLASMA INSTABILITIES WITH METAL WALLS''

    International Nuclear Information System (INIS)

    STRAIT, E.J.; CHU, M.S.; GAROFALO, A.M.; LAHAYE, R.J.; OKABAYASHI, M.; REIMERDES, H.; SCOVILLE, J.T.; TURNBULL, A.D.

    2002-01-01

    OAK A271 COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL MILESTONE No.145 CONTAINING PLASMA INSTABILITIES WITH METAL WALLS. The most serious instabilities in the tokamak are those described by ideal magneto-hydrodynamic theory. These modes limit the stable operating space of the tokamak. The ideal MHD calculations predict the stable operating space of the tokamak may be approximately doubled when a perfectly conducting metal wall is placed near the plasma boundary, compared to the case with no wall (free boundary). The unstable mode distortions of the plasma column cannot bulge out through a perfectly conducting wall. However, real walls have finite conductivity and when plasmas are operated in the regime between the free boundary stability limit and the perfectly conducting wall limit, the unstable mode encountered in that case the resistive wall mode, can leak out through the metal wall, allowing the mode to keep slowly growing. The slow growth affords the possibility of feedback stabilizing this mode with external coils. DIII-D is making good progress in such feedback stabilization research and in 2002 will use an improved set of mode sensors inside the vacuum vessel and closer to the plasma surface which are expected theoretically to improve the ability to stabilize the resistive wall mode

  19. Experimental study of a laboratory concrete material representative of containment buildings: desorption isotherms and permeability determination

    International Nuclear Information System (INIS)

    Semete, P.; Fevrier, B.; Delorme, J.; Sanahuja, J.; Desgree, P.; Le Pape, Y.

    2015-01-01

    The isotherm sorption curve is a first order parameter for the calculations of concrete drying and/or creep using Finite Element Analysis. An experimental campaign was undertaken by EDF MMC in order to characterize the first desorption isotherm at room temperature of a laboratory material representative of concrete containment buildings. Long term drying tests were carried out on cement paste and on three samples geometries on concrete (with radial and axial one-dimensional drying on thin disks and multi-dimensional drying on Representative Elementary Volumes). The measurements results (porosity, densities and mass loss curves) are provided and the isotherms obtained for the four different configurations are compared. Several analyses of the results are proposed including the assessment of a criterion for the determination of the moisture content final balance (estimation of the asymptotic mass loss) and the back-analysis of equivalent permeability. (authors)

  20. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  1. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  2. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    The purpose of project is the long-term accumulation of knowledge related to the status of existing structures in order to facilitate answers to questions that may arise in the future. We have visited all the power stations in Sweden and in conjunction with these visits we have gone through all the relevant documents relating to the constructional concrete. An assessment of the structural integrity, related to the question of cracking and hence seepage, has been conducted. Currently, the work has only been done on a random sampling basis as in many cases important information is still missing. Generally, it can be said that the relevant constructions are, from a structural integrity point-of-view, correctly designed and detailed and have very high safety margins for the load cases which constitute the functional demands placed upon the installation. Each containment structure (vessel) appears to have been designed and built using the best available knowledge at the time of construction. It may be of interest to note that when these structures were built there was a very high level of competence and experience of how to design, detail, and construct large concrete structures. The cement used for the majority of these large concrete structures forming nuclear power stations, namely a slowly hardening cement (LH cement), had very good properties, perhaps even better than those available today. Later structures were built with other cements and concrete mixes, although this has been partly compensated for by a choice of a higher nominal quality. The environment is favourable regarding potential degradation of the concrete, the reinforcement steel and the steel liner. Questions remain regarding the uncertainties of the methods used for continuous inspection of the cement injected prestressing steel. This is even the case for possibly insufficient injection around grouting mounting parts for manholes and other openings. Assessment of prestressing losses may also require

  3. Design and construction of a large reinforced concrete containment model to be tested to failure

    International Nuclear Information System (INIS)

    Ucciferro, J.J.; Horschel, D.S.

    1987-01-01

    The US Nuclear Regulatory Commission is investigating the performance of LWR containments subjected to severe accidents. This work is being performed by the Containment Integrity Division at Sandia National Laboratories (Sandia). The latest research effort involves the testing of a 1/6-scale reinforced concrete containment model. The containment, which was designed and constructed by United Engineers and Constructors, is the largest and most complex model of its kind. The design and construction of the containment model are the subject of this paper. The objective of the containment model tests is to generate data that can be used to qualify methods for reliably predicting the response of LWR containment buildings to severe accident loads. The data recorded during testing include deformations and leakage past sealing surfaces, as well as strains and displacements of the containment shell

  4. Mathematical simulation of gas pressure in fibre-reinforced concrete container at radiation and biological decomposition of cellulose, bituminized and concrete radwastes

    International Nuclear Information System (INIS)

    Kuruc, J.; Kvito, P.

    2005-01-01

    Fibre-reinforced concrete container (FRCC) are used for long-time repository of radioactive wastes. Low- and middle-active radwastes from operation of the NPPs V-1, V-2 Jaslovske Bohunice, Mochovce NPP and from decommissioned NPP A-1 (Jaslovske Bohunice) are treated in the plant SE-VYZ in Jaslovske Bohunice and after immobilisation are deposited in National Radwaste Repository Mochovce (RU RAO). After filling of the RU RAO, FRCC will be stored during 300 years. During this time the integrity of the FRCC must be guaranteed. By the influence of autoradiolysis of the cellulose and bituminized radwastes as well as in cement grout the gases are formed, mainly the hydrogen, methane and carbon dioxide. In the case of presence of available water (a w ≥ 0.63) and in presence of microbes and moulds at appropriate conditions the biological decomposition of cellulose materials may proceed with formation of H 2 , CH 4 a CO 2 . With increasing of developed gases may increase pressure in FRCC, that may initiate the loss of integrity of the FRCC with following endangering of radiation safety of the RU RAO, respectively of the territory over the repository.Authors developed the new mathematical model of pressure of gases in FRCC and in deposited barrels with cellulose and bituminized radwastes. The mathematical model is based on biological decomposition of cellulose materials as well as on radiation decomposition of cellulose, bitumen and concrete. In this mathematical model the diffusion through the walls of FRCC is the main process responsible for decreasing of the pressure. This model was developed in two basic variants: (1) Mathematical model of gas pressure in FRCC as function of dose; (2) Mathematical model of gas pressure in FRCC as function of mass of cellulose

  5. Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Pyo, E-mail: hplee@kepri.re.k [Nuclear Power Laboratory, Korea Electric Power Research Institute, 103-16 Munji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of)

    2011-02-15

    Research highlights: Finite element program with 9-node degenerated shell element was developed. The developed program was mainly forced to analyze nuclear containment building. Concrete material model is adapted Niwa and Yamada failure criteria. The performance of program developed is verified through various numerical examples. The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.

  6. Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Hong Pyo

    2011-01-01

    Research highlights: → Finite element program with 9-node degenerated shell element was developed. → The developed program was mainly forced to analyze nuclear containment building. → Concrete material model is adapted Niwa and Yamada failure criteria. → The performance of program developed is verified through various numerical examples. → The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.

  7. Development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, H.; Kurozumi, Y. [Inst. of Nuclear Safety System, Incorporated, Mihama, Fukui (Japan); Kaneshima, Y. [The Kansai Electric Power Company, Inc., Mihama, Fukui (Japan)

    2004-07-01

    The purpose of this study is development of ultrasonic testing technique to inspect containment liners embedded in concrete on nuclear power plants. Integrity of containment liners on nuclear power plants can be secured by suitable present operation and maintenance. Furthermore, non-destructive testing technique to inspect embedded liners will ensure the integrity of the containment further. In order to develop the non-destructive testing technique, ultrasonic transducers were made newly and ultrasonic testing data acquisition and evaluation were carried out by using a mock-up. We adopted the surface shear horizontal (SH) wave, low frequency (0.3-0.5MHz), to be able to detect an echo from a defect against attenuation of ultrasonic waves due to long propagation in the liners and dispersion into concrete. We made transducers with three large active elements (40mm x 40mm) in a line which were equivalent to a 120mm width active element. Artificial hollows, {phi}200mm - 19mm depth (1/2thickness) and {phi}200mm - 9.5mm depth (1/4thickness), were made on a surface of a mock-up: carbon steel plate, 38mm thickness, 2,000mm length, 1000mm width. The surfaces of the plate were covered with concrete in order to simulate liners embedded in concrete. As a result of the examinations, the surface SH transducers could detect clearly the echo from the hollows at a distance of 1500mm. We evaluate that the newly made surface SH transducers with three elements have ability of detection of defects such as corrosion on the liners embedded in concrete. (author)

  8. Method of producing the arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1976-01-01

    In producing arched surfaces of diaphragm rings for large containers, especially for prestressed-concrete pressure vessels for nuclear power plants, it is of advantage to manufacture these directly on the construction site. According to the invention the, at first level, diaphragm ring is put on the predetermined place, sectionally pressed against and shaped by a shaping tool - with a profiled supporting ring as a counter-acting tool - and afterwards welded together with the annular wall sections of the large container along the shaped parts. The manufacture of single and double configurations of diaphragm rings is described. It is of advantage if shaping and mounting position coincide. (UWI) [de

  9. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers

    NARCIS (Netherlands)

    Wang, H.; Yang, Jun; Liao, Hui; Chen, Xianhua

    2016-01-01

    Electrically conductive asphalt concrete has the potential to satisfy multifunctional applications. Designing such asphalt concrete needs to balance the electrical and mechanical performance of asphalt concrete. The objective of this study is to design electrically conductive asphalt concrete

  10. Ultimate internal pressure capacity of a reinforced concrete Mark III containment

    International Nuclear Information System (INIS)

    McGaughy, J.P. Jr.; Lin, F.T.; Sen, S.K.

    1983-01-01

    The static ultimate capacity of a Mark III BWR pressure suppression type containment has been investigated with a view to determine its capability to withstand the internal pressure associated with a postulated hydrogen burn. The reinforced concrete containment consists of a right circular cylinder covered by a hemispherical dome and supported on a flat circular foundation mat. A 1/4'' thick welded steel liner plate covers the inside surface of the containment shell. The cylinder is a 3.5 ft. thick shell with an inside radius of 62.0 feet. The thickness of the dome is 3.5 feet. Reinforcement in the shell is comprised of multi-layers of circumferential, meridional and diagonal rebars. Major containment penetrations consists of a circular equipment hatch and two personnel airlock assemblies. The containment ultimate capacity is determined by performing a non-linear analysis using the proprietary finite element computer code 'FINEL'. The code has the capability of modelling concrete cracking in tension and redistribution forces and moments to account for such phenomenon. For analysis purposes, the finite element model included the containment dome and the upper portion of the containment cylinder with appropriate boundary conditions applied at the model cut off region. This portion of the containment structure is selected because the segment of the cylinder that is included in the model has the least amount of hopp reinforcement, and when the general yield state is reached, the hoop reinforcement will be the limiting element. The containment structure has been treated as an axisymmetric shell using axisymmetric quadrilateral finite elements in the radial plane to model the liner plate and concrete. The reinforcing steel have been idealized by finite elements with unidirectional stiffness. (orig./RW)

  11. Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica

    Directory of Open Access Journals (Sweden)

    Zain El-Abdin Raouf

    2016-08-01

    Full Text Available This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS with ratios (1, 1.5, 2, 2.5 and 3 % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS had higher compressive strength, modulus of rupture, splitting tension, stress in compression and strain in compression than the corresponding values for the carbon fiber reinforced nonmagnetic reactive powder concrete containing the same ratio of NS (CFRNRPCCNS. The percentage increase in these values for CFRMRPCCNS were (22.37, 17.96, 19.44, 6.44 and 25.8 % at 28 days respectively, as compared with the corresponding CFRNRPCCNS mixtures.

  12. Deflection-based method for seismic response analysis of concrete walls: Benchmarking of CAMUS experiment

    International Nuclear Information System (INIS)

    Basu, Prabir C.; Roshan, A.D.

    2007-01-01

    A number of shake table tests had been conducted on the scaled down model of a concrete wall as part of CAMUS experiment. The experiments were conducted between 1996 and 1998 in the CEA facilities in Saclay, France. Benchmarking of CAMUS experiments was undertaken as a part of the coordinated research program on 'Safety Significance of Near-Field Earthquakes' organised by International Atomic Energy Agency (IAEA). Technique of deflection-based method was adopted for benchmarking exercise. Non-linear static procedure of deflection-based method has two basic steps: pushover analysis, and determination of target displacement or performance point. Pushover analysis is an analytical procedure to assess the capacity to withstand seismic loading effect that a structural system can offer considering the redundancies and inelastic deformation. Outcome of a pushover analysis is the plot of force-displacement (base shear-top/roof displacement) curve of the structure. This is obtained by step-by-step non-linear static analysis of the structure with increasing value of load. The second step is to determine target displacement, which is also known as performance point. The target displacement is the likely maximum displacement of the structure due to a specified seismic input motion. Established procedures, FEMA-273 and ATC-40, are available to determine this maximum deflection. The responses of CAMUS test specimen are determined by deflection-based method and analytically calculated values compare well with the test results

  13. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi

    2015-03-01

    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  14. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  15. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    OpenAIRE

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  16. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    Science.gov (United States)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  17. Non-linear analysis of the behaviour of a thin and squat reinforced concrete wall on a seismic table

    International Nuclear Information System (INIS)

    Mazars, J.; Ghavamian, S.; Ile, N.; Reynouard, J.M.

    1998-01-01

    This work concerns the modeling and analysis of the seismic behaviour of a thin reinforced concrete wall using an experiment performed by the NUPEC (Nuclear Power Engineering Corporation) Japanese organisation with the Tadotsu seismic table. The wall with a height/width ratio close to 1, has its extremities stiffened and its base embedded. The wall, loaded on its top with a 122 t weight, is submitted to several seismic levels up to its collapse. A non-linear seismic analysis and different 2-D and 3-D finite elements modeling were used to simulate the behaviour of the structure submitted to a strong dynamic shear. The results presented in this paper belong to the ''Seismic Shear Wall Standard Problem'' benchmark jointly organized the NUPEC and OECD organizations. (J.S.)

  18. Non-Destructive Detection of Rebar Buried in a Reinforced Concrete Wall with Wireless Passive SAW Sensor

    Science.gov (United States)

    Fan, Yanping; Ji, Xiaojun; Cai, Ping; Lu, Qianhui

    2013-01-01

    In order to reduce the damage to the old reinforced concrete walls and work out the best construction scheme during the renovation of old buildings, it is often required to detect the position of rebar buried in concrete walls. In this paper, we propose a non-destructive method to detect the buried rebar by self-inductive sensor combined with surface acoustic wave resonator (SAWR). The proposed method has the advantages of wireless, passive and convenient operations. In our new design, the sensing element of self-inductance coil was made as a component of SAWR matching network. The distribution of rebar could be measured according to the system resonant frequency, using a signal demodulation device set. The depth of buried rebar and the deviation of output resonant frequency from inherent frequency of SAWR have an inverse relation. Finally, the validity of the method was verified in theoretical calculation and simulation.

  19. Dynamic behavior of radiant cooling system based on capillary tubes in walls made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Svendsen, Svend

    2015-01-01

    elements made of high performance concrete. The influence of the radiant cooling system on the indoor climate of the test room in terms of the air, surface and operative temperatures and velocities was investigated.The results show that the temperature of the room air can be kept in a comfortable range...... using cooling water for the radiant cooling system with a temperature only about 4K lower than the temperature of the room air. The relatively high speed reaction of the designed system is a result of the slim construction of the sandwich wall elements made of high performance concrete. (C) 2015...... the small amount of fresh air required by standards to provide a healthy indoor environment.This paper reports on experimental analyses evaluating the dynamic behavior of a test room equipped with a radiant cooling system composed of plastic capillary tubes integrated into the inner layer of sandwich wall...

  20. Experimental study of the structural behavior of the reinforced concrete containment vessel beyond design pressure

    International Nuclear Information System (INIS)

    Oyamada, O.; Saito, H.; Muramatsu, Y.; Hasegawa, T.; Tanaka, N.

    1990-01-01

    The first Advanced Boiling Water Reactor (ABWR) including a reinforced concrete containment vessel (RCCV) is scheduled to be constructed in the 1990s, in Japan. As the RCCV is new to Japan, we performed a trial design, several series of fundamental experiments and partial/total model experiments. This paper presents a summary of the 'TOP SLAB EXPERIMENT' carried out as one of partial model experiments, in which the structural behavior of the RCCV was examined under internal pressure. (orig.)

  1. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  2. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  3. Design of the containment structure in prestressed concrete for the Embalse-Cordoba Nuclear Power Plant

    International Nuclear Information System (INIS)

    Godoy, A.R.; Marinelli, C.A.; Gruenbaum, C.E.

    1978-01-01

    The design of a typical prestressed concrete containment structure for a 600 MW Candu - PHW Reactor, presently under construction at Embalse - Cordoba, Argentina is briefly described. The structural behaviour , adcpted prestressing system and tendon pattern are described. Afterwards the evaluation of the prestressing forces as well as the losses assessment and the prestressing sequence are discussed. Finally, some conclusions are drawn in the light of the experience gained at different stages of the construction. (Author)

  4. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Del Coz Diaz, J.J.; Rodriguez, A. Martin; Martinez-Luengas, A. Lozano; Biempica, C. Betegon [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Nieto, P.J. Garcia [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2006-06-15

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown. [Author].

  5. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz del Coz, J.J. [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain)]. E-mail: juanjo@constru.uniovi.es; Nieto, P.J. Garcia [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Rodriguez, A. Martin [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Martinez-Luengas, A. Lozano [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Biempica, C. Betegon [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain)

    2006-06-15

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown.

  6. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    International Nuclear Information System (INIS)

    Diaz del Coz, J.J.; Nieto, P.J. Garcia; Rodriguez, A. Martin; Martinez-Luengas, A. Lozano; Biempica, C. Betegon

    2006-01-01

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown

  7. Delayed behaviour of concrete in nuclear power plant containment: analysis and modelling

    International Nuclear Information System (INIS)

    Granger, L.

    1995-02-01

    The containment of French nuclear power plant of the 1300 and 1400 MWe PWR type are made of prestressed concrete and their delayed behaviour is systematically monitored by a very complete instrumentation. In an accidental phase, the tightness of the 1.2 m thick structure, dimensioned to withstand an internal absolute pressure of 0.5 MPa depends mainly on the residual prestress of concrete. But surveillance devices reveal substantial differences from one site to another, from which the regulation calculation models cannot make satisfactory allowance. For the purpose of improving the management of the population of power stations, EDF in 1992 initiated a large study aimed at predicting the true creep behaviour of the containments already built. This study, more material oriented, includes numerous shrinkage and creep tests on reconstructed concrete in laboratory as well as on cement paste and aggregate. The main results are presented in part one. In the second part, we consider the different delayed strains of concrete one by one. A precise analysis of the physico-chemical phenomena at the origin of the delayed behaviours, leads us to propose a practical modelling of concrete in an overall equivalent continuous material approach. Secondly, the few parameters of the model are determined on the experimental results. In order to do so, two particular finite element programs in CESAR-LCPC have been developed. The first one permits to take into account the non linear diffusion of humidity in concrete as a function of temperature. The diffusion coefficient D(C) (C = water content) is fitted on the loss of weight tests as a function of time. The second step is a creep calculation; first, the program reads back the temperature and humidity results of the previous computations and then calculates the different delayed strains in time. For basic creep, we have chosen a viscoelastic model function of temperature and humidity. The numerical scheme uses the principle of

  8. Pre-test analysis results of a PWR steel lined pre-stressed concrete containment model

    International Nuclear Information System (INIS)

    Basha, S.M.; Ghosh, Barnali; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-02-01

    Pre-stressed concrete nuclear containment serves as the ultimate barrier against the release of radioactivity to the environment. This ultimate barrier must be checked for its ultimate load carrying capacity. BARC participated in a Round Robin analysis activity which is co-sponsored by Sandia National Laboratory, USA and Nuclear Power Engineering Corporation Japan for the pre-test prediction of a 1:4 size Pre-stressed Concrete Containment Vessel. In house finite element code ULCA was used to make the test predictions of displacements and strains at the standard output locations. The present report focuses on the important landmarks of the pre-test results, in sequential terms of first crack appearance, loss of pre-stress, first through thickness crack, rebar and liner yielding and finally liner tearing at the ultimate load. Global and local failure modes of the containment have been obtained from the analysis. Finally sensitivity of the numerical results with respect to different types of liners and different constitutive models in terms of bond strength between concrete and steel and tension-stiffening parameters are examined. The report highlights the important features which could be observed during the test and guidelines are given for improving the prediction in the post test computation after the test data is available. (author)

  9. Mechanical Properties of High Performance Concrete Containing Waste Plastic as Aggregate

    Directory of Open Access Journals (Sweden)

    Abdulkader Ismail Al-Hadithi

    2015-08-01

    Full Text Available The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET waste , got by shredded PET bottles. The mechanical properties (compressive, splitting tensile, and flexural strength evaluated at the ages of (7 ,28, 56 and 91 days while the static modulus of elasticity tested at (28 and 91 days . The results indicated that HPC containing PET-aggregate presented lower compressive strength and static elasticity . The splitting strength displayed an arising trend at the initial stages, however, they have a tendency to decrease after a while. On the other hand, flexural strength results gave better modulus of rapture at all ages of curing , as compared with reference concrete specimens.

  10. The surrounding concrete structure of the containment as a safety component

    International Nuclear Information System (INIS)

    Alex, H.; Kuntze, W.M.

    1978-01-01

    This paper will briefly discuss the containments of the various types of reactors in the Federal Republic of Germany and will try to show the importance of the surrounding concrete structures with respect to safety. It will be seen that the surrounding concrete structures serve in any case - as protection against external events - as secondary shielding and must therefore be considered as a passive safety feature. The design requirements for the surrounding concrete structures with respect to protection against external events and to physical protection generally supplement each other. Reference will be made to possible alternatives, which might result from studies of underground siting of nuclear power plants. Whether or not this type of construction can lead to additional safety can only be judged when the results of all these studies - some of which are still under way - are evaluated. The concluding part of this paper will deal with the responsibilities of the civil engineering supervisory authorities and the nuclear licensing authorities with respect to the surrounding concrete structures. (orig.) [de

  11. SEISMIC PERFORMANCE OF A PRECAST REINFORCED CONCRETE WALL WITH CUT-OUT OPENING RETROFITTED USING CARBON FIBRE STRIPS

    Directory of Open Access Journals (Sweden)

    Fofiu M.

    2015-05-01

    Full Text Available The Precast Reinforced Concrete Wall Panel (PRCWP presented in this paper is part of an experimental study regarding the seismic performance of precast reinforced concrete wall panels, strengthening strategies and investigation on the weakening induced by modifying the opening in these elements due to architectural demands, change of function of buildings or other reasons. The element presented is 1:1.2 scale typical Reinforced Concrete Wall Panel with a window opening used in Romania, in which the opening was changed to a door opening due to comfort considerations. The specimen was subjected to cyclic loading with the lateral loads being applied in displacement control of 0.1% drift ratio. This simulates the shear behaviour of the element. After testing the unstrengthen element we proceed to retrofit it using Carbon Fibre Strips anchored with Carbon Fibre Mash. The purpose of the paper is to present the strengthening strategy and restore the initial load bearing capacity of the element or even increase it. The experimental results of strengthen and unstrengthen specimens will be presented.

  12. Non destructive testing of concrete nuclear containment plants with surface waves: Lab experiment on decimeter slabs and on the VeRCoRs mock-up

    Science.gov (United States)

    Abraham, Odile; Legland, Jean-Baptiste; Durand, Olivier; Hénault, Jean-Marie; Garnier, Vincent

    2018-04-01

    The maintenance and evaluation of concrete nuclear containment walls is a major concern as they must, in case of an accident, ensure the confinement of the nuclear radiations and resist to the loads. A homemade multi-receiver multi-source dry contact linear probe to record ultrasonic surface waves on concrete in the frequency range [60 kHz - 200 kHz] has been used in this context. The measurement protocol includes the summation of up to 50 spatially distributed seismograms and the determination of the surface waves phase velocity dispersion curve. The probe has been tested against several concrete states under no loading (water saturation level, temperature damage). Then, the same measurements have been performed on sound and fire damaged slabs submitted to uniaxial loading (stress up to 30 % of the concrete compression resistance). It is shown that the robustness and precision of the surface waves measurement protocol make it possible to follow the stress level. In March 2017 a first experiment with this surface wave probe has been conducted on a reduced 1:3 scale nuclear containment plant (EDF VeRCoRs mock-up) under loading conditions that replicates that of decennial inspection. The surface wave phase velocity dispersion curves of each state are compared and cross-validated with other NDT results.

  13. Probabilistic evaluation of concrete containment capacity for beyond design basis internal pressures

    International Nuclear Information System (INIS)

    Tang, H.T.; Dameron, R.A.; Rashid, Y.R.

    1995-01-01

    For beyond design basis internal pressure loading, experimental studies have demonstrated that the most probable failure mode governing the ultimate functional capacity of concrete containments is leak rather than break. Based on leak rates measured in experiments, a prediction formula for leak rate as functions of containment liner size and internal pressure has been postulated. The determination of liner tear is cast in a probabilistic framework. In calculating leakage, particular attention is paid to the evaluation of leakage versus rupture and the loading rates that may be required to leapfrog over a leakage mode. (orig.)

  14. Review of inservice inspections of greased tendons in prestressed-concrete containments

    International Nuclear Information System (INIS)

    Dougan, J.R.; Ashar, H.

    1983-01-01

    Prestressed-concrete containments in the United States using greased prestressing tendons are inspected periodically to ensure structural integrity and to identify and correct problem areas before they become critical. An analysis of the available utility inspection data and an evaluation of the current and proposed guidelines were conducted to provide a measure of the reliability of the inspection process. Comments from utility and industry personnel were factored into the analysis. The results indicated that the majority of the few incidences of problems or abnormalities which occurred were minor in nature and did not threaten the structural integrity of the containment

  15. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  16. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  17. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  18. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  19. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    Science.gov (United States)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  20. Properties of concrete containing different type of waste materials as aggregate replacement exposed to elevated temperature – A review

    Science.gov (United States)

    Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.

    2018-04-01

    Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.

  1. Experimental investigation on the properties of concrete containing post-consumer plastic waste as coarse aggregate replacement

    Directory of Open Access Journals (Sweden)

    Zasiah TAFHEEM

    2018-03-01

    Full Text Available The consumption of various forms of plastic has been increased in recent days due to the boost in industrialization and other human activities. Most of the plastic wastes are abandoned and require large landfill area for storage. More importantly, the low biodegradability of plastic poses a serious threat to environment protection issue. Various methods have been followed for the disposal of plastic in an attempt to reduce the negative impact of the plastic on the environment. Recently, various types of plastic have been incorporated in concrete to minimize the exposure of plastic to the environment. The aim of this study is to investigate the properties of concrete containing polyethylene terephthalate (PET, and high density polyethylene (HDPE plastic that were used as partial replacement of coarse aggregate (CA. In this study, four compositions of stone aggregate(S: plastic waste ratios have been used by volume basis: 100% S: 0% Plastic (control concrete, 90% S: 10% PET, 90% S: 10% HDPE, and 90% S: 5% PET+5% HDPE. The effects of waste plastic addition on the mechanical properties of concrete are presented in this paper. Test results reveal that minimum reduction in compressive strength has been found 35% in case of 10% PET plastic replaced concrete whereas splitting tensile strength for 10% PET replaced concrete has been increased by 21% while compared to control concrete. In addition, fresh unit weight of concrete containing plastic waste has been decreased by 4% in comparison to control concrete.

  2. PARCS - A pre-stressed and reinforced concrete shell element for analysis of containment structures

    International Nuclear Information System (INIS)

    Buragohain, D.N.; Mukherjee, A.

    1993-01-01

    Containment structures are designed as pressure vessels against a huge internal pressure build up in the event of a postulated LOCA. In such situations the containment structures experience predominantly in-plane stress in tension. Therefore, pre-stressed concrete has been very frequently used for the construction of containment. For larger plants a dual containment with a pre-stressed concrete inner containment and a reinforced concrete outer containment has been adopted. These structures are required to perform within very stringent safety requirements under extremely severe loading. Naturally, their design has attracted a lot of investigators and a huge volume of literature has been published in previous SMiRT conferences. However, it seems that the structural modeling of the containment has not developed accordingly. It is a common practice to consider the concrete section only in the model and the effects of pre-stress and reinforcements are usually neglected. This is due to the difficulty in including these effects without generating an unduly large model. To include these effects using the existing software, the concrete can be modeled with 3D elements. The reinforcements can be included in the model as bar or cable elements. However, that would require a nodal line along every reinforcement. Therefore, this method would generate a huge model unmanageable even with modern computing facilities. Alternatively, the reinforcements can be assumed to be smeared uniformly within the structure and an average property can be included. This model is acceptable when the reinforcements are very closely spaced. However, for sparsely spaced reinforcements it would result in loss of accuracy, especially in important areas like the vicinity of large openings. In this paper a shell element for the analysis of pre-stressed and reinforced concrete structures has been proposed which alleviates this difficulty. This element can accommodate the reinforcing bars or cables anywhere

  3. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Torrenti, J.M. [Universite Paris Est, LCPC (France); Nahas, G. [IRSN/DSR (France)

    2011-07-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  4. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  5. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    International Nuclear Information System (INIS)

    Torrenti, J.M.; Nahas, G.

    2011-01-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  6. Analysis of initial prestress force of spatial tendon prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Shiau, H.-S.

    1975-01-01

    A theoretical investigation is presented of the initial stage of prestressed tendon and prestressed concrete before and after jacking force of tendon anchorage released. A method is developed that is applicable to any kind of spatial tendon considering frictional loss due to length and curvature effects. A triple integral equation of one independent variable and jacking force is derived to represent an exact solution of tendon force along the whole tendon which may have reverse curvatures. In order to analyze the stress response of concrete due to this prestress force by using existing finite element computer program or any other kind of computer program, a systematic method is suggested to obtain tendon force components, which are represented by a series of equations of one independent variable, in any coordinate system as external force applied on the concrete. The resulting systems of the equations are then solved by numerical mathematic and computer techniques. Two numerical examples are represented. The first example is, dome prestress analysis of containment building by the proposed method and Kalnins' computer program for shell of revolution. Results are discussed. The second example is picked from prestress analysis for personnel air lock of containment building by using proposed method and FELAP finite element Computer program. It includes two different tendon arrangements around the opening. The results of these two different arrangements are compared and discussed

  7. Plan on test to failure of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Takumi, K.; Nonaka, A.; Umeki, K.; Nagata, K.; Soejima, M.; Yamaura, Y.; Costello, J.F.; Riesemann, W.A. von.; Parks, M.B.; Horschel, D.S.

    1992-01-01

    A summary of the plans to test a prestressed concrete containment vessel (PCCV) model to failure is provided in this paper. The test will be conducted as a part of a joint research program between the Nuclear Power Engineering Corporation (NUPEC), the United States Nuclear Regulatory Commission (NRC), and Sandia National Laboratories (SNL). The containment model will be a scaled representation of a PCCV for a pressurized water reactor (PWR). During the test, the model will be slowly pressurized internally until failure of the containment pressure boundary occurs. The objectives of the test are to measure the failure pressure, to observe the mode of failure, and to record the containment structural response up to failure. Pre- and posttest analyses will be conducted to forecast and evaluate the test results. Based on these results, a validated method for evaluating the structural behavior of an actual PWR PCCV will be developed. The concepts to design the PCCV model are also described in the paper

  8. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Parks, M.B.

    1995-01-01

    In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given. (orig.)

  9. Rotating solitary wave at the wall of a cylindrical container

    KAUST Repository

    Amaouche, Mustapha

    2013-04-30

    This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.

  10. Experiences in development, qualification, and use of concrete high-integrity containers in commercial disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.

    1985-01-01

    Disposal of EPICOR prefilters as commercial radioactive wastes is being accomplished by using a first-of-a-kind, reinforced concrete, high-integrity container in lieu of prior in situ solidification of resins before disposal of prefilters. Experiences in developing, testing, certifying, and using high-integrity containers are an untold story worthy of review for the benefit of the nuclear industry at large. The lessons learned in gaining regulatory acceptance of the concrete HIC are discussed

  11. Experiences in development, qualification, and use of concrete high-integrity containers in commercial disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.

    1985-01-01

    Disposal of EPICOR prefilters as commercial radioactive wastes is being accomplished by using a first-of-a-kind, reinforced concrete, high-integrity container (HIC) in lieu of prior in situ solidification of resins before disposal of prefilters. Experiences in developing, testing, certifying, and using high-integrity containers are an untold story worthy of review for the benefit of the nuclear industry at large. The lessons learned in gaining regulatory acceptance of the concrete HIC are discussed. 6 refs., 1 tab

  12. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room.

  13. Multiple Scattering of Gamma Radiation in a Spherical Concrete Wall Room

    International Nuclear Information System (INIS)

    Leimdoerfer, M.

    1962-12-01

    The Monte Carlo method has been applied for the calculation of the energy flux of scattered gamma radiation in a spherical room surrounded by an infinitely thick spherical wall and with a point source at the centre. Source energies were I, 2, 4, 6, and 10 MeV. The main investigation was carried out at a room radius of 500 cm but, for the 1 MeV source, the influence of varying the room radius down to 1 cm was analysed. The results contain energy distributions of the first four successive reflection components at the centre of the room and at the wall surface, as well as spatial distributions of the successive energy flux components. The neglect of reflection contributions of order five and higher was estimated to introduce an error of less than 0. 2 % of the total scattered energy flux. An analytical approximation is shown to produce a useful and easily applicable method of predicting the amount of scattered radiation in a spherical room

  14. Pore structure modification of cement concretes by impregnation with sulfur-containing compounds

    Directory of Open Access Journals (Sweden)

    YANAKHMETOV Marat Rafisovich

    2015-02-01

    Full Text Available The authors study how the impregnation with sulfur-containing compounds changes the concrete pore structure and how it influences on the water absorption and watertightness. The results of this research indicate that impregnation of cement concrete with water-based solution of polysulphide modifies pore structure of cement concrete in such a way that it decreases total and effective porosity, reduces water absorption and increases watertightness. The proposed impregnation based on mineral helps to protect for a long time the most vulnerable parts of buildings – basements, foundations, as well as places on the facades of buildings exposed to rain, snow and groundwater. Application of the new product in the construction industry can increase the durability of materials, preventing the destruction processes caused by weathering, remove excess moisture in damp basements. The surfaces treated by protective compounds acquire antisoiling properties for a long time, and due to reduced thermal conductivity the cost of heating buildings is decreased. The effectiveness of the actions and the relatively low cost of proposed hydrophobizator makes it possible to spread widely the proposed protection method for building structures.

  15. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  16. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  17. Pretest round robin analysis of 1:4-scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Hessheimer, M.F.; Luk, V.K.; Klamerus, E.W.; Shibata, S.; Mitsugi, S.; Costello, J.F.

    2001-01-01

    The work reported herein represents, arguably, the state of the art in the numerical simulation of the response of a prestressed concrete containment vessel (PCCV) model to pressure loads up to failure. A significant expenditure of time and money on the part of the sponsors, contractors, and Round Robin participants was required to meet the objectives. While it is difficult to summarize the results of this extraordinary effort in a few paragraphs, the following observations are offered for the reader's consideration: almost half the participants used ABAQUS as the primary computational tool for performing the pretest analyses. The other participants used a variety of codes, most of which were developed ''in house''. (author)

  18. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  19. Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

    Directory of Open Access Journals (Sweden)

    Hasan Taherkhani

    2016-06-01

    Full Text Available The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of additives. This research investigated the effects of reinforcement by randomly distributed glass fibers and the simultaneous addition of nanoclayon some engineering properties of asphalt concrete have been investigated. The properties of a typical asphalt concrete reinforced by different percentages of glass fibers were compared with those containing both the fibers and nanoclay. Engineering properties, including Marshall stability, flow, Marshall quotient, volumetric properties and indirect tensile strength were studied. Glass fibers were used in different percentages of 0.2, 0.4 and 0.6% (by weight of total mixture, and nanoclay was used in 2, 4 and 6% (by the weight of bitumen. It was found that the addition of fibers proved to be more effective than the nanoclay in increasing the indirect tensile strength. However, nanoclay improved the resistance of the mixture against permanent deformation better than the glass fibers. The results also showed that the mixture reinforced by 0.2% of glass fiber and containing 6% nanoclay possessed the highest Marshall quotient, and the mixture containing 0.6% glass fibers and 2% nanoclay possessedthe highest indirect tensile strength.

  20. Self-consolidating concretes containing waste PET bottles as sand replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Mazenan, Puteri Natasya; Shahidan, Shahiron; Othman, Nor hazurina; Guntor, Nickholas Anting Anak

    2018-02-01

    This study evaluates the effect of self-consolidating concrete (SCC) containing waste polyethylene terephthalate (PET) granules on the fresh, mechanical and water absorption properties. Fine aggregates were replaced from 0% to 8% by PET granules. The fresh properties of SCC containing PET granules were determined using slump flow and V-funnel flow time tests. The compressive and splitting tensile strength were evaluated. The results indicated that utilization of waste PET granules in production of SCC could be an effective way for recycling purpose. The maximum amount of PET replacement should be limited to 5%. Exceeding 5% of PET content may result in an increase of V-funnel flow time to overpass the limiting value, decrease in strength. The production of high performance SCC containing 5% PET granules satisfies all the requirements for SCC with satisfactory outputs.

  1. Analytical predictions for the performance of a reinforced concrete containment model subject to overpressurization

    International Nuclear Information System (INIS)

    Weatherby, J.R.; Clauss, D.B.

    1987-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission, Sandia National Laboratories is investigating methods for predicting the structural performance of nuclear reactor containment buildings under hypothesized severe accident conditions. As part of this program, a 1/6th-scale reinforced concrete containment model will be pressurized to failure in early 1987. Data generated by the test will be compared to analytical predictions of the structural response in order to assess the accuracy and reliability of the analytical techniques. As part of the pretest analysis effort, Sandia has conducted a number of analyses of the containment structure using the ABAQUS general purpose finite element code. This paper describes results from a nonlinear axisymmetric shell analysis as well as the material models and failure criteria used in conjunction with the analysis

  2. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    International Nuclear Information System (INIS)

    Xiao Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang Qingyuan; Poon, Chi-Sun

    2011-01-01

    Highlights: → Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. → Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. → A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.

  3. Large scale model experimental analysis of concrete containment of nuclear power plant strengthened with externally wrapped carbon fiber sheets

    International Nuclear Information System (INIS)

    Yang Tao; Chen Xiaobing; Yue Qingrui

    2005-01-01

    Concrete containment of Nuclear Power Station is the last shield structure in case of nuclear leakage during an accident. The experiment model in this paper is a 1/10 large-scale model of a real-sized prestressed reinforced concrete containment. The model containment was loaded by hydraulic pressure which simulated the design pressure during the accident. Hundreds of sensors and advanced data-collect systems were used in the test. The containment was first loaded to the damage pressure then strengthened with externally wrapping Carbon fiber sheet around the outer surface of containment structure. Experimental results indicate that CFRP system can greatly increase the capacity of concrete containment to endure the inner pressure. CFRP system can also effectively confine the deformation and the cracks caused by loading. (authors)

  4. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    International Nuclear Information System (INIS)

    Choun, Youngsun; Park, Junhee

    2014-01-01

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs

  5. Evaluation of Shear Resisting Capacity of a Prestressed Concrete Containment Building with Steel or Polyamide Fiber Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Conventional reinforced concrete (RC) members generally show a rapid deterioration in shear resisting mechanisms under a reversed cyclic load. However, the use of high-performance fiber-reinforced cement composites provides excellent damage tolerance under large displacement reversals compared with regular concrete. Previous experimental studies have indicated that the use of fibers in conventional RC can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. This study evaluates the shear resisting capacity for a PCCB constructed using steel fiber reinforced concrete (SFRC) or polyamide fiber reinforced concrete (PFRC). The effects of steel and polyamide fibers on the shear performance of a PCCB were investigated. It was revealed that steel fibers are more effective to enhance the shear resisting capacity of a PCCB than polyamide fibers. The ductility and energy dissipation increase significantly in fiber reinforced PCCBs.

  6. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    Science.gov (United States)

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  7. Characterisation of concrete containers for radioactive waste in the engineering tranches system at the Yugoslav R.A waste storing center

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-10-01

    Low and intermediate level radioactive waste represents 90% of total R.A. waste. It is conditioned into special concrete containers. Since these concrete containers are to protect safely the radioactive waste for 300 years, the selection of materials and precise control of their physical and mechanical properties is very important. In this paper results obtained with some concrete compositions are described. (author)

  8. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    Science.gov (United States)

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Feasibility Study to Reduce Thermal Resistance of Finned Containment Wall in Simplified OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hwi; Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of); Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of)

    2016-05-15

    This concept is securing of cooling capability by using finned containment itself, it could be another alternative for achieving decompression of containment as heat sink. The objective of this study is a feasibility test to estimate the heat transfer performance from the finned containment wall in case of OPR1000. The commercial code, ANSYS CFX 16 was used in this work. The number of grids is about 1.8 million. Therefore, 250mm rebar affects more considerable than that of 50mm to the temperature distribution. For this reasons, temperature distribution of z-axis direction was showed significant changes in (c). The heat transfer in three types of containment was 267.6W, 265.2W and 307.8W, respectively. The Type B case increased up to 15% of heat transfer than the baseline containment building. Three different types of containment wall were tested by numerical simulation to understand the cooling performance of finned containment wall. We can conclude as follows: For the finned containment wall type A that fins are installed inside and outside with the same rebar configuration of conventional containment building, the heat transfer is almost the same as conventional containment wall. The finned containment wall type B that volume fraction of rebar is increased transfer the heat 15% more compared with conventional one. The cross-sectional area or volume fraction of the rebar to attach fin is important to enhance the heat transfer. The fin efficiency of the fin is very low as 3.1% in the present cases.

  10. Mechanical properties of concrete containing a high volume of tire-rubber particles.

    Science.gov (United States)

    Khaloo, Ali R; Dehestani, M; Rahmatabadi, P

    2008-12-01

    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.

  11. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls

    Science.gov (United States)

    Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald

    2018-04-01

    To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.

  12. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    International Nuclear Information System (INIS)

    Syed, Sammiuddin; Gupta, Abhinav

    2015-01-01

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  13. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-12-15

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  14. Flexible walled container having membrane fitment for use with aseptic filling apparatus

    International Nuclear Information System (INIS)

    Davis, J.C.; Reiss, R.J.; Rica, A.F.

    1984-01-01

    There is disclosed an aseptic flexible walled container having a rigid fitment member cooperative with an aseptic filling apparatus and including a neck, outer flanges surrounding the neck, a frangible membrane and an outer end rim receptive of an hermetically sealed lid. The neck is formed with an internal chamferred seating shoulder for fluid-tight engagement with a fill tube. One outer flange cooperates with clamping jaws of the aseptic filling apparatus for detachably sealing the fitment to a sterilizing chamber and placing it in position for insertion of the filling tube which ruptures the membrane and permits the aseptic introduction of product to the container's interior. The other outer flange is secured to an opening in a wall of the flexible container. The joined fitment and container are presterilized prior to filling. Selected materials for the multi-ply container walls and the fitment permit the container to withstand gamma ray and other sterilization treatment, heat and pressure while maintaining required strength. After the container is aseptically filled, such as with flowable food product, the fill tube is withdrawn and a lid is hermetically sealed onto the rim of the fitment. A heat shield adjacent a container wall surrounds the fitment to protect the container from excessive heat generated by the associated filling apparatus during filling

  15. Posttest analysis of a 1:4-scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Hessheimer, M.F.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, co-sponsored a Cooperative Containment Research Program at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. As part of the program, a prestressed concrete containment vessel (PCCV) model was subjected to a series of overpressurization tests at SNL beginning in July 2000 and culminating in a functional failure mode or Limit State Test (LST) in September 2000 and a Structural Failure Mode Test (SFMT) in November 2001. The PCCV model, uniformly scaled at 1:4, is representative of the containment structure of an actual Pressurized Water Reactor (PWR) plant (OHI-3) in Japan. The objectives of the pressurization tests were to obtain measurement of the structural response to pressure loading beyond design basis accident in order to validate analytical modeling, to find pressure capacity of the model, and to observe its failure mechanisms. This paper compares results of pretest analytical studies of the PCCV model to the PCCV high pressure test measurements and describes results of post-test analytical studies. These analyses have been performed by ANATECH Corp. under contract with Sandia National Laboratories. The post-test analysis represents the third phase of a comprehensive PCCV analysis effort. The first phase consisted of preliminary analyses to determine what finite element models would be necessary for the pretest prediction analyses, and the second phase consisted of the pretest prediction analyses. The principal objectives of the post-test analyses were: (1) to provide insights to improve the analytical methods for predicting the structural response and failure modes of a prestressed concrete containment, and (2) to evaluate by analysis any phenomena or failure mode observed during the test that had not been explicitly predicted by analysis. In addition to summarizing comparisons between measured

  16. Cast-in-place concrete walls: thermal comfort evaluation of one-storey housing in São Paulo State

    Directory of Open Access Journals (Sweden)

    H. M. Sacht

    Full Text Available This paper presents a proposal of thermal performance evaluation of a one-storey housing typology (TI24A executed by CDHU - Companhia de Desenvolvimento Habitacional e Urbano do Estado de São Paulo, considering the use of cast-in-place monolithic panels of concrete, with different thicknesses panels (8, 10 and 12 cm and density between 1600 and 2400 kg/m³. In this study, the specific purpose was discussing the influence of the characteristic of concrete walls on the housing thermal performance without slab. Was defined of first parameters of study (definition of the one-storey housing typology, survey about housing users behavior and cities choose and executed computational simulation (winter and summer, for four São Paulo State cities (São Paulo, São Carlos, Santos e Presidente Prudente, with the software Arquitrop 3.0 in a one-storey housing. Was observed that in winter and summer the typologies analyzed, the panels thickness variation had more influence about results than different concrete densities. The minimum level of thermal performance (M in winter has been granted for some cities, with exception of Santos. In summer one of São Paulo city’s typology was attended the minimum level of thermal performance in agreement with standard “NBR 15575 Residential buildings up to five storied - Performance, Part 1: General requirements”.

  17. Method for calculating the duration of vacuum drying of a metal-concrete container for spent nuclear fuel

    Science.gov (United States)

    Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.

    2013-07-01

    A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.

  18. Further development of KAVERN and code development on gas generation from the containment basement during concrete decomposition

    International Nuclear Information System (INIS)

    Schwarzott, W.; Artnik, J.; Hassmann, K.; Kemner, H.; Stuckenberg, X.

    1983-04-01

    The events during the melt/concrete interaction, e.g. the shape of the cavity and the mass and energy of gases released to the containment atmosphere can be analysed by the computer code KAVERN. In case of basaltic conrete sump water contacts the melt surface after 7 hours. Overpressurization of the containment is calculated to occur after appr. 5 days. For different paths out of the reactor cavity to the containment atmosphere STROMI calculates the mass flow of the gases released during melt concrete interaction. Results show max. temperatures up to 1200 0 C which is well above the self ignition temperature of H 2 . (orig.) [de

  19. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  20. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Coz Diaz, J.J. del; Betegon Biempica, C.; Prendes Gero, M.B. [Edificio Departamental Viesques, No 7, 33204 Gijon (Asturias) (Spain); Garcia Nieto, P.J. [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo (Asturias) (Spain)

    2007-06-15

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed. (author)

  1. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

    International Nuclear Information System (INIS)

    Coz Diaz, J.J. del; Garcia Nieto, P.J.; Betegon Biempica, C.; Prendes Gero, M.B.

    2007-01-01

    Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed

  2. Over-pressure test on BARCOM pre-stressed concrete containment

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, R.M.; Singh, Tarvinder; Thangamani, I.; Trivedi, Neha; Singh, Ram Kumar, E-mail: rksingh@barc.gov.in

    2014-04-01

    Bhabha Atomic Research Centre (BARC), Trombay has organized an International Round Robin Analysis program to carry out the ultimate load capacity assessment of BARC Containment (BARCOM) test model. The test model located in BARC facilities Tarapur; is a 1:4 scale representation of 540 MWe Pressurized Heavy Water Reactor (PHWR) pre-stressed concrete inner containment structure of Tarapur Atomic Power Station (TAPS) unit 3 and 4. There are a large number of sensors installed in BARCOM that include vibratory wire strain gauges of embedded and spot-welded type, surface mounted electrical resistance strain gauges, dial gauges, earth pressure cells, tilt meters and high resolution digital camera systems for structural response, crack monitoring and fracture parameter measurement to evaluate the local and global behavior of the containment test model. The model has been tested pneumatically during the low pressure tests (LPTs) followed by proof test (PT) and integrated leakage rate test (ILRT) during commissioning. Further the over pressure test (OPT) has been carried out to establish the failure mode of BARCOM Test-Model. The over-pressure test will be completed shortly to reach the functional failure of the test model. Pre-test evaluation of BARCOM was carried out with the results obtained from the registered international round robin participants in January 2009 followed by the post-test assessment in February 2011. The test results along with the various failure modes related to the structural members – concrete, rebars and tendons identified in terms of prescribed milestones are presented in this paper along with the comparison of the pre-test predictions submitted by the registered participants of the Round Robin Analysis for BARCOM test model.

  3. Safety margin evaluation of pre-stressed concrete nuclear containment vessel model with BARC code ULCA

    International Nuclear Information System (INIS)

    Basha, S.M.; Patnaik, R.; Ramanujam, S.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: Ultimate load capacity assessment of nuclear containments has been a thrust research area for Indian pressurised heavy water reactor (PHWR) power programme. For containment safety assessment of Indian PHWRs a finite element code ULCA was developed at BARC, Trombay. This code has been extensively benchmarked with experimental results and for prediction of safety margins of Indian PHWRs. The present paper highlights the analysis results for prestressed concrete containment vessel (PCCV) tested at Sandia National Labs, USA in a round robin analysis activity co-sponsored by Nuclear Power Engineering Corporation (NUPEC), Japan and the U.S Nuclear Regulatory Commission (NRC). Three levels of failure pressure predictions namely the upper bound, the most probable and the lower bound (all with 90% confidence) were made as per the requirements of the round robin analysis activity. The most likely failure pressure is predicted to be in the range of 2.95 Pd to 3.15 Pd (Pd = design pressure of 0.39 MPa for the PCCV model) depending on the type of liners used in the construction of the PCCV model. The lower bound value of the ultimate pressure of 2.80 Pd and the upper bound of the ultimate pressure of 3.45 Pd are also predicted from the analysis. These limiting values depend on the assumptions of the analysis for simulating the concrete tendon interaction and the strain hardening characteristics of the steel members. The experimental test has been recently concluded at Sandia Laboratory and the peak pressure reached during the test is 3.3 Pd that is enveloped by our upper bound prediction of 3.45 Pd and is close to the predicted most likely pressure of 3.15 Pd

  4. Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel

    Science.gov (United States)

    Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.

    2012-01-01

    An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.

  5. Preliminary Investigation of Acoustical Properties of Concrete Containing Oil Palm Shell as an Aggregate Replacement

    Science.gov (United States)

    Zanariah, J.; Zaiton, H.; Musli Nizam, Y.; Khairulzan, Y.; Dianah, M.; Nadirah, D.; Hanifi, O. Mohd

    2018-03-01

    Research has been so far focused extensively on mechanical properties of oil palm shell (OPS) concrete but less on sound properties. Thus, the objective of this study is to investigate whether concrete containing OPS can be applied in the field of road noise barrier. The acoustic properties of the samples were determined by using an impedance tube connected to a sound source. The noise reduction coefficient (NRC) and weighted sound absorption coefficient (αw) which is more commonly use in the road traffic noise barrier field were calculated according to BS EN ISO 11654:1997. Compressive strengths of samples were also determined by using compressive test. The results presented that the compressive strength of the OPS composites decreased as increased in w/c wit minimum of 20.44 N/mm2 at 28 days for w/c = 0.6 but still satisfactory for structural use. The sound absorption coefficient demonstrated that they were decreased as the w/c are higher with typical curve of two peaks at 315Hz and 1000Hz. All samples were then can be classified as class E as 0.5< αw < 0.25 and should be classified as L due to favourable deviation higher than 0.25 for 250 Hz.

  6. Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Jason, L., E-mail: ludovic.jason@cea.fr [Atomic Energy Commission (CEA), DEN, DANS, DM2S, SEMT, Mechanics and System Simulation Laboratory (LM2S), F-91191 Gif sur Yvette (France); LaMSID, UMR CNRS-EDF-CEA 8193, F-92141 Clamart (France); Masson, B. [Electricité de France (EDF), SEPTEN, F-69628 Villeurbanne (France)

    2014-10-01

    Highlights: • The contribution focuses on the gas transfer through reinforced concrete structures. • A continuous approach with a damage–permeability law is investigated. • It is significant, for this case, only when the damage variable crosses the section. • In this case, two localized approaches are compared. • It helps at evaluating a “reference” crack opening for engineering laws. - Abstract: In this contribution, different techniques are compared to evaluate the gas flow rate through a representative section of a reinforced and prestressed concrete containment structure. A continuous approach is first applied which is based on the evaluation of the gas permeability as a function of the damage variable. The calculations show that the flow rate becomes significant only when the damage variable crosses the section. But in this situation, the continuous approach is no longer fully valid. That is why localized approaches, based on a fine description of the crack openings, are then investigated. A comparison between classical simplified laws (Poiseuille flow) and a more refined model which takes into account the evolution of the crack opening in the depth of the section enables to define the validity domain of the simplified laws and especially the definition of the associated “reference opening”.

  7. Maintenance and Durability of the Concrete External Layer of Curtain Walls in Prefabricated Technological Poznan Large Panel System

    Science.gov (United States)

    Jasiczak, Józef; Girus, Krzysztof

    2017-10-01

    The issue of usability and durability of large-panel building constructed several decades ago is a subject of an in-depth analysis of many domestic and foreign investments. When considering the durability of specific large-panel system, one should consider, among others, the process of making external walls. The long-term and direct impact of weather conditions on the external layer of curtain walls is significant for the durability of large-panel buildings. For the needs of the presented paper, in 2016, the survey of cracks and a series of other tests of large-panel façade, residential building constructed in 1986, in Poland, in the PLP process system - Rataje was executed. Several hundred large-size, triple-layer curtain-wall slab with a 6-cm, concrete exterior cladding layer anchored using pins and hangers with the load-bearing layer, a 9-cm insulation layer made of mineral wool, and a 21-cm structural layer were surveyed. Significant deviations in thicknesses of particular wall layers were proven. Other significant damages and defects of external layers were found. At the second stage, many tests, both nondestructive and destructive, were conducted. They involved determining mechanical properties of an external layer. The concrete thickness was measured using with a type N Schmidt sclerometer and core samples were taken from this layer in order to mark concrete’s compressive strength. The range of carbonation (by phenolphthalein method) and the actual location and condition of reinforcement were estimated using a ferromagnetic device to determine the condition of the external layer. The diagnosis conducted in such a manner was the verification of necessary repair of the walls and their thermal efficiency improvement while ensuring safe conditions of their operation and modern functional and utility requirements. It should be also emphasized that the method of diagnosing the external walls presented in this paper may be popularized when evaluating such

  8. EDF reactor building containment: Monitoring of the pre-stressed concrete structure

    International Nuclear Information System (INIS)

    Badez, N.

    2009-01-01

    The concrete containments of the EDF PWR are pre-stressed, and are monitored to observe the ageing effects on the structure, in particular the evolutions of creep, shrinkage, pre-stress loss, and air leakage tightness. Monitoring devices are installed during construction period, and measurements are checked, stored on a data base, and analysed during all the plant operating life time. The topic of the presentation is to present each part of the EDF monitoring organisation. A continuous monitoring makes it possible to produce periodical comprehensive reports about the mechanical analysis of the structure, the strain stabilisation,... Periodical tests (each 10 years) are planned. They consist to submit the containment to an internal air pressure at the accidental pressure level. The monitoring system gives the strain values in order to check their linearity and reversibility with decreasing pressure. At the same time, the containment tightness is checked with a specific instrumentation to verify that leak rate is lower than the required level. A general view of instrumentation implemented on the containment (sensors, data acquisition), and a data analysis are presented

  9. Durability Properties of Self Compacting Concrete containing Fly ash, Lime powder and Metakaolin

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-01-01

    Full Text Available This paper investigates the durability properties of Self-compacting concrete (SCC, with different amounts of fly ash (FA, lime powder (LP and metakaolin (MK. A total of 6 mixes were prepared that have a constant water-binder ratio (w/b of 0.41 and superplasticizer dosage of 1% by weight of cement. In addition to compressive strength, the durability properties of SCC mixes were determined by means of Initial surface absorption test (ISAT and Capillary suction test. The test results indicated that the durability properties of the mixes appeared to be very dependent on the type and amount of the mineral admixture used; the mixes containing MK were found to have considerably higher permeability resistance. Good co-relation between strength and absorption were achieved.

  10. A study on the improvement of ISI methods for a prestressed concrete containment building

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choi, In Kil

    2001-12-01

    The ISI (In-Service Inspection) of a PCCV (Prestressed Concrete Containment Vessel) consists of the tendon ISI and the SIT (Structural Integrity Test) which evaluate the effective or residual prestress in the post-tensioned prestress system, and of the ILRT (Integrated Leakage Rate Test) which ensures the leak-tightness of a PCCV. The tendon system adopted in Korean PCCVs is either grouted or ungrouted one. The grouted tendon system was used in the Ulchin Unit 1 and 2 and the Wolsong Units 1-4, whereas the rest NPPs except Kori Unit 1 and 2 adopted an ungrouted tendon system. In this report, the issues were identified on the ISI of ungrouted tendon system and on the SIT of all the PCCVs. The ILRT issues are implicitly included in the SIT issues as the ILRT is performed in parallel with the SIT. Improvements were suggested on the issues identified after the analyses of the domestic and foreign experiences and researches.

  11. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography

    Science.gov (United States)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.

    2016-07-01

    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  12. Parametric Study on Important Variables of Aircraft Impact to Prestressed Concrete Containment Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sangshup; Hahm, Daegi; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, to find the damage parameter, it is necessary to use many analysis cases and the time reduction. Thus, this paper uses a revised version of Riera's method. Using this method, the response has been found a Prestressed Concrete Containments Vessels (PCCVs) subject to impact loading, and the results of the velocity and mass of the important parameters have been analyzed. To find the response of the PCCVs subjected to aircraft impact load, it is made that a variable forcing functions depending on the velocity and fuel in the paper. The velocity variation affects more than fuel percentage, and we expect that the severe damage of the PCCVs with the same material properties is subject to aircraft impact load (more than 200m/s and 70%)

  13. An international survey of in-service inspection experience with prestressed concrete pressure vessels and containments for nuclear reactors

    International Nuclear Information System (INIS)

    1982-04-01

    An international survey is presented of experience obtained from the in-service surveillance of prestressed concrete pressure vessels and containments for nuclear reactors. Some information on other prestressed concrete structures is also given. Experience has been gained during the working life of such structures in Western Europe and the USA over the years since 1967. For each country a summary is given of the nuclear programme, national standards and Codes of Practice, and the detailed in-service inspection programme. Reports are then given of the actual experience obtained from the inspection programme and the methods of measurement, examination and reporting employed in each country. A comprehensive bibliography of over 100 references is included. The appendices contain information on nuclear power stations which are operating, under construction or planned worldwide and which employ either prestressed concrete pressure vessels or containments. (U.K.)

  14. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  15. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  16. A new concept of precast concrete retaining wall: from laboratory model to the in-situ tests

    Science.gov (United States)

    Bui, T. T.; Tran, H. V.; Limam, A.; Bost, M.; Bui, Q. B.; Robit, P.

    2018-04-01

    A new concept for the soil nail walls is here proposed and validated through experimental and numerical approaches. This process, based on the use of precast elements that are easier to install, is cheaper and more aesthetic than the classical methods, but the main advantage is reducing the cement consumption which conducts to divided carbon footprint by three. In order to characterize the structural capacity of this new process, this article present an investigation on two in-situ representative walls, one in shotcrete which is the old way of construction, and the other, consisting the precast reinforced concrete slabs, which is the new process. We thus have a demonstrator on a real scale, and perfectly representative, since the constructive modes, as well as the mechanical, thermal, and hydric loadings are the real ones associated with the environment in situ. Substantial instrumentation has been realized over a long period (nearly 2 years), enabling to follow the evolution of the displacements of each wall and the efforts in the anchor nails. To determine the bearing capacity of the constituent element of the precast nail wall, an experimental study coupled with a numerical simulation has been conducted in the laboratory on a single precast slab. This study allows the evaluation of the load associated to crack initiation and the bearing capacity associated to the ultimate state, at the scale of the constituent elements. Finally, in order to evaluate the behaviour of the two concepts of nail walls in the case of extreme solicitation, a dynamic loading induced by an explosion has been conducted on the site.

  17. Vertical cut-off walls for the containment of contaminated ground

    International Nuclear Information System (INIS)

    Jessberger, H.L.; Krubasik, K.; Beine, R.A.

    1997-01-01

    Vertical cut-off walls are widely used for the containment of contaminated sites, where a capping system is not sufficient for the protection of groundwater. Various types of cut-off walls are introduced and new developments are prescribed. Design and testing principles are outlined. Containment techniques are the appropriate measure for old landfills and abandoned industrial sites with contaminated ground and groundwater, too, since the shortage of financial resources in many countries classifies clean-up techniques as too cost intensive in most cases

  18. Posttest analysis of the 1:6 scale reinforced concrete containment

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1989-01-01

    A prediction of the response of the Sandia National Laboratories 1:6-scale reinforced concrete containment model test was made by Argonne National Laboratory. ANL along with nine other organizations performed a detailed nonlinear response analysis of the 1:6-scale model containment subjected to overpressurization in the fall of 1986. The two-dimensional code Temp-Stress and the three-dimensional Neptune code were utilized to predict the global response of the structure, to identify global failure sites and the corresponding failure pressures, and to identify some local failure sites and pressure levels. A series of axisymmetric models was studied with the two-dimensional computer program Temp-Stress. The comparison of these pretest computations with test data from the containment model has provided a test for the capability of the respective finite element codes to predict global failure modes, and hence serves as a validation of these codes. The two-dimensional analyses are discussed in this paper

  19. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  20. Global weak solutions for coupled transport processes in concrete walls at high temperatures

    OpenAIRE

    Beneš, Michal; Štefan, Radek

    2012-01-01

    We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. T...

  1. BEHAVIOUR OF UNREINFORCED EXPANDED POLYSTYRENE LIGHTWEIGHT CONCRETE (EPS-LWC WALL PANEL ENHANCED WITH STEEL FIBRE

    Directory of Open Access Journals (Sweden)

    ROHANA MAMAT

    2015-12-01

    Full Text Available This study used steel fibre as reinforcement while enhancing the EPS-LWC strength. In line with architectural demand and ventilation requirement, opening within wall panel was also taken into account. Experimental tests were conducted for reinforced and unreinforced EPS-LWC wall panel. Two samples with size of 1500 mm (height x 1000 mm (length x 75 mm (thickness for each group of wall panel were prepared. Samples in each group had opening size of 600 mm (height x 400 mm (length located at 350 mm and 550 mm from upper end respectively. EPS-LWC wall panel had fcu of 20.87 N/mm2 and a density of 1900 kg/m3. The loading capacity, displacement profiles and crack pattern of each sample was analyzed and discussed. Unreinforced EPS-LWC enhanced with steel fibre resist almost similar loading as reinforced EPS-LWC wall panel. The presence of steel fibre as the only reinforcement creates higher lateral displacement. Wall panel experience shear failure at the side of opening. The number of micro cracks reduces significantly due to presence of steel fibre.

  2. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  4. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  5. Experimental investigation of the fatigue behaviour of asphalt concrete mixtures containing waste iron powder

    International Nuclear Information System (INIS)

    Arabani, M.; Mirabdolazimi, S.M.

    2011-01-01

    Research highlights: → This paper presents the first model of the fatigue behaviour of iron-asphalt mixtures in the world. → This model is able to describe the fatigue behaviour of iron-asphalt under dynamic loading. → Coarse surface, high stiffness and angularity of iron powder lead to enhanced fatigue performance. → The model illustrates that the use of iron powder has a considerable effect on tensile strain of HMA. → The use of this type of waste material could be a helpful solution for less polluted environment. - Abstract: The use of additives and admixtures in the construction of asphalt concrete pavements to strengthen them against dynamic loads has increased considerably in recent years. Recent research has shown that employing desirable waste materials in hot mix asphalts (HMAs) improves their dynamic properties noticeably. The study of some special cases, such as the addition of blast furnace slag and metallic materials of waste electronic instruments to HMA, has led to a considerable increase in the ability of HMAs to tolerate fatigue phenomena and repeated loading. Based on experimental studies, a model is proposed to describe the fatigue behaviour of asphalt mixtures containing waste iron powder. The results of this research show an important increase in the strength of asphalt mixtures containing waste iron powder against fatigue phenomena in comparison to conventional HMAs.

  6. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    International Nuclear Information System (INIS)

    KIm, Baek Joong; Yi, Chong Ku

    2017-01-01

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials

  7. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Baek Joong; Yi, Chong Ku [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-15

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

  8. Towards Early Age Characterisation of Eco-Concrete Containing Blast-Furnace Slag and Limestone Filler

    OpenAIRE

    Carette, Jerome

    2015-01-01

    It is estimated that concrete represents 5% of the anthropogenic CO2 emissions, mainly originating from the production of cement, the most essential component of concrete. The recent awareness to the environmental challenges facing our civilization has led the cement industry to consider substituting cement by mineral additions, by-products of existing industries. In this work, a combination of limestone filler and blast furnace slag is used to design an “eco-concrete”, defined as a concrete ...

  9. Application of the Hybrid Simulation Method for the Full-Scale Precast Reinforced Concrete Shear Wall Structure

    Directory of Open Access Journals (Sweden)

    Zaixian Chen

    2018-02-01

    Full Text Available The hybrid simulation (HS testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.

  10. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  11. Test of workability of concrete for PCCV

    International Nuclear Information System (INIS)

    Fujii, Tadayoshi; Nagase, Tetsuo; Yoshimori, Yoshinari

    1987-01-01

    The construction of the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. is the first case in Japan, and since the concrete having high strength and low slump is placed, the test of concrete placing by taking out a part of a full size test wall and the test of workability regarding the vibration compacting of concrete using a vibrator were carried out beforehand, and the results were reflected to the actual construction works. In this report, the workability test on the concrete is described. As difficulty is expected in the actual placing of the concrete having high strength and low slump, for the purpose of confirming the property of placing of the concrete in the cylindrical wall, and obtaining the basic data for the management of the actual concrete works and the quality control, the concrete placing test was carried out. At the time of concrete placing, the compacting of concrete is important, therefore, the basic data on the effect that the type, diameter, vibrating time and vibration propagation range of vibrators exert on the compacting of concrete were obtained, and reflected to the actual compacting. The purpose, testing method, results and the reflection to the actual works of these tests are reported. (Kako, I.)

  12. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Samani, Ali Khajeh; Ebrahiminezhad, Alireza; Ghasemi, Younes; Berenjian, Aydin

    2018-05-01

    Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its unique properties. However, it is susceptible to cracking under internal and external stresses. The generated cracks result in a significant reduction in the concrete lifespan and an increase in maintenance and repair costs. In recent years, the implementation of bacterial-based healing agent in the concrete matrix has emerged as one of the most promising approaches to address the concrete cracking issue. However, the bacterial cells need to be protected from the high pH content of concrete as well as the exerted shear forces during preparation and hardening stages. To address these issues, we propose the magnetic immobilization of bacteria with iron oxide nanoparticles (IONs). In the present study, the effect of the designed bio-agent on mechanical properties of concrete (compressive strength and drying shrinkage) is investigated. The results indicate that the addition of immobilized Bacillus species with IONs in concrete matrix contributes to increasing the compressive strength. Moreover, the precipitates in the bio-concrete specimen were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The characterization studies confirm that the precipitated crystals in bio-concrete specimen were CaCO 3 , while no precipitation was observed in the control sample.

  13. A study on the performance of concrete containing recycled aggregates and ceramic as materials replacement

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Anting, N.; Mazenan, P. N.

    2017-11-01

    Natural fine aggregate materials are commonly used in development and commercial construction in Malaysia. In fact, concrete production was increased as linear with the growing Malaysia economy. However, an issue was production of concrete was to locate adequate sources of natural fine aggregates. There lot of studies have been conducted in order to replace the fine aggregate in which natural fine aggregate replace with the waste material in concrete preparation. Therefore, this study aims to utilize the Recycled Concrete Aggregate (RCA) and ceramic waste which has great potential to replace the natural aggregate in concrete mix with different type of method, admixture, and parameters. This research were focused on compressive strength and water absorption test to determine the optimum mix ratio of concrete mix. The concrete aggregate was chosen due to improvement capillary bonding mechanisms and ceramic presented similar strength compared to the conventional concrete using natural aggregate. Percent of replacement have been used in this study was at 25%, 35% and 45% of the RCA and 5%, 10% and 15% for ceramic, respectively. Furthermore, this research was conduct to find the optimum percentage of aggregate replacement, using water-cement ratio of 0.55 with concrete grade 25/30. The best percentage of replacement was the RCA35% C15% with the compressive strength of 34.72 MPa and the water absorption was satisfied.

  14. Mechanical performance of porous concrete pavement containing nano black rice husk ash

    Science.gov (United States)

    Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan

    2018-01-01

    This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

  15. Technology Demonstration of Wet Abrasive Blasting for Removal of Lead- and Asbestos-Containing Paint

    National Research Council Canada - National Science Library

    Race, Timothy

    2003-01-01

    ...). This technology demonstration showed that wet blasting using an engineered abrasive can safely and effectively remove lead- and asbestos-containing paint from exterior concrete masonry unit walls...

  16. Uranium City radiation reduction program: further efforts at remedial measures for houses with block walls, concrete porosity test results, and intercomparison of Kuznetz method and Tsivoglau method

    International Nuclear Information System (INIS)

    Haubrich, E.; Leung, M.K.; Mackie, R.

    1980-01-01

    An attempt was made to reduce the levels of radon in a house in Uranium City by mechanically venting the plenums in the concrete block basement walls, with little success. A table compares the results obtained by measuring the radon WL using the Tsivoglau and the Kuznetz methods

  17. Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength

    Science.gov (United States)

    al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.

    2015-11-01

    A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.

  18. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus

    NARCIS (Netherlands)

    Chen, Yuxuan; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    Miscanthus Giganteus (i.e. Elephant Grass) is a cost-effective and extensively available ecological resource in many agricultural regions. This article aims at a fundamental research on a bio-based lightweight concrete using miscanthus as aggregate, i.e. miscanthus lightweight concrete (MLC), with

  19. Physical, mechanical and thermal properties of Crushed Sand Concrete containing Rubber Waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%. The physical (workability, fresh density, mechanical (compressive and flexural strength and thermal (thermal conductivity of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.

  20. Properties of concrete containing scrap-tire rubber--an overview.

    Science.gov (United States)

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.

  1. Viscoelastic and thermal behavior of structural concrete with reference to containment vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1981-01-01

    A method of numerical viscoelastic stress analysis is described suitable for concrete structures operating at elevated temperatures. The paper describes how approximate numerical methods of elastic analysis of the finite element type can be extended to incorporate the viscoelastic behavior of structural concrete of the quasi-static type. A new eight parameter viscoelastic model is proposed to represent concrete behavior in the loaded and unloaded stage. The deformational expressions for the proposed viscoelastic analogue are also developed. Finally, as a result of courve-fitting procedures, the evaluation of the creep law coefficients are obtained for creep laws appropriate to a test regime. The proposed method is of general application providing that the properties of concrete are assessed reasonably well. The analytical predictions are compared with experimental results obtained on concrete model specimens loaded for 3 1/2 months, at a temperature of 80 0 C. (author)

  2. Experimental research on the microstructure and compressive and tensile properties of nano-SiO2 concrete containing basalt fibers

    Directory of Open Access Journals (Sweden)

    Qinyong Ma

    2017-09-01

    Full Text Available Urban underground space resources are gaining increasing attention for the sustainable development of cities. Traditional concrete cannot meet the needs of underground construction. High-performance concrete was prepared using varying dosages of nano-SiO2 and basalt fiber, and its compressive and tensile strength was measured. The concrete microstructure was analyzed and used to assess the mechanisms through which the nano-SiO2 and basalt fibers affect the strength of concrete. The cement hydration productions in concrete produced varied with the dosage of nano-SiO2. When the nano-SiO2 dosage was between 0 and 1.8%, the mass of the C-S-H gel and AFt crystals increased gradually with the nano-SiO2 dosage. When the nano-SiO2 dosage was 1.2%, optimum amounts of C-S-H gel and AFt crystals existed, and the compactness of concrete was well, which agreed with the results of the compressive strength tests. When the basalt-fiber dosage was between 3 and 4 kg/m3, the basalt fibers and the cement matrix were closely bonded, and the splitting tensile strength of the concrete markedly improved. When the basalt-fiber dosage exceeded 5 kg/m3, the basalt fibers clustered together, resulting in weak bonding between the basalt fibers and the cement matrix, consequently, the basalt fibers were easily pulled apart from the cement. When the nano-SiO2 and basalt fiber dosages were 1.2% and 3 kg/m3, respectively, the compactness of the concrete microstructure was well and the strength enhancement was the greatest; additionally, the compressive strength and splitting tensile strength were 9.04% and 17.42%, respectively, greater than those of plain concrete. The macroscopic tests on the mechanical properties of the nano-SiO2 concrete containing basalt fibers agreed well with the results of microstructure analysis.

  3. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  4. Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

    OpenAIRE

    J. Witzany; T. Čejka; R. Zigler

    2011-01-01

    With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising lo...

  5. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  6. Formulation and characterization of structural lightweight concrete containing residues of porcelain tile polishing, tire rubber and limestone

    Directory of Open Access Journals (Sweden)

    Z. L. M. Sampaio

    Full Text Available Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³. Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.

  7. Computational fluid dynamics validation study of steam condensation on the containment walls

    International Nuclear Information System (INIS)

    Gera, B.; Sharma, P.K.; Singh, R.K.; Vaze, K.K.

    2012-01-01

    In water cooled power reactors, significant quantities of hydrogen could be produced following a severe accident (loss-of-coolant-accident along with non availability of emergency core cooling system). A sound understanding of dispersion, stratification and diffusion of released hydrogen during severe accidents is, therefore, of practical importance and use to better understand the possibility of ignition, combustion and explosion of such releases within the context of containment safety. The presence of air and steam in the containment atmosphere also affects the hydrogen distribution as steam condensation takes place at containment walls in presence of non condensable and bulk of the mixture diffuses towards wall. The application of general purpose CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing over past few years. The commercial CFD codes generally do not have built-in steam condensations models. In the present work, the