WorldWideScience

Sample records for concise biogas plant

  1. A concise biogas plant construction suitable for Ghana and other tropical countries

    Energy Technology Data Exchange (ETDEWEB)

    Gbagbo, J.K.N.

    1997-04-01

    This report is intended to be used by people in the field of biogas for workshops, technicians, teachers to educate as well as to carry out hands on constructions in Ghana and other tropical countries. Chapter 1, discusses the biogas technology, what a biogas plant is, and how it functions. Chapter 2, describes the entire process. Chapter 3, discusses the necessary conditions for fermentation. Chapter 4, the measuring parameters for monitoring the system. Chapter 5, describes the various types of biogas plants suitable for tropical countries. Chapter 6, describes a planning guide for Ghana and other tropical countries. Chapter 7, discusses digester sizing and finally, Chapter 8, describes a concise biogas plant construction suitable for the rural areas of Ghana and other tropical countries. (au)

  2. Janata biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, S; Singh, K K

    1980-03-01

    The Janata biogas plant is based on the use of local materials and locally available skills only. It is a proven technology at low cost and easy maintenance which should facilitate its extension at a much faster pace especially among the low income groups. This technology is important at this time because of the current crisis in the availability of firewood and mineral fuels. This handbook explains in non-technical language the basic features, design, and construction of this biogas plant. (DC)

  3. Biogas plants; Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the KRdL expert meeting at 30th October, 2012 in Bonn (Federal Republic of Germany), the following lectures were held: (1) New requirements on biomass conversion plants based on the Federal Nuisance Control Ordinance (Hans-Peter Ewens); (2) State of the art of the operation of biomass conversion plants (Christina Dornack); (3) Implementation of the regulation VDI 3475 sheet 4 (Markus Helm); (4) Handling of constraints of residents in the licensing procedure as well as during operation (Helmar Hentschke); (5) Explosion protection for biomass conversion plants considering the matters of immission control (Michael Faber); (6) Microbiological and epidemic-hygienic aspects of agricultural biomass conversion plants and their fermentation residues (Werner Philipp); (7) Emissions of climatic relevant gases at the biogas production (Jacqueline Daniel-Gromke); (8) State of the art in the biogas processing (Joachim Krassowski).

  4. Collective biogas plants

    International Nuclear Information System (INIS)

    1992-01-01

    Papers contributed to the European seminar on collective biogas plants held at Herning, Denmark on October 22-23 under the auspices of the Commission of the European Communities, Directorate-General for Energy (DG XVII) are presented. Within the framework of the THERMIE programme, a network of OPETs (Organizations for the Promotion of Energy Technologies) was set up in order to disseminate information on new energy technologies throughout the European communities. The potential for further implementation of centralized capacity for the conversion of animal manures and other organic wastes to bio-fuels, not only in central and eastern Europe but also in the developing countries, is discussed in addition to the relevant technologies. Actual biomass conversion plants are described and details are given on operational experience and plant management. Agricultural, economic and policy aspects are also dealt with. (AB)

  5. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  6. Biogas plant control system

    International Nuclear Information System (INIS)

    Balasevicius, L.; Dervinis, G.; Macerauskas, V.

    2002-01-01

    This paper presents intelligent control system for the pig farm biogas production process. The system uses a fuzzy logic models based on knowledge of experts and operators. Four fuzzy models are introduced. The adequacy of fuzzy models is verified using real data and MATLAB simulation. Proposed expert system is implemented into traditional SCADA system for biogas process prediction and failure analyzing. (authors)

  7. Analysis of biogas transformation in experimental biogas plant

    Directory of Open Access Journals (Sweden)

    Eva Jelínková

    2011-01-01

    Full Text Available The topic of this paper is the analysis of anaerobic fermentation in an experimental biogas plant. Technological processes and operation parameters were monitored; these processes and parameters include, for example, the optimal structure of the input material and the consideration of the prolonging of the duration of the fermentation process. The goal of prolonging the fermentation process is to obtain higher biogas (and methane production and to decrease the fermentation residue effluvial emissions. Emphasis is also laid on the mutual co-fermentation of substrates with regard to further use of the results in solving technological problems in other biogas plants. This technological process was first monitored in 2009; that is, before the planned intensification and modernization of the experimental biogas plant. Thus, the evaluation of the process could become part of the planned intensification and modernization of the chosen biogas plant (extended by the addition of the second stage of methanogenesis. The results obtained from the experimental biogas plant, which is one of the pioneering biogas plants in the Czech Republic, may serve, to other biogas operators, as a base for the preparation of suitable input, and for improving the efficiency of anaerobic fermentation within their biogas plants. The goal of the improvement of the fermentation process is to fulfill the ecological aspects; that is, to cut down CO2 emissions and to reduce the negative impact of the fermentation process on the environment (reduction of effluvium and noise originating in biogas plants.

  8. Monitoring of biogas test plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Esbensen, Kim H.

    2011-01-01

    realistic bioreactor scales, it is necessary to obtain a fairly constant level of volatile fatty acid (VFA) concentration, which furthers a stable biogas production. Uncontrolled VFA contents have a significant negative impact on biogas production; VFA concentrations should not exceed 5–6000 mg/L lest......Most studies reported in the literature have investigated near infrared spectroscopy (NIR) in laboratory-scale or minor pilot biogas plants only; practically no other studies have examined the potential for meso-scale/full-scale on-line process monitoring. The focus of this study is on a meso......-scale biogas test plant implementation of process analytical technologies (PAT) to develop multivariate calibration/prediction models for anaerobic digestion (AD) processes. A 150 L bioreactor was fitted with a recurrent loop at which NIR spectroscopy and attendant reference sampling were carried out. In all...

  9. Biogas plants in the Swiss agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A

    1985-01-01

    Description of the systems of Swiss biogas plants, gas production rates and the use of the gas for heating the biogas digesters and apartments, for agriculture, cheese factories, and for the production of electricity.

  10. Planning for Biogas Plant in Denmark

    DEFF Research Database (Denmark)

    Landt, Cristina C.; Gaarsmand, Regin; Palsberg, Aske

    2016-01-01

    This article is about establishing biogas in Denmark in the region of Zealand, the challenges that are related to this establishment and how to overcome this challenges. The article highlights three reasons for these challenges: 1) Regulation, 2) The municipal planning and 3) Involved various...... stakeholders. It investigates how these challenges affected the process and were overcome in the establishment of Solrod Biogas. In terms of ownership and biomass input, this biogas plant is unique compared to other Danish biogas plants. The biogas plant is based on organic by-products from local industries...... and seaweed. The plant solves an essential environmental issue for the municipality and citizens who were affected by the smell of rotten seaweed washed up in Koge Bay. The seaweed is used as input; this solves several problems at the same time. The method used to establish Solrod Biogas was an integrated...

  11. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    OpenAIRE

    Joanna Kazimierowicz

    2014-01-01

    Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  12. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  13. Optimized construction of biogas plants; Optimierte Bauweise fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Within the conference of the International Trade Fair for Biogas Plant Technology at 21st February, 2012 in Berlin, the following lectures were held: (1) Optimized dimensions of containers for small systems of liquid manure (Manfred Thalmann); (2) Microferm mini biogas plants (Bart Brouwer); (3) Fermentation of stackable biomass in rural biogas plant - The DeNaBa system (Christian Deterding); (4) The Sauter Biogas System for the fermentation of liquid manure, solid dung, and other residual materials (Stefan Sauter); (5) Bio-electricity: Controllable power generation by means of biogas plants (Matthias Sonnleitner); (6) Reduction of the effort and increase of the yield using UDR fixed bed technology (Alfred van den Berg); (7) Prestressed concrete container for biogas plants: Area of application - quality - options (Harald Feldmann); (8) Corrosion protection of agricultural and communal biogas plants (Michael Normann); (9) Fundamentals of efficient and effective flow generation in biogas plants (Kay Rotalski); (10) Rotary piston screw pistons and eccentric screw pumps (Thorsten Gilles).

  14. CONSIDERATIONS OVER A BIOGAS PLANT COMPONENTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2014-04-01

    Full Text Available This paper starts from the conviction that one of the main environmental problems of today’s society is the continuously increasing production of organic wastes. In many countries, sustainable waste management have become major political priorities in order to reduce pollution and greenhouse gas emissions and to avoid, as much as possible, global climate changes. This problem becomes more and more present in our country too. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes, converts these substrates into renewable energy and offers a natural fertiliser for agriculture. That is why we consider that biogas plants will be more and more used in the future. In this paper we show the different stages which must be operated in a biogas plant and the problems which can be met in each of them.

  15. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.

    2006-01-01

    industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas......The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  16. Biogas cooperation for cogeneration plants; Biogaskooperation fuer Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Deeg, Thomas [Stadtwerke Schwaebisch Hall GmbH, Schwaebisch Hall (Germany)

    2011-03-15

    Since autumn 2010, via a 7 kilometre long biogas conduit an agricultural biogas plant supplies a cogeneration plant in the residential area Teurershof in Schwaebisch Hall. This enables a conversion of biogas with the highest possible efficiency in thermal energy and electricity. This is due to the attachment of the cogeneration plant in Teurershof to the district heating grid of the city Schwaebisch Hall so that the developing thermal energy completely can be used.

  17. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Residual biogas yield of digestate from agricultural biogas plants; Restgaspotenzial in Gaerresten aus landwirtschaftlichen Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Andreas; Effenberger, Mathias; Kissel, Rainer; Gronauer, Andreas [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Arbeitsgruppe Biogastechnologie und Reststoffmanagement

    2009-07-01

    To evaluate the residual biogas yield during storage, biogas tests at a temperature of 22 C were performed with samples of liquid digested residue from 15 agricultural biogas plants (BGP). Values of residual biogas yield between 0.3 and 1.3 % with respect to the biogas yield from the raw input materials were measured. For the two one-stage BGP, the value was about 1.2 %. For the two-stage plants, a residual biogas yield (RBY) of 0.9 % was determined as opposed to 0.4 % for the three-stage plants. With a single exception, the RBY was clearly below 1.0 % if the overall hydraulic retention time in the BGP was equal to or larger than 100 days. For the majority of samples, the residual biogas yield showed a positive correlation with the level of volatile fatty acids in the digestate. Since the real conditions in storage tanks cannot be simulated with a simple batch-test, the results are not representative for the actual biogas production and potential methane emissions from the digestate during open storage. (orig.)

  19. Biogas plants: Design, construction and operation

    International Nuclear Information System (INIS)

    2001-01-01

    At the big readiness of waste coming from the agricultural activities are looked for the production of Energy and Payments, the biogas like product of the organic decomposition under anaerobic conditions, their composition and characteristic. The elements that conform the design as the digester, the storage, the load tanks and it discharges and the conduction is described and analyzed. They are given a series of elements to obtain the characteristics of the system possible to place as: planning, calculations, evaluation, execution and operation. Lastly the steps are indicated that should be continued in the construction of the plant including planning for the work

  20. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Agnes; Jerome, Valerie; Freitag, Ruth [Bayreuth Univ. (Germany). Chair for Process Biotechnology; Burghardt, Diana; Likke, Likke; Peiffer, Stefan [Bayreuth Univ. (Germany). Dept. of Hydrology; Hofstetter, Eugen M. [RVT Process Equipment GmbH, Steinwiesen (Germany); Gabler, Ralf [BKW Biokraftwerke Fuerstenwalde GmbH, Fuerstenwalde (Germany)

    2009-10-15

    A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H{sub 2} and CO{sub 2} produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of varied amounts of ammonia (2-8 g/L) and volatile fatty acids on biogas production and composition (methane/CO{sub 2}), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. (orig.)

  1. Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants.

    Science.gov (United States)

    Reinelt, Torsten; Liebetrau, Jan; Nelles, Michael

    2016-10-01

    The study presents the development of a method for the long term monitoring of methane emissions from pressure relief valves (PRV(1)) of biogas storages, which has been verified during test series at two PRVs of two agricultural biogas plants located in Germany. The determined methane emission factors are 0.12gCH4kWhel(-1) (0.06% CH4-loss, within 106days, 161 triggering events, winter season) from biogas plant A and 6.80/7.44gCH4kWhel(-1) (3.60/3.88% CH4-loss, within 66days, 452 triggering events, summer season) from biogas plant B. Besides the operational state of the biogas plant (e.g. malfunction of the combined heat and power unit), the mode of operation of the biogas flare, which can be manually or automatically operated as well as the atmospheric conditions (e.g. drop of the atmospheric pressure) can also affect the biogas emission from PRVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N 2 O from the fertilized soil is dependent on the soil type and spreading technology.

  3. Microbiologic handbook for biogas plants; Mikrobiologisk handbok foer biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Aasa; Schnuerer, Anna

    2009-05-15

    There is today great interest in the biogas process. The reason for interest is that this process offers an opportunity to stabilize and reduce various types of organic waste, while also generating clean renewable energy in the form of biogas. Purified biogas is a good alternative to gasoline and diesel as motor fuel and can also be used for heating and electricity production. Behind efficient biogas production lies a complex microbiological process. For biogas to be formed many different species of microorganisms have to be active. A disturbance of this teamwork leads to a reduction in biogas production or in the worst case that the process stops. In order to operate a biogas process in an efficient manner, it is necessary to have knowledge of the underlying microbiology and how microorganisms function. Today Swedish biogas plants have personnel with great technical knowledge, while the biological knowledge often is more limited. It has been difficult to find appropriate Swedish language literature in the field. This handbook aims to increase the microbiological expertise of staff at the biogas plants and thus to facilitate the stable operation and optimization of gas production

  4. Precision control of biogas plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, Anders M.; Ward, A.J.

    2009-10-15

    The objective of the project has been to improve design and process stability in biogas plants. The results can be divided within the following main categories: 1) Pre-treatment, serial coupling of digesters and post digestion 2) Process inhibition 3) Process control Ad 1) This work has shown that extreme thermophilic pre-treatment of cattle manure and pig manure mixed with silage has a considerable effect on methane yield in a subsequent methanogenic reactor. Ad 2) The effect of ammonia inhibition was studied in a series of continuously stirred tank reactors co-digesting pig manure (40%) with the addition of solid fractions (60%) and increasing concentrations of ammonia caused by addition of NH{sub 4}Cl pulses. Ad 3) Near infrared spectroscopy (NIRS) was used to predict liquid phase volatile fatty acid (VFA) concentrations in three experiments treating three different materials: pig slurry with maize silage, chicken manure and cattle slurry.

  5. Shutdown of biogas plant by court ruling; Runterfahren

    Energy Technology Data Exchange (ETDEWEB)

    Bensmann, Martin; May, Hanne

    2009-04-15

    A decision of the Federal Constitutional Court will have disastrous consequences for the world's biggest biogas plant at Penkun, Germany. Many thousands of investors will be involved as well. (orig.)

  6. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  7. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  8. Development, Operation, and Future Prospects for Implementing Biogas Plants

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    2014-01-01

    technology are emphasized: its capacity as a renewable energy and GHG-avoiding technology, and as a waste processing and environmental technology. It is argued that biogas can provide a future platform for the use of household waste and other types of organic materials (gas boosters) to enhance gas yield......, as is the case of biomass from nature conservation, straw, deep litter, etc. Further, the chapter discusses whether or not biogas technology can create new job opportunities in rural areas that lack development. Economic results from operating centralized biogas plants in Denmark now also stress the importance...

  9. Local acceptance of existing biogas plants in Switzerland

    International Nuclear Information System (INIS)

    Soland, Martin; Steimer, Nora; Walter, Götz

    2013-01-01

    After the Swiss government's decision to decommission its five nuclear power plants by 2035, energy production from wind, biomass, biogas and photovoltaic is expected to increase significantly. Due to its many aspects of a direct democracy, high levels of public acceptance are necessary if a substantial increase in new renewable energy power plants is to be achieved in Switzerland. A survey of 502 citizens living near 19 biogas plants was conducted as the basis for using structural equation modeling to measure the effects of perceived benefits, perceived costs, trust towards the plant operator, perceived smell, information received and participation options on citizens’ acceptance of “their” biogas plant. Results show that local acceptance towards existing biogas power plants is relatively high in Switzerland. Perceived benefits and costs as well as trust towards the plant operator are highly correlated and have a significant effect on local acceptance. While smell perception and information received had a significant effect on local acceptance as well, no such effect was found for participation options. Reasons for the non-impact of participation options on local acceptance are discussed, and pathways for future research are presented. - Highlights: • Acceptance of biogas plants by local residents in Switzerland is relatively high. • Local acceptance is highly affected by perceived outcomes and citizens’ trust. • Smell perception increases perceived costs and reduces perceived benefits and trust. • Information offers reduce perceived costs and increase trust and perceived benefits. • Participation offers do not have any effect on local acceptance

  10. Production of biogas from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Zuer, J.

    1980-12-01

    Different crop residues from agriculture and horticulture were investigated for feasibility of producing biogas. The anaerobic fermentation has been performed in batch system fermentation reactors (5 liters) at mesophilic conditions (35 degrees C). Content of volatile solids (VS/TS) in raw materials varied from 78.5 percent in silage from top of sugar beet to 97.3 percent in straw of rye. The highest content of lignin was found in stalks of Jerusalem artichoke (49.6 percent), stalks of horse bean (47.6 percent) and the lowest in leaves of cauliflower (9.5 percent), top of sugar beet and leaves of cabbage (11 percent) in both. Ratio of carbon to nitrogen was the highest in the straw of rye (60) and the lowest in silage from top of sugar beet (11) and in leaves of cauliflower (11). Rate of biogas production during the first 13 days of fermentation was about 27 liters per kg TS per day, achieved from top of sugar beet. Typical mean rate of biogas production, about 9 liters per kg TS per day, was performed during the first 40 days of retention time from straw of wheat and stalks of rape. Top of sugar beet and manure slurry have had the shortest effective retention time ca 20 days. Maximum total yield of biogas (427.0 liters per kg TS) was achieved from top of sugar beet. From manure slurry 257.5 liters biogas per kg TS was obtained. Methane content in biogas produced during the final 7 days of retention time was the highest from silage from top of artichoke (72.8 percent), stalks of horse bean (71.6 percent) and straw of wheat (71.0 percent). The lowest percentage of methane (59.0 percent) was found in biogas from top of sugar beet.

  11. Logistics around the biogas plant; Logistik rund um die Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Michaela; Brunotte, Joachim; Demmel, Markus [and others

    2013-06-01

    In 2011, plants for biogas plants were grown on an area of 800,000 hectares in Germany. In addition to the classic single-phase harvesting method, several process variants have been developed. This is also true for the output of fermentation residues from biogas plants. The book under consideration provides background information on the process evaluation: from the legal framework conditions through the vehicle technology, route structure, soil conservation, social acceptance, quality assurance, labor economics and economics, climate impact up to the information technology.

  12. Production of liquid biogas at the biowaste treatment plant Amtzell; Gewinnung von fluessigem Biogas an der Bioabfallbehandlungsanlage Amtzell

    Energy Technology Data Exchange (ETDEWEB)

    Bojahr, Armin [Gesellschaft fuer Umwelttechnik Bojahr mbH und Co. KG, Berg (Germany)

    2013-10-01

    The fermentation plant in Amtzell will be extended to increase the throughput of bio waste. In this context an extension of the gas utilization plant is also required. The produced biogas will be partly transferred to the existing combined heat and power plant. The remaining part of biogas will be used in an proposed GPP-Plus {sup registered} --plant to produce liquid bio methane (LBG). In the LBG gaining process the raw biogas will have to be dried in several steps, de-sulphured, compressed and cooled. Following this process and due to different physical characteristics of the ingredients, the contaminants will be removed from the biogas and the main ingredients, carbon dioxide and methane, separated from each other. Carbon dioxide as well as the methane are then available in liquid form and can be put onto the market. This method of using biogas can utilize almost 100% of its energy potential. (orig.)

  13. Monitoring of biogas plants - experiences in laboratory and full scale

    Directory of Open Access Journals (Sweden)

    B. Habermann

    2015-04-01

    Full Text Available To control and regulate the biogas process there are online process parameters and offline process parameters, which basically don’t differ between pilot biogas plants and industrial biogas plants. Generally, temperature, pH-value, volume flow rate and sometimes redox potential are measured online. An online-measurement of the dissolved volatile fatty acids and an online-detection of dissolved hydrogen both directly in the liquid phase as well as near-infrared spectroscopy are under development. FOS/TAC-analysis is the most common offline-analysis of the biogas process and normally it is carried out by the plant operator directly at the biogas plant. For example dry matter, organic dry matter, nitrogen and fatty acids are other analyses, which are carried out but by a laboratory. Microbiological analyses of biogas plants are very expensive and time-consuming and are therefore in Germany very rare. Microbiological analyses are mainly for research purposes. For example the Fluorescence in situ Hybridiation (FISH is used for characterization of the populations. Electric-optical measurement should be established as a new method to investigate the vitality of the methane producing microorganisms. In a cooperation project, which is promoted by the German ministry for technology, between IASP and Chair of Bioprocess Engineering at TU Berlin, this method is proper investigated using a device from the firm EloSystems. The microorganisms are brought in an electrical field of different frequencies. In this field the microorganisms direct themselves differently according to their physiological state. At the end of this project an early detection of process disturbance will be possible with the help of this method. In this presentation the result of the first tests are presented.

  14. Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants

    Directory of Open Access Journals (Sweden)

    Emma Lindkvist

    2017-11-01

    Full Text Available Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1 sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning, (2 unit processes (e.g., heating, mixing, pumping, lighting and (3 a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  15. LED-Absorption-QEPAS Sensor for Biogas Plants

    Science.gov (United States)

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  16. LED-Absorption-QEPAS Sensor for Biogas Plants

    Directory of Open Access Journals (Sweden)

    Michael Köhring

    2015-05-01

    Full Text Available A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors.

  17. Cooperative biogas plants. Economic results and analyses. Status report 1998

    International Nuclear Information System (INIS)

    Hjort-Gregersen, K.

    1998-11-01

    The years 1995 - 1998 have been characterised by stabilisation of operation and economy of the Danish co-operative biogas plants. Most of the plants have obtained increasingly better economic results although the increase has been less significant than during earlier periods. There are several reasons for the increase. Most of the plants have been able to increase the sales income because of larger amounts of biomass available resulting in an increased biogas production. Furthermore it has been possible to contain the income level for biomass receipt. Several plants have established gas collection in storage tanks, which has resulted in increased gas yield. The operational stability related to both technique and processes have improved. The operational costs have been stabilised and are under control at most of the plants. The improved economic results have resulted in most of the plants having a satisfactory operation and economy. However, it must be stressed that some of the oldest plants have not been able to settle the investment dept at normal conditions. Also some, even rather new plants, still are in a difficult economic situation. Most of the plants established in the 90'ies have had a good start both operationally and economically. Thus the economic risk of establishing a plant has been reduced compared to earlier years. Generally the prerequisites for establishing a biogas plant are favourable economic conditions and quality assurance of the project. (LN)

  18. CONSIDERATIONS OVER A BIOGAS PLANT COMPONENTS

    OpenAIRE

    Mariana DUMITRU

    2014-01-01

    This paper starts from the conviction that one of the main environmental problems of today’s society is the continuously increasing production of organic wastes. In many countries, sustainable waste management have become major political priorities in order to reduce pollution and greenhouse gas emissions and to avoid, as much as possible, global climate changes. This problem becomes more and more present in our country too. Production of biogas through anaerobic digestion of animal manure an...

  19. biogas

    DEFF Research Database (Denmark)

    2015-01-01

    Functions for working with biogas data. Both low- and high-level functions are included for carrying out common tasks for analysis of biogas and related data. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water...... vapor and to (possibly user-defined) standard temperature and pressure. Gas composition, cumulative production, or other variables can be interpolated to a specified time. Cumulative biogas and methane production (and rates) can be calculated using volumetric, manometric, or gravimetric methods for any...... be summarized in several different ways (e.g., omitting normalization) using the same function. Lastly, biogas and methane production can be predicted from substrate composition and additional, optional data....

  20. Valorisation of organic wastes: little biogas plant will grow big

    International Nuclear Information System (INIS)

    Richard, Aude; Talpin, Juliette; Tuille, Frederic; Courtel, Julien

    2016-01-01

    This set of articles first proposes a description of the operation principle of biogas production from the recovery of organic wastes from various origins to their processing to produce biogas and use this bio gas for fuel production or energy co-generation. It addresses the present situation in France where the publication of a new electricity purchase support mechanism is expected and will help reaching ambitious objectives defined in the French multi-year energy planning. The number of projects and the level of supports are indeed increasing. A third article presents an example of biogas production in a farm in Normandy, and outlines that this production is profitable. The next article evokes an Ademe's study which is to be published, which addresses returns on experience from small biogas production units (less than 75 kW), identifies that the liquid process gives a lower kWe cost than the dry process, and outlines the positive influence of new electricity purchase tariffs. An article outlines the role of cooperatives in the emergence of farm biogas production. Issues to be addressed and assessed before launching a project are evoked in an interview. An article then gives an historical overview of the development of waste-based biogas production in France since the 1970's: it was first considered only as a waste processing way, and became a mean for energy production. The types of installations and their share in heat production are indicated. The evolutions (in terms of number and of production) of farm-based installations, of centralised installation, of installations of processing domestic wastes, of industrial installations, of urban water treatment plants are indicated and commented. Finally, the Sinoe database is presented: it contains information about all biogas production installations in France

  1. The success of biogas plants in Nepal: a note on gender

    NARCIS (Netherlands)

    Opdam, J.H.M.

    1997-01-01

    This article describes a successful programme to disseminate biogas plants in Nepal, and summarises the findings of various studies on the impact of the biogas technology on the quality of life of women.

  2. Biogas and mineral fertiliser production from plant residues of phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Thi Thu Ha

    2011-07-01

    The former uranium mining site in Ronneburg, Thuringia, Germany was known as a big source of uranium with more than 113,000 tons of uranium mined from 1946 to 1990. This area has been remediated since the nineties of the last century. However, nowadays the site in Ronneburg is still specially considered because of the heterogeneous contamination by many heavy metals and the vegetation can be affected. Three plant species including Indian mustard - Brassica juncea L., triticale - x. Triticosecale Wittmaek and sunflower - Helianthus annuus L. were seeded as accumulators of heavy metals and radionuclides in the phytoremediation process in 2009 and 2010 in Ronneburg. The subsequent utilization of the plant residues after phytoremediation is of special consideration. Batch fermentation of harvested plant materials under the mesophilic condition showed that all of the investigated plant materials had much higher biogas production than liquid cow manure except triticale root, of which biogas yield per volatile solid was not significantly higher than the one of sludge. The highest biogas yields (311 L{sub N}/kg FM and 807 L{sub N}/kg VS) were achieved from the spica of triticale after 42 days of retention of anaerobic digestion. Triticale shoot residues generated higher biogas and methane yields than the previously reported triticale materials that were harvested from the uncontaminated soil Triticale was considered as the highest potential species in biogas production, beside the best growth ability on the acidic soil at the test field site with highest biomass production. Biogas yield of Indian mustard shoot was also high but dramatically varied from 2009 to 2010. Digestates after anaerobic digestion of plant residues contained various macronutrients such as nitrogen, potassium, phosphorus and sulphur, and various micronutrients such as iron, manganes, zinc, etc. The accumulation levels of heavy metals in the investigated plant materials were not the hindrance factors

  3. Analytical investigation of the thermal optimization of biogas plants

    International Nuclear Information System (INIS)

    Knauer, Thomas; Scholwin, Frank; Nelles, Michael

    2015-01-01

    The economic efficiency of biogas plants is more difficult to display with recent legal regulations than with bonus tariff systems of previous EEG amendments. To enhance efficiency there are different options, often linked with further investments. Direct technical innovations with fast economic yields need exact evaluation of limiting conditions. Within this article the heat sector of agricultural biogas plants is studied. So far scarcely considered, especially the improvement of on-site thermal energy consumption promises a high optimisation. Data basis are feeding protocols and temperature measurements of input substrates, biogas, environment etc., also documentations of on-site thermal consumption over 10 years. Analyzing first results of measurements and primary equilibrations shows, that maintenance of biogas process temperature consumes most thermal energy and therefore has the greatest potential of improvement. Passive and active insulation of feed systems and heat recovery from secondary fermenter liquids are identified as first optimization measures. Depending on amount and temperature raise of input substrates, saving potentials of more than hundred megawatt hours per year were calculated.

  4. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems

    International Nuclear Information System (INIS)

    Hahn, Henning

    2016-01-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh -1 and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh -1 . While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO 2-eq MJ -1 and primary energy by about 1.17 MJ MJ -1 . In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  5. Enhancing identified circular economic benefits related to the deployment off Solrød biogas plant

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    MacArthur Foundation, the paper analysis three areas being; 1) Biogas production, 2) Nitrogen, Phosphor & GHG, 3) Re-cycle/cascade materials, and consequently elaborate on the environmental benefits obtained, as far as CO2 emission reductions from biogas production substituting fossil fuels, improved......This paper investigates how experiences from the deployment of Solrød biogas plant in Denmark - a large scale centralized biogas plant - can assist future biogas technologies in achieving Circular Economic benefits. Departing from a theoretical understanding of Circular Economy provided by Ellen...... Biogas, this paper further proposes to include the following activities when planning for future biogas plants: Waste-stream identification and coupling in the local community; Measuring the value of digestate as fertilizer; Short distance to farmers delivering manure; and Plant design according to local...

  6. The contribution of Slovenian biogas plants to the reduction of agricultural sector green house emissions

    Directory of Open Access Journals (Sweden)

    Romana MARINŠEK LOGAR

    2015-12-01

    Full Text Available Agriculture is a source of emissions of the greenhouse gas methane into the environment. These emissions can be reduced by appropriate storage of animal slurry and manure, with proper fertilization and processing of organic agricultural waste into biogas, where methane is captured and used as an energy source. Biogas is a renewable source of energy that is produced by microbial anaerobic digestion in biogas plants. As a substrate in biogas plants using different types of organic biomass such as animal manure and slurry, crop residues, spoilt silage, waste from food processing industry and biodegradable industrial and municipal waste. Biogas can be used to produce heat and electricity or purified to biomethane as a fuel for vehicles. Digestate can be used as a high-quality fertilizer. Biogas as a renewable energy source represents a replacement for fossil fuels, thus reducing greenhouse gas emissions from fossil sources. The system of financial supports for electricity produced from biogas is applied in Slovenia. There were 24 operating biogas plants in Slovenia in year 2014. Slovenian biogas plants currently produce the majority of biogas from energy crops. As only the minority of biogas is produced from animal excrements we will primarily support the development of agricultural microbiogas plants that will use animal excrements and organic waste biomass from agri-food sector as substrates.

  7. Biogas plants in Denmark : successes and setbacks

    NARCIS (Netherlands)

    Raven, R.P.J.M.; Gregersen, K.H.

    2007-01-01

    With 20 centralised plants and over 35 farmscale plants, the digestion of manure and organic waste is a well established technological practice in Denmark. These plants did not emerge without a struggle. Moreover, no new centralised plants have been established since 1998 and the development of

  8. Hygiene and sanitation requirements in Danish biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Bendixen, H J

    1997-08-01

    According to Danish regulations, systematic pathogen reducing treatment is required, when industrial by-products and waste products, and urban waste, ie garbage from households and sewage sludge, are processed, before being used - without restrictions - as fertilizers on agricultural land. An adequate pathogen reducing effect (PRE) can be achieved in the digestion tanks and sanitation tanks of the biogas plants, provided they are operated correctly and respect the criteria of the official requirements. The FS-method is a microbiological indicator method based on faecal streptococci (enterococci) (FS). It may be used to check the sanitation effect achieved by the treatment in a tank. The effect is expressed numerically by the log{sub 10}-reduction of the numbers of FS measured in the biomass before and after treatment. The PRE was examined in 10 large-scale biogas plants during a period of 2-3 years. It was demonstrated that properly directed and well-functioning thermophilic digestion tanks ensure the removal of most pathogenic microorganisms from organic waste and slurry. The removal of pathogens by the treatment in mesophilic digestion tanks is incomplete. Systematic studies of the processes of inactivation of bacteria and virus in slurry and in animal tissues gave evidence that the PRE is enhanced in the microbiological environment of thermophilic digestion tanks. The sanitation criteria, ie combinations of temperature/time, for the processing of biomass in digestion tanks and sanitation tanks in biogas plants are specified. (au) 19 refs.

  9. Studies in biogas technology. Part 4. A noval biogas plant incorporating a solar water-heater and solar still

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A K.N. [Indian Inst. of Science, Bangalore; Prasad, C R; Sathyanarayan, S R.C.; Rajabapaiah, P

    1979-09-01

    A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for hot-charging of the biogas plant. To test whether the advantages indicated by a thermal analysis can be realized in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top water-heater. The operation of such a modified plant, even under worst case conditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.

  10. State-of-the-art of large scale biogas plants

    International Nuclear Information System (INIS)

    Prisum, J.M.; Noergaard, P.

    1992-01-01

    A survey of the technological state of large scale biogas plants in Europe treating manure is given. 83 plants are in operation at present. Of these, 16 are centralised digestion plants. Transport costs at centralised digestion plants amounts to between 25 and 40 percent of the total operational costs. Various transport equipment is used. Most large scale digesters are CSTRs, but serial, contact, 2-step, and plug-flow digesters are also found. Construction materials are mostly steel and concrete. Mesophilic digestion is most common (56%), thermophilic digestion is used in 17% of the plants, combined mesophilic and thermophilic digestion is used in 28% of the centralised plants. Mixing of digester content is performed with gas injection, propellers, and gas-liquid displacement. Heating is carried out using external or internal heat exchangers. Heat recovery is only used in Denmark. Gas purification equipment is commonplace, but not often needed. Several plants use separation of the digested manure, often as part of a post-treatment/-purification process or for the production of 'compost'. Screens, sieve belt separaters, centrifuges and filter presses are employed. The use of biogas varies considerably. In some cases, combined heat and power stations are supplying the grid and district heating systems. Other plants use only either the electricity or heat. (au)

  11. State of the art for noise reduction in biogas plants. Sound technical analyses, research, investigations

    International Nuclear Information System (INIS)

    2014-01-01

    Approximately 480 biogas plants are currently being built in Mecklenburg-Vorpommern, which were mainly built in an agricultural context. At the beginning of 2014 about 15 percent of the country's electricity was generated by domestic biogas plants. This publication is intended to serve as a guide to the authorities, planners and engineers, in order to be able to plan, erect and operate biogas plants in the most conflict-free manner. [de

  12. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    Science.gov (United States)

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  13. Biogas production from Eichhornia crassipes aquatic plant; Producao de biogas a partir da planta aquatica Eichhornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Silva, Jose Goncalves da; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: rbmelo@light.com.br

    2004-07-01

    Virtually all plants and waste plants and animals may in some way be used as an energy source. The anaerobic digestion of these materials is an option, resulting in the biogas. Besides the gas obtained in the process, is produced, inside the biodigester, an excellent fertilizer. The aquatic plant Eichhornia crassipes is found in large quantities in various water bodies, such as reservoirs, lakes and ponds, becoming mostly often a big problem and it is necessary its systematic removal of water. The bench biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced, and a reservoir to monitor the production of biogas. The reactor is located within a receptacle containing water that can be heated by an electrical resistance, with the purpose of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor made in a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity, show a percentage of 50% of methane in the biogas. The process of biodigestion of aquatic plant Eichhornia crassipes shows potential to obtain biogas, with considerable levels of methane in order to make its exploitation. Also, were analyzed the biomass in the biodigester for determination of humid, total organic matter, mineral and organic carbon residue.

  14. Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A [CSM Suiker BV, Amsterdam (Netherlands); Van Velsen, A F.M.

    1985-03-01

    Process and processing of anaerobic digestion are described. Methane bacteria are only the last link in a long step by step degradation of organic wastes by a large number of microorganisms. In this article the following processes get special attention: septic tank process, used for isolated residential buildings; manure digestion systems; anaerobic sludge processes. A Dutch development is the upflow anaerobic sludge blanket reactor (UASB). Newest process is the fluid bed process, which enables a very fast sedimentation and short residence time. The sensibility for toxic compounds in waste water remains a problem in all biogas processes. (A.V.)

  15. Solar assisted biogas plants: Pt. 4. Optimum area for blackening and double glazing over a fixed-dome biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jayashankar, B.C.; Kishor, J.; Goyal, I.C.; Sawhney, R.L.; Sodha, M.S.

    The economic analysis of a fixed-dome biogas plant of rated capacity 8 m/sup 3/, above which a part of the ground is blackened and doubly glazed in the cold climate of Srinagar is presented. Blackening and glazing of the ground cannot alone maintain the slurry temperature at 35/sup 0/C, which is the optimum temperature in the mesophilic range for the anaerobic digestion of cattle dung, and so a part of the biogas must be burnt. The electrical simulation experiments have been performed to determine the loss or gain of heat from the underground biodigestor to the ambient atmosphere through the ground if a part of the ground above is blackened and double glazed. Economic analysis of the system shows that the optimum area to be blackened and glazed would have a radius 1.5 times that of the biodigestor.

  16. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  17. Comparative review of foam formation in biogas plants and ruminant bloat

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Lucie; Goersch, Kati; Zehnsdorf, Andreas; Mueller, Roland Arno [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Environmental and Biotechnology Centre; Neuhaus, Juergen [Leipzig Univ. (Germany). Inst. of Bacteriology and Mycology

    2012-12-15

    This review gives an overview of the current knowledge concerning the problem of foam formation in the process of anaerobic digestion in biogas plants that utilize renewable resources or biogenic waste material for biogas production. Process upsets in biogas production induced by foam formation can have a negative impact on the efficiency of biogas plants. The foam can block gas pipes and cause severe damage to the bioreactor equipment, ranging from a failure of the feeders to a damage of the roof of the biogas plant. The most common foam removal methods - stirring in the foam, adding anti-foaming agents, diminishing substrate feeding, and altering the biogas reactor management - are not always successful. However, the reasons for the excessive foam formation during the biogas production process have not yet been elucidated in detail. In contrast, foam building in the rumen of ruminants as a cause for bloat has been studied thoroughly. In general, the interaction between proteins, polysaccharides (mucilage), and small plant particles is assumed to be the crucial factor. As the fermentation process in the rumen has many similarities with the biogas production process, the current research results on bloat in ruminants are summarized and compared with the process of foaming in biogas plants. (orig.)

  18. The Fuzzy WOD Model with application to biogas plant location

    DEFF Research Database (Denmark)

    Franco, Camilo; Bojesen, Mikkel; Hougaard, Jens Leth

    2014-01-01

    be expressed by degrees of intensity in which the alternatives satisfy the given criteria. Hence, such degrees can be gradually expressed either by unique values or by intervals, in order to fully represent the characteristics of each alternative. This paper examines the selection of biogas plant location......The decision of choosing a facility location among possible alternatives can be understood as a multi-criteria problem where the solution depends on the available knowledge and the means of exploiting it. In this sense, knowledge can take various forms, where the imprecise nature of information can...

  19. Assessing the economic aspects of biogas plants. A case study in rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Md Shultan

    2012-07-01

    Energy crisis has become one of the most concerning issues throughout the world including emerging developing country like Bangladesh. Scientific community has unequivocally agreed that renewable energy is the only solution to face this challenge. A number of researches on renewable energy (e.g., solar, wind, hydro energy and biogas) have been carried out in Bangladesh. So far, biogas and solar energy has been proved to be the best alternative to meet the daily energy demand. However, Bangladesh could achieve more success with biogas in rural areas if socioeconomic, technical and regulatory issues were addressed appropriately. This study analyzed not only these factors but also (i) the present situation of the biogas production, (ii) ways to improve the efficiency and economic benefits of small-scale or farm-scale biogas production, (iii) existing problem associated with small-scale/farms-scale biogas production, (iv) reason behind not using and not using of biogas by the people nearby the user of biogas, (v) economic benefits of small biogas plants and (vi) the ways to improve efficiency by intervening feed stock quality and composition of the small-scale/farms-scale biogas plants.

  20. Assessing the economic aspects of biogas plants. A case study in rural Bangladesh

    International Nuclear Information System (INIS)

    Mahmud, Md Shultan

    2012-01-01

    Energy crisis has become one of the most concerning issues throughout the world including emerging developing country like Bangladesh. Scientific community has unequivocally agreed that renewable energy is the only solution to face this challenge. A number of researches on renewable energy (e.g., solar, wind, hydro energy and biogas) have been carried out in Bangladesh. So far, biogas and solar energy has been proved to be the best alternative to meet the daily energy demand. However, Bangladesh could achieve more success with biogas in rural areas if socioeconomic, technical and regulatory issues were addressed appropriately. This study analyzed not only these factors but also (i) the present situation of the biogas production, (ii) ways to improve the efficiency and economic benefits of small-scale or farm-scale biogas production, (iii) existing problem associated with small-scale/farms-scale biogas production, (iv) reason behind not using and not using of biogas by the people nearby the user of biogas, (v) economic benefits of small biogas plants and (vi) the ways to improve efficiency by intervening feed stock quality and composition of the small-scale/farms-scale biogas plants.

  1. Economic and ecological evaluation of biogas plant configurations for a demand oriented biogas supply for flexible power generation

    International Nuclear Information System (INIS)

    Hahn, Henning

    2015-01-01

    The transformation of the power supply towards renewable energy (RE) sources will depend on a large scale of fluctuating RE sources, primarily of wind energy and photovoltaics. However, the variable power generation of these renewable sources will lead to an increased need of flexible power producers in order to balance differences between energy generation and consumption. Among the different types of RE sources, biogas plants have the advantage that their input biomass and the produced biogas can be stored and electricity can consequently be generated on demand. Since electricity from biogas has not been used to balance fluctuations of intermittent RE in the past, new concepts are required. These concepts should be able to meet the requirements of highly renewable electricity systems and to supply biogas according to the varying demand for long-and short-term balance power generation. In this regard, this thesis focused on the identification of biogas plant concepts for flexible power generation, as well as on ranking them regarding their economic and life cycle performance.

  2. Economic and ecological evaluation of biogas plant configurations for a demand oriented biogas supply for flexible power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Henning

    2015-07-01

    The transformation of the power supply towards renewable energy (RE) sources will depend on a large scale of fluctuating RE sources, primarily of wind energy and photovoltaics. However, the variable power generation of these renewable sources will lead to an increased need of flexible power producers in order to balance differences between energy generation and consumption. Among the different types of RE sources, biogas plants have the advantage that their input biomass and the produced biogas can be stored and electricity can consequently be generated on demand. Since electricity from biogas has not been used to balance fluctuations of intermittent RE in the past, new concepts are required. These concepts should be able to meet the requirements of highly renewable electricity systems and to supply biogas according to the varying demand for long-and short-term balance power generation. In this regard, this thesis focused on the identification of biogas plant concepts for flexible power generation, as well as on ranking them regarding their economic and life cycle performance.

  3. The biogas

    International Nuclear Information System (INIS)

    Rigaud, Ch.; Laffargue, C.; Zebboud, I.

    2007-01-01

    Mixed of methane and carbon dioxide the biogas can be produced by many sources for the heat or the electricity production and the fuel production. This document aims to better understand the biogas, its characteristics, its valorization, the plants concerned, the installations and the regulation. It provides also an example of a biogas power plant and the biogas use in the farms. (A.L.B.)

  4. Present status of micro and mini-hydel power plants and biogas plants in Pakistan

    International Nuclear Information System (INIS)

    Hussain, T.

    1997-01-01

    The Government of Pakistan has high priority to develop indigenous energy resources and announced a policy framework and package of incentives to private sector in hydro electric power generation. Hydro electric power in Pakistan has been estimated to be nearly 35,000 MW, whereas only 3330 MW have so far been exploited which constitutes only 15.11% share of the total commercial energy fuel consumption in 1994-95 and 42.7% of total electricity generation. The Government Agency in Pakistan i.e. WAPDA which produced 85.4% electricity generation had found it difficult to implement and run small hydro projects. There are 200 MHP plants were installed with a total capacity of 3,000 KW (3 MW), out of which 160 plants are working with 80% success rate. The selling price is Rs. 3.00 against cost of production is Rs. 0.11 per unit. Biogas is a clean and cheap fuel in the form of gas. The total dung available per day in the rural areas of Pakistan works out between 250-300 million Kg and 1804 million cubic m. of biogas can be produced having economic value of 6.711 billions. During 70's several biogas plants were installed but they have some problems. As regards biogas the production has remained stagnant for the last 5 years or more. There is need for clear governmental priorities and effective use of form biogas. (A.B.)

  5. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants.

    Science.gov (United States)

    Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A; Zehnsdorf, Andreas

    2015-07-01

    Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biogas plants: Utilization of microorganisms for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, E A; Trieu, C

    1984-05-01

    The continuous realisation of the basic principles of environmental conservation and compatability demands concern about the problems of eliminating wastes in an industrialised society. Biogas- and therefore technical plants for methane generation by anaerobic fermentation have promoted to effective means of environmental protection and sources of alternate energy from organic wastes. Methane fermentation has been employed for the stabilisation of sludges at municipal waste treatment plants for decades. However, the anaerobic digestion process shows promising applications both for industrial effluents and agricultural wastes as well as municipal solid wastes and covered waste deposits. In view of the advances achieved interdisciplinary cooperation the actual potential and perspective of methane fermentation technology with respect to the solution of the increasing problems of waste management and energy supply is discussed.

  7. A study on economic feasibility of biogas plant for a small town

    International Nuclear Information System (INIS)

    Ansari, S.H.

    2011-01-01

    Energy crisis is one of the major problems of our country now a day. We should emphasis on new energy resources to fulfill our demand. In renewable energy resources, biogas is one of them. Biogas is produced by anaerobic digestion of organic matters. In anaerobic digestion, biodegradable materials are decomposed into biogas by bacteria in the absence of air. Kitchen waste contain large amount of these biodegradable materials. The report of economic feasibility for biogas plant using kitchen waste of housing colony consisting of 200 houses for power generation and cooking purposes is carried out. (author)

  8. Biogas everywhere

    International Nuclear Information System (INIS)

    Couturier, Ch.; Pegret-Rosa, A.S.; Leca, Ch.; Adlec, E.

    2009-01-01

    Since the publication in July 2006 of the new purchase tariff of electricity produced by biogas, the methanation channel is increasing. In the past ten years the number of biogas plants from domestic wastes, passed from 1 to 20. This document presents an economic analysis of the different sources of biogas, the performances and the injection of biogas in the public network of the gas utilities. (A.L.B.)

  9. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Lucie, E-mail: lucie.moeller@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Centre for Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig (Germany); Eismann, Frank, E-mail: info@antoc.de [Eismann & Stöbe GbR, GeoPark, Geb. A12, Bautzner Strasse 67, 04347 Leipzig (Germany); Wißmann, Daniel, E-mail: d.s.wissmann@gmx.de [University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy (LA740), Garbenstrasse 9, 70599 Stuttgart (Germany); Nägele, Hans-Joachim, E-mail: hajo.naegele@uni-hohenheim.de [University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy (LA740), Garbenstrasse 9, 70599 Stuttgart (Germany); Zielonka, Simon, E-mail: simon.zielonka@uni-hohenheim.de [University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy (LA740), Garbenstrasse 9, 70599 Stuttgart (Germany); Müller, Roland A., E-mail: roland.mueller@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Centre for Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig (Germany); Zehnsdorf, Andreas, E-mail: andreas.zehnsdorf@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Centre for Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-07-15

    Graphical abstract: Display Omitted - Highlights: • Foaming in biogas plants depends on the interactions between substrate and digestate. • Foaming tests enable the evaluation of substrate foaming tendency in biogas plants. • Leipzig foam tester enables foaming tests of substrates prior to use. - Abstract: Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.

  10. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times...... of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case. © IWA Publishing 2014....

  11. Biogas plants in Europe. A practical handbook. Biogasanlagen in Europa. Ein Handbuch fuer die Praxis

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This book aims to point out the state of biogas technology and possible future developments. To that end more than 500 biogas plants were investigated and conclusions drawn. Selected plants are described in detail. In the annex, plants in operation and their producers are listed (position 1983) and information is provided on public financing aids. Besides such practical information, the book deals with problem complexes and offers proposals for future research and development work.

  12. Hydrothermal catalytic gasification of fermentation residues from a biogas plant

    International Nuclear Information System (INIS)

    Zöhrer, Hemma; Vogel, Frédéric

    2013-01-01

    Biogas plants, increasing in number, produce a stream of fermentation residue with high organic content, providing an energy source which is by now mostly unused. We tested this biomass as a potential feedstock for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production using a batch reactor system. The coke formation tendency during the heat-up phase was evaluated as well as the cleavage of biomass-bound sulfur with respect to its removal from the process as a salt. We found that sulfur is not sufficiently released from the biomass during heating up to a temperature of 410 °C. Addition of alkali salts improved the liquefaction of fermentation residues with a low content of minerals, probably by buffering the pH. We found a deactivation of the carbon-supported ruthenium catalyst at low catalyst-to-biomass loadings, which we attribute to sulfur poisoning and fouling in accordance with the composition of the fermentation residue. A temperature of 400 °C was found to maximize the methane yield. A residence time dependent biomass to catalyst ratio of 0.45 g g −1 h −1 was found to result in nearly full conversion with the Ru/C catalyst. A Ru/ZrO 2 catalyst, tested under similar conditions, was less active. -- Highlights: ► Fermentation residue of a biogas plant could be successfully liquefied with a low rate of coke formation. ► Liquefaction resulted in an incomplete removal of biomass-bound sulfur. ► Low catalyst loadings result in incomplete conversion, implicating catalyst deactivation. ► At 400 °C the observed conversion to methane was highest. ► A residence time dependent biomass to catalyst ratio of 0.45 g g −1 h −1 was determined to yield nearly complete conversion

  13. Biogas. Plants, raw materials, products. 7. rev. ed.; Biogas. Pflanzen, Rohstoffe, Produkte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    In order to save fossil fuels and to stopp the climate change, a gradual shift to renewable energies is necessary. The federal government has aimed to a modern, environmental friendly, sustainable and secure energy supply by means of the expansion of renewable energies. Bioenergy plays a central role in the future. Biogas for renewable energies will play a special role. Biogas can be used for simultaneous production of electricity and heat, as a fuel and as a substitute for natural gas.

  14. Sustainable energy management in industry of Republic of Serbia: Biogas power plants advantages

    Directory of Open Access Journals (Sweden)

    Golušin Mirjan

    2012-12-01

    Full Text Available This paper reviews the specifics of energy policy in Serbia on the example of designing a biogas power plant. The biogas power plant is designed in accordance with the existing energy policy that recognizes producers of energy from renewable sources as This paper reviews the previously performed analysis in the sphere of energy consumption, which served as the basis for creating a new corporate energy policy. The paper presents an analysis of biogas power plant output (electrical and thermal energy, potential prices on the market, that are consistent with the incentives of energy policy of Serbia. In addition, special emphasis is given to the revenues that a biogas power plant realizes by using mechanism of energy policy, which promotes gaining revenues by reducing pollution of the atmosphere. The authors also show the procedure, costs and expected effects for the qualification of this power plant project (CDM project categories.

  15. Microfiltration and ultrafiltration as a post-treatment of biogas plant digestates for producing concentrated fertilizers

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud; Norddahl, Birgir; Wei, Jiang

    2015-01-01

    Biogas plant digestate liquid fractions can be concentrated by microfiltration and ultrafiltration. Two types of microfiltration membranes (polysulphone (PS) and surface-modified polyvinylidene fluoride (PVDF)) were used to process digestate liquid fractions, and to assess their applicability in ...

  16. Preliminary design and economical study of a biogas production-plant using cow manure

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2007-09-01

    Full Text Available This article presents considerations and results from designing a large- scale biogas production-plant using cow manure. The so designed plant capacity allowed processing the dung from 1,300 cows, producing 500 kW of electrical energy from operating a generator which works on a mixture of diesel and biogas fuel. The design included sizing the cowsheds, the manure-collecting systems, transporting the dung, the digester, the effluent tank and the biogas treatment system. An economic study was also done, concluding that project was viable and the importance of the cost of diesel evolving for determining return on investment time.

  17. Biogas recovery in anaerobic digestion plants for pig wastewater

    International Nuclear Information System (INIS)

    Collivigarelli, C.; Sorlini, S.

    2001-01-01

    This work deals with a monitoring of thee anaerobic digestion plants in mesophilic conditions treating pig wastewater with the aim to study the treatment efficiency and energetic aspects. A good waste stabilization is reached in all plants, as shown by the high removal efficiency of total and volatile solids and COD, mainly due to the digestion process. On the contrary, Kjeldahl nitrogen and ammonia (low) removal takes place mainly in the final storage tank, thanks to ammonia stripping. The digestion process not only produces a well stabilized wastewater, that can be more surely reused for agricultural spreading, but it offers also an important energy recovery from the biogas combustion, whose specific production varies from 0,78 to 0,99 Nm 3 t - 1 (live weight) d - 1. It is used in cogeneration plants for the combined production of thermal energy (that is reused for waste heating in the digestion tank at mesophilic conditions and for other internal utilizations) and electric energy (that is used for internal requirements while the surplus is sent into the public grid) [it

  18. EU Agro Biogas Project

    NARCIS (Netherlands)

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.; Schattauer, A.; Suarez, T.; Möller, H.; Ward, A.; Hillen, F.; Sulima, P.; Oniszk-Polplawska, A.; Krampe, P.; Pastorek, Z.; Kara, J.; Mazancova, J.; Dooren, van H.J.C.; Wim, C.; Gioelli, F.; Balsari, P.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and

  19. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  20. Recycling of cattle dung, biogas plant-effluent and water hyacinth in vermiculture

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, P.R.; Bai, R.K. [Madurai Kamaraj Univ. (India)

    1995-08-01

    The efficiency of recycling cattle dung, anaerobically digested cattle dung (biogas plant-effluent) and water hyacinth (Eichhornia crassipes) by culture of the earthworm Megascolex sp. was studied. The growth of the earthworms was increased by 156, 148 and 119% in soil supplemented with water hyacinth, cattle dung and biogas plant-effluent, respectively. The growth rate of the earthworms was increased significantly by raw cattle dung and water hyacinth over that by biodigested slurry. (author)

  1. Enhancing identified Circular Economic benefits related to the deployment of the Solrød biogas plant

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Kjær, Tyge

    2017-01-01

    by the Ellen MacArthur Foundation, the paper analyzes three areas: 1) biogas production, 2) nitrogen, phosphorous & green house gas (GHG) emissions, and 3) re-cycle/cascade materials. It consequently elaborates on the environmental benefits obtained, in terms of CO2 emission from biogas production substituted......This paper investigates how experiences from the deployment of the Solrød biogas plant in Denmark - a large scale centralized biogas plant - can assist future biogas technologies in achieving circular economic benefits. Departing from a theoretical understanding of a circular economy provided...... from Solrød Biogas, this paper further proposes to include the following activities when planning for future biogas plants: waste-stream identification and coupling in the local community, measuring the value of digestate as a fertilizer, short distance to farmers delivering manure, and plant design...

  2. Bioactivity test and GRW biogas yield test. Methods for optimizing biogas plants for anaerobic digestion of biowaste; Rostocker Aktivitaets- und GRW-Biogasertragstest. Einsatz zur Optimierung von Abfallvergaerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Nils [Rostock Univ. (Germany). Lehrstuhl Abfall- und Soffstromwirtschaft; Schiffner, Maik [Rostock Univ. (Germany). Forschungsvorhaben ' ' Bilanzierung von Stoff- und Energiestroemen' ' ; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Soffstromwirtschaft; Rostock Univ. (Germany). Inst. fuer Umweltingenieurwesen; Fritz, Thomas

    2010-03-15

    Anaerobic digestion to obtain biogas is one option for energetic use of biodegradable waste. Data as e. g. the expected biogas yield, the biogas composition or inhibition effects are essentially to estimate the potentials and risks of the use of biowaste in commercial bio gas plants. To deliver such data, several test methods were developed. The GRW biogas yield test was first applied at the university of applied science in Goettingen and enhanced in cooperation with the University of Rostock. The test is particularly suitable for inhomogeneous samples as e. g. biowaste. The Bioactivity Test is still under development. First results have shown that the test can be applied for the detection of potentially inhibition effects. Combination of both Tests can deliver data for optimizing biogas plants for anaerobic digestion of biowaste (orig.)

  3. Near-infrared spectroscopy for process and substrate supervision of a full-scale biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Jacobi, Hans Fabian

    2012-07-01

    Aim of this study was to investigate the possible use of near-infrared spectroscopy in the supervision of the biogas production process or parts thereof. It was examined, whether the surveillance of (a) the process and (b) substrate was feasible. The following tasks were accomplished to this end: 1. Development, construction and assembly of suitable NIRS-metrology, development of proper control-software as well as of strategies for data acquisition and data handling, 2. calculation and validation of regression models on the basis of acquired spectra and reference data for (a) suitable parameters of the biogas process, (b) composition and biogas potential of the substrate, 3. calculation of continuous time series of all parameters in order to prove the possibility of continuous surveillance, 4. integrated processing of continuously calculated biogas potentials together with plant data for the prediction of the biogas production behavior of the biogas plant. A near-infrared spectrometer was installed and equipped with NIR-measuring heads of own design and construction on a full-scale agricultural biogas plant. For 500 days spectra were continuously logged at (a) a pipe flowed through by fermenter slurry and (b) the feeding station, where silage passed. Based on regularly withdrawn reference samples and the corresponding spectra regression models were calibrated for the several constituents. Continuously logged spectra were used to calculate time series with the aid of the regression models for each constituent. Models and time series were established for the following parameters: (a) process parameters: volatile fatty acids, acetic acid, propionic acid, dry matter, volatile solids; (b) substrate parameters: dry matter, volatile solids, crude fiber, crude fat, crude protein, nitrogen-free extracts, experimentally assessed biogas potential, theoretically assessed biogas potential. Despite the partially low quality of the models it was possible to follow the course of

  4. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    Science.gov (United States)

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  6. Feasibility study for biogas integration into waste treatment plants in Ghana

    Directory of Open Access Journals (Sweden)

    M. Mohammed

    2017-09-01

    Full Text Available Biogas (anaerobic digestion technology is one of the most viable renewable energy technologies today. However, its economic efficiency depends on the investment costs, costs of operating the biogas plant and optimum methane production. Likewise the profit level also rests on its use directly for cooking or conversion into electricity. The present study assessed the economic potential for a 9000 m3 biogas plant, as an alternative to addressing energy and environmental challenges currently in Ghana. A cost-benefit analysis of the installation of biogas plant at University of Ghana (Legon Sewerage Treatment Plant yielded positive net present values (NPV at the prevailing discount rate of 23%. Further the results demonstrate that installation of the plant is capital intensive. Biogas used for cooking was by far the most viable option with a payback period (PBP of 5 years. Sensitivity analysis also revealed cost of capital, plant and machinery as the most effective factors impacting on NPV and internal rate of return (IRR.

  7. EU Agro Biogas Project

    OpenAIRE

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and universities are cooperating with key industry partners in order to work towards sustainable biogas production in Europe. Fourteen partners from eight European countries are involved in the EU-AGR...

  8. Promotion of biogas plant application in the Mekong Delta of Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vo Chau Ngan

    2012-06-11

    The study focuses on waste management in the Mekong Delta of Vietnam (MD) through the application of biogas plants to livestock and agricultural waste treatment. As the biggest ''rice bowl'' in the country, the MD produces more than 50% of the national aquaagricultural production, in which livestock sector contributes more than 20% of agricultural growth. The increasing livestock sector, however, has been attributed to the environmental problems, particularly in relation to the free discharge of waste/wastewater into the water open sources in the region. Such the environmental problems have become more serious in the rural areas of the MD where the water from the canal network is used as the main water supply sources to the 60% of local communities. Biogas technology was introduced as an environmentally-friendly treatment for animal and human wastes in the MD in the 1980s. Nonetheless, the number of biogas plants already constructed is considerably limited in comparison to the actual demand on livestock waste treatment in the region. The study, therefore, aims at seeking for possible solutions to promote the widespread application of biogas plants in the MD in order to help improve the sanitary condition of the local communities. In this study, a survey of 110 farmers was conducted in the three provinces of the MD. The farmers included biogas user households, non-biogas user households, and biogas masons. The interviews with the three groups of farmers provided profound and comprehensive information on the actual application and demand of biogas plants in the MD. Accordingly, a large number of the local people have acknowledged the great benefits of biogas application. However, the interviews revealed that there are some impediments to the development of biogas plants in the region such as high investment cost, shortage of input to biogas plants, and limited possibilities of application of by-products from biogas plants. In an attempt to search

  9. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  10. Economics of farm biogas plants. Status of 4 plants 1988-92

    International Nuclear Information System (INIS)

    Hjort-Gregersen, K.

    1994-06-01

    For the four biogas plants balance sheets have been prepared to show the operating results. Operating income and cost are a mixture of actual accounts, estimates, and calculations. The results are shown both with and without taxes. Only one of the four plants can present a positive result before tax. Three of the plants, however, have positive results after tax. This stresses the importance of the fact that the part of the energy production that is used on the farm is not taxed. The analyses show that one of the plants in 1992 obtained an income, that makes it feasible to assume that the plant would be profitable provided in gets 30% of investment subsidy. An important condition for this is a relatively high gas yield which hardly can be obtained by digesting manures alone. Some of the most important unsolved problems of farm-based biogas plants are the missing possibilities of selling heat, the operating reliability, and the repair costs for generators. (LN)

  11. Economics of production of biogas from specifically-grown plant material. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D. J.

    1977-10-15

    The production of biogas from plant materials is technologically very simple, and is the only process currently available (other than direct burning) for conversion of cellulose materials into energy or fuels that is feasible at a farm-scale, or even a home-scale, as well as a large industrial plant scale. For this reason the economics of biogas production can be considered at the farm-scale as well as the industrial scale. An accurate assessment of the economics at the farm-scale is possible, because commercially produced units are now available in New Zealand and in operation. However, although large-scale plants have been proposed and costed in the USA for the conversion of the cellulose component of garbage into biogas, operational data are not yet available, and the costing has not been applied to the use of specifically-grown plant material. Nevertheless, the large-scale plants envisaged use a large number of digesters each of 100,000 gallons capacity and can thus be regarded as a combination of farm-size units, although with some economics in digester size, number of pumps required, etc. For these reasons, this review of the economics of biogas production is based on the operation of commercial 20,000 gallon digesters available in NZ for farm-scale use. Factors governing the economics of farm-scale and industrial-scale production of biogas will be discussed in section 6.

  12. Potential for Producing Biogas from Agricultural Waste in Rural Plants in Poland

    Directory of Open Access Journals (Sweden)

    Magdalena Muradin

    2014-08-01

    Full Text Available This article is an overview of the current situation as well as future prospects for biogas production in rural plants in Poland. Our research has focused on the management of agricultural waste. While Poland’s agriculture and its local food industry have substantial potential, many barriers persist to the development not only of biogas plants but also in every other renewable source of energy. The main obstacles have to do with politically motivated economic factors. Our interest has been in larger plants having sufficient capacities to produce in excess of 500 kW of electricity. The paper also presents a case study of a biogas plant supply by organic, agrifood waste mixed with silage.

  13. Design of community biogas plant for cooking and lighting from cowdung (a proposal case study)

    International Nuclear Information System (INIS)

    Mekki, Ibtisam I.

    1999-01-01

    A calculation design for community biogas plant was proposed for a village in Sudan consisting 100 families, each consisting of 6 persons (adult). Two children are equivalent to one person. Based on the requirement for cooking and lighting, the community biogas plant is deigned for production of total biogas of 360 m-3 gas per day. This volume of the gas will be produced from total dung per day of 6000kg. This amount of dung will expect to obtained from 600 cows. The actual digester volume equal to 60.5m-3. The layout of the plant was designed of two identical plants, each consisted of 3 digester, i.e. 6digesters will be needed.(Author)

  14. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Boe, Kanokwan; Ellegaard, L.

    2005-01-01

    A study on 18 full-scale centralized biogas plants was carried out in order to find significant operational factors influencing productivity and stability of the plants. It was found that the most plants were operating relatively stable with volatile fatty acids (VFA) concentration below 1.5 g....../l. VFA concentration increase was observed in occasions with dramatic overloading or other disturbances such as operational temperature changes. Ammonia was found to be a significant factor for stability. A correlation between increased residual biogas production and high ammonia was found. When ammonia...

  15. Environmental and economic analysis of power generation in a thermophilic biogas plant.

    Science.gov (United States)

    Ruiz, D; San Miguel, G; Corona, B; Gaitero, A; Domínguez, A

    2018-08-15

    This paper investigates the environmental and economic performance of the power production from biogas using Life Cycle Assessment, Life Cycle Costing and Cost Benefit Analysis methodologies. The analysis is based on a commercial thermophilic biogas plant located in Spain where is installed a Combined Heat and Power system that produces electricity that is sold to the grid. Power generation has been assumed as the only function of the biogas system, expanding the system boundaries to include the additional function related to the end-of-life management of the biowastes. Thus environmental burdens from the conventional management of residues were calculated separately and subtracted. The base scenario involves using agri-food waste, sewage sludge and pig/cow manure as substrates. This situation is compared against an alternative scenario where the production of synthetic fertilizer is surrogated by the digestate. The results have shown that the most impacting activities in all impacts categories of power production are primarily attributable to the operation and maintenance of the biogas plant except for water resource depletion and climate change. The avoided emissions associated with the conventional management of pig/cow manure more than offset GHG emissions of the biogas system resulting in a negative impact value of -73.9gCO 2 eq/kWh in the base case scenario. The normalized results show that local impact categories such as primarily human toxicity, fresh water ecotoxicity and particulate matter are the most significantly affected by the biogas system while global impact categories as climate change and ozone depletion are less severely affected. The operation and maintenance phase is also shown to be the largest contributor after the life cycle cost analysis, followed by the construction and dismantling of the biogas plant and the profitability of the project is primarily related to the income obtained from the management of the biowastes used as substrates

  16. Swiss statistics on renewable energy - Biogas - Collection of biogas data from regional wastewater treatment plants; Schweizerische Statistik erneuerbarer Energien - Teilstatistik Biogas - Erfassung Biogasdaten aus kommunalen ARA

    Energy Technology Data Exchange (ETDEWEB)

    Buri, R.; Kobel, B.

    2000-07-01

    This final report for the Swiss Federal Office of Energy presents the results of a project that involved the collection of data on the production of biogas in wastewater treatment plants that each serve at least 200 inhabitants. The methods used to collect and verify the data are described. The assessment methods used to evaluate the findings are discussed, as is the extrapolation method used. The results are compared with the data previously used. Further, a data collection concept for use in subsequent years is described that involves the segregation of the wastewater treatment plants into three size categories. A comprehensive annex provides details on the data collection and the paperwork used, a list of the addresses of the wastewater facilities involved, an estimate of electrical power consumption and individual power production, the calculation of average efficiencies and tables of data.

  17. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    Science.gov (United States)

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biogas production from poultry rendering plant anaerobic digesters: systems comparison

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  19. ANALYSIS OF EXERGY PARAMETERS OF BIOGAS POWER PLANT

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-08-01

    Full Text Available The techniques of an exergy analysis concerning various circuits of biogas units, which allows replacing traditional energy resources and improving environmental conditions, has been presented. The heat schemes of biogas units were proposed, and analysis of their effectiveness was made. The comparison of different cycle parameters of various biogas units (i.e. a combustion turbine unit, a combined cycle gas turbine unit with gas discharges into the boiler and a combined cycle gas turbine with a high-temperature vapor generator and a reheating stage was made, and the comparison of their exergy characteristics was carried out. The results of exergy analysis had demonstrated that the cycle of biogas CCGT (combined cycle gas turbine with a reheating stage and using a high-pressure steam generator is the most effective, that can be explained by the fact that the thermal energy proportions of combustion products, accounting for the steam cycle and the gas cycle are approximately equal, comparing to conventional combined cycle gas turbine units.

  20. Alternatives for handling of digestate from large biogas plants; Foeraedling av roetrest fraan storskaliga biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Aarsrud, Peter (Kretsloppskontoret Goeteborg (Sweden)); Bisaillon, Mattias (Profu (Sweden)); Hellstroem, Hanna; Henriksson, Gunilla (SP, Boraas (Sweden)); Jakobsson, Emma; Jarlsvik, Tisse; Martinsson, Ulf (Goeteborg Energi (Sweden)); Jensen, Carl (Renova (Sweden)); Johansson, Lars-Gunnar (Biogas Vaest/LRF (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe (Sweden)); Ling, Daniel (Laeckeby Water (Sweden))

    2010-07-01

    Biogas plants located in city environments are becoming increasingly common in Sweden. More and more municipalities are electing to collect food waste for treatment in a biogas plant. The environment target of treating 35 % all organic waste biologically try to obtain from municipalities. Certain demands are placed on biogas plants and their system environments if they are to be able to treat food waste successfully. Firstly, there needs to be a use for the nutrient-rich biofertilizer product, and secondly it must be possible to clean the reject water before it is released to the recipient. The goal of the project is to conduct a system analysis from the economic and environmental perspectives to investigate what is the best alternative for dealing with the digestate and reject water for two biogas plants located in city environments. The plants used as the point of departure for the study are a planned biogas plant in Gothenburg and an existing biogas plant in Boraas. The plant in Boraas is planned to be included in an energy combine with ethanol production. The target group for the project comprises biogas plants built in city environments with the purpose of treating food waste, but also other plants that treat organic waste in a digester, e.g., sludge from sewage treatment works. Table 1 below shows the results for each technology studied. [Table 1 Results from system analysis.] The results of the system analysis show that the best alternative for Gothenburg, both from an economical point of view and when considering the climate impact, is to transport and spread the un-dewatered digestate directly onto arable land. On the basis of acidification and eutrophication potentials, the best alternative is to treat the reject water with the DeAmmon process. From the economic perspective, the best alternative for Boraas is to continue with the treatment method used today at the plant, that is, SBR. From the perspective of climate impact, the best alternative is to

  1. CONTROL PARAMETERS FOR UNDERSTANDING AND PREVENTING PROCESS IMBALANCES IN BIOGAS PLANTS. EMPHAS IS ON VFA DYNAMICS

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik

    environmental changes differ widely between the different groups. As a consequence of this, an unrestrained reactor operation can lead to disturbances in the balance between the different microbial groups, which might lead to reactor failure. Therefore, reliable parameters and tools for efficient process...... control and understanding are necessary. The work of present study was directed towards this challenge. Initially, the response of the anaerobic digestion process to various types of process imbalances was investigated with special focus on volatile fatty acid dynamics (VFA), methane production and pH...... of process imbalances in biogas plants. At Danish full-scale biogas plants the biogas production is normally the only continuously measured parameter. In order to examine the usability of propionate as control parameter a reactor experiment was constructed in which the reactor operation either was carried...

  2. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Asam, Zaki-ul-Zaman; Poulsen, Tjalfe Gorm; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.

    2011-01-01

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  3. Solar greenhouse assisted biogas plant in hilly region - A field study

    Energy Technology Data Exchange (ETDEWEB)

    Vinoth Kumar, K.; Kasturi Bai, R. [Department of Bio-Energy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu (India)

    2008-10-15

    The present study was undertaken with the objective of evaluating plastic as an alternative material for biogas plant on a par with conventional brick material. The field study was carried out for one year (October, 2005-September, 2006) in a small hamlet at Nilgiris incorporating solar energy to study its influence on biogas production. During summer (April-June) the temperature reaches to the maximum of 21-25 C and the minimum of 10-12 C. During winter (October-December), the temperature available is maximum of 16-21 C and minimum of 2 C. The solar insolation in the study area ranges from 250 to 600 W/m{sup 2}. This study involves the control conventional Deenabandhu model (Indian standard model prevailing in most part of India made of masonry structure only) and the experimental plastic tank with greenhouse canopy of similar capacity. Our previous work [Vinoth Kumar, K., Kasturi Bai, R., 2005. Plastic biodigesters - a systematic study. Energy for Sustainable Development 9 (4), 40-49] on lab scale digester made from plastic material was compared over other materials and the results gave us much confidence to carry out further study on pilot scale. In continuation, a semi-continuous study was conducted for one year with the retention time of 55 days. The gas generated from the biogas plants was utilized for cooking (burner) and lighting (lamp) purposes. The yearly average slurry temperatures recorded during the study period was 26.3 and 22.4 C in experimental and control biogas plants against ambient temperature of 17.0 C. The yearly average greenhouse chamber temperature recorded was 29.1 C in the experimental biogas plant. The yearly average gas yield from the experimental and control biogas plants were 39.1 and 34.6 l kg{sup -1}day{sup -1} respectively. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted plastic biogas plant can be efficiently adopted with minor modifications in hilly

  4. Evaluation of an agricultural biogas plant at Hagavik; Utvaerdering av gaardsbaserad biogasanlaeggning paa Hagavik

    Energy Technology Data Exchange (ETDEWEB)

    Edstroem, Mats; Nordberg, Aake; Ringmar, Anders

    2005-07-01

    Hagavik is an organic farm (municipality of Malmoe in Sweden) and the grown crops at the farm are sugar-beet, wheat, tritricale and ley crop (for green manure). The farmer has erected a new farm scale biogas plant with a digester volume of 500 m{sup 3}. The motives for building the plant were to produce biogas for cogeneration and digestate for supplying the farm with nutrients. Biogas substrates, harvested at the farm, are ley crop and sugar-beet tops and external substrates are solid manure from horses and organic waste from industrial bakery. Digestion of fibre-rich substrates as ley crop and straw-rich solid manure at farm scale plants is fairly untested in Sweden. The fibre has a rather big impact on the rheological properties of the substrate mixture and digester slurry and can cause problems with pumping and ineffective stirring. To achieve satisfactory function on the pumps and stirrers the fibre-rich substrates the rheological properties has to be improved. This can be done by 1) mixing the fibre-rich substrates with rather large quantities of liquids which can result in low dry mater content both in substrates an digester slurry 2) reduce the fibre size by mechanical disintegration. The Swedish Inst. of Agricultural and Environmental Engineering (JTI) has been in charge of the evaluation of the biogas plant. Evaluation of the start-up phase of the plant, regarding the technical and biological function, was accomplished in July-November 2003. During year 2004 focus has been on practical experience running the plant. The plant electricity demand has been measured. Based on those measurements the calculated electricity demand running the plant with a biogas production at 600 m{sup 3}/d (3,54 MWh/d) corresponds to ca 2-3% of the energy content of the biogas. The calculated heat demand corresponds to 15 % of the biogas. At cogeneration (with assumed electrical efficiency of 34% and thermal efficiency of 55%) the net-energy production is 919 MWh/year where 44

  5. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    Science.gov (United States)

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  6. Plant cultivation aspects of biogas production in organic farming; Pflanzenbauliche Aspekte der Biogasproduktion im oekologischen Landbau

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Bernhard [Amt fuer Ernaehrung Landwirtschaft und Forsten, Bamberg (Germany); Miller, Hubert [Biolandhof Miller (Germany)

    2012-11-01

    The authors of the contribution under consideration report on plant cultivation aspects of biogas production in organic farming. The power generation, the economic aspects of this operating sector, the potential impact on the performance of crop production as well as soil fertility are considered.

  7. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Science.gov (United States)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  8. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Directory of Open Access Journals (Sweden)

    Zhelykh Vasil

    2016-06-01

    Full Text Available The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented.

  9. ANALYSIS OF ELECTROMAGNETIC FIELDS AND NOISE IN THE AREA OF AGRICUL-TURAL BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Paweł A. Mazurek

    2016-12-01

    Full Text Available Electro-magnetic and acoustic fields were analysed at the bioenergy and biogas production plant of 0.999 MW operational power, localized in Piaski. Measured values were compared with valid national norms and did not exceed limiting values in zones of people’s permanent residence.

  10. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    Science.gov (United States)

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH 4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH 4 + -N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH 4 + -N concentrations leading to a drop of CH 4 formation.

  11. Replacement of cowdung by fermentation of aquatic and terrestrial plants for use as fuel, fertilizer and biogas plant feed

    Energy Technology Data Exchange (ETDEWEB)

    Das, C. R.; Ghatnekar, S. D.

    1979-01-01

    With 85% of the entire Indian population living in villages and 98% of the household energy requirement of the rural population demanded for cooking, research was undertaken on the supply of biomass for those Indians who do not have cattle. This research was carried out on the fermentation of aquatic and terrestrial plants for use in biogas generation. The plants utilized for biogas generation are: water hyacinth, water lettuce, African payal, duck weed, water spinach, cattail ramban, ipil-ipil, morning glory, paragrass, purple nutsedge, and durva grass.

  12. Purification of anaerobic digestion biogas from a wastewater treatment plant for its use as bio fuel

    International Nuclear Information System (INIS)

    Osorio Robles, F.; Torres Rojo, J. C.; Sanchez Bas, M.; Moya Sanchez, N.

    2009-01-01

    The first phase of the investigation whose results are presented in this article, consists on the optimization of the biogas desulphurization. In our case this process was made by chemical way. Besides the scrubbing towers, the pilot plant used included filters of activated carbon at the end of the line. The H 2 S inflow concentrations were quite high. After the carried out rehearsals, the effluent biogas from the scrubbing towers presents a H 2 S concentration less than 1 ppm and zero or undetectable values of up to fifty eight analyzed trace elements. (Author) 12 refs

  13. A model of biogas plant for rural development in Nigeria and other African countries

    International Nuclear Information System (INIS)

    Mbamalu, J.E.; Egarievwe, S.U.

    1992-01-01

    About 70-80% of Nigerians live in the rural areas, and a majority of families in Africa depend on fuel-wood as a source of energy for most of their domestic heating purposes. With the ever-increasing desert encroachment and land clearing for large scale farming, human settlements and other purposes, the supply of fuel wood is becoming a problem. To improve the standard of living of the rural households, prevent indiscriminate cutting of trees, increase fertilizer production and improve pollution control and sanitary conditions, readily available and inexpensive energy must be provided. This paper presents a model in which biogas can be generated locally and supplied in villages. The cost evaluation of the model biogas plant is highlighted. The effects of some operating parameters on biogas production is also presented

  14. Energetic efficiency analysis of the agricultural biogas plant in 250 kWe experimental installation

    International Nuclear Information System (INIS)

    Dach, Jacek; Boniecki, Piotr; Przybył, Jacek; Janczak, Damian; Lewicki, Andrzej; Czekała, Wojciech; Witaszek, Kamil; Rodríguez Carmona, Pablo César; Cieślik, Marta

    2014-01-01

    European direction of energy development has been already set few years ago. Proper waste management is not just a fashion trend of the wealthy European countries – it has become a legal requirement. Processing of the biowaste into the biogas is one of the most effective technologies providing to obtain a “green” energy and improvement of the environment. Construction of small and cheap agricultural biogas plants, like in case of Poznan University of Life Sciences (PULS) experimental station Przybroda, is one of the best directions of dissemination of this biowaste valorization technology. The aim of this paper was to investigate the biogas efficiency of the substrates available in PULS experimental farm Przybroda (cattle manure, maize silage). The results have shown that the most energetic valuable substrate is maize silage with cumulative biogas yield 218.4 m 3 /Mg FM (almost 3 times more than cattle manure). With yearly substrate availability on the Przybroda farm, total amount of biomethane produced is 521,440 m 3 from maize silage and 23,615 m 3 from cattle manure. It allows to obtain 2212.38 MWh/year of electric energy as well as 2428.22 MWh/year thermal energy production. The calculated electric energy power was 0.270 MW. - Highlights: • Research on biogas efficiency from different substrates has been made. • Estimation of energy produced from own substrates was done. • Power of biogas plant on experimental farm calculated as 0.270 MW e and 0.296 MW t

  15. The possibility of functioning micro-scale biogas plant in selected farm

    Directory of Open Access Journals (Sweden)

    Czekała Wojciech

    2017-12-01

    Full Text Available Renewable energy sources (RES become more and more popular. In Poland, biomass has the highest energy potential among all RES. Methane fermentation is one of possible ways to use it. The aim of the study was to perform energy and economic calculations for the biogas plant installation project in an existing farm situated in the Wielkopolska voivodeship. Because of the small area of the farm and the type of production, the calculations were carried out for micro-installation biogas plants. During the preparation of the project the production potential of the substrates was determined, allowing for further analyses. It was calculated that the electrical power of the designed biogas plant was 8.10 kW, with a total annual production of biogas at 29 471 m3. The obtained amount allows to generate in the cogeneration system 66 450 kWh of electricity and 71 190 kWh of heat energy. Some of the energy produced can be used on the farm and its surplus sold to the grid, which will allow for financial and environmental benefits.

  16. Experimental biogas power plant at STU in bratislava

    International Nuclear Information System (INIS)

    Pipa, M.; Kment, A.; Janicek, F.

    2012-01-01

    Slovak University of Technology in Bratislava builds the technological research and development center financed by the Structural Funds of the European Union focused on use of different energy sources. In terms of renewable energy is discussed use of biomass energy available through biogas technology with a dry fermentation process. This is a pilot project of experimental physical model, which will be attempting to verify and optimize the pre-project phase parameters and technology already in commercial projects in scaled-down model. The paper deals with the design of this device. (Authors)

  17. Energy crops for biogas plants. Bavaria; Energiepflanzen fuer Biogasanlagen. Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, A.; Biertuempel, A.; Conrad, M. (and others)

    2012-08-15

    For agriculturists in Bavaria (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  18. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas

    International Nuclear Information System (INIS)

    Kaths, Friederike Annette

    2012-08-01

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  19. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib

    2013-01-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL...... grid or for CHP. An estimated 62–84% of the biomass energy can be recovered in the biofuels....

  20. Future biogas plants. New systems and their economic potential; Fremtidens biogasfaellesanlaeg. Nye anlaegskoncepter og oekonomisk potentiale

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Johannes; Hjort-Gregersen, K.; Uellendahl, H.; Ahring, B.K.; Lau Baggesen, D.; Stockmarr, A.; Moeller, Henrik B.; Birkmose, T.

    2007-06-15

    The main objective of the project was the identification and analysis of new technical concepts for centralized biogas plants, which would make them less dependant on organic waste supplies, and thus be economically self sustained mainly on manure supplies. The analyses have been carried out as system analyses, where plant concepts have been evaluated in connection with agricultural areas. 8 scenarios where analyzed, of which 2 were reference scenarios. (au)

  1. Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2018-01-01

    and environmental factors on MAGs abundance and to investigate the methanogenic performance of the biogas plants. Prediction of the functional properties of MAGs was obtained analyzing their KEGG pathways and their carbohydrate active domains. Network analysis allowed investigation of species-species associations......The aim of this work was to elucidate the microbial ecology in twelve mesophilic and thermophilic full-scale biogas plants using a genome-centric metagenomic approach. In this study both biogas plants treating manure and those treating sludge from waste water treatment plants were considered...... and shed light on syntrophic interactions between members belonging to the anaerobic digestion dark matter (phylum Fermentibacteria). By stratifying and comparing different levels of information, it was predicted that some MAGs have a crucial role in the manure-supplemented thermophilic biogas plants...

  2. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    Directory of Open Access Journals (Sweden)

    Jachniak Ewa

    2018-01-01

    Full Text Available The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter content were also determined. The research has shown different production of the biogas depending on the various species of the algae and plants. The percentage composition of the biogas was also determined (% CO2 and % CH4. In this research some kinds and species of algae and aquatic plants were distinguished: Scytosiphon cf. S. tortilis, Fucus vesiculosus, Cladophora, Audouinella, Potamogeton perfoliatus. Production of biogas from selected algae and water plants oscillated between 0.023 dm3·g-1 and 0.303 dm3·g-1. The highest content of the methane in biogas was obtained from the mixture of Ectocarpus from spring and autumn harvest (values oscillated from 80.7 % to 81.2 %, while the highest percentage share of carbon dioxide in the biogas was characterized by the mixture Fucus vesiculosus and Audouinella (22 %. Due to a small amount of the research in this field, more research is needed.

  3. Double stage dry-wet-fermentation - start-up of a pilot biogas plant

    International Nuclear Information System (INIS)

    Buschmann, Jeannette; Busch, Gunter; Burkhardt, Marko

    2009-01-01

    The Brandenburg University of Technology (BTU) has developed a double stage dry-wet fermentation process for fast and safe anaerobic degradation. Originally designed for treatment of organic wastes, this process allows using a wide variety of solid biodegradable materials. The dividing of hydrolysis and methanation in this process, allows an optimization of the different steps of biogas generation separately. The main advantages of the process are the optimum process control, an extremely stable process operation and a high gas productivity and quality. Compared to conventional processes, the retention times within the percolation stage (hydrolysis) are reduced considerably. In cooperation with the engineering and consulting company GICON, the technology was qualified further to an industrial scale. In 2007 a pilot plant, and, simultaneously, an industrial plant were built by GICON based on this double stage technology. Based on practical experience from the operation of laboratory fermentation plants, the commissioning of the pilot plant was planned, controlled and monitored by our institution. The start-up of a biogas plant of this type focuses mainly on the inoculation the of methane reactor. The growth of microbial populations and generation of a stable biocenosis within the methane reactor is essential and affects the duration of starting period as well as the methanation efficiency a long time afterwards. This paper concerns with start-up of a pilot biogas plant and discusses particular occurrences and effects during this period. (author)

  4. Agricultural biogas plants – A systematic analysis of strengths, weaknesses, opportunities and threats

    International Nuclear Information System (INIS)

    Brudermann, Thomas; Mitterhuber, Corinna; Posch, Alfred

    2015-01-01

    In this paper, we discuss the prospects of agricultural biogas plants. We conducted an integrated SWOT–AHP analysis for such plants in Austria in order to identify strengths, weaknesses, opportunities and threats (SWOT factors), and to weight the factors identified based on expert judgments, calculated according to the Analytic Hierarchy Process (AHP) method. The results show that financial aspects are dominant in three of the four SWOT categories. Technological aspects and issues regarding utilization seem to play a relatively minor role. Factors that are not directly under the control of plant operators are currently perceived as crucial for the success of agricultural biogas plants. We conclude that such plants will only succeed in contributing to sustainable energy supply goals when economic and political conditions are favorable over the long term. - Highlights: • Integrated SWOT–AHP analysis for agricultural biogas plants in Austria. • Quantification of weighting factors based on expert judgments. • Financial aspects dominate over technological and environmental aspects. • Sophisticated and flexible subsidy schemes are crucial for the further diffusion of the technology

  5. Analytical investigation of the thermal optimization of biogas plants; Analytische Untersuchung der thermischen Optimierung von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, Thomas [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Ing. Buero Energietechnik, Niebuell (Germany); Scholwin, Frank [Institut fuer Biogas, Kreislaufwirtschaft und Energie, Weimar (Germany); Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2015-07-01

    The economic efficiency of biogas plants is more difficult to display with recent legal regulations than with bonus tariff systems of previous EEG amendments. To enhance efficiency there are different options, often linked with further investments. Direct technical innovations with fast economic yields need exact evaluation of limiting conditions. Within this article the heat sector of agricultural biogas plants is studied. So far scarcely considered, especially the improvement of on-site thermal energy consumption promises a high optimisation. Data basis are feeding protocols and temperature measurements of input substrates, biogas, environment etc., also documentations of on-site thermal consumption over 10 years. Analyzing first results of measurements and primary equilibrations shows, that maintenance of biogas process temperature consumes most thermal energy and therefore has the greatest potential of improvement. Passive and active insulation of feed systems and heat recovery from secondary fermenter liquids are identified as first optimization measures. Depending on amount and temperature raise of input substrates, saving potentials of more than hundred megawatt hours per year were calculated.

  6. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  7. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems; Oekonomisches und oekologisches Benchmarking von Biogasanlagenkonfigurationen zur flexiblen Verstromung in zukuenftigen Stromversorgungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Henning [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany). Bereich Energieverfahrenstechnik

    2016-08-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh{sup -1} and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh{sup -1}. While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO{sub 2-eq} MJ{sup -1} and primary energy by about 1.17 MJ MJ{sup -1}. In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  8. Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Wylock, Christophe E.; Marciniak, Przemysław A.

    2017-01-01

    Highlights: • Insights into power requirements of biomethane production from biogas are provided. • Process model is constructed, validated and simulated. • High-pressure and low-pressure plant operation in different configurations is compared. - Abstract: Biogas upgrading by water scrubbing followed by biomethane compression is an environmentally benign process. It may be achieved using various plant configurations characterised by various power requirements with associated effects on biomethane sustainability. Therefore, the current study has been undertaken to systematically investigate the power requirements of a range of water scrubbing options. Two groups of water scrubbing are analysed: (1) high pressure water scrubbing (HPWS) and (2) near-atmospheric pressure water scrubbing (NAPWS). A water scrubbing plant model is constructed, experimentally validated and simulated for seven upgrading plant configurations. Simulation results show that the power requirement of biogas upgrading in HPWS plants is mainly associated with biogas compression. In contrast, in NAPWS plants the main power is required for water pumping. In both plants the compression of the biomethane from atmosphereic pressure to 20 MPa also contributes remarkably. It is observed that the lowest specific power requirement can be obtained for a NAPWS plant without water regeneration (0.24 kW h/Nm"3 raw biogas) but this plant requires cheap water supply, e.g. outlet water from a sewage treatment plant or river. The second is HPWS without flash (0.29 kW h/Nm"3 raw biogas). All other HPWS with flash and NAPWS with water regeneration plants have specific power requirements between 0.30 and 0.33 kW h/Nm"3 raw biogas. Biogas compression without upgrading requires about 0.29 kW h/Nm"3 raw biogas. The thermodynamic efficiency of biogas upgrading is between 2.2% and 9.8% depending on the plant configuration while biomethane compression efficiency is higher, about 55%. This result implies that the

  9. Unit commitment and investment valuation of flexible biogas plants in German power markets

    Energy Technology Data Exchange (ETDEWEB)

    Hochloff, Patrick

    2017-07-01

    Biogas plants contribute a significant share of renewable energy sources (RES) to the electricity system. Most of them are designed to supply constant power generation. In the future biogas plants will most likely become more flexible, scheduling their power generation with respect to market prices. For this purpose power units need extended electrical capacity to convert the continuously produced gas as well as the gas held in storage. When constructing extended capacity at biogas plants, the flexibility premium is the main focus for about 8000 plants which were constructed before August 2014. Additional incomes as a result of selling at higher market prices have been considered, too. However, their relationship to the electrical capacity and storage size of biogas plants was unknown as was the impact on investment valuation. This work has shown how biogas plants with extended capacity can be analyzed when they are operated in power markets, in particular the power spot market and the control reserve markets. Models on the basis of unit commitment have been developed in order to obtain optimized schedules and financial parameters, such as gross income and net present value (NPV), when biogas plants with extended capacity capitalize on prices in each market. The models developed consider several use cases that describe possible ways of participating in German power markets, switching between static and variable gas supply, providing secondary and tertiary control reserve, and claiming the market and flexibility premium. Mixed integer linear programs (MILP) have been developed for the unit commitment of each use case. The model for the unit commitment of providing control reserve with biogas plants made significant progress compared to the state of the art and has been published in (Hochloff, Braun 2014). There are two ways to make use of this model. First of all, the model could be applied to plan daily schedules for the operation of gas plants located at a gas

  10. Unit commitment and investment valuation of flexible biogas plants in German power markets

    International Nuclear Information System (INIS)

    Hochloff, Patrick

    2017-01-01

    Biogas plants contribute a significant share of renewable energy sources (RES) to the electricity system. Most of them are designed to supply constant power generation. In the future biogas plants will most likely become more flexible, scheduling their power generation with respect to market prices. For this purpose power units need extended electrical capacity to convert the continuously produced gas as well as the gas held in storage. When constructing extended capacity at biogas plants, the flexibility premium is the main focus for about 8000 plants which were constructed before August 2014. Additional incomes as a result of selling at higher market prices have been considered, too. However, their relationship to the electrical capacity and storage size of biogas plants was unknown as was the impact on investment valuation. This work has shown how biogas plants with extended capacity can be analyzed when they are operated in power markets, in particular the power spot market and the control reserve markets. Models on the basis of unit commitment have been developed in order to obtain optimized schedules and financial parameters, such as gross income and net present value (NPV), when biogas plants with extended capacity capitalize on prices in each market. The models developed consider several use cases that describe possible ways of participating in German power markets, switching between static and variable gas supply, providing secondary and tertiary control reserve, and claiming the market and flexibility premium. Mixed integer linear programs (MILP) have been developed for the unit commitment of each use case. The model for the unit commitment of providing control reserve with biogas plants made significant progress compared to the state of the art and has been published in (Hochloff, Braun 2014). There are two ways to make use of this model. First of all, the model could be applied to plan daily schedules for the operation of gas plants located at a gas

  11. Different approaches to assess the environmental performance of a cow manure biogas plant

    Science.gov (United States)

    Torrellas, Marta; Burgos, Laura; Tey, Laura; Noguerol, Joan; Riau, Victor; Palatsi, Jordi; Antón, Assumpció; Flotats, Xavier; Bonmatí, August

    2018-03-01

    In intensive livestock production areas, farmers must apply manure management systems to comply with governmental regulations. Biogas plants, as a source of renewable energy, have the potential to reduce environmental impacts comparing with other manure management practices. Nevertheless, manure processing at biogas plants also incurs in non-desired gas emissions that should be considered. At present, available emission calculation methods cover partially emissions produced at a biogas plant, with the subsequent difficulty in the preparation of life cycle inventories. The objective of this study is to characterise gaseous emissions: ammonia (NH3-N), methane (CH4), nitrous oxide (N2Oindirect, and N2Odirect) and hydrogen sulphide (H2S) from the anaerobic co-digestion of cow manure by using different approaches for preparing gaseous emission inventories, and to compare the different methodologies used. The chosen scenario for the study is a biogas plant located next to a dairy farm in the North of Catalonia, Spain. Emissions were calculated by two methods: field measurements and estimation, following international guidelines. International Panel on Climate Change (IPCC) guidelines were adapted to estimate emissions for the specific situation according to Tier 1, Tier 2 and Tier 3 approaches. Total air emissions at the biogas plant were calculated from the emissions produced at the three main manure storage facilities on the plant: influent storage, liquid fraction storage, and the solid fraction storage of the digestate. Results showed that most of the emissions were produced in the liquid fraction storage. Comparing measured emissions with estimated emissions, NH3, CH4, N2Oindirect and H2S total emission results were in the same order of magnitude for both methodologies, while, N2Odirect total measured emissions were one order of magnitude higher than the estimates. A Monte Carlo analysis was carried out to examine the uncertainties of emissions determined from

  12. Future biogas plants. New plant outlines and economic potential; Fremtidens biogasfaellesanlaeg. Nye anlaegskoncepter og oekonomisk potentiale

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Johannes (ed.)

    2006-06-16

    The Working Paper is the first joint reporting from a project aiming at identifying new outlines for joint biogas plants with profitable operation mainly based on slurry. So far a pre-requisition for profitable operation has been supply of 20-25% organic waste as supplement to the slurry, partly because organic waste increases gas production, and partly to collect recipient fee. The new outlines, which are analysed, represent different combinations of technology for separation, pre-treatment and re-circulation, including separation at each separate farm and separation of degassed slurry. Simultaneously with an increased gas yield, a number of synergy effects are achieved, which can contribute to ensure an environmentally friendly distribution and use of the nutrients, especially in areas with large concentrations of animal husbandry. (BA)

  13. Codigestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Angelidaki, Irini

    2008-01-01

    The present study focuses on process imbalances in Danish centralized biogas plants treating manure in combination with industrial waste. Collection of process data from various full-scale plants along with a number of interviews showed that imbalances occur frequently. High concentrations...... of ammonia or long chain fatty acids is in most cases expected to be the cause of microbial inhibitions/imbalances while foaming in the prestorage tanks and digesters is the most important practical process problem at the plants. A correlation between increased residual biogas production (suboptimal process...... conditions) and high fractions of industrial waste in the feedstock was also observed. The process imbalances and suboptimal conditions are mainly allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate knowledge about the waste degradation characteristics, 3) inadequate...

  14. Comparative study of economics of different models of family size biogas plants for state of Punjab, India

    International Nuclear Information System (INIS)

    Singh, K. Jatinder; Sooch, Sarbjit Singh

    2004-01-01

    Biogas, the end product of anaerobic digestion of cattle dung, can successfully supplement the cooking fuels in the countryside areas of India, where the raw material needed for its production is plentifully available. Because of the lack of awareness regarding selection of a suitable model and size of biogas plant, the full potential of the biogas producing material is not harnessed, and the economic viability of biogas technology is rendered doubtful. To facilitate this decision making, the economics of family size biogas plants, i.e. with capacity from 1 to 6 m 3 , was studied, and three prevalent models, viz. KVIC, Janta and Deenbandu, were compared. Calculations for installation cost and annual operational cost were made for the state of Punjab, India, where the hydraulic retention time is 40 days, and current market prices were taken into account. Comparison of the economics revealed that the cost of installation and annual operational cost of each capacity were higher for the KVIC model, followed by the Janta and then the Deenbandhu model. Irrespective of the model, as the capacity of the biogas plant increases, the installation, as well as the annual operational cost increase proportionately. With increase in capacity, the payback period decreased exponentially with the exponential character being highest for the KVIC model, followed by the Janta and then the Deenbandhu model. However, on the basis of comparative economics, the Deenbandhu model was found to be the cheapest and most viable model of biogas plant

  15. Western waterweed (Elodea nuttallii) as a co-substrate for biogas plants; Schmalblaettrige Wasserpest (Elodea nuttallii) als Cosubstrat fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Zehnsdorf, Andreas [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Arbeitsgruppe Bioprozesstechnik; Korn, Ulrich; Pieper, Bernd [Dr. Pieper Technologie- und Produktentwicklung GmbH (Germany); Proeter, Juergen; Naumann, Dirk [Deutsches BiomasseForschungsZentrum gemeinnuetzige GmbH (Germany). Arbeitsgruppe Substratcharakterisierung und -management; Seirig, Michael [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Umwelt- und Biotechnologisches Zentrum; Roenicke, Helmut [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Arbeitsgruppe Planktonoekologie

    2011-07-01

    Western waterweed (Elodea nuttallii) grows vigorously in bodies of water in Germany and hinders in many places their recreational use. For this reason, this aquatic plant is now often harvested and subsequently disposed of as organic waste. As a possible alternative use, the harvested Elodea biomass can also be used as co-substrate in biogas plants. As the digestion of western waterweed alone in a laboratory biogas plant led to a reduction of the biogas yield of over 50 %, Elodea was used in combination with maize silage. A mix of 30 % Elodea and 70 % maize silage produced a biogas yield of 580 standard litres per kilogram of organic dry matter. In addition, the aquatic plant and maize were readily ensilable, which made it easy to store and ensured that it was ready to use over a longer period of time. (orig.)

  16. BIOGAS PLANT AS AN ELEMENT THAT HAS A POSITIVE INFLUENCE ON THE ENVIRONMENTAL CHANGES OF RURAL SPACE

    Directory of Open Access Journals (Sweden)

    Wojciech Pawłowski

    2017-10-01

    Full Text Available In the contemporary rural landscape, an agricultural biogas plant is becoming an increasingly frequent element of agricultural installations. There is a need to ask an important question: is a new technology, such as biogas plants with medium power of 1MW, listed as investments which can have significant environmental impacts? This question is becoming an integral part of rural space as a new form of village buildings. The inevitable changes in the rural landscape and the way of carrying out farming have both a positive and negative impact on the rural environment. Biogas plants, as new objects in developing country industries, are undoubtedly an important element in the way of obtaining green energy. Location is the most important factor for the success of the establishment and operation of the biogas plant, which is important not only for economic reasons, but also socio-environmental and landscape reasons.

  17. Deployment of a bio-economic 'hub' in rural Thailand by means of a Centralized biogas plant

    DEFF Research Database (Denmark)

    Lybæk, Rikke

    2017-01-01

    of nitrogen, low milk yield and inappropriate cattle diets etc., can be improved in the cattle farms, by better housekeeping, as well as supply of manure to the local dairy. Here, fossil fuels use could be substituted by renewable energy from biogas, and the energy used at various temperature levels...... by cascading. The paper further reveals that large amount of appropriate and available feedstock for the suggested biogas plants are assessable within the community, and currently pose an environmental problem, or re-used inefficiently. The centralized biogas plant will thus provide a development ‘hub’ for bio-economic...

  18. BIOGAS PLANT AS AN ELEMENT THAT HAS A POSITIVE INFLUENCE ON THE ENVIRONMENTAL CHANGES OF RURAL SPACE

    OpenAIRE

    Wojciech Pawłowski

    2017-01-01

    In the contemporary rural landscape, an agricultural biogas plant is becoming an increasingly frequent element of agricultural installations. There is a need to ask an important question: is a new technology, such as biogas plants with medium power of 1MW, listed as investments which can have significant environmental impacts? This question is becoming an integral part of rural space as a new form of village buildings. The inevitable changes in the rural landscape and the way of carrying out ...

  19. Biogas handbook (pilot edition)

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A [comp.

    1982-01-01

    The theory of biogas production; factors affecting digester design; details of several biogas plants of India and China including their construction, operation, and maintenance; designs of biogas utilization devices; and the use of digested sludge as fertilizer or animal feed are discussed. Included is a section listing the causes and known solutions of technical problems associated with the construction and operation of biogas plants and appliances. (CK)

  20. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    Science.gov (United States)

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter

  1. Biogas plants in EEG. 4. new rev. and enl. ed.; Biogasanlagen im EEG

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut; Maslaton, Martin; Bredow, Hartwig von; Walter, Rene (eds.)

    2016-08-01

    With the EEG 2014, the legislature has created a complete revision of all the RES plants. Specifically for biogas plants fundamental changes have been made with the maximum rated power or a new landscape conservation concept. For new biogas plants the legislator arranges not only a much lower remuneration, but also the direct marketing as a rule, which entails fundamental changes in the overall compensation system by itself. The new edition of this highly regarded standard work revives the extensive practical experience to EEG 2009, 2012 and 2014 in detail and in particular and takes into account the large number of newly issued clearinghouses decisions and judgments. All current legal issues and challenges of biogas plants can be found comprehensively presented here. [German] Mit dem EEG 2014 hat der Gesetzgeber eine komplette Neuregelung fuer alle EEG-Anlagen geschaffen. Speziell fuer Biogasanlagen wurden mit der Hoechstbemessungsleistung oder einem neuen Landschaftspflegebegriff grundlegende Aenderungen vorgenommen. Fuer neue Biogasanlagen ordnet der Gesetzgeber nicht nur eine deutlich geringere Verguetung, sondern zudem die Direktvermarktung als Regelfall an, was grundlegende Veraenderungen des gesamten Verguetungssystems nach sich zieht. Die Neuauflage dieses vielbeachteten Standardwerks greift die umfangreichen Praxiserfahrungen zum EEG 2009, 2012 und 2014 detailliert auf und beruecksichtigt insbesondere auch die Vielzahl der neu ergangenen Clearingstellenentscheidungen und Urteile. Alle aktuellen rechtlichen Themen und Herausforderungen bei Biogasanlagen finden Sie hier umfassend dargestellt.

  2. Case study of 85 m3 floating drum biogas plant under hilly conditions

    International Nuclear Information System (INIS)

    Kalia, A.K.; Singh, S.P.

    1999-01-01

    An 85 m 3 floating drum biogas plant was installed at the dairy farm of HP Agricultural University, Palampur, in 1989 to meet the energy needs of cooking food in the veterinary hostel mess and for general dairy requirements. It cost nearly Rs. 0.21 million (US dollars 6293), including the cost of an 800 m gas pipe line, and is working satisfactorily without any major problems except breakage of the central guide of its gas holder. With the feed rate of 17 q cattle dung/day, 50 m 3 and 30 m 3 biogas was obtained in the summer and winter months, respectively, during 1989-1991. The reduction of feed rate to 9 q cattle dung/day in 1992 onwards resulted in lowering the gas production of 25 m 3 and 18 m 3 in the summer and winter months, respectively. This gas was just sufficient to meet 73% (9466 MJ/month) and 53% (7019 MJ/month) of the energy needs for cooking meals in the hostel alone in the summer and winter months, respectively, during the course of the study. Considering the biogas and manure obtained from the plant, the income-cost ratios during the period 1989-1991 and 1992-1997 were found to be 1.44 and 1.15, respectively, suggesting that, though the plant was under fed relatively to the requisite feed rate (21 q cattle dung/day), the installation of this plant was an economically viable proposition. (author)

  3. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Estimation of potential biomass resource and biogas production from aquatic plants in Argentina

    Science.gov (United States)

    Fitzsimons, R. E.; Laurino, C. N.; Vallejos, R. H.

    1982-08-01

    The use of aquatic plants in artificial lakes as a biomass source for biogas and fertilizer production through anaerobic fermentation is evaluated, and the magnitude of this resource and the potential production of biogas and fertilizer are estimated. The specific case considered is the artificial lake that will be created by the construction of Parana Medio Hydroelectric Project on the middle Parana River in Argentina. The growth of the main aquatic plant, water hyacinth, on the middle Parana River has been measured, and its conversion to methane by anaerobic fermentation is determined. It is estimated that gross methane production may be between 1.0-4.1 x 10 to the 9th cu cm/year. The fermentation residue can be used as a soil conditioner, and it is estimated production of the residue may represent between 54,900-221,400 tons of nitrogen/year, a value which is 2-8 times the present nitrogen fertilizer demand in Argentina.

  5. Pilot-scale Biogas Plant for the Research and Development of New Technologies

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2012-09-01

    Full Text Available Тhe paper describes a new pilot-scale biogas plant of the Institute of Microbiology - Bulgarian Academy of Sciences. The equipment includes: a 100 L pilot bioreactor, a 200 L metal gasholder, sensors, actuators, a two-level automatic process monitoring and control system, a fire and explosion protection system and two web cameras. The monitoring and control system is composed on the lower level of a controller Beckhoff, and on the higher level - of a PC with specialized software (under development. The pilot biogas plant is designed to work out and scale up various anaerobic digestion (AD technologies based on different types of feedstock. All the data will be stored on the PC for quick reference and possibly data mining, parameter identification and verification of different AD mathematical models.

  6. Construction and operation of biogas plants. Bau und Betrieb von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, F. von

    1985-01-01

    Biogas utilisation in agriculture has increased considerably as a consequence of the energy crisis. So far, energy production was the most important aspect, and the high-quality natural fertilizer offered by the fermentation residues was commonly neglected. This fertilizer is an effective substitute for commercial fertilizers and thus contributes to the reduction of environmental pollution. The book discusses the chemical and biological mechanisms, the criteria of selection for plants and materials, optimum gas production techniques, uses of the product gas, and the advantages and properties of the biofertilizer produced. Planning procedures, design, construction, function and performance of several biogas production plants now in operation are described. Hints are given for do-it-yourself construction, as are cost-benefit calculations and decision aids for construction.

  7. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    Science.gov (United States)

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Devising an energy saving technology for a biogas plant as a part of the cogeneration system

    OpenAIRE

    Чайковська, Євгенія Євстафіївна

    2015-01-01

    The paper suggests an operation technology for a biogas plant that allows setting a heating medium temperature at the inlet to the heat exchanger built in a digester and measuring the heating medium temperature at the outlet. An integrated system for assessing the varied temperature of digestion (that is based on mathematical and logical modeling within the cogeneration system) secures a continuous gas outlet, a timely unloading of fermented mash and loading of a fresh matter. For this purpos...

  9. Evaluation of one year of operation of the biogas plant in Suchohrdly u Miroslavi

    Directory of Open Access Journals (Sweden)

    Adam Moravec

    2011-01-01

    Full Text Available The manner of designing biogas plants is eagerly described by each and every seller or supplier of the respective technology. Numerous feasibility studies comprising forecasts of future operation featuring different quality levels have been written. However, it is rarely possible to obtain information comparing the anticipated future numbers and real values. Nevertheless, an evaluation of past operation of BGP is of utmost importance for calibration of the calculation methods used for designing of future BGPs. Information obtained on the basis of an evaluation is also useful for the purpose of verification of correct functionality of the equipment as well as optimisation of its operation with the objective of achieving the planned (or even better values of profitability of each respective project. A comprehensive analysis of a biogas plant is a project sensitive to accuracy of inputs. Measurements of amounts and quality of the feed substrate throughout the whole year, which comprises numerous criteria, is highly demanding and complicated, and therefore the objective of this evaluation is to analyze the performance, production and consumption of the biogas plant in the course of a calendar year (Schulz et al., 2004. Power measuring tasks are performed using calibrated gauges (which are mostly used for invoicing purposes, thus ensuring accuracy and credibility of the input data.

  10. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.

    Science.gov (United States)

    Liebetrau, J; Reinelt, T; Clemens, J; Hafermann, C; Friehe, J; Weiland, P

    2013-01-01

    With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.

  11. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    Science.gov (United States)

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. PRODUCTION, ECONOMIC AND ENVIRONMENTAL EFFECTS OF AGRICULTURAL BIOGAS PLANT IN KOSTKOWICE

    Directory of Open Access Journals (Sweden)

    Karol Węglarzy

    2017-06-01

    Full Text Available This paper presents the economic and ecological effect of Kostkowice Agricultural biogas plant based on a four year study carried out on the prototype installation. Agricultural biogas plant is part of the nature of the research conducted for twenty years at the National Research Institute of Animal PIB Experimental Station. Prof. Mieczyslaw Czaja relates to various aspects of environmental protection. It describes the economic justification for the production of energy from waste biomass (manure, slurry, wastes from feeding table, by the characteristics of substrates and products. It was found that agricultural biogas plant in rural areas are an important link in energy security, mainly due to the very high availability. Ecological effect is presented as effect of the installation solutions for the reduction of pollution of water, soil and air. Reducing greenhouse gas emissions through the recycling of environmentally harmful by-products of animal production of electricity and thermal energy, which is a substitute for environmentally harmful fossil fuels. The advantage of substances digestate is odorless, which is important both in an effort to improve the work culture in agriculture and improving living conditions in rural communities and it is an indisputable argument for the use of biomass for energy purposes.

  13. Biological methanation of hydrogen within biogas plants: A model-based feasibility study

    International Nuclear Information System (INIS)

    Bensmann, A.; Hanke-Rauschenbach, R.; Heyer, R.; Kohrs, F.; Benndorf, D.; Reichl, U.; Sundmacher, K.

    2014-01-01

    Highlights: • Simulation study about direct methanation of hydrogen within biogas plants. • In stationary operation two limitations, namely biological and transfer limit. • Biological limit at 4m H2 3 /m CO2 3 due to stoichiometry. • Dynamic behaviour shows three qualitatively different step responses. • A simple control scheme to meet the output quality was developed. - Abstract: One option to utilize excess electric energy is its conversion to hydrogen and the subsequent methanation. An alternative to the classical chemical Sabatier process is the biological methanation (methanogenesis) within biogas plants. In conventional biogas plants methane and carbon dioxide is produced. The latter can be directly converted to methane by feeding hydrogen into the reactor, since hydrogenotrophic bacteria are present. In the present contribution, a comprehensive simulation study with respect to stationary operating conditions and disturbances is presented. It reveals two qualitative different limitations, namely a biological limit (appr. at 4m H2 3 /m CO2 3 corresponds to 4.2m H2,STP 3 /m liq 3 /d) as well as a transfer limit. A parameter region for a safe operation was defined. The temporary operation with stationary unfeasible conditions was analysed and thereby three qualitatively different disturbances can be distinguished. In one of these the operation for several days is possible. On the basis of these results, a controller was proposed and tested that meets the demands on the conversion of hydrogen and also prevents the washout of the microbial community due to hydrogen overload

  14. Economic and environmental evaluation of investment projects of biogas plants

    International Nuclear Information System (INIS)

    Guzmán Marrero, Elizabeth; Guzmán Chinea, Jesús Manuel; Mata Varela, Milagros C.; Pérez González, Yanet

    2015-01-01

    The economic evaluation of the implementation and use of renewable energy is an issue of paramount importance and has been approached from different perspectives by different authors in different countries. Biogas technology has its own characteristics that make it more complex analysis involved not only in this case the energy aspect but there is also a significant impact on health assessment difficult, fertilization, soil improvement, animal feed and improved conditions of life. The capital budgeting, in conjunction with the planning process, is a key economic tool for decision making and in turn represents an ongoing challenge for the agricultural sector. It is a necessity of our country, together with the entire world, potentiate the action to correct management of organic waste generated in intensive pig farming, to contribute to the reduction of environmental impacts that this work causes. Studies in this area show the shortcomings that exist in Cuban law established for the evaluation of investment projects, both in its structure and in its cycle, without taking into account important elements such as risk analysis. This research evaluates the economic and financial feasibility of an investment project, including a social and environmental assessment of the same financial justification for the inclusion of risk analysis in the evaluation process (full text)

  15. Methane emissions from digestate at an agricultural biogas plant.

    Science.gov (United States)

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J

    2016-09-01

    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. The Biogas from bio-energy electrical power plant of Nuevo Leon; Central electrica de biogas de bioenergia de Nuevo Leon

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Saldana M, Jaime L [Sistemas de Energia Internacional S.A. de C.V. (Mexico)

    2005-07-01

    The biogas from bio-energy electrical power plant of Nuevo Leon represents, in all the national territory, the first experience on the advantage of biogas emitted by the sanitary landfills for the generation of electrical energy. Therefore, one of the specific objectives of this paper is the one of diffusion and reproduction of the same one in other cities of Mexico and Latin America. The project is framed within the world-wide policies on the control of emissions for the reduction of the greenhouse effect gases (GEG) and its impact in the global climatic change. The gas emitted by the trash sanitary landfills, commonly known as biogas, is a gas mixture derived from the decomposition of the organic matter of the municipal trash by microorganisms in anaerobic conditions. Biogas generated in the sanitary landfills has a methane content of 55% and a 35% of carbon dioxide. The balance 10% is made up of water steam, hydrogen, nitrogen, oxygen, hydrogen sulfur and other gases in minimum amounts. [Spanish] La Central Electrica de Biogas de Bioenergia de Nuevo Leon representa, en todo el territorio nacional, la primera experiencia sobre el aprovechamiento del biogas emitido por los rellenos sanitarios para la generacion de energia electrica. Por esta razon, uno de los objetivos especificos de este trabajo es la de difusion y reproduccion del mismo en otras ciudades de Mexico y Latinoamerica. El proyecto esta enmarcado dentro de las politicas mundiales sobre el control de emisiones para la reduccion de los gases de efecto invernadero (GEI) y su impacto en el cambio climatico global. El gas emitido por la basura dispuesta en los rellenos sanitarios, comunmente conocido como biogas, es una mezcla de gases derivado de la descompensacion de la materia organica de la basura municipal por microorganismos en condiciones anaerobias. El biogas generado en los rellenos sanitarios tiene un contenido de metano del 55% y un 35% de bioxido de carbono. El 10% restante se compone de vapor

  17. Accounting of greenhouse gas emissions of a biogas plant. Results from the practice; Bilanzierung der Treibhausgasemissionen einer Biogasanlage. Ergebnisse aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Reckmann, Karoline [Union Agricole Holding AG, Pinneberg (Germany); Fritz, Thomas; Lasar, Ansgar

    2014-08-01

    The assessment of greenhouse gas emissions for biogas plants aims at providing valuable data in order to identify set screws for improvements. Most measurements potentially reducing CO{sub 2}-emissions also help improving the profitability of the biogas plant. The current study therefore aimed at quantifying the environmental impacts of biogas plants. To that end, greenhouse gas emissions were assessed using data of a company-owned 776 kW biogas plant located in Wahlstedt, Schleswig-Holstein, Germany. Fermentation substrates are maize, grass and cattle manure. Specific greenhouse gas emissions of 282 g CO{sub 2}-eq per kWh{sub el} have been calculated.

  18. THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Krzysztof Pilarski

    2016-09-01

    Full Text Available The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg, in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg. The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of

  19. Compost and residues from biogas plant as potting substrates for salt-tolerant and salt-sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    Cam Van, Do Thi

    2013-08-01

    Compost and residues from biogas plant have been increasingly recognized as potting substrates in horticulture. To investigate the suitability of both materials to grow salt tolerant plants in 2010 a pot experiment was conducted in the greenhouse of INRES-Plant nutrition, University of Bonn. Ryegrass (Lolium perenne L.), rape (Brassica napus) and sunflower (Helianthus annuus) were chosen as experimental plants. To reduce the high salt content compost and residues from biogas plant were leached. To improve physical characteristics of raw materials, additives including Perlite, Styromull, Hygromull, Lecaton, Peat, Cocofiber were incorporated into compost or residues from biogas plant with the volumetric ratio of 4:1. Plant growth (DM) and nutrient uptake (N, P, K, Mg, Ca, Na and S) of the experimental plants grown in compost-based or residue-based substrates with and without additives and standard soil as a control were determined. Preliminary results reveal that origin compost and residues from biogas plant without leaching are suitable potting substrates for those plants. For compost leaching may not be recommended while for residues from biogas plant the effect of leaching was not distinct and needs further investigations. The incorporation of additives into the basic materials partially resulted in higher plant dry matter yield and nutrient uptake. However, differences between the additives on both parameters were mainly insignificant. Incorporation of Hygromull or Peat, especially into residues from biogas plant favored plant growth and enhanced total nutrient uptake. In 2011, pot experiments were continued with the salt-sensitive ornamental plants, Pelargonium (Pelargonium zonale Toro) and Salvia (Salvia splendens). Two separate experiments were carried out for the mixtures of compost and additives (SPS standard soil type 73 based on Peat, Hygromull or Cocofiber) with different volumetric ratios (4:1, 1:1, 1:4) and the mixtures of Peat incorporated with small

  20. Energy and substance conversion in biogas plants. Results of measurement investigations of agricultural biogas plants in the Rheinland; Energie- und Stoffumsetzung in Biogasanlagen. Ergebnisse messtechnischer Untersuchungen an landwirtschaftlichen Biogasanlagen im Rheinland

    Energy Technology Data Exchange (ETDEWEB)

    Besgen, S.

    2005-08-15

    The current data situation on biogas technology is not extensive and is mainly based on laboratory testing. This was the starting point for a pilot project and the dissertation at hand, where data was collected from four agricultural biogas plants during a period of two years. These four plants are equipped with extensive measurement technology and are run under mesophilic temperature conditions. They utilize manure, renewable primary products and organic waste products. The measurements carried out cover balancing, i.e. determining the gas-output, production and usage of energy, as well as process analysis. The latter investigates parameters which permit statements on stability of the fermentation process and on the substances of contents of the substrate. Input and output of the plants were quantified during the measurement periods. Input is defined as organic substance, output as the production of electricity and heat from burning biogas in block-type thermal power stations. Concerning the latter, the thermal and electrical efficiency factor was calculated, indicating also the respective fuel oil proportion. Furthermore, the process energy demand in form of electricity and heat for running the plants was analysed. It was possible to define the quality of the biogas produced as well as the quantity of individual substrates based on standard gas calculations. The measurement programme gained valuable data for the practical use of biogas plants. The results will be helpful for planning and designing these plants. (orig.)

  1. Boosting biogas yield of anaerobic digesters by utilizing concentrated molasses from 2nd generation bioethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Shiplu [Department of Renewable Energy, Faculty of Engineering and Science, University of Agder, Grimstad-4879 (Norway); Moeller, Henrik Bjarne [Department of Biosystems Engineering, Faculty of Science and Technology, Aarhus University, Research center Foulum, Blichers Alle, Post Box 50, Tjele-8830 (Denmark)

    2013-07-01

    Concentrated molasses (C5 molasses) from 2nd generation bioethanol plant has been investigated for enhancing productivity of manure based digesters. A batch study at mesophilic condition (35+- 1 deg C) showed the maximum methane yield from molasses as 286 LCH4/kgVS which was approximately 63% of the calculated theoretical yield. In addition to the batch study, co-digestion of molasses with cattle manure in a semi-continuously stirred reactor at thermophilic temperature (50+- 1 deg C) was also performed with a stepwise increase in molasses concentration. The results from this experiment revealed the maximum average biogas yield of 1.89 L/L/day when 23% VSmolasses was co-digested with cattle manure. However, digesters fed with more than 32% VSmolasses and with short adaptation period resulted in VFA accumulation and reduced methane productivity indicating that when using molasses as biogas booster this level should not be exceeded.

  2. Increased utilisation of existing biogas plants; Oekat utnyttjande av befintliga biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael

    2007-09-15

    The purpose of this study is to analyse how existing biogas plants in Sweden could be utilised more efficiently, by increase the organic loading rate, and to calculate the cost efficiency of such measures. Biogas plants treating sewage sludge are currently operated with low organic loading rates and it is likely that there could be a considerable potential of increased utilisation of existing capacity. However, disposal costs of digested sewage sludge have a great impact on the economic result. Thus, the cost must be low, below 200 - 850 SEK/tonne DS, for co-digestion of sewage sludge and organic household waste to be economic competitive, compared to building of a new reactor. For co-digestion plants, using manure and organic waste as feedstock, it is not possible to say whether it is more economic to increase the utilisation of existing capacity or to increase the reactor volume. Therefore, more specific studies are required for individual plants and cases. Regarding the need for a more sophisticated monitoring and control of the biogas process, it can be established that the utilisation of sewage sludge digestion plants could be increased considerably without exceptionally high organic loading rates, thus probably without any additional monitoring and control. However, indicated prices for such applications are probably acceptable compared to establishing a new reactor. For co-digestion plants, the scope for investments is smaller and more dependent on the alternative cost for new reactors. Also, any process disturbances, which may appear even at low organic loading rates, could be very costly and result in costs in the same range as for monitoring and control equipment. Finally, the reader should observe that the analyses conducted here assume that funding and physical space for additional reactors is available at the existing site. If not, there could be situations where it is economic interesting to increase the organic loading rate although cost estimates

  3. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    Science.gov (United States)

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  4. Concise aspects regarding the accounting treatment for property, plant and equipment in according with IAS 16

    OpenAIRE

    Ecobici, N

    2007-01-01

    The objective of this paper is to describe the accounting treatment for property, plant and equipment, in according with the IAS 16, including: timing of the recognition of assets, determination of asset carrying amounts using both the cost model and a reevaluation model, depreciation charges and impairment losses to be recognized in relation to these values.

  5. Analysis of MSW treatment plant with production of biogas, RDF and compost through simulative approach

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, R; Giribone, P; Schenone, M. [Genoa Univ. (Italy). ITIM, Engineering Dept.; Macchiavello, A [Genoa Univ. (Italy). ISTIC, Engineering Dept.

    1996-12-31

    This work concerns the feasibility study of a MSW (Municipal Solid Waste) treatment plant based on wet way technology. The choice towards such a plant engineering-solution is due to the utilization of the energetic component of waste, through a production of both biogas and RDF (Refuse Derived Fuel) with practically any impact on environment. That`s why this solution is preferred to the traditional incinerating technologies and pyrolysis, that cause environmental damage because of more or less noxious emissions. In order to analyse how a so called multipurpose platform works, a discrete and stochastic simulation modeL able to describe in detail the flow of plant materials, was built. Then a very accurate experimentation campaign was carried out in order to determine a technical evaluation and consequently an economic analysis to verify the convenience of such a plant in the area of western Liguria. (author)

  6. Analysis of MSW treatment plant with production of biogas, RDF and compost through simulative approach

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, R.; Giribone, P.; Schenone, M. [Genoa Univ. (Italy). ITIM, Engineering Dept.; Macchiavello, A. [Genoa Univ. (Italy). ISTIC, Engineering Dept.

    1995-12-31

    This work concerns the feasibility study of a MSW (Municipal Solid Waste) treatment plant based on wet way technology. The choice towards such a plant engineering-solution is due to the utilization of the energetic component of waste, through a production of both biogas and RDF (Refuse Derived Fuel) with practically any impact on environment. That`s why this solution is preferred to the traditional incinerating technologies and pyrolysis, that cause environmental damage because of more or less noxious emissions. In order to analyse how a so called multipurpose platform works, a discrete and stochastic simulation modeL able to describe in detail the flow of plant materials, was built. Then a very accurate experimentation campaign was carried out in order to determine a technical evaluation and consequently an economic analysis to verify the convenience of such a plant in the area of western Liguria. (author)

  7. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

  8. Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California

    International Nuclear Information System (INIS)

    1997-09-01

    The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project

  9. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    Suominen, K.; Verta, M.; Marttinen, S.

    2014-01-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  10. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    Science.gov (United States)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  11. Monitoring and documentation of practice biogas plants; Monitoring und Dokumentation von Praxis-Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Ebertseder, Florian; Kissel, Rainer; Lehner, Andreas; Rivera Gracia, Eunice; Bachmaier, Hans; Effenberger, Mathias

    2012-09-15

    The aim of the project is to extend the data base for the evaluation of biogas plants in terms of functionality and reliability of the technical equipment, the stability and efficiency of the fermentation process as well as the energy utilization. For the presented studies six companies were selected as examples. [German] Ziel des Projektes ist die Erweiterung der Datengrundlage zur Bewertung von Biogasanlagen hinsichtlich der Funktionalitaet und Zuverlaessigkeit der technischen Einrichtungen, der Stabilitaet und Leistungsfaehigkeit des Gaerprozesses sowie der Energieverwertung. Fuer die in diesem Bericht vorgestellten Untersuchungen wurden sechs Betriebe beispielhaft ausgewaehlt.

  12. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: kimmo.suominen@evira.fi [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  13. Sealing biogas plants with flexible plastic covers. Experiences gained with a German digester

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, C; Hohlfeld, J

    1984-01-01

    It has always been a big problem to build gastight digesters. Especially the Chinese fixed-dome biogas plants and digesters made out of concrete are creating many problems. There are different solutions to minimize gas leaks: using steel or plastic gas domes, avoiding brick- or concrete-made gas chambers by increasing the slurry level in the digester (e.g. the Borda-design), attaching a sealing directly into the walls and the ceiling. This sealing may consist of mortar, paraffine as well as synthetic materials based on tar, plastic or glassfibre. (orig./EF).

  14. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    OpenAIRE

    Jachniak Ewa; Chmura Joanna; Kuglarz Mariusz; Wiktor Józef

    2018-01-01

    The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter con...

  15. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China.

    Science.gov (United States)

    Bian, Bo; Lin, Cheng; Lv, Lin

    2016-09-01

    Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.

  16. Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge

    International Nuclear Information System (INIS)

    Aguilera, P.G.; Gutiérrez Ortiz, F.J.

    2016-01-01

    Highlights: • Three processes were considered: desulfurization by adsorption, in-situ sorbent regeneration and its production. • The steam for regeneration was studied considering it as a bought external utility and as an in-situ produced utility. • From the cash flow analysis, the cost of the overall desulfurization process was between 2.5 and 4.0 c€/Nm"3. • A sensitivity analysis was carried out to consider the uncertainty of the methodology. • The competitiveness of the technology seems to be promising versus other biogas H_2S removal technologies. - Abstract: Biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge was techno-economically assessed. Three different processes were included in the study: the desulfurization of biogas by adsorption, the in-situ regeneration of the adsorbent and its production from sewage-sludge. Biogas plant upgrading was performed for a flow rate of 1000 Nm"3/h of biogas with a H_2S concentration of 2000 ppmv and a breakthrough concentration of 200 ppmv, which is the technical limit value for internal combustion engines. The cost due to the steam required for the in-situ regeneration was evaluated in two different scenarios: as a bought external utility and as an in-situ produced utility, installing an electric or a biogas steam boiler. According to the cash flow analysis carried out, all the options require a similar minimum selling price for the upgraded biogas (about 0.27–0.29 €/Nm"3), with a cost of the overall desulfurization process between 2.5 and 4.0 c€/Nm"3.

  17. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses

    DEFF Research Database (Denmark)

    Jensen, Ida Græsted; Münster, Marie; Pisinger, David

    2017-01-01

    plants. In this paper, a mixed integer programming (MIP) model for finding the optimal production and investment plan for a biogas supply chain is presented to ensure better economy for the full chain hopefully stimulating future investments in biogas. The model makes use of step-wise linear functions...... to represent capital and operational expenditures at the biogas plant; considers the chain from the farmer to the end market; and includes changes of mass and energy content along the chain by modeling the losses and gains for all processes in the chain. Biomass inputs are scheduled on a weekly basis whereas...... energy outputs are scheduled on an hourly basis to better capture the changes of energy prices and potentially take advantage of these changes. The model is tested on a case study with co-digestion of straw, sugar beet and manure, considering natural gas, heat, and electricity as end products. The model...

  18. Siting Conflicts in Renewable Energy Projects in Sweden: Experiences From the Siting of a Biogas Plant

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Jamil

    2001-05-01

    This paper seeks to contribute to an increased understanding of what characterises conflicts regarding the siting of renewable energy facilities. The paper starts out with a brief introduction to different types of renewable energy and the conflicts they might generate as well as a discussion about the differences and similarities in comparison with conflicts over more controversial issues, such as nuclear plants, chemical factories and the construction of roads. The main part of the paper discusses the results from a case study on a failed attempt to site a biogas plant in southern Sweden. The results show that there was a lack of public participation in the early stages of planning, and that peoples negative perceptions of the possibilities to influence the decision-making and of the attitude of the developer, contributed to the development of a public opposition and a polarisation of the conflict. There is also a discussion about the reasons for a shift in the political support for the project and about the role of the legislation in shaping planning processes that either handle conflicts or make them worse. The paper concludes with the observation that the biogas case, in many ways, resembled traditional siting conflicts and that further research is needed to explore the nature of different renewable energy siting conflicts.

  19. Dynamic model with experimental validation of a biogas-fed SOFC plant

    International Nuclear Information System (INIS)

    D'Andrea, G.; Gandiglio, M.; Lanzini, A.; Santarelli, M.

    2017-01-01

    Highlights: • 60% of DIR into the SOFC anode reduces the air blower parasitic losses by 14%. • PID-controlled cathode airflow enables fast thermal regulation of the SOFC. • Stack overheating occurs due to unexpected reductions in the cathode airflow. • Current ramp rates higher than +0.30 A/min lead to an excessive stack overheating. - Abstract: The dynamic model of a poly-generation system based on a biogas-fed solid oxide fuel cell (SOFC) plant is presented in this paper. The poly-generation plant was developed in the framework of the FP7 EU-funded project SOFCOM ( (www.sofcom.eu)), which consists of a fuel-cell based polygeneration plant with CO_2 capture and re-use. CO_2 is recovered from the anode exhaust of the SOFC (after oxy-combustion, cooling and water condensation) and the Carbon is fixed in the form of micro-algae in a tubular photobioreactor. This work focuses on the dynamic operation of the SOFC module running on steam-reformed biogas. Both steady state and dynamic operation of the fuel cell stack and the related Balance-of-Plant (BoP) has been modeled in order to simulate the thermal behavior and performance of the system. The model was validated against experimental data gathered during the operation of the SOFCOM proof-of-concept showing good agreement with the experimental data. The validated model has been used to investigate further on the harsh off-design operation of the proof-of-concept. Simulation results provide guidelines for an improved design of the control system of the plant, highlighting the feasible operating region under safe conditions and means to maximize the overall system efficiency.

  20. Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system

    International Nuclear Information System (INIS)

    Guan, Tingting; Alvfors, Per; Lindbergh, Göran

    2014-01-01

    Highlights: • A PEMFC stack with a 40% of electrical efficiency will make the integrated PEMFC-CHP, biogas plant and dairy farm self-sufficient. • The quality of the reformate gas is good enough to support normal operation of the PEMFC-CHP. • The methane conversion rate and the content of the CH 4 in the biogas need to be balanced in order to obtain the best system performance. • Compared with a coal-fired CHP plant, the integrated system can avoid coal consumption and CO 2 emissions. - Abstract: A PEMFC fuelled with hydrogen is known for its high efficiency and low local emissions. However, the generation of hydrogen is always a controversial issue for the application of the PEMFC due to the use of fossil fuel and the possible carbon dioxide emissions. Presently, the PEMFC-CHP fed with renewable fuels, such as biogas, appears to be the most attractive energy converter–fuel combination. In this paper, an integrated PEMFC-CHP, a dairy farm and a biogas plant are studied. A PEMFC-CHP fed with reformate gas from the biogas plant generates electricity and heat to a dairy farm and a biogas plant, while the dairy farm delivers wet manure to the biogas plant as the feedstock for biogas production. This integrated system has been modelled for steady-state conditions by using Aspen Plus®. The results indicate that the wet manure production of a dairy farm with 300 milked cows can support a biogas plant to give 1280 MW h of biogas annually. Based on the biogas production, a PEMFC-CHP with a stack having an electrical efficiency of 40% generates 360 MW h electricity and 680 MW h heat per year, which is enough to cover the energy demand of the whole system while the total efficiency of the PEMFC-CHP system is 82%. The integrated PEMFC-CHP, dairy farm and biogas plant could make the dairy farm and the biogas plant self-sufficient in a sustainable way provided the PEMFC-CHP has the electrical efficiency stated above. The effect of the methane conversion rate and the

  1. Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.

    Science.gov (United States)

    Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U

    2017-08-01

    Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, 1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under

  2. Power contracting between two different partners. Biogas combined heat and power plants; Energie-Contracting zweier unterschiedlicher Partner. Biogas-Blockheizkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-06-15

    An agricultural consortium in the Eifel (Federal Republic of Germany) has adopted a comprehensive supply of a 7,000 m{sup 2} comprising hotel complex with combined heat and power. The old oil-fired central heating plant has been replaced by a biogas-powered combined heat and power plant (CHP). The hotel was directly connected to the CHP plant by means of a new, approximately 300 m long local heating network including buffer storage. Overall, the hotel operator saves approximately 300,000 L of heating oil annually. The energy demand of the hotel operator will be covered by more than 90 % by means of CHP plants. Thus 20 % of the heating costs is saved.

  3. Basic Data on Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Renewable gases such as biogas and biomethane are considered as key energy carrier when the society is replacing fossil fuels with renewable alternatives. In Sweden, almost 80 % of the fossil fuels are used in the transport sector. Therefore, the focus in Sweden has been to use the produced biogas in this sector as vehicle gas. Basic Data on Biogas contains an overview of production, utilisation, climate effects etc. of biogas from a Swedish perspective. The purpose is to give an easy overview of the current situation in Sweden for politicians, decision makers and interested public. 1.4 TWh of biogas is produced annually in Sweden at approximately 230 facilities. The 135 wastewater treatment plants that produce biogas contribute with around half of the production. In order to reduce the sludge volume, biogas has been produced at wastewater treatment plants for decades. New biogas plants are mainly co-digestion plants and farm plants. The land filling of organic waste has been banned since 2005, thus the biogas produced in landfills is decreasing.

  4. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant

    DEFF Research Database (Denmark)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja

    2017-01-01

    (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could......A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing...... measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured...

  5. HAMBURG ENERGIE makes biogas plants fit for the balancing energy market; HAMBURG ENERGIE macht Biogasanlagen fit fuer den Regelenergiemarkt

    Energy Technology Data Exchange (ETDEWEB)

    Timmann, Bernd [HAMBURG ENERGIE, Hamburg (Germany). Direktvermarktung und Regelenergie; Bettinger, Carola [HAMBURG ENERGIE, Hamburg (Germany). Forschungsprojekt SMART POWER HAMBURG

    2013-04-15

    HAMBURG ENERGIE GmbH (Hamburg, Federal Republic of Germany) bundles 40 biogas plants with a total capacity of 15 megawatts to a virtual power plant. Thus, also small, decentralized plants may offer negative balancing power and achieve additional profits that were previously available only to large producers. In the medium term, HAMBURG ENERGIE wants to place a performance of 150 MW on the market.

  6. Cutting the electric power consumption of biogas plants. The impact of new technologies; Eigenstromverbrauch an Biogasanlagen senken. Der Einfluss neuer Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Julian; Gruessing, Fabian; Naegele, Hans-Joachim; Oechsner, Hans [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Agrartechnik und Bioenergie Baden-Wuerttemberg

    2013-03-01

    Due to permanently rising energy costs, the assessment of electric energy consumption for particular aggregates of a biogas plant proves to be a significant factor for the economic and technical efficiency calculation of biogas plants. At the University of Hohenheim, students of the Biobased Products and Bioenergy course have analyzed the energy consumption of biogas plants (BGP) in a project work at the State Institute of Agricultural Engineering and Bioenergy (Landesanstalt fuer Agrartechnik und Bioenergie). Detailed measurements at two operational plants show the effects of different facilities on the energy consumption. Furthermore, saving potentials and a possible efficient energy use via an exhaust gas power generator (ORC unit) are identified. (orig.)

  7. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Stanek, Wojciech

    2016-01-01

    Highlights: • Biogas cooling, heating and power and photovoltaic systems were studied. • Biogas and solar energy for production of energy carriers were used. • Primary energy savings for trigeneration and photovoltaic plants were examined. • Reduction of CO_2 emission were estimated. - Abstract: The biogas fired tri-generation system for cooling, heating and electricity generation (BCCHP + PV) supported by a photovoltaic system (PV) is discussed and analyzed from energetic and ecological effectiveness point of view. Analyzed system is based on the internal combustion engine and the adsorption machine. For the evaluation of primary energy savings in the BCCHP aided by PV system, the indicators of the total primary energy savings (TPES) and relative primary energy savings ΔPES were defined. Also an analysis is carried out of the reduction of greenhouse gases emission. In the ecological potential evaluation, the environmental impact as an indicator of the total greenhouse gasses reduction (TGHGR) is taken into account. The presented detailed algorithm for the evaluation of the multigeneration system in the global balance boundary can be applied for the analysis of energy effects (consumption of primary energy) as well as ecological effect (emission of greenhouse gasses) for real data (e.g. hour by hour through the year of operation) taking into account random availability of renewable energy. It allows to take into account a very important factor characterized for renewable energy systems (RES) which is the variability or random availability (e.g. in the case of photovoltaic – PV) of primary energy. Particularly in the presented work the effects of the analysis and the application of the discusses algorithms have been demonstrated for the hour-by-hour availability of solar radiation and for the daily changing availability of chemical energy of biogas. Additionally, the energy and ecological evaluation algorithms have been integrated with the methods offered

  8. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1 epsilon subgroup

    Czech Academy of Sciences Publication Activity Database

    Wolters, B.; Kyselková, Martina; Krögerrecklenfort, E.; Kreuzig, R.; Smalla, K.

    2015-01-01

    Roč. 5, January (2015), Article 765 ISSN 1664-302X R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : IncP-1 epsilon plasmid * class 1 integrons * biogas plant digestate * antibiotic resistance * exogenous plasmid isolation Subject RIV: EE - Microbiology, Virology Impact factor: 4.165, year: 2015

  9. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas

    International Nuclear Information System (INIS)

    2005-01-01

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  10. Biogas plant operation becomes economically efficient in a district heating grid; Nahwaermenetz macht Betrieb von Biogasanlage rentabel. Wirtschaftlich sinnvoll

    Energy Technology Data Exchange (ETDEWEB)

    Gobmaier, Thomas; Mauch, Wolfgang [Forschungsstelle fuer Energiewirtscahft e.V. (FfE), Muenchen (Germany); Seiler, Johannes [Technische Univ. Muenchen (Germany)

    2009-10-15

    The rising energy cost is a problem in church institutions as elsewhere. An investigation was carried out for a Bavarian monastery (Erzabtei St. Ottilien am Ammersee), with the intention to find out if the construction of a biogas plant would be economically intersting. The monastery has comparably high heat requirements as it operates a swimming pool and other facilities. (orig.)

  11. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, E.; Sahlstroem, L.; Albihn, A. [National Veterinary Institute, Uppsala (Sweden). Dept. of Bacteriology

    2005-12-15

    In Sweden, full-scale, commercial biogas plants (BGP), which process low-risk animal waste, operate a separate pre-pasteurisation at 70{sup o}C for 60 min as required by EEC regulation 1774/2002. The purpose of this study was to establish if, during pasteurisation and further processing and handling in full-scale BGPs, pathogens in biowaste could be sufficiently reduced to allow its use on arable land. Four BGPs were sampled on six occasions during 1 year. Sampling was performed from six locations during biogas production. The samples being analysed quantitatively to detect indicator bacteria (Escherichia coli, Enterococcus spp. and coliforms) and spore-forming bacteria (Clostridium spp. and Bacillus spp.) and qualitatively for bacterial pathogens (salmonella, listeria, campylobacter and VTEC O157). Salmonella was the most frequently isolated pathogen before pasteurisation In general, the treatment adequately reduced both indicator and pathogenic bacteria. Spore-forming bacteria were not reduced. However, recontamination and regrowth of bacteria in biowaste was frequently noted after pasteurisation and digestion. (author)

  12. Optimisation of emissions and energy efficiency of cogeneration plants operated with biogas. 2. rev. ed.; Emissionsoptimierung und Energieeffizienz biogasbetriebener Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Aschmann, Volker; Kissel, Rainer; Gronauer, Andreas

    2008-09-15

    Due to the utilization of biogas for energy production, the release of greenhouse gases can be reduced. It is important to ensure that emissions of harmful gases in the engine combustion of biogas can be minimized. Within the last two years, the demand for highly performant engines increased. This resulted in an enhanced competition among engine manufacturers. This was followed by technically modified and optimized aggregates. In practice, however, there exist not always optimal combustion conditions. There must be a compromise between a high performance and low emission in the combustion of biogas in cogeneration plants. The contribution under consideration reports on the feasibility of this compromise and on the influence of the maintenance of engines on the compromise.

  13. Innovative CO{sub 2} separation of biogas by polymer resins: operation of a continuous lab-scale plant

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Katharina; Lamprecht, Martina; Brechtel, Kevin; Scheffknecht, Guenter

    2012-06-15

    Upgrading biogas allows for the injection of biomethane into the natural gas grid and thus a decentralized use. Since the currently available techniques have a high energy demand, there is a high potential to improve biogas upgrading. Innovative CO{sub 2} separation of biogas by the use of polymer resins can reduce the energy demand, the capital expenditure, and the operational costs. In this study, we show the ability of polymer resin to selectively adsorb CO{sub 2}. Desorption tests showed the potential for continuous use of the resin. In a continuous lab-scale plant, numerous variations of process parameters were carried out and optimization possibilities were demonstrated. Methane purity up to 98% was achieved. The favorable estimated energy demand indicates the great potential of the demonstrated improved process. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  14. Farm Biogas Handbook; Gaardsbiogashandbok

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, Kjell; Bjoernsson, Lovisa; Dahlgren, Stefan; Eriksson, Peter; Lantz, Mikael; Lindstroem, Johanna; Mickelaaker, Maria

    2009-04-15

    A very large share of the total raw material potential for biogas production will be found within the agriculture. The raw material potential of manure in Sweden amounts to 4 - 6 TWh. Within the agriculture there is moreover a big potential in the form of residues from plant cultivation and non-food crops (approximately 7 TWh) that can to be used for biogas production. The potential for biogas production from only residues and manure is around 8-10 TWh. An increased biogas production within the agriculture would give significant environmental effects. Among other things manure, that today is leaking methane gas to the atmosphere, can be fermented, and trough this process the methane losses will be reduced. When the produced biogas replaces fossil fuel, an overall environmental effect will be reached, that is highly significant. This manual deals with biogas plants for agriculture and such plants that do not have extensive transports of different raw materials, as manure, wastes etc. One of the starting points for this manual's set-up is a course plan that Biogas Syd made for the courses they give to farmers, advisors and others. The manual illustrates important aspects in planning and construction of biogas plants, from raw material and technology to dimensioning of plant, use of biogas and planning of local gas grids. We also think it is important to illustrate the legislation that encompasses construction work and operation of a biogas plant. Investment costs are also illustrated, but the book does not give any extensive economic calculations, since we believe that such calculations need their own manual in the form of calculation examples, based on various conditions. The final section is called 'Biogas on farm - from idea to reality' where the entire process from analysis and pre-planning to monitoring and control of plant during operation is briefly described

  15. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    Science.gov (United States)

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Innovative process for biogas upgrading with CO2 storage: Results from pilot plant operation

    International Nuclear Information System (INIS)

    Baciocchi, Renato; Carnevale, Ennio; Corti, Andrea; Costa, Giulia; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-01-01

    An innovative biogas upgrading method that, differs from the currently employed commercial techniques, allows also to capture and store the separated CO 2 is investigated. This process, named Alkali absorption with Regeneration (AwR), consists in a first step in which CO 2 is separated from the biogas by chemical absorption with an alkali aqueous solution followed by a second step in which the spent absorption solution is regenerated for reuse in the first step of the upgrading process and the captured CO 2 is stored in a solid and thermodynamically stable form. The latter process is carried out contacting the spent absorption solution, rich in carbonate and bicarbonate ions, with a waste material – air pollution control (APC) residues from Waste-to-Energy plants – characterized by a high content of calcium hydroxide and leads to the precipitation of calcium carbonate and to the regeneration of the alkali hydroxide content of the solution. The process was tested in a specifically designed pilot plant fed with 20 m 3 h −1 (gas at standard conditions of 273 K and 1001 kPa) of landfill gas. Results showed that a high CH 4 content in the outlet gas can be obtained using a 3.8 mol L −1 NaOH aqueous solution with a solution/landfill gas ratio of about 9 L m −3 (gas at standard conditions of 273 K and 1001 kPa). The regeneration process proved to be feasible, but its efficiency was limited by several factors to maximum values in the range of 50–60 %, showing to decrease with higher NaOH concentrations in the absorption solution. Absorption tests with regenerated load solutions after appropriate NaOH makeup, did not show appreciable differences with respect to raw solutions

  17. Support of the operation of an agricultural biogas plants with dynamic simulation; Unterstuetzung des Betriebs einer landwirtschaftlichen Biogasanlage mit dynamischer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Seick, Ingolf; Gebhardt, Sebastian [Hochschule Magdeburg-Stendal, Magdeburg (Germany). Fachbereich Wasser- und Kreislaufwirtschaft; Tschepetzki, Ralf [ifak system GmbH, Magdeburg (Germany)

    2012-07-01

    Mathematical models for the dynamic simulation can be useful for agricultural biogas plants, but are not state of the art. Presented in the following text is a dynamic simulation model of a typical plant. This is based on the Anaerobic Digestion Model No. 1 (ADM1) and parameterized and compared with relevant system data. The results were incorporated into the development of a system for the direct, model-based operational support of biogas plants. Integrated is an operation diary for data acquisition and a simulation system. It supports the biogas plant operation through analysis and evaluation of complex biological processes, forecasting (e.g. the gas yield) and optimization of biology in conjunction with the process technology. Based on the above biogas plant, a practical method and exemplary results of an automatic model adjustment will be shown and example forecasts for the stabilization of the biological process are presented. (orig.)

  18. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  19. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe - Biokraftstoffe - Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  20. The safe construction and management of co-fermentation biogas plants. Existing knowledge, legislation and practical experiences; Veilig bouwen en beheren van (co-)vergistingsinstallaties voor de productie van biogas. Bestaande kennis, regelgeving en praktijksituaties

    Energy Technology Data Exchange (ETDEWEB)

    Heezen, P.A.M.; Mahesh, S.; Gooijer, L. [Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven (Netherlands)

    2012-01-15

    For the production of biogas by co-fermentation, manure is mixed with organic waste products that can be fermented, such as harvesting residues and food remains. Since biogas possesses both flammable and toxic properties, large-scale production systems are always associated with potential safety risks. Biogas is a mixture of gases and has flammable properties due to the presence of methane (CH4). It is less well known that biogas also has toxic properties when it contains high levels of hydrogen sulfide (H2S). In a previous study, the RIVM recommended that standards pertaining to the minimum safety level be applied for the construction and operation of biogas production plants. A subsequent study by the RIVM concluded that the guideline 'Handreiking (co-)vergisting van mest' ('Manual co-fermentation of manure') provides a basic framework to achieve this recommended minimum safety level. The RIVM therefore recommends that this latter document be used and further supplemented with specific information for inspection and licensing authorities, the main users of this document. The composition of the biogas determines whether or not a specific installation falls within or outside the scope of certain (safety) legislation and, consequently, which specific safety regulations and safety inspections are mandatory. As a clear, consistent and predictable composition of biogas does not exist, stricter monitoring of biogas composition in the different compartments of the production plant is recommended. The current assessment of potential safety risks associated with the production of biogas is that these risks principally relate to those working at the biogas installation and are much less relevant to local residents. Further investigations are needed to determine if this is indeed the case [Dutch] Voor de productie van biogas door co-vergisting wordt mest vermengd met restanten van bijvoorbeeld oogsten of voedsel die kunnen vergisten. Biogas heeft

  1. The safe construction and management of co-fermentation biogas plants. Existing knowledge, legislation and practical experiences; Het veilig bouwen en beheren van co-vergistingsinstallaties voor de productie van biogas. Bestaande kennis, regelgeving en praktijksituaties

    Energy Technology Data Exchange (ETDEWEB)

    Heezen, P.A.M.; Mahesh, S.; Gooijer, L.

    2012-01-15

    For the production of biogas by co-fermentation, manure is mixed with organic waste products that can be fermented, such as harvesting residues and food remains. Since biogas possesses both flammable and toxic properties, large-scale production systems are always associated with potential safety risks. Biogas is a mixture of gases and has flammable properties due to the presence of methane (CH4). It is less well known that biogas also has toxic properties when it contains high levels of hydrogen sulfide (H2S). In a previous study, the RIVM recommended that standards pertaining to the minimum safety level be applied for the construction and operation of biogas production plants. A subsequent study by the RIVM concluded that the guideline 'Handreiking (co-)vergisting van mest' (InfoMil, 2010) provides a basic framework to achieve this recommended minimum safety level. The RIVM therefore recommends that this latter document be used and further supplemented with specific information for inspection and licensing authorities, the main users of this document. The composition of the biogas determines whether or not a specific installation falls within or outside the scope of certain (safety) legislation and, consequently, which specific safety regulations and safety inspections are mandatory. As a clear, consistent and predictable composition of biogas does not exist, stricter monitoring of biogas composition in the different compartments of the production plant is recommended. The current assessment of potential safety risks associated with the production of biogas is that these risks principally relate to those working at the biogas installation and are much less relevant to local residents. Further investigations are needed to determine if this is indeed the case [Dutch] Voor de productie van biogas door co-vergisting wordt mest vermengd met restanten van bijvoorbeeld oogsten of voedsel die kunnen vergisten. Biogas heeft brandbare en giftige eigenschappen

  2. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature......The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  3. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  4. A fuzzy approach to a multiple criteria and geographical information system for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Bojesen, Mikkel; Hougaard, Jens Leth

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative....... The estimation of criteria weights, which is necessary for applying the FWOD procedure, is done by means of the Analytical Hierarchy Process (AHP), such that a combined AHP-FWOD methodology allows identifying the more suitable sites for building biogas plants. We show that the FWOD relevance-ranking procedure...

  5. A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants

    DEFF Research Database (Denmark)

    Franco, Camilo; Bojesen, Mikkel; Hougaard, Jens Leth

    2015-01-01

    The purpose of this paper is to model the multi-criteria decision problem of identifying the most suitable facility locations for biogas plants under an integrated decision support methodology. Here the Geographical Information System (GIS) is used for measuring the attributes of the alternatives...... according to a given set of criteria. Measurements are taken in interval form, expressing the natural imprecision of common data, and the Fuzzy Weighted Overlap Dominance (FWOD) procedure is applied for aggregating and exploiting this kind of data, obtaining suitability degrees for every alternative...... suitable sites for building biogas plants. We show that the FWOD relevance-ranking procedure can also be successfully applied over the outcomes of different decision makers, in case a unique social solution is required to exist. The proposed methodology can be used under an integrated decision support...

  6. Production of biogas at wastewater treatment plants and its further application

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2018-01-01

    Full Text Available This article covered a wide range of questions on the topic of production and use of biogas as alternative energy source. Biogas is produced by anaerobic digestion of biomass due to the breakdown of fats, proteins and carbohydrates, which constitute the bulk of organic matter. The article describes the most common methods of biogas production, their stages and characteristics. In addition, the article describes some of the possible areas of application of biogas on example of different countries. The article also provides information about key environmental and economic benefits in the case of use of biogas: prevention of methane emissions and lower emissions of carbon monoxide and nitrogen oxides into the atmosphere; the possibility of using secondary raw materials to generate electricity.

  7. Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant.

    Science.gov (United States)

    Reinelt, Torsten; Delre, Antonio; Westerkamp, Tanja; Holmgren, Magnus A; Liebetrau, Jan; Scheutz, Charlotte

    2017-10-01

    A sustainable anaerobic biowaste treatment has to mitigate methane emissions from the entire biogas production chain, but the exact quantification of these emissions remains a challenge. This study presents a comparative measurement campaign carried out with on-site and ground-based remote sensing measurement approaches conducted by six measuring teams at a Swedish biowaste treatment plant. The measured emissions showed high variations, amongst others caused by different periods of measurement performance in connection with varying operational states of the plant. The overall methane emissions measured by ground-based remote sensing varied from 5 to 25kgh -1 (corresponding to a methane loss of 0.6-3.0% of upgraded methane produced), depending on operating conditions and the measurement method applied. Overall methane emissions measured by the on-site measuring approaches varied between 5 and 17kgh -1 (corresponding to a methane loss of 0.6 and 2.1%) from team to team, depending on the number of measured emission points, operational state during the measurements and the measurement method applied. Taking the operational conditions into account, the deviation between different approaches and teams could be explained, in that the two largest methane-emitting sources, contributing about 90% of the entire site's emissions, were found to be the open digestate storage tank and a pressure release valve on the compressor station. Copyright © 2017. Published by Elsevier Ltd.

  8. Operating strategies for biogas plants - conflict of objectives between advantageous grid and economically oriented operation

    International Nuclear Information System (INIS)

    Skau, Katharina; Bettinger, Carola; Schild, Vernea; Fuchs, Clemens; Beck, Hans-Peter

    2015-01-01

    In an intelligent energy system, ''smart grid'' and ''smart market'' must go hand in hand (Aichele et al., 2014). Changes to the legal framework, especially the German Renewable Energies Act (EEG), aim at bringing in line the requirement for increased generation of renewable energy with the market and system integration of renewable energies (see Schwarz, 2014). This determines whether the operation of a modern renewable energy plant has both the maximisation of profits (smart market) as well as the easing of the higher-order grid (smart grid) as its goal or whether it is only geared towards one aspect. The agricultural biogas producer is the focus of this interdisciplinary paper. He can either use the electrical energy generated by his plant himself in an economically orientated way or design the supply to the upstream grid in a way that is advantageous for the grid through the increased flexibility of generation and consumption. Through a two-stage simulation of the impact on the grid and the operational performance, the differences with regards to the strain on the grid and the financial losses to the farmer are quantified. If is clearly shown that none of the legislative and regulatory incentive schemes favour a mode of operation that is advantageous for the grid.

  9. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  10. Biogas plants with 300 GWh yearly production - system, technology and economy; Biogasanlaeggningar med 300 GWh aarsproduktion - system, teknik och ekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Linne, Marita [BioMil AB, Lund (Sweden)

    2007-09-15

    Systems, techniques and economy have been analysed for biogas plants with more than 300 GWh annual energy productions. There is so far no such concept in Sweden but in Germany, a so called biogas park with 450 GWh annual biogas production will be set in operation by autumn 2007. Substratum for 300 GWh gas production are crops which corresponds to a acreage need of 6,000-11,000 hectares for silage crops such as maize or grass. If the gas production is based on corn, the acreage need is about 14 000 hectares. That means that biogas production from silage gives a higher energy outcome per hectare in comparison to grain. According to calculations, grain affects the gas price more than silage. However, grain is easy available at the world market which can be related to digestion of silage that means long term contracts with farmers nearby the biogas plant in addition to a complex logistic system for supply. The grain price by end of 2006 affects the gas price with about 0,38 kr/kWh. Large scale harvesting and transportation of silage in addition to a system for different crops to be harvested and transported directly to the digestion chamber admit reduced handling cost. Silage is expected to affect the gas price with about 0,28 kr/kWh. The price development of grain and silage can be expected to follow each other. The grain prices for 2008 seems to be higher than the notations for 2006/2007. Developed technique for digestion of grain admits 6 kg DMo/m{sup 3} chamber volume, 24 hours. That means reduced size of the digestion chamber in comparison to conventional digestion technique. In Germany where silage is the main substratum, two stage digestion with a first laying chamber admits 4 kg DMo/m{sup 3} chamber volume, 24 hours and DM-content of 12 %. The specific digestion cost for crops is about 0,13 kr/kWh. Huge amounts of digestion residue have to be handled. Dewatering makes sense since the digestion process needs additional water. The phosphorous solid fraction can

  11. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region

    International Nuclear Information System (INIS)

    Silva, Sandra; Alçada-Almeida, Luís; Dias, Luís C.

    2014-01-01

    This work addresses the problem of determining the most suitable sites for locating biogas plants using dairy manure as feedstock, specifically in the Entre-Douro-e-Minho Region in Portugal. A Multicriteria Spatial Decision Support System is developed to tackle this complex multicriteria decision-making problem, involving constraints and many environmental, economic, safety, and social factors. The approach followed combines the use of a Geographic Information System (GIS) to manage and process spatial information with the flexibility of Multicriteria Decision Aid (MCDA) to assess factual information (e.g. soil type, slope, infrastructures) with more subjective information (e.g. expert opinion). The MCDA method used is ELECTRE TRI, an outranking-type method that yields a classification of the possible alternatives. The results of the performed analysis show that the use of ELECTRE TRI is suitable to address real-world problems of land suitability, leading towards a flexible and integrated assessment. - Highlights: • We present a spatial multi-criteria methodology to decide biogas plants siting. • Methodology combines ELECTRE TRI with GIS for spatial analysis. • Constraints and environmental, economic and social factors have been identified. • The methodology is illustrated with application to a case study in the EDM Region. • A suitability map was generated, identifying the most suitable biogas plant locations

  12. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Mahmood, A.; Hussain, A.; Shahzad, A. N.; Honermeier, B.

    2015-01-01

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  13. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant

    International Nuclear Information System (INIS)

    Jin, Yiying; Chen, Ting; Chen, Xin; Yu, Zhixin

    2015-01-01

    Highlights: • 47.76% of the energy consumption is from the primary treatment process. • The dominant environmental impact comes from GWP100 emission (96.97 kgCO 2 -eq/t). • Increasing recycling rate of product can effectively reduce consumption and impact. - Abstract: Recycling food waste to produce biogas by anaerobic digestion (AD) is a promising process that can both provide renewable energy and dispose solid waste safely. However, this process affects the environment due to greenhouse gas emissions. By lifecycle assessment (LCA), we assessed the energy consumption (EC) and environmental impact (EI) of an integrated food waste-based biogas system and its subsystems. Data were collected from an actual plant in China that adopted a combination of wet-heat treatment and wet AD process at thermophilic condition. The EC of the system for processing 1 ton of waste was 663.89 MJ, among which 47.76% was from the primary treatment process (including pretreatment and AD). The GWP 100 (100-year global warming potential) emission of the system reached 96.97 kgCO 2 -eq/t, and the AP (acidification potential), EP (eutrophication potential), HTP inf (human toxicity potential) and FAETP inf (fresh water ecotoxicity) emissions were low. The EI was mainly generated by two subsystems, namely, the primary treatment and the secondary pollution control. Sensitivity analysis showed that a 40% increase of the feed fat content resulted in 38% increase in the net energy value output and 48% decrease in EP effect. The increase in oil content and biogas production rate could significantly reduce the EC and EI of the system. It has been shown that improving the technology of the process and increasing the recycling rate of products will result in the reduction of EC and EI of the biogas system. In addition, a quantitative assessment model of EC and EI in integrated food waste-based biogas technology is established

  14. Genetic 'fingerprints' to characterise microbial communities during organic overloading and in large-scale biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Kleyboecker, A.; Lerm, S.; Vieth, A.; Wuerdemann, H. [GeoForschungsZentrum Potsdam, Bio-Geo-Engineering, Potsdam (Germany); Miethling-Graff, R. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Agraroekologie; Wittmaier, M. [Institut fuer Kreislaufwirtschaft, Bremen (Germany)

    2007-07-01

    Since fermentation is a complex process, biogas reactors are still known as 'black boxes'. Mostly they are not run at their maximum loading rate due to the possible failure in the process by organic overloading. This means that there are still unused capacities to produce more biogas in less time. Investigations of different large-scale biogas plants showed that fermenters are operated containing different amounts of volatile fatty acids. These amounts can vary so much that one of two digestors, both possessing the same VFA concentration, does not produce gas anymore while the other is still at work. A reason for this phenomenon might be found in the composition of the microbial communities or in differences in the operation of the plants. To gain a better understanding of the 'black box', structural changes in microbial communities during controlled organic overloading in a laboratory and biocenosis of large-scale reactors were investigated. A genetic fingerprint based on 16S rDNA (PCR-SSCP) was used to characterise the microbial community. (orig.)

  15. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Scenedesmus dimorphus (Turpin) Kützing growth with digestate from biogas plant in outdoor bag photobioreactors.

    Science.gov (United States)

    Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V

    2016-01-01

    Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.

  17. Digestate from Biogas Plants is an Attractive Alternative to Mineral Fertilisation of Kohlrabi

    Directory of Open Access Journals (Sweden)

    Tomas Losak

    2014-12-01

    Full Text Available This study examined the potential for the use of digestate from biogas plants for the fertilisation of kohlrabi. Kohlrabi was grown in two pot experiments in consecutive years using digestate, mineral fertiliser (urea with a nitrogen (N content equivalent to that in the digestate, mineral fertiliser with N, phosphate (P, potassium (K and magnesium (Mg contents equivalent to the digestate, and an unfertilised control. At harvest, the soil receiving the digestate application had higher P, K and Mg contents than the control and the urea treatment. The soil Nmin content was balanced in all fertilised treatments. Soil pH was unaffected by all treatments. Kohlrabi bulbs from the unfertilised control had the lowest weight, nitrate content and ascorbic acid content. Digestate and NPKMg fertiliser treatments increased bulb weight compared with the N-only urea treatment. Ascorbic acid content did not differ between fertilised treatments. There were no differences in bulb nitrate content between the mineral fertiliser treatments, but digestate application gave a low nitrate content. Bulb macroelement contents varied irregularly among treatments.

  18. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    Science.gov (United States)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  19. Biogas energy in India

    Energy Technology Data Exchange (ETDEWEB)

    Moulik, T K

    1982-01-01

    A socio-economic study of India's biogas energy program, a response to the oil crisis of the 1970's, reviews the impact of promoting large-scale community biogas plants as a way to reach the lowest income groups. A case study draws on the experiences of the community plant in Gujarat village, and explores the program's secondary benefits and impacts on life styles. 15 references, 5 figures, 37 tables. (DCK)

  20. Purification of anaerobic digestion biogas from a wastewater treatment plant for its use as bio fuel; Purificacion del biogas de digestion anaerobia de una depuradora de aguas residuales para uso como biocombustible

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Robles, F.; Torres Rojo, J. C.; Sanchez Bas, M.; Moya Sanchez, N.

    2009-07-01

    The first phase of the investigation whose results are presented in this article, consists on the optimization of the biogas desulphurization. In our case this process was made by chemical way. Besides the scrubbing towers, the pilot plant used included filters of activated carbon at the end of the line. The H{sub 2}S inflow concentrations were quite high. After the carried out rehearsals, the effluent biogas from the scrubbing towers presents a H{sub 2}S concentration less than 1 ppm and zero or undetectable values of up to fifty eight analyzed trace elements. (Author) 12 refs.

  1. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  2. Bavarian pilot plants for te production of biogas. Results from five years of monitoring; Bayerische Pilotbetriebe zur Biogasproduktion. Ergebnisse aus fuenf Jahren Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Mathias; Ebertseder, Florian; Kissel, Rainer [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Inst. fuer Landtechnik und Tierhaltung; Djatkov, Djordje [Novi Sad Univ. (Serbia). Lehrstuhl fuer Biosystemtechnik

    2012-11-15

    For more than five years, the Institute for Agricultural Engineering and Animal Husbandry (Freising, Federal Republic of Germany) performs a monitoring of agricultural biogas plants in Bavaria (Federal Republic of Germany). The results and experiences from the observations of already 21 so-called Bavarian pilot plants are a source of information for consultants, practitioners and scientists. The analysis of the development of individual plants over several years is particularly informative. In many cases, the power plants of the first campaign have an insufficient thermal utilization. Throughout the years, the concept of the thermal utilization was improved continuously improved. In connection with this, the performance of the biogas plants was improved often. Thereby it could be shown that such a repowering is a meaningful risk for the stability and efficiency of the fermentation process. Thus, the repowering should be planned carefully. The long-term monitoring of biogas plants delivers not only insights into the state f the art of agricultural biogas plants, but also especially the scientific fundament for the development of consulting support for a targeted increase of the plant efficiency. A method was developed in order to evaluate the efficiency of biogas plants due to the documented state of the art and expert knowledge. However, the key performance indicators of the plant have to be set carefully so that the consulting support is loadable. Under this aspect, this branch of industry should be sensitized within the background of an increasing and in partial authorized criticisms of the efficiency and environmental impact of biogas plants.

  3. Biogas container - mobile plant concept for the decentralized power generation; Biogascontainer. Mobiles Anlagenkonzept zur dezentralen Energiegewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Jessica; Orth, Maik [Innovations- und Bildungszentrum Hohen Luckow e.V., Hohen Luckow (Germany); Schlegel, Mathias [Rostock Univ. (Germany); Steinhagen, Katrin [ROSOMA GmbH, Rostock-Marienehe (Germany)

    2011-07-01

    In the framework of a cooperation project of the Federal Ministry of Economics and Technology was developed a small biogas system, that is concepted in the order of a 40-foot standard container, that is modular structured, works energy-independent and optional can be used mobile. First rank the system was designed for biogas production in developing and emerging countries. Now there are inter alia also concrete inquiries of german partners. (orig.)

  4. Exploring the adoption of renewable energy: the case of biogas plants in Greek agriculture

    International Nuclear Information System (INIS)

    Kousis, M.

    1992-01-01

    With a focus on renewable energy, an evaluation of the current literature on the adoption of new technologies is given and a review of biogas options in Greece presented. A preliminary test of the significance of some factors that influence the acceptance of biogas technology by Greek hog farmers is constructed. Although the evidence appears to support a model which emphasises individual characteristics in the adoption process, the overall data qualify the position which stresses the institutional role to that end. (author)

  5. Electricity from biogas

    International Nuclear Information System (INIS)

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-01-01

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially open-quotes freeclose quotes fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO 2 emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as open-quotes controlled landfillingclose quotes. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills

  6. Technical assessment of agricultural biogas plants. Utilization ratio and energy efficiency; Verfahrenstechnische Bewertung landwirtschaftlicher Biogasanlagen. Auslastung und energetische Effizienz

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Mathias; Kissel, Rainer; Lehner, Andreas; Gronauer, Andreas [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Arbeitsgruppe Biogastechnologie und Reststoffmanagement

    2008-07-01

    Technical indicators of six selected modern agricultural biogas plants (BGP) were determined to evaluate utilization ratio and energy efficiency. In all of these plants, renewable raw materials were treated in combination with animal manure. At a specific installed electrical capacity between 0.09 and 0.25 kW per m{sup 3} usable digester volume, electrical utilization ratios between 88 and 98 % were achieved. The combination of these two characteristic values may be used as a first indicator of process stability and functionality of a BGP. The external utilization ratio for the off-heat from the combined-heat-and-power unit was between 0 and 46 %. (orig.)

  7. Biogas: fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, E J

    1980-01-01

    As the energy crisis worsens, bioconversion of organic residue has become increasingly attractive in recent years. There are thousands of biogas plants in developing countries (not including China) and more programs are being launched. Because biogas is conveniently renewable, the author argues that it has a vital role to play, especially as a future source of energy for both developed and developing countries. The operation of a typical biogas plant is described.

  8. Beets as a future substrate for biogas plants. Results from a large-scale use in a biogas plant; Rueben als Zukunftssubstrat fuer Biogasanlagen. Ergebnisse aus der grosstechnischen Nutzung in einer Biogasanlage zur Optimierung der Rohbiogasproduktion zur Gaseinspeisung in das Erdgasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Ralph [R and S ENERGY GmbH, Detmold (Germany); Liebetrau, Jan; Nelles, Michael; Scholwin, Frank

    2011-07-01

    The nuclear disaster in Fukushima prompted the German Federal Government on 30 May 2011 to implement a phase-out of the use of nuclear energy by 2022. The resulting shortfall in supply is mainly to be made up by the use of renewable energies and fossil fuels, especially natural gas (ethics K. 2011). In Germany there are now more than 5,900 biogas plants (DBFZ 2010) with an installed capacity of 2,300 megawatts of electrical power from biogas generation, but only 47 projects (Dena 2011) use biomethane to replace the use of natural gas. As of December 2010, the entire crude biogas capacity of these facilities amounted to 270 million cubic meters. This represents 0.4% of German natural gas consumption. This corresponds to about 4.5% of the expansion target for 2020 (GasNZV 2008, BNA 2011). Hence the challenge is to operate the biogas process as efficiently as possible in order to generate a large amount of biogas with a high quality from renewable resources. The investigated large-scale biogas plant, in which only renewable materials (corn, corn silage, forage rye, corn, beet) are processed, supplies two cogeneration plants (CHP) and a biogas conditioning plant. The crude biogas is processed into biomethane gas through a chemical absorption process using pressure-free amine scrubbing (Martens 2007). With the currently possible thermal energy production of 400 million MJ/a, the biogas plant supports the objective of the German Federal Government to increase the substitution of natural gas. (orig.)

  9. Experiences with biogas in Denmark

    DEFF Research Database (Denmark)

    Bundgaard, Sirid Sif; Kofoed-Wiuff, Anders

    This report is primarily based on the work of the Danish biogas task force, which was established as a result of the Energy Agreement of 22 March 2012. The purpose of the task force is to examine and support concrete biogas projects in order to facilitate the projected biogas development up to 2020....... The focus of the task force was on the practical integration of the new biogas production in energy system, including the utilization of gas, the necessary infrastructure and contractual relationships. The aim was to ensure effective and appropriate integration of biogas in the Danish energy supply, which...... was consistent with the policy objectives, both in regards to current challenges for specific biogas plants and the role of biogas flexible renewable energy form on longer term. The task force's final report was published in 2014....

  10. PORTAFERM. A container-based small biogas plant with liquid manure as a feed material; PORTAFERM. Eine Containerbasierte Guelle-Kleinbiogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, M.; Matthes, J.

    2010-09-15

    Meanwhile, the energetic utilization of biogas is a substantial technology. The stock of biogas plants in Germany amounts nearly 4,500 in the year 2009. The average electrical output is approximately 370 kW. The most biogas facilities use regenerative raw materials as a feed material. With the second EEG amendment (EEG 2009), new incentives were set to the construction of biogas plants. A keyword here is the introduction of a liquid manure bonus. Under this aspect, the authors of the contribution under consideration report on a container-based biogas plant with liquid manure as a feed material. The test facility is equipped with a small cogeneration unit. In the basic operation, the produced masses of gas are sufficient for a daily operation between twelve to fourteen hours per day. With shortening the residence time gas volumes are produced which enable a continuous operation of the cogeneration units. Due to the large gas storage a peak load operation also is possible at a continuous gas production. A large advantage of this plant is that this plant does not have to run the total year.

  11. From troubled kid to star performers - On the repowering of a biogas plant; Vom Sorgenkind zum Musterknaben. Ueber das Repowering einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Gress, Hans-Werner [ABO Wind AG, Wiesbaden (Germany)

    2011-07-01

    In 2001, the biogas plant in Samswegen (Federal Republic of Germany) has been successfully inaugurated. The plant proposed by Schmack AG (Schwandorf, Federal Republic of Germany) consisted of two horizontal plug flow digesters and three storage-flow digesters. Due to incidents this concept was not feasible in practical operation. Under this aspect, the author of the contribution under consideration reports on the repowering of a biogas plant. This includes a retrofit with necessary components such as a gas torch, a gas cooler and external desulfurization. Similarly, the solids metering was renewed. The recirculation could be reduced by 80 %.

  12. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    Science.gov (United States)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  13. Planning of biogas plants. A question of co-operation and negotiation; Planering av biogasanlaeggningar. En fraaga om samverkan och foerhandling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Jamil

    2003-04-01

    During the last years there has been an increased interest in Sweden to build biogas reactors. The planning of a biogas plant brings about the need for co-operation between a variety of actors. Furthermore, there are a number of different issues that need to be dealt with. To build a biogas plant is thus a rather complicated thing to do. The aim of this report is to increase the knowledge about the processes that precede a decision to build a biogas plant, in order to try to facilitate the planning of future projects. The report is based on case studies of the planning of two biogas plants in Sweden and the empirical material consists of interviews with key persons as well as written documents. In the study, three parallel processes are identified and analysed, which are all crucial to carry through a project. These are the project planning process, the political process and the application process. The most important result of the study is that there is not only one way to carry through a project and that the choice of strategy depends on the character of the project and the different questions that need to be handled. Examples of other results are: the importance of an early and continuous dialogue with the political leadership, the necessity to build an organisation for the co-operation between key actors and that the project leaders should be flexible and open to changes in the project throughout the planning process.

  14. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  15. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  16. Optimal integration of energy at the Combined Energy Plant in Norrkoeping -Integration of steam, hot water and district heat to biogas plants; Optimal integrering av energianvaendningen vid energikombinatet i Norrkoeping -Integrering av aanga, hetvatten och fjaerrvaerme till biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Goldschmidt, Barbara; Uddgren, Roger

    2010-09-15

    The background of this report is to investigate and highlight the benefits of establishing a biogas plant nearby a combined energy plant where steam and district heat is available. By using heat from the combined energy plant, more biogas can be produced as vehicle fuel instead of being used as fuel to heat the digester, the biogas upgrading plant or the dryer. The project's objective is to analyze where it is interesting with integration of heat to the biogas plant and to compare alternative technologies and possible integration options. The stakeholders of the study are industries with access to organic matter for biogas production and heat producers who can deliver thermal energy into biogas plants. The project was implemented by collection of information from the Haendeloe combined energy plant outside Norrkoeping where there is a cogeneration plant, an ethanol plant and a biogas plant. Case studies for the study have been carried out with proposals regarding how heat flows from the power plant and ethanol plant can be further integrated with the biogas plant. As case studies, both the current design of the biogas plant, as well as a fictional case in which half of all distillery residues was digested, have been evaluated. The case studies show that in today's biogas plant it is not economical to replace the existing biogas upgrading unit with water absorption to chemical absorption. The upgrading cost with water absorption at today's smaller facility is 0.11 kr/kWh and in order to obtain the same total cost of chemical absorption a steam price of 0.15 kr/kWh is required. For large gas flows, chemical absorption is an advantage since the technology is more suitable for upscaling in comparison with water absorption that must be delivered in multiple lines. Nevertheless, a possibility to recover waste heat from chemical absorption is necessary if the technology shall be competitive. If waste heat from both water absorption and chemical absorption

  17. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  18. State of the art for noise reduction in biogas plants. Sound technical analyses, research, investigations; Stand der Technik zur Laermminderung bei Biogasanlagen. Schalltechnische Analysen, Recherchen, Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    Approximately 480 biogas plants are currently being built in Mecklenburg-Vorpommern, which were mainly built in an agricultural context. At the beginning of 2014 about 15 percent of the country's electricity was generated by domestic biogas plants. This publication is intended to serve as a guide to the authorities, planners and engineers, in order to be able to plan, erect and operate biogas plants in the most conflict-free manner. [German] In Mecklenburg-Vorpommern werden derzeit ca. 480 Biogasanlagen betrieben, die vorwiegend in einem landwirtschaftlichen Kontext errichtet wurden. Anfang des Jahres 2014 wurde etwa 15 Prozent des Stroms im Land durch einheimische Biogasanlagen erzeugt. Diese Veroeffentlichung soll den Behoerden, Planern und Ingenieurbueros als Handlungsleitfaden dienen, um Biogasanlagen unter Beruecksichtigung des Standes der Technik moeglichst konfliktfrei planen, errichten und betreiben zu koennen.

  19. Presence of Siloxanes in the Biogas of a Wastewater Treatment Plant Separation in Condensates and Influence of the Dose of Iron Chloride on its Elimination

    Energy Technology Data Exchange (ETDEWEB)

    Mariano, García [Empresa Mixta de Aguas Residuales de Alicante, S.A. (EMARASA) (Spain); Daniel, Prats; Arturo, Trapote, E-mail: atj@ua.es [University Institute of Water and Environmental Sciences, University of Alicante (Spain)

    2015-12-21

    The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and of the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas.

  20. Presence of Siloxanes in the Biogas of a Wastewater Treatment Plant Separation in Condensates and Influence of the Dose of Iron Chloride on its Elimination

    International Nuclear Information System (INIS)

    Mariano, García; Daniel, Prats; Arturo, Trapote

    2015-01-01

    The siloxanes present in the biogas produced during anaerobic digestion damage the mechanism of cogeneration equipment and, consequently, negatively affect the energy valorization process. For this reason, the detection and elimination of these silicon-derived chemical compounds are a priority in the management of cogeneration facilities. In this regard, the objectives of this paper are, firstly, to characterize the siloxanes in the biogas and, secondly, to qualitatively evaluate the influence of the dose of iron chloride on its elimination. The research was performed at the Rincón de León Wastewater Treatment Plant (Alicante, Spain). The outflow biogas of the digesters and of the pressurized gasometers was sampled and analyzed. The results obtained made it possible to demonstrate, firstly, the absence of linear siloxanes and that, of the cyclic siloxanes, the predominant type was decamethylcyclopentasiloxane, and, secondly, that the addition of iron chloride in the digesters significantly reduces the siloxane content in the biogas. Additionally, it was demonstrated that the process of compression of the biogas, with the elimination of condensates, also produces significant reductions in the concentration of siloxanes in the biogas

  1. Potential biogas production from sewage sludge: A case study of the sewage treatment plant at Kwame Nkrumah university of science and technology, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Richard [Energy Systems Engineering Department, Koforidua Polytechnic, Box KF 981, Koforidua (Ghana); Brew-Hammond, Abeeku [Faculty of Mechanical and Agricultural Engineering, Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi (Ghana)

    2010-07-01

    Biogas generation is one of the most promising renewable energy sources in Ghana. Anaerobic digestion is one of the effective ways of generating biogas. Anaerobic digestion is also a reliable method for wastewater treatment and the digestion the effluent can be used as fertilizer to enhance the fertility of the soil. This paper looks at the possibility of constructing a biogas plant at the KNUST sewage treatment plant tapping its feedstock the sludge at the Primary Sedimentation Tank to generate biogas. A laboratory experiment was done to determine the faecal sludge quality. The flowrate of the sludge was estimated based on the number of times the penstocks (valves) are operated to desludge the sewage which also depends on whether the university is on vacation (35.72 m3/day) or in session (71.44 m3/day). These parameters were used to determine the biogas potential of the sewage using 10, 20 and 30 days retention time for plant sizes of 540 m3, 1100m3 and 1600 m3 respectively. It was estimated that 170,719 m3, 341,858 m3 and 419,458 m3 of methane can be produced in a year and the power production was estimated to be 50 kW, 100 kW and 120 kW for the 540 m3, 1100m3 and 1600 m3 digester sizes respectively.

  2. Successfull operation of biogas plants. Data acquisition as a basis of successful optimization measures; Erfolgreicher Betrieb von Biogasanlagen. Datenerfassung als Grundlage erfolgreicher Optimierungsmassnahmen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-19

    Within the 2nd Bayreuth expert meeting on biomass at 6th June, 2012 in Bayreuth (Federal Republic of Germany), the following lectures were held: (1) Presentation of the activities in the bio energy sector of the Landwirtschaftliche Lehranstalt Bayreuth (Rainer Prischenk); (2) State of the art of utilizing biogas in Oberfranken from the view of FVB e.V. (Wolfgang Holland Goetz); (3) Optimization of the plant operation by means of an intelligent control (Christian Seier); (4) Process optimization by means of identification of losses of biogas and evaluation of the load behaviour and emission behaviour of gas engines (Wolfgang Schreier); (5) Data acquisition and implementation of optimization measures from the point of view of an environmental verifier (Thorsten Grantner); (6) Economic analysis and optimization by means of the Lfl program BZA Biogas (Josef Winkler); (7) Detailed data acquisition as a necessary basis of the process optimization (Timo Herfter); (8) Case examples of the biologic support of biogas plants and their correct evaluation (Birgit Pfeifer); (9) A systematic acquisition of operational data as a basis for the increase of efficiency using the Praxisforschungsbiogasanlage of the University Hohenheim (Hans-Joachim Naegele); (10) Practical report: The biogas plant Sochenberg towards 100% utilization of energy (Uli Bader).

  3. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    Science.gov (United States)

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biogas digestate and its economic impact on farms and biogas plants according to the upper limit for nitrogen spreading—the case of nutrient-burdened areas in north-west Germany

    Directory of Open Access Journals (Sweden)

    Sebastian Auburger

    2015-11-01

    Full Text Available At the end of 2012, an expert group presented its evaluation of the forthcoming amendment of the German Fertilizer Ordinance (DüV. The new proposal intends to include manure of plant origin in the calculation of the upper limit for nitrogen spreading, determined to be 170 kg per hectare. This would particularly affect regions of north-west Germany that are characterized by intensive animal husbandry and biogas production. This would lead to increased costs of the disposal of manure and the use of agricultural land, especially for pig farms and biogas producers. A spatial model of nutrient distribution demonstrates the regional impacts of the amendment, and example calculations at an enterprise level show that many farmers would no longer be able to suitably pay for the factors used. Monte Carlo analysis shows a relatively high probability that only successful pig farmers and biogas producers would be able to compensate for the rising costs of transport and land use in a sustainable manner. Successful piglet producers would improve their relative competitiveness compared to biogas producers and especially to pig-fattening enterprises. The adoption of new strategies should factor in both the water protection requirements and the ability of the affected farms to evolve and grow on a sustainable basis.

  5. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  6. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO{sub 2} emission; Auswirkung der flexiblen Stromproduktion aus Biogas auf den konventionellen Kraftwerkspark und dessen CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzhammer, Uwe [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany). Gruppe Bedarfsorientierte Energiebereitstellung; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Scholwin, Frank [Institut fuer Biogas, Kreislaufwirtschaft und Energie, Weimar (Germany)

    2013-07-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  7. Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants.

    Science.gov (United States)

    Weiss, Agnes; Jérôme, Valérie; Freitag, Ruth

    2007-06-15

    The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.

  8. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  9. Biogas barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The energy recovery of biogas has kept on increasing in the European Union in 2013: +10.2%. Almost 13.4 million tep (tonnes of oil equivalent) of biogas primary energy was produced but the growth of the biogas sector is decreasing (it was 16.9% between 2011 and 2012). The growth for the coming years is expected to fall further because of political decisions in some countries to limit the use of land for farming purposes and to manage the biogas sector more efficiently. Germany ranks first for the production of biogas primary energy with 6717 ktep followed by United Kingdom with 1824 ktep. 2 tables give the production of electricity and heat from biogas in the E.U. member states in 2012 and 2013. The total production of electricity and heat from biogas in the E.U. in 2013 reached 53327 GWh and 432 ktep respectively. A list reviews the most significant companies working in Europe in the sector of methanation, 10 companies are listed among which 2 are Italian: AB Energy (Gruppo AB), BTS Italia and 8 are German: MT Energie, Envitec Biogas AG, Biogas Weser-Ems, Planet Biogastechnik, Schmack Biogas GmbH, Weltec Biopower GmbH, UTS Biogastechnik (Anaergia Group), Bioconstruct and BTS Italia. (A.C.)

  10. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  11. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  12. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  13. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  14. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  15. Biogas technology in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, M.

    1997-02-01

    Although biomethanation is a mature technology its implementation is paradoxically only partly a success in Pakistan. Biogas plants on family farms can be economical but seldom are so in Pakistan. Either the investment cost has been high or satisfactory performance of the process could not be maintained or in some case for a short period of time only. It is, however, concluded that biogas plants, if correctly operated and maintained, may prove to be appropriate to the technical abilities and economic capacity of Pakistani farmers. It can get a change to be disseminated in rural areas. Biogas technology is appropriate to the ecological and economic demands of the future. With the potential from existing cattle population only, 3 to 4 million family size biogas plants may be installed in Pakistan which can substitute of considerable part of rural fuel wood demand for their daily household energy requirements. A large amount of dung is burnt every year by households which if put in the biogas plant, may provide a considerable amount of energy along with organic fertilizer could be saved from being burned at the same time. On the basis of available data from the livestock excluding agriculture residue (50% collectivity-1991), in terms of fuel substitution, this would be equivalent to 1200 million litres of kerosene at worth economic value of 9021 million rupees saving in the form of gas and 821 million rupees as additional fertilizer value annually. (LN)

  16. A valuable decision support. Simulation of biogas plants in connection with calculation of energy, environmental efficiency and costs; Wertvolle Entscheidungshilfe. Simulation von Biogasanlagen, verknuepft mit Energie-, Umweltwirkungs- und Kostenberechnung

    Energy Technology Data Exchange (ETDEWEB)

    Seick, I. [Hochschule Magdeburg-Stendal (F.H.), Magdeburg (Germany). Fachbereich Wasser- und Kreislaufwirtschaft; Tschepetzki, R. [ifak system GmbH, Magdeburg (Germany)

    2008-06-15

    As a virtual image, biogas plants can be simulated, analyzed and compared in different scenarios close to reality. The calculated results for behaviour, yield, achievement as well as environmental effects and operating costs enable an optimal and cost-efficient process engineering operation for the plant, respectively. The consequences of changes at the plant or in the operation can be estimated before. In the contribution under consideration, the model of a biogas plant is presented. Possibilities and results of simulation investigations are presented.

  17. Biogas in Austria and Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A.

    Several well-functioning biogas plants in Austria and in Switzerland are briefly described. The profitability of the combination of dairy farming and pig breeding is emphasized. The whey produced by the cheese-dairies is fed to the pigs and the pigs dung is fermented to biogas.

  18. Use of wastewater treatment plant biogas for the operation of Solid Oxide Fuel Cells (SOFCs).

    Science.gov (United States)

    Lackey, Jillian; Champagne, Pascale; Peppley, Brant

    2017-12-01

    Solid Oxide Fuel Cells (SOFCs) perform well on light hydrocarbon fuels, and the use of biogas derived from the anaerobic digestion (AD) of municipal wastewater sludges could provide an opportunity for the CH 4 produced to be used as a renewable fuel. Greenhouse gas (GHG), NO x , SO x , and hydrocarbon pollutant emissions would also be reduced. In this study, SOFCs were operated on AD derived biogas. Initially, different H 2 dilutions were tested (N 2 , Ar, CO 2 ) to examine the performance of tubular SOFCs. With inert gases as diluents, a decrease in cell performance was observed, however, the use of CO 2 led to a higher decrease in performance as it promoted the reverse water-gas shift (WGS) reaction, reducing the H 2 partial pressure in the gas mixture. A model was developed to predict system efficiency and GHG emissions. A higher electrical system efficiency was noted for a steam:carbon ratio of 2 compared to 1 due to the increased H 2 partial pressure in the reformate resulting from higher H 2 O concentration. Reductions in GHG emissions were estimated at 2400 tonnes CO 2 , 60 kg CH 4 and 18 kg N 2 O. SOFCs were also tested using a simulated biogas reformate mixture (66.7% H 2 , 16.1% CO, 16.5% CO 2 , 0.7% N 2 , humidified to 2.3 or 20 mol% H 2 O). Higher humidification yielded better performance as the WGS reaction produced more H 2 with additional H 2 O. It was concluded that AD-derived biogas, when cleaned to remove H 2 S, Si compounds, halides and other contaminants, could be reformed to provide a clean, renewable fuel for SOFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biogas utilization

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M.A. [Resource Conservation Management, Inc., Berkeley, CA (United States)

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  20. Biogas production and biogas as vehicle fuel - Swedish experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, A E [VBB Viak AB, Stockholm (Sweden)

    1997-08-01

    In Sweden there are totally about 220 biogas plants in operation. The major part of these plants (134) are represented by sewage sludge treatment facilities at waste water treatment plants. At 60 sites the biogas is generated from landfills or cell digesters at landfills. In 1996, the amount produced had a total energy content of about 1,35 TWh (or 4 900 PJ). (EG)

  1. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment

    DEFF Research Database (Denmark)

    Pivato, Alberto; Vanin, Stefano; Raga, Roberto

    2016-01-01

    Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate......, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicityfor Artemia sp. and V. fischeri.The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve...

  2. Biofertilizer manual - biofertilizer from large-scale bio-gas plants; Biogoedselhandbok - Biogoedsel fraan storskaliga bio-gasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    Biofertilizer from biogas plants must be managed in a cost effective manner based on current legislation and certification requirements from the food industry. This manual focuses on liquid biofertilizer and the requirements and costs associated with this product. At an early stage analyze market (beneficiaries of biofertilizers), dissemination area and thus the disposal of biofertilizer is very crucial to reduce the costs of the whole biofertilizer management. Certifying biofertilizers under Swedish Waste Management system of 'Certified recycling' (SPCR 120) increases the possibility of outlets and thus the value of biofertilizer. Nutrient and heavy metal content of biofertilizer affects the size (ha) on the estate. Maximum of phosphorus may not exceed 22 kg / ha. Often, the contents of plant nutrients limit the distribution size, but sometimes even the heavy metals are the limiting factors (for certified biofertilizers). Normally, the distribution size is 20-40 tonnes / ha, but must be adapted to crop needs, soil conditions and the diffusion limitations mentioned above. Biofertilizers are typically handled in three stages: storage, distribution and dissemination. Storage containers must have a stable floating crust or roof and the storage volume to cope with 80-10 months of production of biofertilizer. The cost of storage varies between 15 and 40 SEK/m{sub 3} storage volume depends on storage technology. Distribution of biofertilizer from the larger biogas plants is usually by truck, but there are also a few examples where the fertilizer is pumped out to the farm. The cost of distribution by truck is somewhat lower when compared with pumping and ranges between 20 and 30 SEK/m{sub 3} within a radius of 10-20 km. If conditions (high proportion of arable land, high interest, low level of infrastructure, etc.) are right pumping can be more cost effective than truck. Spreading cost is usually about 20-28 USD / tonnes and is done either with a tractor and

  3. The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme

    International Nuclear Information System (INIS)

    Raha, Debadayita; Mahanta, Pinakeswar; Clarke, Michèle L.

    2014-01-01

    The Indian Government's National Biogas and Manure Management Programme (NBMMP) seeks to deliver renewable energy services to households across the country by facilitating the deployment of family-sized (<6 m 3 ) anaerobic (biogas) digesters. NBMMP policy is implemented at three levels, from government and state nodal agency, via private contractors to households, creating multiple institutional arrangements. We analysed the scheme in Assam, north-east India, focusing on how policy was implemented across two districts and interviewing stakeholders in rural households, state and non-state institutions. The top-down, supply-side approach to policy enables government to set targets and require individual states to deploy the scheme, which benefits households who can afford to participate. NBMMP delivered improved energy service outcomes to a majority of households, although the level of knowledge and understanding of the technology amongst users was limited. Training and education of householders, and particularly women, is needed in relation to the maintenance of digesters, feedstock suitability and the environmental and potential livelihood benefits of digestate. A revised bottom-up approach to policy, which highlights the contextual and demand-side issues around adopting the technology, may deliver monetary benefits from market competition and enable development of community-focused microfinance schemes to improve the affordability of biogas systems. - Highlights: • In India, biogas policy is supply-driven and based on technology implementation. • NBMMP policy needs revision to engage with market forces to drive down costs and improve services and delivery. • Community empowerment, awareness, training and education, particularly of women, plays a critical role in accelerating the deployment of biogas technology

  4. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    Science.gov (United States)

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  5. Energy plants increasingly important. Scientific results and practical experiences on the production of biogas plants and short rotation coppices. Symposium; Energiepflanzen im Aufwind. Wissenschaftliche Ergebnisse und praktische Erfahrungen zur Produktion von Biogaspflanzen und Feldholz. Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Heiermann, M.; Scholz, V.; Foltan, H. (comps.)

    2007-05-15

    The conference proceedings contain 15 contributions on energy plants: energy plant production in Germany - developments and research activities; potentials and constraints of cultivating energy crops; environmental aspects of production and utilization of energy plants; costs of energy crop supply; crops for the biogas production in the territory of Brandenburg; mixed cropping systems on sandy soils - alternative cropping strategies; impact of ensiling process on biogas production - recent research results; solid state anaerobic digestion of renewable biomass sources - state of research and development; energy crops as feedstock in a biogas plant; proffer and demand of wood fuel in the State of Brandenburg; regulatory framework of growing short rotation coppice; mechanization of SRC production; 20 years of short rotation coppice; willow production and marketing in Denmark; short rotation coppice production in Italy.

  6. The commercialization of biogas production

    International Nuclear Information System (INIS)

    Christensen, J.

    1992-01-01

    Currently there are ten large collective biogas plants and ten smaller farm plants operating in Denmark. During the last five years, biogas technology has undergone extensive technological development. The developmental process is supported by a public R and D programme and a follow-up programme for full-scale demonstration plants. Most plants still need considerable income increases before a final conclusion can be reached as to whether it is possible to achieve a profit from a corporate economic viewpoint. All plants have received investment grants. Gas production is in most cases reliable, especially due to the admixture of easily convertible organic waste as a supplement to the slurry supplies. Profitable collective biogas plants are within reach, even without investment grants. The total intake of biomass must be supplemented by 10 to 25 per cent easily convertible organic waste so that the minimum gas production reaches 30 to 35 m 3 per m 3 of biomass. Plants based solely on animal manure are not profitable. Energy from the biogas has to be sold at prices corresponding to consumer prices, which include Danish energy taxes. Collective biogas plants in Denmark appear to be approaching a commercial breakthrough. The concept of a collective biogas plant has been developed to address the energy-related, environmentally-related and agricultural problems. (AB)

  7. Biogas barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Unlike the other renewable energy sectors, biogas production did not result from concerns over energy but rather from environmental preoccupations (elimination of pollution, treatment of waste, control of greenhouse gas emissions). Biogas produced in this manner constitutes a sizeable and renewable deposit, with European production (EU 15) in the region of 3219 ktoe in 2003. (author)

  8. Energy crops for biogas plants. Saxony-Anhalt; Energiepflanzen fuer Biogasanlagen. Sachsen-Anhalt

    Energy Technology Data Exchange (ETDEWEB)

    Boese, L.; Buttlar, C. von; Boettcher, K. (and others)

    2012-07-15

    For agriculturists in Saxony-Anhalt (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  9. Energy crops for biogas plants. Baden-Wuerttemberg; Energiepflanzen fuer Biogasanlagen. Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Butz, A.; Heiermann, M.; Herrmann, C. [and others

    2013-05-01

    For agriculturists in Baden-Wuerttemberg (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  10. Energy crops for biogas plants. Mecklenburg-Western Pomerania; Energiepflanzen fuer Biogasanlagen. Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Bull, I.; Formowitz, B. (and others)

    2012-06-15

    For agriculturists in Mecklenburg-Western Pomerania (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  11. Optimized production of vehicle gas - an environmental and energy system analyses of Soederaasens biogas plant.; Systemoptimerad produktion av fordonsgas - En miljoe- och energisystemanalys av Soederaasens biogasanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael; Ekman, Anna; Boerjesson, Paal

    2009-06-15

    In this study, an environmental and energy system analysis for a specific biogas plant is presented as well as suggestions and cost calculations for measures that could be implemented in order to optimise the system. The overarching purpose is also to present a model for similar studies of specific biogas plants. The analysis performed includes direct effects such as use of energy and emissions from the production of biogas, upgrading to vehicle gas, transport of substrate and digestate and storage and handling of digestate. Furthermore, indirect effects such as reduced methane leaching from conventional storage of manure, replacement of mineral fertilizers with digestate etc. are included as well. The energy balance for production and distribution of vehicle gas from Soederaasens biogas plant is calculated to 5,5 which could be compared to the energy balance for ethanol from wheat which is normally between 2 and 3. The greenhouse gas emissions are 16 gram CO{sub 2}-ekv./kWh, approximately 95 % lower compared to gasoline. In comparison, ethanol from wheat and RME reduce the emissions with some 80 % and 65 % respectively. The result is mainly affected of the methane leakage from the upgrading plant, reduced emissions of N{sub 2}O when digestate replaces mineral fertilizers and the assumptions made of how the electricity used in the system was produced. Regarding eutrophication, the emissions are calculated to 6 gram NO{sub 3}--ekv./kWh, primarily originating from storage and handling of digestate, which is somewhat lower than the reported emissions from production of ethanol and RME. Covering the digestate storages and produce process heat with wood chips, measures estimated to be cost neutral or even profitable for the biogas producer, is calculated to reduce the emissions of greenhouse gases to -13 gram/kWh. If all measures identified would be implemented, the emissions are reduced with 120 % with an extra cost of some 0.01 SEK/kWh vehicle gas

  12. Biogas: A renewable energy source

    International Nuclear Information System (INIS)

    Imiere, E.E.; Ojih, V.B.; Esiekpe, L.E.; Okafor, M.C.; Attoh, V. A.

    2011-01-01

    Biogas refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Biogas can be used as a fuel in any country for any heating purpose such as cooking. By means of digesters, the energy in the gas can be converted to electricity and heat. Biogas like natural gas can also be used to power motor vehicle. Biogas is a renewable fuel which qualifies it for a renewable energy subsidy. It is non-toxic, environment-friendly and serve as a means of combating global warming. Biogas is presently being used in U.S.A, U.K, China, Sweden, Brazil, and India amongst others for domestic purposes, transportation and power generation. In this regard, this paper discusses biogas production. It also presents a model design of domestic biogas plant suitable for Nigerian households. The paper recommends that Nigerian Government should intensify efforts in educating the masses on this novel technology for a sustainable global development. A biogas plant designed for Nigerian household discussed in this paper is also recommended.

  13. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions

    International Nuclear Information System (INIS)

    Ahmad, M.; Jamil, M.; Akhtar, F.U.Z.

    2014-01-01

    Salinity is one of the most critical constraints hampering agricultural production throughout the world, including Pakistan. Some plant growth promoting rhizobacteria (PGPR) have the ability to reduce the deleterious effect of salinity on plants due to the presence of ACC-deaminase enzyme along with some other mechanisms. The integrated use of organic, chemical and biofertilizers can reduce dependence on expensive chemical inputs. To sustain high crop yields without deterioration of soil fertility, it is important to work out optimal combination of chemical and biofertilizers, and manures in the cropping system. A pot trial was conducted to study the effect of integrated use of PGPR, chemical nitrogen, and biogas slurry for sustainable production of maize under salt-stressed conditions and for good soil health. Results showed that sole application of PGPR, chemical nitrogen and biogas slurry enhanced maize growth but their combined application was more effective. Maximum improvement in maize growth, yield, ionic concentration in leaves and nutrient concentration in grains was observed in the treatment where PGPR and biogas slurry was used in the presence of 100% recommended nitrogen as chemical fertilizer. It also improved the soil pH, ECe, and available N, P and K contents. It is concluded that integrated use of PGPR, biogas slurry and chemical nitrogen not only enhanced maize growth, yield and quality but also improved soil health. So, it may be evaluated under field conditions to get sustained yield of maize from salt-affected soils. (author)

  14. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  15. The Development of Biogas Technology in Denmark: Achievements & Obstacles

    OpenAIRE

    Sannaa, Mohamed Najib

    2004-01-01

    Denmark is one of the most advanced countries in biogas technology. This country added several improvements to the biogas process in order to increase the biogas yield and thereby improve the economical profitability. Consequently, this project studied the developments of biogas technology in Denmark. The study includes a historical progress of biogas plants since 1970s; the different problems interrupted the expansion of this technology and the actions taken to overcome these obstacles. This...

  16. Biogas from manure and waste residues; Biogas ur goedsel, avfall och restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The consumption of fossil fuels must be reduced if we are to meet environmental and climate related goals and reduce the greenhouse effect. In contrast to fossil fuels, biogas is renewable and carbon dioxide neutral. Biogas is also the cleanest fuel on the market and has the potential to replace much of the fossil fuel used in Sweden. The residue produced after anaerobic digestion is a valuable fertilizer and soil conditioner. Organic wastes are recycled through the biogas process to become a resource. This creates a sustainable recycling of nutrients and energy between urban and rural areas, and between consumption and production. This handbook is intended as a source of information on biogas, targeting politicians and decision- and policy makers in local authorities, farmers and farmers' organisations, and indeed anyone with an interest in biogas in Sweden and abroad. The handbook starts with an introduction of biogas in Sweden today. In part two general information is given about biogas technologies, a description of the biogas process, from the use of substrates to the final distribution of biogas and organic residues, followed by short information about economic support and incentives. In the last part twelve Swedish biogas plants are described, which have been particularly successful, and which can therefore serve as models for the future. The plants are grouped into four different categories: codigestion plants, farm-based biogas plants, sewage treatment plants and industrial plants. Each case study is described as of March 2012. Production figures are given for 2011, unless otherwise stated.

  17. The health aspects of biogas as an energy source

    International Nuclear Information System (INIS)

    Srinivasan, H.R.

    1982-01-01

    Data on the positive health impacts of biogas as fuel for rural household cooking have been collected from three villages near Bombay, one of which used traditional firewood as cooking fuel, one used biogas plants, and the third used biogas plants connected to latrines. The study illustrates the advantages of the use of biogas compared to wood, dung-cakes and crop residues. The biogas plants in the villages selected for study have been in operation for three or four years. Short-time studies show positive advantages of the use of biogas as fuel. (author)

  18. Decentralized power generation from biogas

    International Nuclear Information System (INIS)

    2008-01-01

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW

  19. Full-scale agricultural biogas plant metal content and process parameters in relation to bacterial and archaeal microbial communities over 2.5 year span.

    Science.gov (United States)

    Repinc, Sabina Kolbl; Šket, Robert; Zavec, Domen; Mikuš, Katarina Vogel; Fermoso, Fernando G; Stres, Blaž

    2018-05-01

    A start-up of 4 MW agricultural biogas plant in Vučja vas, Slovenia, was monitored from 2011 to 2014. The start-up was carried out in 3 weeks with the intake of biomass from three operating full-scale 1-2 MW donor agricultural biogas plants. The samples were taken from donor digesters and from two serial digesters during the start-up over the course of 2.5 years. Bacterial and Archaeal microbial communities progressively diverged from the composition of donor digesters during the start-up phase. The rate of change of Bacterial community decreased exponentially over the first 2.5 years as dynamics within the first 70 days was comparable to that of the next 1.5 years, whereas approximately constant rate was observed for Archaea. Despite rearrangements, the microbial communities remained functionally stable and produced biogas throughout the whole 2.5 years of observation. All systems parameters measured were ordered according to their Kernel density (Gaussian function) ranging from the most dispersed (substrate categories used as cosubstrates, quantities of each cosubstrate, substate dry and volatile matter, process parameters) towards progressively least dispersed (trace metal and ion profiles, aromatic-polyphenolic compounds, biogas plant functional output (energy)). No deficiency was detected in trace metal content as the distribution of metals and elements fluctuated within the suggested limits for biogas over 2.5 year observation. In contrast to the recorded process variables, Bacterial and Archaeal microbial communities exhibited directed changes oriented in time. Variation partitioning showed that a large fraction of variability in the Bacterial and Archaeal microbial communities (55% and 61%, respectively) remained unexplained despite numerous measured variables (n = 44) and stable biogas production. Our results show that the observed reorganization of microbial communities was not directly associated with impact on the full-scale biogas reactor

  20. Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste

    International Nuclear Information System (INIS)

    Budych-Gorzna, Magdalena; Smoczynski, Marcin; Oleskowicz-Popiel, Piotr

    2016-01-01

    Highlights: • Laboratory and full-scale trials on co-digestion of sludge and poultry waste were performed. • Successful scaling-up of the results from laboratory to full-scale was accomplished. • Incremental addition of poultry waste to the full-scale anaerobic digesters did not cause any inhibition of the process. • WWTP energy dependency can be reduced significantly by co-digestion of sludge and external source of waste. - Abstract: Municipal wastewater treatment plants (WWTPs) are energy-intensive and thus cost-intensive facilities; therefore, it is crucial to increase energy production directly at the WWTP. Enhancement of biogas production by addition of external substrates is one of the solutions to increase energy self-sufficiency of the WWTPs with an additional benefit of cutting down the greenhouse gas emission. The main aim of the work was to investigate full utilization of the capacity of full-scale digesters at the municipal WWTP by addition of poultry industry waste. At first, laboratory trials were conducted in order to identify the most suitable dose for co-digestion with primary and waste activated sludge and finally, based on the achieved laboratory results, full-scale trials were carried out directly at the municipal WWTP. Poultry industrial waste yielded between 0.39 and 0.88 m 3 of methane per kg of volatile solids during laboratory trials, depending on the added concentration. During full-scale investigation yield of 0.81 m 3 /kg VS was achieved. Enhanced biogas production improved WWTP energy self-sufficiency bringing closer to the aim of increasing the share of self-produced energy up to 80%.

  1. Sicilian potential biogas production

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available This study is aimed at predicting the Sicilian potential biogas production, using the Organic Fraction of Municipal Solid Waste (OFMSW, animal manure and food industry by-products, in a region where only one biogas plant using MSW and one co-digestion plant are nowadays available. The statistical data about OFMSW, the number of animals bred in medium and large farms and the amounts of by-products of food processing industries were evaluated, in order to compute the Sicilian potential biogas and energy production. The OFMSW produced in Sicily, that is 0.8 million tons ca. per year (37% of MSW, could be used in a bio-reactor, together with other raw materials, for Anaerobic Digestion (AD process, producing biogas and “digestate”. Moreover, 3.03 million tons ca. of manure, collected in medium and large animal husbandry farms (where cows, pigs and poultry are bred, and 350 thousand tons ca. of by-products, collected in food processing industries (pomace from olive oil mills and grape marc from wineries, might be used for AD process. The Sicilian potential biogas production from the AD of the above raw materials is 170.2 millions of m3, that is equal to 1023.4 GWh of energy per year, of which 484 GWh from animal manure, 303 GWh from OFMSW and 236.4 GWh from food industry by-products. The highest biogas production is in the province of Palermo (35.6 millions of m3, Ragusa (30.8 millions of m3 and Catania (22.8 millions of m3, having a potential energy production of 213.8, 185 and 137 GWh, respectively.

  2. ASSESSMENT OF THE BIODIVERSITY OF SAMPLES USED FOR ISOLATION OF MICROBIAL STRAINS CAPABLE OF CONVERTING STRAW DESTINED AS A SUBSTRATE FOR BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Krystyna Cybulska

    2016-01-01

    Full Text Available In biogas plants, almost any type of organic matter can be used as a substrate to produce biogas. To make the process of methane fermentation more effective, these materials are pretreated. This applies in particular to a group of difficult substrates. Straw, due to its hemicellulose structure and saturation, is hardly fermented by biogas reactor microorganisms. The methods of post-harvest residue preparation for anaerobic digestion being applied so far are expensive, while their application has a negative effect on methanoegenic bacteria. Therefore, the microorganisms being able to degrade straw hemicellulose structure, utilisation of which could precede the proper fermentation process, have been searched for. This paper presents the results of microbial biodiversity analysis in the environmental samples being lupin, cereal, rape and maize straw as well as hay and haylage at different degradation stages. The analysis of biodiversity will help at a further stage of study to isolate active microbial strains showing cellulolytic, hemicellulolytic or ligninolytic activity which are desirable in the process of straw biodegradation. Analysis of the microbial count was performed by the method of deep inoculation on different microbiological culture media. The conducted tests include determination of the number of fungi, bacteria and actinomycetes. The results obtained confirm the usefulness of the analysed samples for isolation of microbial strains capable of converting straw preceding the biogas production.

  3. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  4. Establishment of a biogas grid and interaction between a biogas grid and a natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2011-01-15

    The project has aimed to clarify the advantages and disadvantages of a large biogas net in Ringkoebing Skjern municipality in Denmark, which wants to become self-sufficient in renewable energy by 2020. It is estimated that the biogas potential in the municipality is about. 60 mill. m3 methane gas a year. Half of the methane will be generated by digesting 80 % of the area's slurry, while the other half will be produced from energy crops. It will require an area equivalent to 5 % of the municipality's farmland. The idea is to establish decentralized 60-80 and 1-3 large centralized biogas plants, and that the produced biogas is distributed to natural gas-fired decentralized power plants. Based on this framework, a number of issues for the establishment of a biogas net have been investigated. These are: - the relation between biogas production and demand; - biogas compared to the overall energy system, - purification and measurement of biogas; - conversion of natural gas-fired power plants to biogas; - the value of biogas for cogeneration plants; - design of a biogas distribution net; - ownership and accountability; - potential business models. (LN)

  5. Application of the membrane technology on the exhaustive fermentation of renewable raw materials in biogas plants; Einsatz von Membrantechnik zur erschoepfenden Vergaerung von nachwachsenden Rohstoffen in Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Anja; Vollmer, Gerd-Rainer; Breuer, Uta; Nelles, Michael [Fachhochschule Nordhausen (Germany). Fachbereich Ingenieurwissenschaften

    2013-10-01

    In the University of Applied Sciences Nordhausen the possibility to increase the degradation of organic substances, especially maize silage as model substrate, in biogas plants by using membrane technology was investigated. This project started in 9/2010 and is founded by the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) on the Agency for Renewable Resources (FNR). The innovation of the method is the link between tubular membranes and the 1 m{sup 3} fermenter of the pilot biogas plant of the University. The installed membrane modules separate the fermenter materials in a solid (retentate) and a liquid phase (permeate). The solids are recycled in the fermenter while the permeate is fermented separately. The method based on the idea of decoupling the hydraulic retention time readily biodegradable and of difficult or non-biodegradable fermenter ingredients and a therefore continued degradation of organic matter. The separated permeate contains fatty acids and with it a significant residual gas potential. In parallel investigations the project partner BTN Biotechnologie Nordhausen GmbH evaluates different fermenter designs to optimal gain the gas potential of the separated permeate. If the method should be verified biogas plant operators could achieve higher gas yields with the same substrate amount or the same gas yield with less substrate amounts, respectively. (orig.)

  6. Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study

    International Nuclear Information System (INIS)

    Mehr, A.S.; Mahmoudi, S.M.S.; Yari, M.; Chitsaz, A.

    2015-01-01

    Highlights: • Four biogas-fed solid oxide fuel cell power plants are proposed. • Performance of systems is compared with each other economically. • Efficiency of biogas fed fuel cell with anode–cathode recycling is the highest. • For current density of 6000 A/m"2 the optimum anode recycle ratio is around 0.25. • Unit product cost of biogas fed fuel cell with anode–cathode recycling is 19.07$/GJ. - Abstract: Four different configurations of natural gas and biogas fed solid oxide fuel cell are proposed and analyzed thermoeconomically, focusing on the influence of anode and/or cathode gas recycling. It is observed that the net output power is maximized at an optimum current density the value of which is lowered as the methane concentration in the biogas is decreased. Results indicate that when the current density is low, there is an optimum anode recycling ratio at which the thermal efficiency is maximized. In addition, an increase in the anode recycling ratio increases the unit product cost of the system while an increase in the cathode recycling ratio has a revers effect. For the same working conditions, the solid oxide fuel cell with anode and cathode recycling is superior to the other configurations and its thermal efficiency is calculated as 46.09% being 6.81% higher than that of the simple solid oxide fuel cell fed by natural gas. The unit product cost of the solid oxide fuel cell-anode and cathode recycling system is calculated as 19.07$/GJ which is about 35% lower than the corresponding value for the simple natural gas fed solid oxide fuel cell system.

  7. ''The manure now is here.'' Only the cows get grass and maize while the Novatech farm biogas plant gets the manure; ''Die Guelle ist ja da.'' Gras und Mais bekommen nur die Kuehe, die Novatech-Hofbiogasanlage nur Guelle

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Dorothee

    2013-04-01

    Actually biogas was out of the question for the dairy farmer Marco Friedrich farming about 200 acres of land. But then, the EEG 2012 (Energy Economy Law) came with the new category 'Manure - Farm - Biogas plant', enabling 25 Cents per kilowatt hour of electricity fed into the grid. In cooperation with the plant manufacturer Novatech GmbH (Wolpertshausen, Federal Republic of Germany), a biogas plant was built, which is described in detail in the contribution under consideration.

  8. Comparative evaluation of different types of biogas suitable for tropical country

    International Nuclear Information System (INIS)

    Sahu, S.N.; Gbagbo, J.K.N.; Aneke, F.U.

    1997-04-01

    The biogas technology - anaerobic digestion - is described together with different types of biogas plants suitable for tropical countries. Cost-benefit analysis of establishing biogas plants, financial support options, and the benefits of using biogas as an energy source in rural areas are presented. (LN)

  9. Concise nuclear isobar charts

    Energy Technology Data Exchange (ETDEWEB)

    Bucka, H.

    1986-01-01

    In the Concise Nuclear Isobar Charts, data on binding energies of protons and neutrons in the ground state and excitation energies for low-lying nuclear energy levels are displayed, both of which are of great interest for transition processes as well as for questions of nuclear structure. Also, quantum numbers for angular momentum and parity are shown for these energy levels. For the stable nuclei, data for the relative abundances, and for unstable nucleon configurations, the transition probabilities are included in the data displayed. Due to the representation chosen for the atomic nuclei, in many cases a very clear first survey of systematic properties of nuclear energy states as well as spontaneous decay processes is achieved.

  10. Biotechnological intensification of biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, Z.; Acs, N.; Balint, B.; Horvath, L.; Dobo, K.; Perei, K.R.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2007-08-15

    The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process was tested in a 5-m{sup 3} thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160-170% upon addition of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium. Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation. (orig.)

  11. GAS TURBINE ENGINES CONSUMING BIOGAS

    Directory of Open Access Journals (Sweden)

    Е. Ясиніцький

    2011-04-01

    Full Text Available A problem of implementation of biofuel for power plants of big capacity was considered in thisarticle. Up to date in the world practice a wide implementation of biogas plants of low and medialcapacity are integrated. It is explained by the big amount of enterprises in which relatively smallvolumes of organic sediment excrete in the process of its activity. An emphasis of article is on thatenterprises, which have big volumes of sediments for utilizing of which module system of medialcapacity biogas plants are non-effective. The possibility of using biogas and biomethane as a fuelfor gas turbine engine is described. The basic problems of this technology and ways of its solutionsare indicated. Approximate profitability of biogas due to example of compressor station locatednearby poultry factory was determined also. Such factors as process characteristics of engine withcapacity of 5 MW, approximate commercial price for natural gas and equipment costs due toofficial sources of “Zorg Ukraine” company was taken into consideration. The necessity forproviding researches on influence of biogas on the process characteristics of gas turbine engine andits reliability, constructing modern domestic purification system for biogas was shown.

  12. National scenario of biogas generation: an overview

    International Nuclear Information System (INIS)

    Singh, Sudha; Katiyar, M.K.; Khan, M.A.; Singh, Amarik

    1995-01-01

    Many developing countries are encouraging the installation of biogas plant in rural sector and industrial sector to meet the demand of energy. India is one of the pioneer countries in the world who initiated adaptation of biogas technology in rural sector about 35 years ago. In India Ministry of Science and Technology, Ministry of Agriculture, Ministry of Energy and Planning Commission are promoting the research and popularization programme, related to biogas technology. 4 refs., 2 figs., 2 tabs

  13. Biogas Koczala. Biogas project in Koczala. Feasibility study. Technical report

    International Nuclear Information System (INIS)

    2004-08-01

    The present production of district heating in Koczala is based on coal. The district heating system is worn out technically and economically and according to the 2001 Energy Plan of Koczala the district heating plant shall be converted to a combination of a biogas fired CHP and a wood chip boiler. The overall objective of this project is to access the feasibility and viability construction an operation of a biogas plant owned by the co-operative agricultural company, Poldanor S.A. The feasibility study includes: 1) Availability of organic waste in the Koczala area, 2) Possibilities of using energy crops in the biogas plant, 3) Possibilities of receiving grants from the Polish National Fund for Environmental Protection, the new EU regional funds and through the joint implementation market (CO 2 quotas), 4) Alternative locations of the biogas plant and the CHP unit, 5) Alternative strategies for selling electricity and heat, 6) Organisational issues (ownership). This report concludes that implementing the biogas project is environmentally and financially feasible and viable. If organic waste and/or maize silage can be provided and gasified without problems, the plant can supply as well the Koczala farm as the fodder mill with steam and heat, and also supply Koczala district heating system with approx. 75% of yearly heat consumption. Furthermore, electricity is supplied to the fodder mill and the public grid. (BA)

  14. Using of biogas for combined cycle of heat and electricity in City Waste Water Treatment Plant in the city of Varna

    International Nuclear Information System (INIS)

    Stankov, N.; Ovcharov, A.; Nikolov, Ch.; Petrov, P.

    2013-01-01

    This report contains a good practice example of energy production by means of biogas utilization in a Bulgarian city waste water treatment plant in Varna city (WWTP). Sewage gas production is included in the waste water and deposits treatment technological scheme of the plant before their further disposal or utilization. Sewer gas is used to fuel a combined heat and power production module which is based on reciprocating gas engines technology. This article contains data from a real site and its purpose is to present the stages of the examined process as well as the technical, economical and environmental benefits from introduction of such technology in a city WWTP. (authors)

  15. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  16. Biogas in China 1981 - a travel report

    Energy Technology Data Exchange (ETDEWEB)

    Frostell, B; Norrman, J

    1982-03-01

    Biogas is formed by anaerobic fermentation of organic material. In China there are about seven million biogas units of family size distributed all over the country. Biogas is produced from manure,feces, domestic wastes and straw. The gas is used above all for cooking and lighting in the homes. Other advantages with biogas are that wood-firing has declined drastically, the forest is saved, the state of health in the villages has improved (the drinking water is boiled) and the out-put from the biogasplants is an excellent medium for plant nourishment and soil benefaction. The main reasons for the fast advancement of biogas technology in China compared with other countries are:- The benefits of the biogas technology have been viewed from a broad perspective. - Great resources have been allocated to the development of the biogas technology. - An effective organisation for dissemination of biogas technology has been formed. - Simple and inexpensive units have been developed. A conclusion from the visit is that Sweden has much to learn from the Chinese biogas programme. Not so much concerning technology development, but rather about the dissemination of the biogas technology.

  17. The progress and prospects of rural biogas production in China

    International Nuclear Information System (INIS)

    Chen, Ling; Zhao, Lixin; Ren, Changshan; Wang, Fei

    2012-01-01

    Biogas production is an important aspect of China's energy strategy. After decades’ application and research, China biogas has achieved considerable accomplishments. This study presents the progress and prospect of biogas technologies and industry in China. Two biogas patterns exist in China, that is, household-scaled digester for scattered farmers and biogas plant for centralized biogas production. Household-scaled digester which is simple and practical has been widely used and fully developed. Biogas plants have being sprung up with different materials, process and biogas utilization technologies. By the end of 2010, 38.51 million household-scaled digesters, and 27,436 large- and medium-scaled biogas plants for agricultural wastes were built. The calculation result of biogas potential from agricultural wastes shows that those used raw materials account for only 1.90% of the total availability. Chinese government promulgated several laws and policies, and gave financial supports to promote the development of biogas. However, some problems such as inferior equipment technology, imperfect policy incentive hamper its wide application and promotion. With the rapid development of economy and the improvement of rural living condition, China biogas industry is expected to advance toward orientation of scalization, industrialization and commercialization. - Highlights: ► Developing progress of biogas production in China is evaluated comprehensively. ► Status of biogas industrialization is estimated. ► New problems which occurred during rural biogas construction were analyzed. ► Biogas production potentials from agricultural wastes in China were calculated. ► Prospect of China rural biogas is expected.

  18. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Science.gov (United States)

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Terpenes removal from biogas; Terpenenverwijdering uit biogas

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, P.; Holstein, J.; De Haan, HR.; Vlap, H. [DNV KEMA, Arnhem (Netherlands)

    2013-06-15

    Biogas may contain unwanted and harmful components, including aromatic hydrocarbons such as terpenes. These terpenes (organic oils) are mainly present in citrus peel and plant residues; that is why especially raw biogas from organic waste digestion plants contains high concentrations of terpenes. If terpenes end up in the gas grid (with the injected biomethane) there is a risk that plastics (PE pipes) lose their mechanical properties by absorbing liquids or extracting ethereal plasticizers. This can lead to embrittlement greatly lowering the reliability of the piping. In addition, soft components are als o affected (gaskets and rubber O-rings). Besides the impact on the integrity of the gas grid, terpenes also mask the odor of natural gas odorants such as THT. This impedes the detection of gas leaks which is a significant security risk. Furthermore, the presence of terpenes in biogas leads to fouling of equipment used for the drying of biomethane, as well as contamination of adsorption liquids and membranes used in the upgrading process. Currently, terpenes are removed by activated carbon filters. The tool life of such a filter can be relatively short if terpene concentrations are high in the biogas; this results in a significant increase of the operational costs, due to the replacement of the carbon. This study looked at alternative techniques for removing much of the terpenes from biogas in a simple, efficient and cheap way. In a workshop with stakeholders two techniques were chosen to be tested on laboratory scale in order to demonstrate the proof of principle. These techniques are photo-oxydation and a gas scrubbing. Of all investigated techniques for the removal of limonene the application of UV radiation seems to be the most promising option because of the simplicity of the process, the high efficiency (up to 94%), the comparable operational costs with activated carbon (6.7 to 9.5 euro/kg limonene removed, compared to 10 euro/kg limonene removed for activated

  20. Forecasting the potential of Danish biogas production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Skov-Petersen, Hans; Gylling, Morten

    , except for those farms which are in the largest state class. Regional differences in development trends were documented. The strategic objective of the model is to provide data for the spatial assessment of the potential of biogas production which can form the basis for a location analysis for future...... biogas plants....

  1. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a Pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Carlos; Tejero, Inaki [Department of Sciences and Techniques of Water and Environment, University of Cantabria, Santander (Spain); Rico, Jose Luis; Munoz, Noelia; Gomez, Beatriz [Department of Chemical Engineering and Inorganic Chemistry, University of Cantabria, Santander (Spain)

    2011-10-15

    The effect of mixing on biogas production of a 1.5-m{sup 3} pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37{+-}1 C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. BIOGAS STATIONS AND THEIR ENVIRONMENTAL IMPACTS

    Directory of Open Access Journals (Sweden)

    Vladimir Lapčik

    2011-12-01

    Full Text Available The article summarizes the authors’ experience with environmental impact assessment in branch of biogas plants. The introductory part of the paper describes legislative obligations of the Czech Republic concerning the fulfilment of the European Union’s limits as for utilization of renewable energy resources. The next parts of the paper deal with an impact analysis of biogas plants on the environment. The final part of the paper deals with experience with implementation of the environmental impact assessment process in the field of biogas plants in the Czech Republic.

  4. Perspectives on Spatial Decision Support Concerning Location of Biogas Production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel

    in biogas production. This ambition requires that more than 20 new large scale centralised biogas plants are built. The location of these plants is associated with a number of externalities and uncertainties and the existing biogas sector struggles to establish itself as a viable energy producing sector....... Meanwhile planners and decision makers struggle to find sustainable locations that comprehensively balance the multiple concerns the location of biogas facilities includes. This PhD project examines how spatial decision support models can be used to ensure sustainable locations of future biogas plants......, understand the industrial economic aspects of such a role. Through the use of spatial multi-criteria evaluation models stakeholder preferences to decision criteria are included in a sustainable biogas facility location analysis. By the use of these models it is demonstrated how overall biogas production...

  5. Application of a qualitative image analysis on the evaluation of microbial process parameters of biogas plants; Einsatz einer quantitativen Bildanalyse zur Beurteilung mikrobieller Prozessparameter von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Scherer, Paul [Hamburg Univ. of Applied Sciences, Hamburg-Bergedorf (Germany). Faculty of Life Sciences

    2013-10-01

    To evaluate efficiency and microbial activity of biogas or anaerobic waste water treatment plants, the number of microorganisms per gram or per milliliter is supposed to be a crucial factor. Since some years ago our research group at HAW-Hamburg has struggled to develop a simple and rapid technique for quantification and classification of environmental microbes with a semi-automatic digital image analysis. For detection of methanogens, the methanogenic fluorescence coenzyme F420 was used, which represents the vitality of methanogens. Furthermore this technique has been supplemented with morphological classification resulting in a Quantitative Microscopic Fingerprinting (QMF). The technique facilitates to find out microbial reasons for some problems of reactor performances. In addition QMF allows differentiating between H{sub 2}-CO{sub 2} and acetate consuming methanogens according to their morphology. At the moment, this study focusses on some relationships between QMF and plant operation parameters. As an example, a thermophilic biogas plant fed by 65% liquid cow manure, maize silage, grass silage and solid cow manure was analyzed for more than 22 weeks. Here some basic background and methodical procedures were presented as well as validation of this technique. (orig.)

  6. Production and use of biogas year 2009; Produktion och anvaendning av biogas aar 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    In the present study, a total of 230 biogas-producing sites were identified. These produced a total of 1363 GWh of energy. The 230 biogas-producing plants were distributed in 136 sewage treatment plants, 57 landfills, 21 co-digestion plants, four industries and 12 farm sites. The number of upgrading plants amounted to 38 and at seven locations injection of upgraded biogas into the natural gas network took place. 44% of the biogas generated in sewage treatment plants, 25% were produced in landfills, 22% of co-digestion plants, 8% in industrial plants and 1% on farm installations. The total biogas production in 2009 was slightely higher than last year, but the division between the different plant types has changed. Production increased for co-digestion plants and farm installations, while production was relatively unchanged for sewage treatment plants. Production in landfills and industrial sites decreased compared with 2008. A larger proportion of the biogas came to use in 2009 compared with previous years. 667 GWh (49%) was used for heating, which also includes heat loss, 488 GWh (36%) were upgraded, 64 GWh (5%) of electricity was generated and 135 GWh (10%) was torched. The main substrates for biogas production were different types of waste such as sewage sludge, source separated food waste and waste from food industry. In addition to biogas, co-digestion plants and the farm plants together produced 537 403 tonnes (wet weight) biofertilizer, and the waste water treatment plants 214 000 tonnes (dry weight) sludge. The provincial breakdown shows that biogas production was greatest in metropolitan areas

  7. Integrated rural industrialization through biogas

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Role of biogas in rural industrialization in India is explained. The Khadi and Village Industries Commission has installed over 2 lakhs (0.2 million) biogas plants during the last 30 years. A 15 cu.m. capacity plant costs Rs. 35,000/-. It produces 65 tons bio-manure worth Rs. 13,000/- in a year and fuel gas equivalent to 3,285 litres of kerosene worth Rs. 9855/-. It provides employment to 300 man days. In addition to serving as a source of energy and manure, it reduces deforestation, solves rural sanitation problem and maintain environmental equilibrium. Industrial activities suitable for rural areas and which can use biogas as a source of power are indicated. (M.G.B.)

  8. The effect of maize silage as co-substrate for swine manure on the bacterial community structure in biogas plants

    Czech Academy of Sciences Publication Activity Database

    Fliegerová, Kateřina; Mrázek, Jakub; Kajan, M.; Podmirseg, S.M.; Insam, H.

    2012-01-01

    Roč. 57, č. 4 (2012), s. 281-284 ISSN 0015-5632 R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional research plan: CEZ:AV0Z50450515 Keywords : biogas * maize silage * swine manure Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.791, year: 2012

  9. Biogas - the calculable energy

    Science.gov (United States)

    Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András

    2015-04-01

    EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of

  10. Practice of finance of biogas plants in agriculture. An empirical study on state and development directions; Finanzierungspraxis von Biogasanlagen in der Landwirtschaft. Eine empirische Untersuchung zu Stand und Entwicklungslinien

    Energy Technology Data Exchange (ETDEWEB)

    Degenhart, Heinrich; Holstenkamp, Lars

    2011-07-01

    The project ''New Opportunities for Financing the Production of Renewable Energies in Agricultural Enterprises'' was supported by Rentenbank, the German promotional bank for the agricultural sector. In a first step data on the current state of biogas financing, on developments in the biogas sector as well as on problems and obstacles were collected via 39 expert interviews and an expert workshop in Frankfurt/Main on December 10{sup th}, 2009. Currently a boom in the biogas sector can be observed which will calm down according to the expectations of the interviewees. The market development is extremely dependent on the setting of the political framework. Different market segments have evolved (small-scale agricultural plants; mid-size plants; large-scale plants, increasingly with biogas feed-in), which will sustain. Long-term resource security constitutes a great risk for providers of capital especially in regions with high plant density. A couple of risk mitigation instruments have been developed, which are valued differently by different actors. Equity capital is a bottleneck especially for growing agricultural businesses and those farms which suffer from low producer prices. Debt capital is available only to a limited extent in some regions in Germany - which is not a special feature of biogas financing, but occurs here to an intensified degree. Equity capital by investors (''participation models'') is available in different forms to a sufficient extent. Equity providers in close relation with the agricultural sector or business are preferred, though. Project finance is increasingly used in connection with participation models and common-communal power plants. Other alternative financing solutions (leasing, contracting, mezzanine capital) are rarely applied. Cooperation models to build mid-size plants will play an increasing role in the future where equity constitutes a bottleneck or not sufficient liquidity exists and in

  11. Application of Multi-Criteria Analysis in the Evaluation of Biogas Plants with Respect to the Stability of the Agricultural System

    Directory of Open Access Journals (Sweden)

    Jitka Šišková

    2015-01-01

    Full Text Available As a result of the interconnection and globalization of access to information, scientific expertise and new technologies across the world, development of society is now progressing at a skyrocketing pace. Production in businesses is reaching maximum possible levels. This paper focuses on systemic evaluation of the interrelations among production processes of agricultural businesses running biogas plants. It represents a comprehensive proposal of a model instrument for comparison of production options in relation to available input materials in agricultural businesses. Interconnection of the economic, environmental and social factors is of growing significance for strategic progress along the lines of sustainable development of society. The objective of this paper is to propose and to describe the practical application of a multi-criterion model as an instrument of decision-making processes with a view to establishing a procedure for comparison of available input materials for biogas plants from the viewpoint of maintaining the stability of systemic interrelations in the agricultural sector in the context of sustainable development.

  12. Persistence of Mycobacterium avium subsp. paratuberculosis at a Farm-Scale Biogas Plant Supplied with Manure from Paratuberculosis-Affected Dairy Cattle▿

    Science.gov (United States)

    Slana, I.; Pribylova, R.; Kralova, A.; Pavlik, I.

    2011-01-01

    In this study, products from all steps of anaerobic digestion at a farm-scale biogas plant supplied with manure from paratuberculosis-affected dairy cattle were examined and quantified for the presence of the causal agent of paratuberculosis, Mycobacterium avium subsp. paratuberculosis, using culture and quantitative real-time PCR (qPCR). Viable M. avium subsp. paratuberculosis cells were detected using culture in fermentors for up to 2 months; the presence of M. avium subsp. paratuberculosis DNA (101 cells/g) was demonstrated in all anaerobic fermentors and digestate 16 months after initiation of work at a biogas plant, using IS900 qPCR. F57 qPCR was able to detect M. avium subsp. paratuberculosis DNA (102 cells/g) at up to 12 months. According to these results, a fermentation process that extended beyond 2 months removed all viable M. avium subsp. paratuberculosis cells and therefore rendered its product M. avium subsp. paratuberculosis free. However, M. avium subsp. paratuberculosis DNA was found during all the examined periods (more than 1 year), which could be explained by either residual DNA being released from dead cells or by the presence of viable cells whose amount was under the limit of cultivability. As the latter hypothesis cannot be excluded, the safety of the final products of digestion used for fertilization or animal bedding cannot be defined, and further investigation is necessary to confirm or refute this risk. PMID:21398476

  13. Farm scale biogas concepts in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A [Nova Energie, Ettenhausen (Switzerland)

    1997-08-01

    The near future of farm scale biogas production looks bright as long as the high electricity prices are maintained by political will and subsidies remain higher than approx. 20%. If in all the number of biogas plants is growing as it is in Germany (Within the last two years about 200 new plants have been built) then biogas will add its share to a nuclear power free electricity production, as does wind energy in Germany, Holland or Denmark. The standard for manure digesters is set. There is still some way to go for solid waste digesters. However, first inputs have been given. (EG) 10 refs.

  14. PROSPECTS FOR THE DEVELOPMENT OF THE AGRICULTURAL BIOGAS SECTOR IN POLAND

    Directory of Open Access Journals (Sweden)

    Magdalena Zubrzycka

    2017-03-01

    Full Text Available This article presents the legal regulations relating to Renewable Energy Sources, including the biogas sector. It discusses biogas production technologies, the current state and perspectives of agricultural biogas production in Poland, the production capabilities of Polish biogas plants and factors contributing to the attractiveness of the biogas sector. The following economic and ecological aspects of biogas production were considered in the study: profitability and environmental impacts, including reduction in carbon dioxide emissions. Despite numerous problems, the Renewable Energy Sources Act provides an opportunity for the growth and development of the biogas industry in Poland.

  15. High-temperature pretreatment of biogas substrate by using district heating to increase the biogas production; Hoegtemperaturfoerbehandling av biogassubstrat med fjaerrvaerme foer oekad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Del Pilar Castillo, Maria; Ascue, Johnny [JTI, Uppsala (Sweden); Olsson, Marcus; Henriksson, Gunilla; Nordman, Roger [SP, Boraas (Sweden)

    2011-12-15

    In this study, we have shown that pre-heating sludge from a waste water treatment plant can give a higher biogas production rate. However, pretreatment showed no effect on substrate from a biogas plant at the conditions tested in this study. The study has also shown that there is potential of using district heating in the biogas industry for thermal pretreatment of sludge.

  16. Renewable Hydrogen Potential from Biogas in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  17. 与生猪产业发展联动的中国沼气工程建设现状分析%Status analysis of biogas plants construction associated with development of live pig industry in China

    Institute of Scientific and Technical Information of China (English)

    胡启春; 汤晓玉; 宁睿婷; 李谦

    2015-01-01

    The data of live pig industry development scale in China and the corresponding construction status of biogas plants from 2007 to 2012 were analyzed in the study. With the development and adjustment of live pig industry, large-scale standardized pig farms grew very fast. In the year of 2012, the proportion of scale pig-breeding farms by which more than 500 live pigs were sold every year achieved 38.5%in the whole country, while the number of pig farms at those scales was doubled during the 5 years. The increase of scale pig-breeding provided the opportunity for biogas plant construction. Thus, there was a rapid development of biogas plant construction in the 4 dominant pig-breeding areas. By the end of 2012, the number of breeding farms’ biogas plants in rural regions of China has reached 91 600, which increased by 3 times that in 2007. Especially, the biogas plant coverage of medium-scale and large-scale pig farms in coastal and southwest areas reached more than 80%. On the other hand, there were a larger number of disabled biogas plants during this period. Due to the influence of regional resources, agricultural structure, climate and technology maturity, both the biogas plant construction status associated with live pig industry development and the quality of construction and operation management were uneven. Among all the factors that affected biogas plant’s usage and discarding, live pig industry adjustment and market fluctuation played an important role in the normal operation of biogas plants. For this economic development model of biogas plants in the new era, China has paid more attention to the sustainability, the developing quality, the construction pattern and the development speed of biogas plants, which are served as basic agricultural facilities and are faced with the challenge of model change and upgrade. In order to enhance biogas plant’s ability of treating livestock industry pollution, we have the following suggestions: 1) improve the

  18. Biogas upgrading to biomethane. Proceedings; Biogasaufbereitung zu Biomethan. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-05

    Within the 6th Hanauer Dialogue 'Biogas upgrading to biomethane' at 21st February, 2008, the following lectures were held: (a) Processing of biogas - an introduction (Michael Beil); (b) The climate protecting targets of the Federal Republic of Germany: Which role will play the upgrading of biogas, and which legal boundary conditions are created by the Federal Government? (Uwe Holzhammer); (c) Future strategy: CH{sub 4} grids (Juergen Schmid); (d) Biogas upgrading and biomethane utilization in Sweden (Anneli Petersson); (e) Biogas upgrading and utilization of bio methane in Switzerland (Arthur Wellinger); (f) Biogas upgrading by means of pressure swing adsorption (Alfons Schulte-Schulze Berndt); (g) Biogas upgrading by means of pressurized water washing (Ulf Richter); (h) Biogas upgrading for feeding in public grids. The case of biogas plant Bruck a.d. Leitha (Michael Harasek); (i) Biogas upgrading by means of chemical absorption according to the LP Cooab process (Jerome van Beek); (j) Practical experiences in unpressurized amine washing MT bio methane (Karsten Wuensche); (k) Biogas upgrading by means of organic physical washing with HAASE biogas amplifiers (Roland Kahn); (l) Upgrading using cryogenic technology; the GPP registered -system (Jeroen de Pater); (m) Micro Gas Distribution Systems: Alternatives to biogas upgrading and grid injection (Michael Beil, Bernd Krautkremer); (n) Feeding of exchange gas. The case of project Straelen and Kerpen (Frank Schaefer); (o) Feeding of biogas from the view of grid operators (Norbert Nordmeyer); BIOGASMAX: Biogas as Vehicle Fuel - Market Expansion to 2020 Air Quality (Michael Beil, Uwe Hoffstede); (p) Study: Feeding of biogas into the natural gas distribution system (Fachagentur Nachwachsende Rohstoffe).

  19. A biogas plant for the digestion of distillery residue in combination with waste water treatment; Biogasanlage fuer die Vergaerung von Destillationsrueckstaenden in Kombination mit der Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Voigtlaender, A.; Vetter, H.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project at a Swiss food-processing company that produces fruit juices and beverages containing fruit components. The company uses an anaerobic pre-treatment plant to treat effluents before they are discharged to a local municipal waste water treatment plant (WWTP). The report describes the installation, which generates biogas that is used to provide heating energy for the processes used in the extraction process. The monitoring and measurement system is described and figures are quoted for energy production in the company's facilities. Also, the energy savings in the local WWTP resulting from the reduced energy consumption of the aeration blowers as a result of the pre-treatment of the wastes are discussed. Operational aspects of the installation are examined. including temperature effects on the digestion process, control strategies and waste air treatment.

  20. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as ....... Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 550 C could be obtained at 610 C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature.......Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...

  1. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    , being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas......Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co...

  2. The role of transportation and co-fermentation in the CO2 balance for utilisation of biogas for energy

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Karlsson, Kenneth Bernard; Holm-Nielsen, Jens Bo

    1998-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  3. A review of the biogas industry in China

    International Nuclear Information System (INIS)

    Jiang Xinyuan; Sommer, Sven G.; Christensen, Knud V.

    2011-01-01

    This article presents an overview of the development and future perspectives of the Chinese biogas industry. The development of the industry has the potential to improve the rural environment and produce significant amounts of sustainable energy for China. Barriers to the development are the relatively weak environmental policies, imperfect financial policies and lack of long-term follow-up services. The rapid economic development of China has also seen a development in the scales of biogas plants constructed. Although the technology has been improved, this review has identified problems in the construction and operation of Chinese biogas plants, particularly in the efficiency of household systems. All levels of China's government acknowledge this and recent biogas projects have more focus on quality and less on the quantity. The intention is to gradually introduce stricter environmental policies, to provide better service systems, improve the financial policies that support the construction and follow-up service of biogas projects, promote the use of standardized engineering equipment and materials and standards for plant construction and production. This will promote the development of biogas projects at various scales further, and reduce the dependency on fossil fuels and emissions of greenhouse gases. - Highlights: → The biogas industry in China has great developing potential and necessity. → Barriers to the development of biogas industry in China were included in the article. → All scales of Biogas plants in China have developed rapidly in recent years. → Measures to promote the development of biogas projects further in China were proposed.

  4. Energetic, exergetic, thermoeconomic and environmental analysis of various systems for the cogeneration of biogas produced by an urban wastewater treatment plant UWTP

    Energy Technology Data Exchange (ETDEWEB)

    Coble, J.J. [Nebrija Univ., Madrid (Spain). Industrial Engineering Dept.; Contreras, A. [Industrial Engineering College, Madrid (Spain). Chemistry Dept.

    2010-07-01

    General awareness that the world's energy resources are limited has meant that it is increasingly important to examine energy-saving devices and fuels more closely, in order to use our limited available resources in a more sustainable manner. With this in mind, we studied biogas from a UWTP, because it is a renewable fuel with a neutral contribution to CO2 emissions. We compared two technologies for using biogas as an energy source: cogeneration using either motor-generators or phosphoric acid fuel cells. The comparison was made from the energetic, exergetic, thermo-economic and environmental points of view, internalizing all the costs involved in each case. We used data supplied by the UWTP at the City of Madrid Plant Nursery, which uses motor-generators, and the UWTPs in Portland, Oregon, and in Red Hook, New York, which use a phosphoric acid fuel cell. The joint work carried out has been divided into three parts for publication purposes, and we present here the first of these, which refers to the energy analysis. (orig.)

  5. The bypass solution as a capacity enhancing measure in connecting biogas plants to the grid; Die Bypass-Loesung als kapazitaetserhoehende Massnahme beim Netzanschluss von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Grassmann, Nils [PwC Legal AG, Frankfurt am Main (Germany). Bereich Energierecht in der Region Sued; Reinhardt, Anja [PwC Legal AG, Muenchen (Germany)

    2012-07-01

    In spite of repeated amendments to the laws governing the connection of biogas plants to the grid there still remain unresolved disputes in practice. A significant issue in this regard concerns what is referred to as the bypass solution, where a connection to the general supply grid of the receiving grid operator is created and at the same time technical equipment is installed which provides a connection to an upstream grid to which biogas can be backfed in times of low grid load. The Upper Regional Court of Duesseldorf classifies constellations of this kind as a combined grid connection to two different grids. It argues that since the legislature has provided no regulations on this constellation there can be no legitimate right to obtaining a connection of this configuration. However, this line of argumentation does not appear compelling. The meaning and purpose of Articles 31 ff. of the Gas Network Access Ordinance and the wording of the relevant norms both speak in favour of considering bypass solutions as capacity-enhancing measures. The receiving (downstream) grid operator would then be obliged, under the general requirements, to create a grid connection and to draw the bypass solution into consideration as a special means of backfeeding. This would provide legal certainty for all involved and allow technically meaningful solutions to be implemented.

  6. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  7. Energy and Greenhouse gas balances of the utilisation of biogas for energy

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Karlsson, Kenneth Bernard; Holm-Nielsen, Jens Bo

    1998-01-01

    of the implementation programmes has been on development of technologies for joint biogas plants, where more than one farm supplies the animal slurry. The joint biogas plants are dependent on industrial organic wastes to obtain high biogas yields for making the biogas plant economical. The industrial organic waste will......The utilisation of biogas for energy is an important part of the Danish energy plan for reducing Danish emissions of greenhouse gases. Implementation programmes for new biogas plants have been in operation since 1990, promoted by the Ministry of Environment and Energy. The focus......, however, be the scarce factor in a further development of the joint biogas plants in Denmark. The purpose of the present study is related to the discussion on the role of transportation in the biogas fuel chain. Transportation plays a central role in the assessment of environmental advantages of utilising...

  8. Biogas from algae, seaweed and seagrass?; Biogas aus Algen, Tang und Seegras?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Holger [Fachhochschule Flensburg (Germany)

    2011-07-01

    Algae, seaweed and sea grass are discussed again and again as alternative sources for raw materials for agricultural biogas plants. The author of the contribution under consideration reports on the identification and optimization of the biogas potential of microalgae, macroalgae and flotsam (mixture of seaweed, seaweed, and so on). Algae, seaweed and sea grass can be fermented into biogas by means of an anaerobic process. The specific yield of biogas is small. The processing of these substrates requires a technical adjustment of the biogas plants. Thus, the effective use of these substrates will continue to fall. The achievable benefit highly depends on the location of the facilities and on the available substrates with the corresponding specific gas yields. The economic efficiency of these substrates in agricultural systems must be examined in each case.

  9. Study of Biogas for Power Generation at Pesantren Saung Balong Al-Barokah, Majalengka, West Java

    OpenAIRE

    Arifin, Maulana; Saepudin, Aep; Santoso, Arifin

    2011-01-01

    Utilization of biogas from cow manure as a fuel alternative for power plants is done through an anaerobic process. A pilot plant with biogas production of 7 m3/day has been installed at Pesantren Saung Balong. Biogas is used for everyday purposes such as cooking and lighting, and used as pure biogas with 2.500 Watt scale generator. Biogas produced with the rate of 0.080 m3/hr. Biogas produced during the measurement (450 minutes) is 0.604 m3. With these data it is predicted that within a day (...

  10. Design of laboratory cyclone separator for biogas purification

    Directory of Open Access Journals (Sweden)

    Marián Fodora

    2013-01-01

    Full Text Available This article deals with calculation of a cyclone separator for biogas purification using physical and chemical methods. There is presented a methodology for determination of operating dimensions of the cyclone separator and description of principal features of the cyclone separator model. Calculations have been performed for the diameter of the cylindrical part of cyclone separator 175 mm and for the biogas volume flow rate 6.9∙10−5 m3∙s−1. The calculations can be used in practice for the design of cyclone separator depending on the flow rate of biogas, size of the biogas plants respectively. The developed cyclone separator has been used for the cleaning of biogas in operating conditions at the biogas plant in Kolinany (Slovakia. The presented method of biogas purification has been used for the removing of hydrogen sulphide, particulate matter and carbon dioxide from the raw biogas at the biogas plant. Removal of these undesirable impurities from the biogas is an important step in the production of a fully valued fuel, biomethane.

  11. Biogas in agriculture. Status and prospects. Proceedings; Biogas in der Landwirtschaft. Stand und Perspektiven. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the congress of the Agency for Renewable Resources (Guelzow, Federal Republic of Germany) and the Association for Technology and Structures in Agriculture (Darmstadt, Federal Republic of Germany) at 20th-21st September, 2011 in Goettingen (Federal Republic of Germany) the following lectures and posters were presented: (1) Perspectives of using biogas as a part of the German power supply (Stefan Rauh); (2) Development of biogas in Europe (Marc Fleureck); (3) Biology of methanogenic archaea and its significance for the microbial process control in biogas plants (Helmut Koenig); (4) Efficiency and behaviour of enzymes in the biogas process (Monika Heiermann); (5) Trace elements in NaWaRo biogas plants for balancing substrate limited deficiency symptoms and stabilizing the fermentation process (Hans Oechsner); (6) EEG - Actual developments for biogas (Ulrich Keymer); (7) Utilization of thermal energy from cogeneration in the practice - Experiences from the view of an environmental expert (Michael Hub); (8) Innovations in the legal aspects of the production and utilization of biogas (Hartwig von Bredow); (9) Damages and deficiencies at biogas plants (Waldemar Gruber); (10) Learning from accidents, damages and their causes as well as their correctives in the operation of biogas plants - Reports from the practice (Wolfgang Horst Stachowitz); (11) Causes and avoidance of container damages by means of biocorrosion (Jan Kuever); (12) Anaerobic degradation of cellulosic substrates - Bionic implementation of the forestomach sysem of a ruminant (Dirk Weichgrebe); (13) Fermentation of renewable raw materials in the up flow procedure (Jan Mumme); (14) Two-phase pressure fermentation for feeding into natural gas grids (Andreas Lemmer); (15) Requirements and potential of sugar beets for fermentation (Christa Hoffmann); (16) Innovation in the area of power beets (Andreas von Felde); (17) Optimization of manuring with fermentation residues in order to reduce the nitrogen

  12. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Angelidaki, Irini; Ahring, Birgitte Kiær

    2000-01-01

    of a macerator make it attractive to use this pretreatment method for a more complete degradation of particulate organic matter. investigation of the size distribution of the fibers showed that a change in biogas potential was not correlated to a smaller size of the fibers. Results from the macerators indicate......% by pretreatment of the whole feed in the macerator before the reactor was observed. implementation concepts with a treatment of the fibers alone after separation from the manure showed to be not efficient due to a low recovery of organic matter in the fibers by the separation unit. The low operational costs...

  13. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30–100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas pr...... experiments indicated that pre-treated sludge (microwave irradiation: 900W, temperature: 60–70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation....

  14. Technical and economical analysis of concepts for using the heat of biogas plants in rural areas; Technische und betriebswirtschaftliche Analyse von Konzepten zur ganzjaehrigen Nutzung der Abwaerme einer Biogasanlage im dezentralen laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Kaths, Friederike Annette

    2012-08-15

    Since the implementation of the EEG in Germany the biogas production becomes an independent branch of industry in the agriculture. At this time more than 90 percent of the biogas plants work with co-generation plant for heat and power with a thermal engine efficiencies of more than 50 percent. Because of the location in the rural area heat costumers with a continuous demand of heat over the whole year are rare. This research had a closer look how to use the heat of biogas production efficiently and also generating profit. The aim of the study was to use heat over the whole year, a profitable heat concept without counting the KWK-bonus and an added value on the farm. During the study the following concepts were analyzed: asparagus production using soil heating, drying equipment for different products, the production of fish in aquaculture, the poultry production and the heated production of tomatoes. The results showed different concepts using heat of biogas plants as efficient for farmers. However with only one concept the aims - to use the heat over the whole year, generating a profitable heat concept without counting the KWK-bonus, add an value on the farm - mostly can not be achieved. The combination of different heat concepts is necessary. In this analysis the poultry production in combination with the dryer can be considered as the most efficient concept. Bearing in mind the benefit which can be generated with a heat concept as well as the higher income and the higher technical efficiency of biogas plants operators should implement an individual concept for their heat.

  15. Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study-The Agricultural Biogas Plant at Pěčín.

    Science.gov (United States)

    Vochozka, Marek; Maroušková, Anna; Šuleř, Petr

    2018-02-01

    The production of renewable energy in agricultural biogas plants is being widely criticized because-among other things-most of the feedstock comes from purpose-grown crops like maize. These activities (generously subsidized in the Czech Republic) generate competitive pressure to other crops that are used for feeding or food production, worsening their affordability. Unique pretreatment technology that allows substitution of the purpose-grown crops by farming residues (such as husk or straw) was built 6 years ago on a commercial basis in Pěčín (Czech Republic) under modest funding and without publicity. The design of the concept; financial assessment and moral viewpoint were analyzed based on practical operating data. It showed that the apparatus improves economic, environmental and moral acceptance as well. However, according to the government's view, public funding for this type of processing was shortened, "because waste materials represent a lower cost". The impact of such governance was analyzed as well.

  16. 10. Biogas conference Dresden. Anaerobic treatment of biological wastes. Proceedings

    International Nuclear Information System (INIS)

    Dornack, Christina; Liebetrau, Jan; Fassauer, Burkhardt; Nelles, Michael

    2015-01-01

    The biogas conference in Dresden will be held for the tenth time and is still the only conference in Germany, which focuses on the production of biogas solely from waste. This year, the implementation of paragraph 11 of the Recycling and Waste Management Act and the amendment of the Renewable Energies Act (EEG) in 2014, the chances of the waste management biogas technology will be spotlighted here. The efficiency and wise use of the end products of the biogas production - the biogas and fermentation residues are equally critical for the success of biogas technology as the emission reduction of biogas plants. In this context, the biogas technology will also be dependent in the future on legal requirements and funding instruments such as the EEG. For the technical implementation, the development of reliable system concepts with specific sinking biogas and electricity supply costs and with greater flexibility in terms of launching needs-based biogas and electricity production. The contributions in this paper discuss possible solutions and implementations from the perspective of politics, associations, research and practice. Innovative topics will be discussed, which will be decisive for the future of biogas production from organic wastes. [de

  17. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Zhang, Xiaojing; Yan, Jinying; Li, Hailong; Chekani, Shabnam; Liu, Loncheng

    2015-01-01

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  18. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    Science.gov (United States)

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  19. Appraisal of Biogas Potential of Biogas from Animal Dung in Saeedabad, Pakistan

    Directory of Open Access Journals (Sweden)

    AMJAD ALISHAH

    2017-07-01

    Full Text Available Pakistan is facing energy scarcity. The biogas is one of the renewable substitutes. It does not only overcome the energy scarcity but also harness the energy from animal dung which causes the CO2 emissions. The present study was done on the appraisal of potential of biogas from the dung of animals (Buffaloes, Cows, Goats and Sheep within the villages surrounded by Taluka Saeedabad. The purpose of the study was the energy potential of the biogas and the selection of the most suitable design and size of the biogas plant for the villagers. The present study also includes the domestic biogas plant economics. As per the estimation, total quantity of animal dung generated was about 129 tons/day, which can produce 3859 m3 of biogas per day. On the contrary, for cooking villagers require only 2748 m3 of biogas per day. Moreover, the surplus biogas of 1111 m3 per day can be used to produce electricity of 6666 kWh per day, which can fulfill the demand of about half of the population of villages under study. People are using firewood, cotton stalks, kerosene oil and LPG (Liquefied Petroleum Gas for cooking. Converting animal dung into the biogas not only reduces the consumption of the traditional fuels used (Firewood, Cotton Stalks, Kerosene Oil and LPG, but also prevents about 900 thousand tons of CO2 emissions into the environment. Additionally, a fixed dome biogas plant of 8-10 m3 size was recommended for each of the houses under study.

  20. Appraisal of biogas potential of biogas from animal dung in saeedabad, pakistan

    International Nuclear Information System (INIS)

    Shah, A.A.; Sahito, A.R.

    2017-01-01

    Pakistan is facing energy scarcity. The biogas is one of the renewable substitutes. It does not only overcome the energy scarcity but also harness the energy from animal dung which causes the CO/sub 2/ emissions. The present study was done on the appraisal of potential of biogas from the dung of animals (Buffaloes, Cows, Goats and Sheep) within the villages surrounded by Taluka Saeedabad. The purpose of the study was the energy potential of the biogas and the selection of the most suitable design and size of the biogas plant for the villagers. The present study also includes the domestic biogas plant economics. As per the estimation, total quantity of animal dung generated was about 129 tons/day, which can produce 3859 m/sup 3/ of biogas per day. On the contrary, for cooking villagers require only 2748 m3 of biogas per day. Moreover, the surplus biogas of 1111 m/sup 3/ per day can be used to produce electricity of 6666 kWh per day, which can fulfill the demand of about half of the population of villages under study. People are using firewood, cotton stalks, kerosene oil and LPG (Liquefied Petroleum Gas) for cooking. Converting animal dung into the biogas not only reduces the consumption of the traditional fuels used (Firewood, Cotton Stalks, Kerosene Oil and LPG), but also prevents about 900 thousand tons of CO/sub 2/ emissions into the environment. Additionally, a fixed dome biogas plant of 8-10 m/sup 3/ size was recommended for each of the houses under study. (author)

  1. Utilization of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J L; Ross, C C; Smith, M S; Harper, S R [Georgia Tech Research Corp., Atlanta, GA (USA)

    1989-01-01

    A comprehensive study of the systems and equipment required to convert biogas into useful thermal and/or electrical energy was conducted, and the results published in the Handbook on Biogas Utilization (Walsh et al., Georgia Institute of Technology, Atlanta, GA, 1988). The physical, chemical and combustion characteristics of biogas, and the impact of these characteristics on both new and modified combustion equipment, were considered. The study also included consideration of auxiliary equipment for biogas collection, clean-up, compression and storage. (author).

  2. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  3. The Concise Encyclopedia of Statistics

    CERN Document Server

    Dodge, Yadolah

    2008-01-01

    The Concise Encyclopedia of Statistics presents the essential information about statistical tests, concepts, and analytical methods in language that is accessible to practitioners and students of the vast community using statistics in medicine, engineering, physical science, life science, social science, and business/economics. The reference is alphabetically arranged to provide quick access to the fundamental tools of statistical methodology and biographies of famous statisticians. The more than 500 entries include definitions, history, mathematical details, limitations, examples, references,

  4. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  5. Aspects of biogas utilisation

    International Nuclear Information System (INIS)

    Luning, L.

    1992-01-01

    Utilisation of biogas has received considerable attention over the last decade, its full potential has not been reached however. The paper discusses various options for utilisation of biogas and the limitations that may occur as far as they are associated with the characteristics of biogas. As a result the prospects for the future are presented. (au)

  6. Biogas. Present situation and future potential; Biogas. Nulaege och framtida potential

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Ulf [Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden)

    2006-12-15

    The report contains a general overview of present technology concerning production of biogas through anaerobic breakdown of easily recycled organic material as well as implementation areas for biogas. The work has been done in three parts: description of present situation, technical limitations and development efforts, synthesis. In Sweden there are more than 220 biogas plants for handling crops, sludge and organic residue material. Production of biogas occurs primarily at sewage treatment plants and landfills. Total capacity in 2004 was approx. 300,000 m{sup 3} anaerobic chamber volume, of which approx. 73% was utilised. Planned increase in capacity was approx. 125,000 m{sup 3} or approx. 42%.The substrate brought to the plants was comprised of approx. 45% manure, 30% offal, 10% biowaste from households and 15% other substrates. Calculations based on the energy content of input substrate indicate that approx. 10% of the gas was from manure, 65% from offal, 25% from household waste and 5% from other substrates. In 2005 a total of 1,5 TWh of biogas was produced in Sweden. Biogas is used primarily for heating purposes followed by use as vehicle fuel and in electricity production. More than 55 GWh is torched away. Sewage treatment plants are not included. Interest in using biogas as fuel has increased. The theoretical biogas potential in Sweden has been calculated to be 14-17 TWh per year, of which approx. 80% is found in agriculturally related biomass. Approximately 3 TWh originates from various types of household and industrial waste. Generally it can be said that there is a large potential for improvement and increased efficiency within the whole chain of substrate collection, preparatory treatment of substrates, operational control of biogas plants, upgrade/treatment and use of gas as well as spreading and use of biofertilizer. The greatest increase in substrate will come from the amount of crops from the agricultural sector. The contacts between farmers and plant

  7. Sludge storage lagoon biogas recovery and use

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  8. Energy systems analysis of biogas systems; Energianalys av biogassystem

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Maria; Boerjesson, Paal

    2003-05-01

    The aim of this study was to calculate the net energy output and energy efficiency, from a life-cycle perspective and for Swedish conditions, in anaerobic digestion of various raw materials. Our calculations are based on literature reviews concerning the total primary energy input required for the production of biogas (i.e. direct and indirect energy inputs, e.g. when producing and distributing diesel fuels, electricity, fertilisers) as well as the biogas yield from various raw materials. Our analyses include handling and transportation of raw materials, operation of the biogas plants, and transportation and spreading of digested residues, as well as the biogas yield from manure, ley crops, tops and leaves of sugar beets, straw, municipal organic waste, slaughter waste, and grease separator sludge. All calculations concern individual raw materials. The net energy input required to run a biogas system (i.e. centralised biogas plant) typically corresponds to approximately 20-40% of the energy content in the produced biogas. Theoretically, the raw materials could be transported for some 200 km (manure) up to 700 km (slaughter waste) before the net energy output becomes negative. The variations in energy efficiency between studied biogas systems depend mainly on the type of raw material studied and the calculation methods used. Raw materials with high water content and low biogas yield (e.g. manure) require rather large energy inputs compared to the amount of biogas produced. Energy demanding handling of the raw materials, such as ley crops, could correspond to as much as approximately 40% of the net energy input. Varying energy efficiency in different parts of the biogas system, but most of all, changes in the biogas yield, could considerably affect the total net energy output. In general, operation of the biogas plant is the most energy demanding process in the biogas systems, corresponding to some 40-80% of the net energy input in the biogas systems. This implies

  9. Demonstration of Software Application Biogas Optimizer at the Haendeloe Biogas Site

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristofer (Bioprocess Control Sweden AB, Lund (SE))

    2008-04-15

    There is a growing interest in the utilisation of process optimisation technologies within the biogas industry. This trend is being driven by new and growing market opportunities as well as an interest to improve the overall profitability of commercial biogas processes. Biogas Optimizer, developed by Bioprocess Control Sweden AB based in Lund, Sweden, represents one such process optimisation technology, utilising a supervisory and control approach to improve both biogas production efficiency and process stability. A demonstration project was conducted over a nine month period during 2007 at the Haendeloe biogas plant in Norrkoeping, Sweden, owned and operated by Svensk Biogas AB, to provide an indication of the potential of Biogas Optimizer to improve the competitiveness of biogas producers. The demonstration project attempted to satisfy 3 goals, namely; 1) to obtain baseline production information regarding the average Organic Loading Rate (OLR) and average Biogas Production Rate (BPR), 2) to demonstrate that the technology behind Biogas Optimizer works under full-scale production conditions, and 3) to verify that significant/notable production efficiency improvements can be achieved utilising Biogas Optimizer when compared to baseline production information, and that biogas production can be optimised for maximising the utilisation of reactor capacity while still leaving a comfortable safety margin so as to avoid reactor overloading. The collection of baseline production information during three months resulted in an average OLR of 4.0 Kg VS/m3/day and average BPR of 2.6 Nm3/m3/day being selected as baseline data from which to compare the performance of Biogas Optimizer. The full-scale demonstration of Biogas Optimizer was conducted over a 40 day period. During these 40 days, OLR recommendations from Biogas Optimizer, and the resulting manual adjustment of the OLR by the plant operator, resulted in an increase in the average OLR from 4.0 to 4.7 Kg/m3/day and

  10. Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.

    Science.gov (United States)

    Maus, Irena; Kim, Yong Sung; Wibberg, Daniel; Stolze, Yvonne; Off, Sandra; Antonczyk, Sebastian; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-02-28

    Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

  11. Anaerobic biogasification of domestic wastes and direct solar energy use to produce biogas, biofertilizer and distilled water in a city - a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    kumar, R.A.; Pandya, N.H.; Patil, A.M.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    Domestic wastes are a source of gas of high calorific value as well as biofertilizer and distilled water. A pilot project undertaken by the Tata Electric Cos., Bombay on recycling sewage, garbage and garden wastes of a community by converting them into biogas, organic fertilizer and distilled water is described. Techniques used are anaerobic fermentation and Solar drying using Solar stills. A fish pond also can be fed the output slurry as feed material. In this pilot plant, 1 to 2 m/sup 3/ raw sewage and one to two tons of processed garden wastes and garbage would be input daily into the digester. The production is expected to be about 100 m/sup 3/ of gas per day, along with about 1500 litres of slurry from which organic fertilizer of 100 200 Kgs can be bagged and transported as well as distilled water of about 500 to 1000 litres Laboratory studies and studies on an approximate scale model of the plant are described. Scaling up to a pilot plant by about 2000 times would increase the efficiency of the rate of gas production as has been found by other workers. These tests and studies have shown that the project is technically and eonomically viable. Applications of the process on a mass scale would result in increasing replacement of fossil energy intensive processes with negentropic methods of economic and social activities.

  12. Guideline for financing agricultural biogas projects - Training material for biogas investors: D.3.7, WP 3

    OpenAIRE

    Hahn, H.

    2011-01-01

    There are many good reasons to implement a biogas plant ranging from environmental protection and waste reduction to renewable energy production. It can also include financial and non-financial incentives. Nevertheless, investors of biogas projects should be well informed about different legal requirements and financing possibilities. The guideline will help to analyse a potential biogas investment by describing its most important steps. The guideline starts with the project idea and a first ...

  13. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  14. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  15. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the population social

  16. Storage of catch crops to produce biogas

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    . On the contrary, the poor quality of IR silage, due to its high TS content, made it inappropriate as feedstock for biogas production. A TS content of 25-35% is preferable, to obtain a proper fermentation avoid leachate run-off and growth of Clostridium sp. or mold formation. Avoiding soil particles in the bales......Catch crop biomass is a promising co-substrate for manure-based biogas plants in Denmark since the cultivation of catch crops is mandatory to retain nutrients in the soil, contributing to protect the aquatic environment. In general, the growth period for catch crops is from harvest of the previous...... crop in July-August to the end of the growing season and harvest in late October. Hence, for use of the biomass in biogas production there is a need for storage of the biomass. Storage as silage would guarantee the availability of the feedstock for biogas production during the whole year. A proper...

  17. Biomass for biogas plants in Denmark - in the short and long term; Biomasse til biogasanlaeg i Danmark - pae kort og langt sigt

    Energy Technology Data Exchange (ETDEWEB)

    Birkmose, T.; Hjort-Gregersen, K.; Stefanek, K.

    2013-04-15

    In the short term, it is one of the major challenges for the developments of the biogas sector that resources of organic waste of the type (organic industrial wastes) that have heretofore been used, generally are estimated to be nearly exhausted. This has led to a number of new biogas projects based on the use of corn (energy crops) as additional biomass to livestock manure. However, Danish policy now has implemented a restriction on the use of corn and other energy crops for biogas production. It is with the restriction clarified that there is a need to use other additional biomass for biogas production. There is a need in the short term to clarify how alternative biomasses such as straw, nature preservation biomass, household waste, etc. in a technically and economically reliable and satisfactory way can be used for biogas production, so that the dependence of energy crops can be reduced. Additionally, it will be essential if the yield of using manure can be increased to reduce economic dependence on energy crops. In the longer term it is essential to strengthen the assessment of the resource potential of biomass available for the production of biogas, and thus what the contribution of biogas in the long term is estimated to be in the future energy supply based on renewable energy. The present report presents the current and future biomass resources potential and biogas production potential. The biomass resources are primarily agricultural and municipal wastes. (LN)

  18. Prestudy: Anaerobic digestion with primary hydrolysis from increased methane production in waste water treatment plants band biogas plants; Foerstudie: Roetning med inledande hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin (BioMil AB, Lund (Sweden)); Carlsson, My; Uldal, Martina; Olsson, Lars-Erik (AnoxKaldnes AB, Lund (Sweden))

    2010-04-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrient and pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a

  19. Promoting use of bio-gas in India

    International Nuclear Information System (INIS)

    Saha, S.L.

    1994-01-01

    Biogas is a single energy source with multiple benefits. Biogas is an environment friendly cheap fuel for rural areas. Fuel-gas from organic materials like cattle dung, night-soil, poultry droppings, sludge, waste water etc., without destroying their manurial value, accrues many social benefits particularly for women and children. Biogas plant improve rural sanitation, life style of rural folks and reduce pressure on forests. Biogas slurry offers a cheap, entirely organic and indigenous alternative fertilizer. Rural electrification at a reasonable cost is possible by using the available crop residues and other biomass waste. This waste can yield wealth by using it to produce energy for the industry and for homes. (author)

  20. Operating strategies for biogas plants - conflict of objectives between advantageous grid and economically oriented operation; Betriebsstrategien fuer Biogasanlagen - Zielkonflikt zwischen netzdienlichem und wirtschaftlich orientiertem Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Skau, Katharina [Hochschule Neubrandenburg (Germany). FB Agrarwirtschaft und Lebensmittelwissenschaft; Bettinger, Carola [Univ. Lueneburg (Germany). Inst. fuer Bank,- Finanz- und Rechnungswesen; Schild, Vernea [TU Clausthal (Germany). Inst. fuer Energietechnik und Energiesysteme; Fuchs, Clemens; Beck, Hans-Peter

    2015-07-01

    In an intelligent energy system, ''smart grid'' and ''smart market'' must go hand in hand (Aichele et al., 2014). Changes to the legal framework, especially the German Renewable Energies Act (EEG), aim at bringing in line the requirement for increased generation of renewable energy with the market and system integration of renewable energies (see Schwarz, 2014). This determines whether the operation of a modern renewable energy plant has both the maximisation of profits (smart market) as well as the easing of the higher-order grid (smart grid) as its goal or whether it is only geared towards one aspect. The agricultural biogas producer is the focus of this interdisciplinary paper. He can either use the electrical energy generated by his plant himself in an economically orientated way or design the supply to the upstream grid in a way that is advantageous for the grid through the increased flexibility of generation and consumption. Through a two-stage simulation of the impact on the grid and the operational performance, the differences with regards to the strain on the grid and the financial losses to the farmer are quantified. If is clearly shown that none of the legislative and regulatory incentive schemes favour a mode of operation that is advantageous for the grid.

  1. Practical application of the microbial activity analysis on the monitoring of the process biological stability of biogas plants; Praktische Anwendung der mikrobiellen Aktivitaetsanalyse zur Ueberwachung der prozessbiologischen Stabilitaet von Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Lukas; Tietjen, Carsten [MT-Energie GmbH, Zeven (Germany). Forschung und Entwicklung; Rilling, Norbert [MT-Energie GmbH und Co. KG, Rockstedt (Germany)

    2013-10-01

    As extension for the classical fluorescence microscopic analysis of the microbial population in a biogas fermenter the cell counts and frequency of the different methanogenic organisms was used to generate the plant specific stability indicator called MT-Factor. This factor describes the optimal composition of the microbial population for the current process conditions and could be used for the biological process consulting. A study of the MT-Energie laboratory showed that the combination of the microbial cell counts determination and the plant specific stability factor shifts during a process instability or failure of a biogas fermenter. This analysis of the methane-forming microorganisms as well as their cell count and importance for the entire anaerobic biology of the biogas plant can be used for clearly visualizing and tracking the vitality of the digestion process. The evaluation of the microbial activity of different liquid manure samples could show the influence of inhibitors like disinfectant or cleaning agents directly without time consuming cultivation tests. By determining the MT-Factor and analyzing the activity of the methane formers, an impending influence of inhibitors can be detected in liquid manure before the manure enters the digester. This way, a negative influence on the gas yield can be avoided. (orig.)

  2. Potential for sustainable energy with biogas from sewage purification

    International Nuclear Information System (INIS)

    Coenen, J.; Van Gastel, M.; De Jong, K.

    2005-04-01

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks [nl

  3. Biogas and its opportunities—A review

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Angelidaki, Irini

    2018-01-01

    plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives...

  4. Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater

    International Nuclear Information System (INIS)

    Mussoline, Wendy; Esposito, Giovanni; Lens, Piet; Garuti, Gilberto; Giordano, Andrea

    2012-01-01

    Two pilot-scale (1 m 3 ) digesters filled with untreated rice straw and co-digested with raw pig wastewater were operated to obtain design parameters for a farm-scale biogas plant. Both digesters contained 50 kg of dry straw mixed with diluted pig wastewater to create dry digestion conditions (20% TS) and operated for 189 days with leachate recirculation. Digester A was designed for optimum performance (150 L of pig wastewater and mesophilic temperatures) while Digester B was designed to establish minimum inputs (60 L of pig wastewater at ambient temperatures). The pig wastewater provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.1) and nutrient balances (TOC to TKN ratios of 20 in Digester A and 32 in Digester B). Total biogas production was 22,859 L in Digester A and 1420 L from Digester B, resulting in specific methane yields of 231 and 12 L CH 4 /kgVS added, respectively. Gas production in Digester A was directly correlated with temperature, but the overall lack of methanogenic activity was caused primarily by the reduced wastewater volume. Two theoretical farm-scale scenarios (considering both untreated and pretreated rice straw) were developed for a 100-ha rice farm. Either scenario can produce 100,000 m 3 CH 4 per year, yielding 328 MWh. Major differences including heat input, space requirements, loading frequency, digester volume, engine size, wastewater quantities, and additives are quantitatively defined. The appropriate choice for a farm-scale operation is the simplest model using untreated rice straw without additives, although six times more heat and twice as much reactor volume is required. -- Highlights: ► The co-digestion of untreated rice straw and piggery wastewater is investigated. ► Gas production increases with the volume of pig wastewater added and temperature. ► Pig wastewater alone can provide appropriate buffering capacity and nutrient balance. ► Pilot-scale results are used to establish

  5. Future European biogas

    DEFF Research Database (Denmark)

    Meyer, A. K.P.; Ehimen, E. A.; Holm-Nielsen, J. B.

    2018-01-01

    Biogas is expected to play an important role in reaching the future energy policy targets of the European Union (EU). The sustainability of biogas substrates has however been recently critically discussed due to the increasing shares of agricultural land used for energy crop production.The aim...... of this study was to project and map the biomass and biogas energy potential from a selection of potentially sustainable agricultural residues, which have been documented to improve in biogas yields when co-digested in biogas production, for the EU28 in year 2030. The investigated types of residual biomasses...... were animal manure, straw by-products from cereal production, and excess grass from rotational and permanent grasslands and meadows. The biogas energy potential from the investigated biomass was projected to range from 1.2·103 to 2.3·103 PJ y-1 in year 2030 in the EU28, depending on the biomass...

  6. Direct marketing of electricity from biogas plants; Direktvermarktung von Strom aus Biogasanlagen. Chancen und Risiken aus rechtlicher Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Falke, Iris; Schlichting, Julia [Schnutenhaus und Kollegen, Rechtsanwaelte, Berlin (Germany)

    2013-10-01

    The German Renewable Energy Sources Act of January, 1{sup st} 2012 contains new possibilities of direct selling electricity to the market, to promote and to improve market integration of electricity generated from renewable energies. The core is the introduction of a market premium for electricity which has actually been fed into the grid system and purchased by a third party. In addition to his market revenues, the installation operator receives the market premium. The market premium replaces the guaranteed EEG feed-in tariff. The market premium should cover the difference between the proceeds from direct selling and the EEG feed-in tariff. In addition, installation operators receive a management premium to compensate their transaction costs. As a supplement to the market premium model the EEG 2012 introduces a flexibility premium to create an economic incentive for providing additional capacities and encourage a demand-oriented electricity production. Further possibilities of direct marketing are the ''green electricity privilege'' and the non-subsided direct marketing. This article provides an over-view of the different forms of direct-marketing that are included in EEG 2012 with a focus on the market premium and the flexibility premium. These two instruments are of high importance to operators of installations generating electricity from biogas. A further emphasis is put on risks and chances in contract negotiation in the context of direct marketing. (orig.)

  7. Energy recovering and biogas

    International Nuclear Information System (INIS)

    2005-11-01

    In spite of the advantages of the methanation and the biogas valorization, the France is one of the european countries where these energy recovery techniques have less developed. Liquid industrial effluents, sewage sludges, waste waters, oils or vinification residues can be processed to produce biogas. In this innovative context biogas combustion installations will have to anticipate the regulations on CO 2 emissions. (A.L.B.)

  8. 15. Annual Meeting on biogas and bioenergy in agriculture. Proceedings; 15. Jahrestagung Biogas und Bioenergie in der Landwirtschaft. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The volume contains besides the general statements on environmental protection and energy savings in the future and biogas as great potential for the rural development the following contributions in four parts: 1. political enveloping conditions: biogas usage within the frame of the the new EEG; state of biogas usage in Baden-Wuerttemberg; practical experiences end perspectives for the biogas development; renewable raw materials from the view of environmenmental protection; 2. gas utilization: the bioenergy village Mauenheim - model for the rural area; compression ignition gas engines with biogenic ignition oils; realization and economic performance of gas engines with biogas; microgasturbines - engineering and chances, gas processing and feeding into the gas network; 3. substrate: influence of the energy plant agriculture on the regional structures; biogas plants: substrate control by TS sensing; fermentation of fusaria contaminated corn; substrate contracts in the view of revenue and contract legacy; energy plants agriculture in Baden-Wuerttemberg; 4. process biology: comparison of dry and wet fermentation; fundamentals, process stability analytical possibilities; start-up of a biogas plant; biogas process with external hydrolysis; problems in the fermenter - inhibitors and auxiliaries.

  9. CRC concise encyclopedia of mathematics

    CERN Document Server

    Weisstein, Eric W

    2003-01-01

    Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the dedication of author Eric Weisstein to collecting, cataloging, and referencing mathematical facts, formulas, and definitions. He has now updated most of the original entries and expanded the Encyclopedia to include 1000 additional pages of illustrated entries. The accessibility of the Encyclopedia along with its broad coverage and economical price make it attractive to the widest possible range of readers and certainly a must for libraries, from the secondary to the professional and research levels. For mathematical definitions, formulas, figures, tabulations, and references, this is simply the most impressive compendium available.

  10. A concise introduction to analysis

    CERN Document Server

    Stroock, Daniel W

    2015-01-01

    This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate math...

  11. Biogas in the agriculture. State of the art. Proceedings; Biogas in der Landwirtschaft. Stand und Perspektiven. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the meeting of the Association for Technology and Structures in Agriculture (Darmstadt, Federal Republic of Germany) and the Agency for Renewable Resources (Guelzow, Federal Republic of Germany) between 15th and 16th September, 2009, in Weimar the following lectures were held: (1) Results of the actual biogas measurement II (Peter Weiland); (2) Agitators in biogas plants - Technology with central significance (Kay Rostalski); (3) How much energy is needed by a biogas fermenter? (Ludwig Heinloth); (4) The fermentation concept of Rueckert NatUrgas GmbH (Claus Rueckert, Dominique Pfeufer); (5) Experiences from the construction for the practice of the company MT-Energie GmbH (Bodo Drescher); (6) Fermenter/technology concept of Schmack Biogas AG (Thomas Moeeslinger); (7) Transport of biomass - How much does the logistics of Guelle and Co. cost? (Thore Toews); (8) Which factors determine the efficiency of biogas plants? (Gerd Reinhold); (9) Microbial diversity in biogas reactors in the fermentation of renewable raw materials (Michael Klocke et al.); (10) What do additives and ingredients contribute to the optimisation of the production of biogas? (Udo Hoelker); (11) Process optimisation - An interaction between technology and microbiology (Andreas Gronauer et al.); (12) Emissions at the production of biogas - an analysis if the environmental relevance (Joachim Clemens et al.); (13) Support systems for energy plants - Consequences to soil and environment (Matthias Willms et al.); (14) How ecological is biogas? (Sven Gaertner); (15) Biogas plant - Analysis of construction and operation from licensing view (Hans-Walter Schneichel); (16) Biogas plants - Analysis of construction and operation from contractual legal view (Florian Valentin); (17) Biogasplants - Analysis of construction and operation from remuneration legal view (Helmut Loibl); (18) Process and costs of treatment of residues of fermentation (Sebastian Wulf, Helmut Doehler); (19) How do residues of

  12. Agricultural biogas systems. Quality and security

    International Nuclear Information System (INIS)

    Serafimova, K.

    2007-01-01

    This article takes a look at agricultural biogas installations and how improved basic conditions and incentives offered by industry and commerce are showing initial effects. The author is of the opinion that more dynamics in the market are necessary in order to allow contributions to be made to the protection of the climate whilst creating value locally at the same time. The article reviews the current market situation and examines questions which are to be answered in the quality assurance area for agricultural biogas systems in Switzerland. Co-fermentation is proposed as a standard technology. Market development, plant locations and plant management aspects are discussed.

  13. Improved Detection of Extended Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Input and Output Samples of German Biogas Plants by a Selective Pre-Enrichment Procedure

    Science.gov (United States)

    Schauss, Thorsten; Glaeser, Stefanie P.; Gütschow, Alexandra; Dott, Wolfgang; Kämpfer, Peter

    2015-01-01

    The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four bla CTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in

  14. Improved detection of extended spectrum beta-lactamase (ESBL-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure.

    Directory of Open Access Journals (Sweden)

    Thorsten Schauss

    Full Text Available The presence of extended-spectrum beta-lactamase (ESBL-producing Escherichia coli was investigated in input (manure from livestock husbandry and output samples of six German biogas plants in 2012 (one sampling per biogas plant and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%, few SHV-type beta lactamase (6%. Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85% and 9 (13%, and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71% and B1 (27%, only one to group D (2%. Genomic fingerprinting and multilocus sequence typing (MLST showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E

  15. Environmental perspectives on using cast seaweed for biogas production

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Møller, Henrik Bjarne; Christensen, Thomas Budde

    Solrød Municipality, Denmark is working towards building a biogas plant utilizing locally available organic wastes including cast seaweed, which is collected each year, since the local inhabitants see this material as a nuisance. A preliminary study suggested favorable conditions for contstructing...... a mixed substrate biogas plant. Continuously fed reactor experiments showed that the intended mix of substrate including cast seaweed could be used as raw material for a biogas plant in thermophilic operation. The environmental analysis suggests existence of several positive benefits of utilizing cast...

  16. Biogas quality-control visit on after-sales service

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Devkota, G.; Ratna Bajracharya, P.; Maskey, P. [Nepal Biogas Promotion Group Minbhawan, Kathmandu (Nepal)

    1998-12-31

    The dissemination organisation SNV/BSP has concluded contracts governing after sales with construction companies and craftsmen. The Nepal Biogas Promotion Group (NBPG) has carried out its own inspections of 257 biogas plants to see if these contracts were adhered to. As was expected, the liaison reports showed a brighter picture of reality than actually exists. However, most of the biogas plants were in a satisfactory condition. The weaknesses were mainly in the flexible rubber gas line, the condensed-water tanks and insufficient covering of the plants with soil. In general, too little substrate was put in. (orig.)

  17. Biogas in Burkina Faso. Influential factors of biogas projects in rural areas of Burkina Faso

    Energy Technology Data Exchange (ETDEWEB)

    Aschaber, Andreas

    2010-07-01

    Full text: Burkina Faso is among the poorest countries in the world. The energy situation in Burkina Faso is among the most critical issues which need to be addressed in the country. The electrical power grid is insufficient and only available in urban centers. Consequently wood and charcoal is used in order to meet the basic needs for heating, cooking, and lightning by the majority of the population. The resulting overuse of natural energy resources in Burkina Faso has been causing massive deforestation and desertification on the one hand and on the other hand scarcity in fuel wood availability. According to a recent feasibility study of the GTZ, biogas is thought to be one of the most sustainable solutions for developing energy self sufficiency in rural areas of Burkina Faso. Biogas is not a new concept in Burkina Faso, as the first biogas plants were already installed in the 70's. Recently a national biogas program and the activity of various NGOs lead to a rejuvenation of attempts to establish biogas in Burkina Faso. Although biogas has a long history in Burkina Faso, no significant breakthrough of this technology has happened so far. None of the biogas plants built during the last 40 years have been operational for a long time. This contribution presents a study aimed to analyze the partial success and failures of the attempts to install biogas plants so far. The study was conducted in May 2009 as part of a project for a model application of the technology in the frame of University cooperation between Austria (University of Innsbruck) and Burkina Faso (Universite Polytechnique du Bobo Dioulasso). During the field study four sites of existing biogas plants were visited, five interviews with experts conducted and two focus groups with potential users in a rural setting were conducted. The systemic approach, including technical as well as socioeconomic aspects, yielded a wealth of factors which can potentially influence the success of biogas projects in

  18. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  19. Biogas : fuel source for a renewable future

    Energy Technology Data Exchange (ETDEWEB)

    Buijk, J. [GE Energy, Toronto, ON (Canada)

    2006-07-01

    The current status of Ge Energy's Jenbacher gas engines was presented in terms of its product line, electrical output, thermal output and exhaust gases. The unique feature of the engine is that it can operate on natural gas, biogas, landfill or other gaseous fuels. The most important applications for this high efficiency gas engine include on-site power generation, cogeneration, tri-generation, and carbon dioxide fertilization in greenhouses. A map illustrating Canada wide sales and service networks was presented along with a review of opportunities to use biogas for electric power generation. Biogas can be generated from organic matter such as municipal organic waste, manure, yard waste, wood waste, expired food, slaughterhouse waste and energy crops. A graph depicting biogas yields of different feedstocks was presented. It was noted that biogas conversion through anaerobic digestion generates more energy from organic matter than any other technology, while recycling the nutrients. A schematic of a typical biomass anaerobic digestion process was illustrated. In 2005, Germany was among the leaders in biogas production, with 775 biogas utilization plants in operation, producing 550 MW of power. This presentation listed other leaders and highlighted some project examples of biomass conversion plants in Austria, Germany, and Alberta. The opportunities for Ontario were emphasized. Ontario has 5.6 million hectares of agricultural land. Based on the German example, the integrated use for production of food, feed and energy crops could generate 3,700 cubic metres of methane per hectare per year, enough for nearly 9,000 MW of electrical capacity. Biogas power plants with gas storage can operate as peaking plants. It was noted that energy plans should be value driven rather than cost driven, with the objective of reducing overall energy consumption, improving energy efficiency and initiating replacement of fossil fuels by renewable energy sources such as wind, water

  20. The Determinants Factors of Biogas Technology Adoption in Cattle Farming: Evidences from Pati, Indonesia

    Directory of Open Access Journals (Sweden)

    Jatmiko Wahyudi

    2017-11-01

    Full Text Available Even though biogas technology has been introduced in Indonesia since 1990’s and having the potential, the rate of biogas adoption in Indonesia runs slowly. It is important to understand factors encouraging or discouraging potential adopters to build biogas plant. The development of livestock sector especially cattle farming in Indonesia can be seen as the opportunity to increase the rate of biogas adoption. This study investigated the factors affecting households of cattle farmer to adopt or not to adopt biogas technology. A cross-sectional research survey was carried out by using structured questionnaires as the primary tool to collect data from both biogas adopters and non biogas adopters in Pati regency, Indonesia. Socioeconomic characteristic of potential biogas adopters plays an important role to ensure the adoption of biogas technology sustainable. Socioeconomic characteristic regarding having high social status determines individual to adopt biogas relatively earlier than other members of a social system. Having high income and education enables traditional farmers to finance biogas plant by their own money or access aid from the government or other agencies. Among other attributes of innovation, relative advantage of installing biogas plant is the most determinant attribute to speed the rate of biogas adoption. Having biogas plant was perceived as better option and generated more benefits compared to previous technology or method. Article History: Received May 17th 2017; Received in revised form August 5th  2017; Accepted Sept 6th 2017; Available online How to Cite This Article: Wahyudi, J. (2017 The Determinant Factors of Biogas Technology Adoption in Cattle Farming: Evidences from Pati, Indonesia, 6(3, 235-240. https://doi.org/10.14710/ijred.6.3.235-240

  1. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B K; Angelidaki, I [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  2. Farm scale production of combined heat and power from biogas; Gaardsbaserad och gaardsnaera produktion av kraftvaerme fraan biogas

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael

    2010-08-15

    The Swedish agricultural sector accounts for a significant and unutilized part of the Swedish biogas potential. There is also considerable interest among Swedish farmers to increase the production and utilization of biogas. The purpose of this study is to analyze the prerequisites for the production of combined heat and power (CHP) from biogas based on manure in different scale and with different technologies. The purpose is also to present economic calculations and the conditions required to reach profitability. Based on current economic conditions and with the assumptions made in the assessment, it is difficult to achieve profitability with conventional production of biogas. Levels of investment and operating costs are greatly dependent of scale and a larger biogas plant is normally more profitable than a smaller. There are, however, only marginal differences between a large farm based biogas plant and a much larger plant treating manure from several farms. The reason is that the positive effects of scale regarding investments, comparing the two plants, are reduced by increased costs for transportation and sanitation. However, the sanitation unit adapted at the large plant enables the plant to receive different external substrates such as food industry waste etc. resulting in a much higher biogas production per amount of treated substrate. The following conclusions are drawn in this study: - to achieve profitability in the production of CHP from biogas based on manure it is required, in most cases, that some of the heat produced could be used externally and that the digestate is given an economic value; - there are clear positive effects of scale between the smaller and the larger farm based biogas plant. However, differences are marginal between a large farm based biogas plant and a larger plant treating manure from several farms; - thermophilic operation could improve the profitability if used to increase the amount of substrate treated and especially if it is

  3. Evaluation and optimization of nutritional and environmental impact of biogas residues

    International Nuclear Information System (INIS)

    Lichti, Fabian Heribert

    2013-01-01

    On the basis of the dynamic growth of biogas plants in Germany the fertilization with biogas residues has obtained an important role for recirculation of plant nutrients, particularly with regard to nitrogen. In this work the effect of N nutrition with biogas residues was assessed in a 3-year on-field trial conducted at four sites throughout Bavaria. The fertilizing effects were tested by varying rate and time of biogas residues application, using different application techniques and the addition of nitrification inhibitors on several crops. The biogas residues achieved mineral fertilizer equivalents of 30 - 45 %. Overall, the untreated biogas residues showed a slightly increased N efficiency compared to cattle manure, whereas particularly site-dependent differences resulted in large differences in N efficiency of biogas residues.

  4. Biogas Application Options within Milk Dairy Cooperatives in Thailand

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Sommart, Kritapon

    2016-01-01

    .g. reduced GHG emissions and better manure handling practices, which limits pollution of nitrogen to recipients. Suggestions are provided of how to retrofit the stables to facilitate manure collection, storage and transport to the biogas plant. Which type of biogas plant to implement, financial issues......By means of a case study conducted within a milk dairy cooperative in Tambon Ban Kor, a district in Khon Kaen Province, this paper analyze opportunities for implementing a biogas development ‘hub’ in Thailand for achieving bio-economic and environmental benefits within a local rural community...... cooperative, etc. The biogas plant substitutes the use of fossil fuels, and surplus electricity can be exported to the power grid and provide extra income. Local crop farmers and ago-industries could benefit economically from sale of biomass residues to the energy plant. The environment will benefit from e...

  5. studies on biogas production from fruits and vegetable waste 115

    African Journals Online (AJOL)

    DR. AMINU

    results of the study on biogas production from fruits and vegetables waste materials and their effect on plants when used as fertilizer (Using digested and undigested sludge). It has been ... as fuel or fertilizer, offers several benefits such as, the.

  6. The effect of landfill biogas on vegetal growth

    Directory of Open Access Journals (Sweden)

    Sanchez-Yañez Juan Manuel

    2012-08-01

    Full Text Available The plants carry out the gaseous exchange during the photosynthesis and the respiration, however the stomal opening of the leaves or the flow through lenticels in the root are not selective, the anthropogenic biogas emissions enter to vegetable tissues altering its normal physiology. In landfill sites roots plants are exposed to a flow of a variable concentration of biogas, mainly composed by methane (CH4 50-60% and carbon dioxide (CO2 40-55%, product of the anaerobic digestion of the organic fraction of municipal solid waste (MSW. Biogas, according to its concentration and exposure time is likely to exert a negative effect on plant root growth; however, the mechanism is largely unknown. The aim of this revision was to revise the state of the art of the negative effect of biogas on plants that are close to landfill sites.

  7. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for biogas

  8. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  9. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  10. Operational experinece with large scale biogas production at the promest manure processing plant in Helmond, the Netherlands

    International Nuclear Information System (INIS)

    Schomaker, A.H.H.M.

    1992-01-01

    In The Netherlands a surplus of 15 million tons of liquid pig manure is produced yearly on intensive pig breeding farms. The dutch government has set a three-way policy to reduce this excess of manure: 1. conversion of animal fodder into a product with less and better ingestible nutrients; 2. distribution of the surplus to regions with a shortage of animal manure; 3. processing of the remainder of the surplus in large scale processing plants. The first large scale plant for the processing of liquid pig manure was put in operation in 1988 as a demonstration plant at Promest in Helmond. The design capacity of this plant is 100,000 tons of pig manure per year. The plant was initiated by the Manure Steering Committee of the province Noord-Brabant in order to prove at short notice whether large scale manure processing might contribute to the solution of the problem of the manure surplus in The Netherlands. This steering committee is a corporation of the national and provincial government and the agricultural industrial life. (au)

  11. Climate gas balances of biogas and their significance; Klimagasbilanzen von Biogas und ihre Aussagekraft

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, Daniela [HAWK Hildesheim Holzminden Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUTec; Loewen, Achim; Nelles, Michael

    2012-07-01

    The greenhouse-gas balances of production and use of biogas strongly depend on specific parameters such as the input material, the system technology and/or the way the biogas is used. These parameters can vary from region to region and from plant to plant. Considering regional, local and plant-specific factors, in the district of Celle greenhouse-gas emissions are more than 3 times higher than in the district of Goettingen (0.2 resp. 0.06 kg CO{sub 2}-eqv./kWh{sub el}). Including further parameters such as indirect land use changes or an open storage of fermentation residues increases the differences of these specific results even more. Consequently a derivation of general values to calculate a climate protection potential for the production and use of biogas for all regions and/or countries is almost impossible. Climate protection potentials, created on the basis of general values, may therefore be considerably imprecise. (orig.)

  12. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  13. Biogas Initiative from Swine Farm in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Damrongsak Det

    2016-01-01

    Full Text Available First biogas pipeline network has been well established in southern Thailand. About 1,273 households, accountable for about 87% of the total of 1,466 households in the district, get the benefits from biogas energy in many ways. Key success to this initiative is the collaboration between all parties, i.e., swine farm owners, households, and government officials. Swine farm owners are responsible for the design and construction of the biogas plants. Households pay some contributions regarding labor work and maintenance cost on biogas system and its pipeline network. Government officials are responsible for financial and technical supports to both parties. Indeed biogas energy offers an alternative source of heat energy for cooking fuel in this region.

  14. International scientific conference biogas science 2009. Vol. 2. Lectures; Internationale Wissenschaftstagung Biogas Science 2009. Bd. 2. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Within the international conference of the Bavarian State Research Center for Agriculture (Munich, Federal Republic of Germany) at 2nd to 4th December, 2009, in Erding (Federal Republic of Germany), the following lectures were held: (1) Design and application of a functional oligonucleotide microarray for the identification of cellulose genes and their expression in (different) biogas Fermenters (M. Engel et al.); (2) Evaluation of the potential of hygienisation of the biogas process with regard to phytogenic damage exciter (R. Friedrich et al.); (3) Prevalence and role of hydrolytic bacteria in mesophilic and thermophilic biogas reactors (V.V. Zverlov et al.); (4) System analysis of biogas plants by means of microbiologic and molecular biologic methods: Comparison of hyperthermophilic (60 C) and thermophilic (55 C) (P. Scherer et al.); (5) Methanogenic archaea in agricultural biogas plants (E. Nettmann et al.); (6) Population dynamics of methanogens during acidification of biogas Fermenters fed with maize silage - a causal analysis (M. Lebuhn et al.); (7) Advanced interpretation of anaerobic batch tests - Conclusions for the practical operation (S. Meier et al.); (8) Development of a NIRS calibration for the determination of the biogas yield of maize (B. Darnhofer et al.); (9) Hydrogen and methane: Enhanced methane as well as hydrogen production and increased process stability by Sensorik control (N. Weran); (10) Stable carbon isotopes: A new laser method for the process analysis and identification of microbiologic reactions in the biogas process (S. Laukenmann et al.); (11) Biogas from grass silage - measurements and modelling (K. Koch et al.); (12) Mathematical modelling of the mesophilic and thermophilic anaerobe fermentation of maize silage (M. Luebken et al.); (13) The basket of benefit methodology as a tool for the comparison of electricity, heat, and fuel production from energy crops, exemplified by different utilization pathways for biogas (M. Bystricky et

  15. Biogas 2007. Energy source of the future; Biogas 2007. Energietraeger der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within this VDI meeting, held between 14th and 15th June, 2007, in Berlin (Federal Republic of Germany), the following lectures were held: (a) Perspectives of the use of biogas in the background of the instruments according to the launch of renewable energies (B. Dreher); (b) Biogas in the energy mix and as export product - demand of action in EEG (C. da Costa Gomez); (c) Cultivation of regenerative raw materials for production of fermentation gas (A. Vetter); (d) Consequences of the cultivation of power plants on nature and landscape (W. Peters); (e) Agrarian residual substances and wastes of biofuel production as fermentation substrates (G. Langhans); (f) Biological waste management - comparison between composting and fermentation (Ch. Dornack, A. Schnapke); (g) Treatment and utilization of residues of fermentation (H. Doehler); (h) State of the art of the production and utilization of biogas using the NawaRo plant (P. Weiland, Ch. Rieger, J. Schroeder, R. Kissel, H. Bachmaier, V. Plogsties, J. Vogtherr); (i) Dry fermentation for continuous biogas processes - progress report (R. Schneider); (j) Status Quo and potential of development of mechanical-biological waste treatment under special consideration of fermentation and energetic utilization (K. Fricke, H. Santen, T. Bahr, A. Huettner); (k) Optimization of the plant operation by means of process monitoring and process modelling (M. Mueller, F. Scholwin, B. Fritsche); (l) Power supply and heat supply of the bio energy village Juehnde (E. Fangmeier); (m) Processing of regenerating raw materials for the optimization of the biogas yield: Which effects can be reached in the biogas process by means of pre-treatment of biomass such as corn and triticale? (B. Schumacher, H. Oechsner, Th. Senn, Th. Jungbluth); (n) Biogas production by means of dry fermentation: State of the art (A. Schattauer, P. Weiland); (o) Biogas as a fuel: AGROPTI - gas in Sweden (T. Ahrens, P. Weiland); (p) Bio energy as a system service

  16. Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Martinát, Stanislav; Navrátil, J.; Dvořák, Petr; Van der Horst, D.; Klusáček, Petr; Kunc, Josef; Frantál, Bohumil

    2016-01-01

    Roč. 95, September 2016 (2016), s. 85-97 ISSN 0960-1481 Institutional support: RVO:68145535 Keywords : agricultural anaerobic digestion plants * Czech Republic * spatial determinants * Spatial analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0960148116302610

  17. Integration of biogas in municipal energy planning and supply

    Energy Technology Data Exchange (ETDEWEB)

    Nedergaard, N; Oertenblad, H [Herning Municipal Utilities, Herning (Denmark)

    1997-08-01

    The first biogas plants in Denmark were based on local initiatives and a great deal of idealism. The break through with technically well functioning plants came at the end of the 80`ies. The plants were based on animal manure, and the development came together with the growing environmental demands and the legislation concerning storage capacity and distribution of the manure. This contributed to an increasing interest in joint biogas plants, mainly from the agricultural sector, but also from the industry. Today Denmark has 19 biogas plants in operation, all based on manure co-digested with wastes from the food industry, and 15 farm-scale plants. Only three of the joint plants are owned by a municipality, one plant in Aarhus and two in Herning. (au)

  18. Developing biogas as the hub of rural economical and energy construction

    Energy Technology Data Exchange (ETDEWEB)

    Renwu Zhang; Xiuwei Cheng; Zhiqiang He; Weirong Dong; Guizhen Sun

    2000-07-01

    In 1980's, in order to improve the agricultural environment and to increase rural economical, ecological and social benefits, Machangjian Village has undertaken various efforts on introduction and utilization of biogas, solar energy, ecosystems etc. and achieved good results. Until 1989, 616 family-scale biogas plants have been installed in this village. Not only is biogas used as daily fuel for farmers, but also digested effluent and residues which are beneficial to pigs, fish and plants. In addition, developing biogas has significantly improved rural sanitary conditions. On top of an underground biogas plant, a biogas and solar greenhouse was installed, in which solar energy was used to increase the temperature. A biogas lamp was used for lighting, and the carbon dioxide released was used as fertilizer for the plants in the greenhouse. In addition, since the greenhouse covered the biogas plant which maintained the plant temperature, the biogas plant could operate throughout the year. Until the end of 1989, there have been constructed 100 solar water heaters and 2 wind energy pumps in this village. Here water conserving types of agriculture, animal husbandry, forestry, orchards and agricultural production processes were comprehensively developed. This promoted local agriculture and husbandry production quality and quantity and accumulated a wealth of experience for suburban type of agricultural development. (orig.)

  19. BIOGAS - is it chance or risk for the Polish gas industry?

    International Nuclear Information System (INIS)

    Witek, M.

    2008-01-01

    This paper presents the present state and some aspects of strategy development concerning Polish biogas plants. The paper focuses on the biogas plants supplied by agricultural raw materials and its biogas production potential. A perspective of production and usage of bio methane in Poland was discussed. An example of commercial agricultural biogas plant connected with cogeneration and natural gas production in local community in Austria was presented. A possibility of financial support of bio methane projects by various programs of European Union in years 2007-2013 was analyzed. Special attention in analysis was given to perspective of possible bio methane production in Poland. (author)

  20. GHG REDUCTION POTENTIAL OF BIOGAS RESOURCE UTILZATION IN HOLBÆK’S HEATING AND ELECTRICITY SECTOR

    OpenAIRE

    DAO, THI THU HUONG DIU

    2013-01-01

    This project is set out to identify the GHG reduction potentials of the 3 identified biogas plants in the Holbæk municipality. The GHG reduction of the 3 plants will be calculated in association with 2 biogas applications, which are CHP and upgrading biogas for individual heating purposes. The GHG reduction potentials of the 3 plants will be reflected to Holbæk’s specific GHG reduction target to see how these potentials contribute to the set goal. Departure from that, future version of biogas...

  1. Biogas programme in India

    International Nuclear Information System (INIS)

    De Castro, J.

    1996-01-01

    The National Project on Biogas Development (NPBD) of the Ministry of Non-conventional Energy Sources (MNES) was introduced in 1981-1982 to promote the use of biogas installations in households. Several systems have been introduced, all based on two basic designs: floating metal drum (Janata model) and fixed masonry dome (Deenbandhu model). An overview is given of the results, incentives of the Indian government and constraints so-far of the NPBD. 3 figs., 1 tab., 1 ills

  2. Biogas feed analysis

    OpenAIRE

    Song, Yuan

    2008-01-01

    Biogas production is regarded as the best energy recovery process from wet organic solid wastes (WOSW). Feed composition, storage conditions and time will influence the compositions of feed to biogas processes. In this study, apple juice from Meierienes Juice factory was used as the model substrates to mimic the liquid phase that can be extracted from fruit or juice industry WOSW. A series of batch experiments were carried out with different initial feed concentrations (0, 1, 2, 5, 10 %) of a...

  3. 18{sup th} bioenergy symposium. Solid fuels, biofuels, biogas; 18. Symposium Bioenergie. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 18th symposium of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 19th to 20th November, 2009, in the Banz Monastery in Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) Brief statement from the viewpoint of the politics (U. Holzhammer); (2) Brief statement from the viewpoint of the Federal Association BioEnergie e.V., Bonn (H. Lamp); (3) Brief statement from the viewpoint of the professional association biogas, Freising (C. da Costa Gomez); (4) Brief statement from the view of the Association of the German Biofuel Industry e.V., Berlin (E. Baumann); (5) Considerations about the condensing technology at biomass furnaces (S. Beer); (6) Dust extraction processes at small-scale heating plants (T. Birnbaum); (7) Particulate matter emissions at small-scale heating plants - Current results of research and practical experiences (H. Hartmann); (8) Energy wood from te acre - Production and utilisation of short-rotation wood in Steiermark (E. Dorner); (9) Landscape conservation materials - to pity to be left lying. (C. Letalik); (10) Requirement of the EU on sustainable biomass - The national implementation (U. Holzhammer); (11) Perspectives of the biofuel supply - Classification of the fuel options according to the technical, economic and ecologic criteria (M. Scheftelowitz); (12) Chances and limits of a sustainability classification of bio energy (E. Schmidt); (13) Balancing of the bio ethanol production with respect to the sustainability regulation (T. Senn); (14) Sweet sorghum - an alternative for the ethanol production in Germany? (J. Witzelsperger); (15) Synergies at the utilization in composting and fermentation (F. Hoegl); (16) Newest developments and potentials of alternative energy crops (A. von Felde); (17) Construction of biogas plants - It is the digestion that matters (T. Lehmann); (18) Emissions of formaldehyde from biogas engine plants (G. Ebertsch); (19

  4. Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation

    Directory of Open Access Journals (Sweden)

    Markus Lauer

    2018-03-01

    Full Text Available The increasing proportion of intermittent renewable energies asks for further technologies for balancing demand and supply in the energy system. In contrast to other countries, Germany is characterized by a high installed capacity of dispatchable biogas plants. For this paper, we analyzed the total system costs varying biogas extension paths and modes of operation for the period of 2016–2035 by using a non-linear optimization model. We took variable costs of existing conventional power plants, as well as variable costs and capital investments in gas turbines, Li-ion batteries, and pumped-storage plants into account. Without the consideration of the costs for biogas plants, an increasing proportion of biogas plants, compared to their phase out, reduces the total system costs. Furthermore, their flexible power generation should be as flexible as possible. The lowest total system costs were calculated in an extension path with the highest rate of construction of new biogas plants. However, the highest marginal utility was assessed by a medium proportion of flexible biogas plants. In conclusion, biogas plants can be a cost-effective option to integrate intermittent renewable energies into the electricity system. The optimal extension path of biogas plants depends on the future installed capacities of conventional and renewable energies.

  5. Assessment of energy performance in the life-cycle of biogas production

    International Nuclear Information System (INIS)

    Berglund, Maria; Boerjesson, Pal

    2006-01-01

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200 km (manure), or up to 700 km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution

  6. Thermal spraying of corrosion protection layers in biogas plants; Erzeugung von Korrosionsschutzschichten fuer Bioenergieanlagen mittels Thermischen Spritzens

    Energy Technology Data Exchange (ETDEWEB)

    Crimmann, P.; Dimaczek, G.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2004-07-01

    Corrosion in plants for the energetic conversion of biomass is a severe problem that often causes premature damage of components. Thermal spraying is a process for the creation of corrosion protection layer. An advantage of thermal spraying is that as well as each material can be used as layer material. First practical results demonstrated that thermal spraying has the potential to create coatings to protect components against high temperature corrosion as well as biocorrosion. Layer materials are for example nickel base alloys (high temperature corrosion) and titan alloys (biocorrosion). Further investigations are necessary in order to examine whether cost-efficient coatings also contribute to the corrosion protection (e.g. polymer materials against biocorrosion). (orig.)

  7. The conversion of renewable biogas source into energy; A conversao da fonte renovavel biogas em energia

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Martins, Osvaldo Stella; Abreu, Fernando Castro de [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia]|[Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)]. E-mails: suani@iee.usp.br; sgvelaz@iee.sup.br; omartins@iee.usp.br; fcabreu@iee.usp.br

    2006-07-01

    This article intend to present some considerations directed to electricity generation with small systems (micro turbine and conventional engines ), using biogas generated by sewage treatment process in SABESP (Basic Sanitation Company of Sao Paulo State), located at Barueri, Brazil. This project, pioneer in Latin America, is being accomplished together with BUN - Biomass Users Network of Brazil (proponent), in association with CENBIO - Biomass Reference National Center (executer), with patronage of FINEP / CT-ENERG (financial backer), by means of Convention No: 23.01.0653.00, regarding to ENERG-BIOG Project - Installation and Tests of an Electric Energy Generation Demonstration Unit from Biogas Sewage Treatment. The study is being done at Barueri Sewage Treatment Plant.This plant operate with anaerobic digestion process, which has as mainly products biogas (composed mainly by methane) and sludge. Part of the methane produced at the anaerobic process is burnt in a boiler being used to increase digesters temperature. The rest of the methane is burnt in flare to reduce the impacts caused by gases emissions. This article presents some technical, financial and environmental project results, related to the exploitation of sewer biogas for power generation, as well as bigger details about generation systems (biogas micro turbine), used in the facility. (author)

  8. Sewage biogas conversion into electricity; Conversao do biogas de tratamento de esgoto em eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Martins, Osvaldo Stella; Abreu, Fernando Castro de [Universidade de Sao Paulo (CENBIO/IEE/USP), Sao Paulo, SP (Brazil). Inst. de Eletrotecnica e Energia. Centro Nacional de Referencia em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, omartins@iee.usp.br, fcabreu@iee.usp.br

    2006-07-01

    This article intend to present some considerations directed to electricity generation with small systems (micro turbine and conventional engines ), using biogas generated by sewage treatment process in SABESP (Basic Sanitation Company of Sao Paulo State), located at Barueri, Brazil. This project, pioneer in Latin America, is being accomplished together with BUN - Biomass Users Network of Brazil (proponent), in association with CENBIO - Biomass Reference National Center (executer), with patronage of FINEP / CT-ENERG (financial backer), by means of Convention no: 23.01.0653.00, regarding to ENERG BIOG Project - 'Installation and Tests of an Electric Energy Generation Demonstration Unit from Biogas Sewage Treatment'. The study is being done at Barueri Sewage Treatment Plant. This plant operate with anaerobic digestion process, which has as mainly products biogas (composed mainly by methane) and sludge. Part of the methane produced at the anaerobic process is burnt in a boiler being used to increase digesters temperature. The rest of the methane is burnt in flare to reduce the impacts caused by gases emissions. This article presents some technical, financial and environmental project results, related to the exploitation of sewer biogas for power generation, as well as bigger details about generation systems (biogas micro turbine), used in the facility. (author)

  9. Bioconversion of poultry droppings for biogas and algal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevaswamy, M.; Venkataraman, L.V.

    1986-01-01

    An integrated system for the bioconversion of poultry droppings for biogas production and utilization of the effluent for the production of the blue-green alga Spirulina platensis was studied. Poultry droppings produced 0.54 cubic m of biogas per kilogran of Total Solids (TS). The 2% TS biogas plant effluent as sole nutrient medium for Spirulina yielded 7-8 g dry algae a day. The biomass was harvested by filtration. The sundried algal biomass has been used as a poultry feed component. In economic terms the system appears promising. 18 references.

  10. Biogas conference on direct selling and financing in France and in Germany

    International Nuclear Information System (INIS)

    Furois, Timothee; Vollmer, Carla; Schlienger, Marc; Delagrandanne, Julien; Schwill, Jochen; Trommler, Marcus; Barchmann, Tino; Dotzauer, Martin; Durot, Alexandre; Ricordeau, Damien; Schuenemann-Plag, Peter; Wehner, Gustav; Wagner, Robert; Mestrel, Marc

    2016-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the regulatory context, direct selling and financing of methanation plants in France and in Germany. In the framework of this French-German exchange of experience, about 60 participants debated the following topics: direct selling impact on biogas industry, key-steps of methanation development in Germany, experience feedback of direct electricity selling and optimization of the production, banks experience feedback in methanation financing. This document brings together the available presentations (slides) made during this event: 1 - French support schemes for biogas (Timothee Furois); 2 - Development of the framework for biogas plants within the Renewable energy Sources Act from 2000 until 2015 (Carla Vollmer); 3 - Direct selling: challenges and opportunities (Marc Schlienger); 4 - The rules of the aggregator and electricity market (Julien Delagrandanne); 5 - Feed in Premium (FiP) with Biogas Power Plants, experiences in Germany (Jochen Schwill); 6 - Flexibilisation of biogas production - Impulses from EEG -legislation (Marcus Trommler); 7 - Bank approach in the direct selling approach (Alexandre Durot); 8 - Biogas Financing - Correlation between Return and Project Financing (Damien Ricordeau); 9 - Comparative economic analysis of various types of biogas plant Profitability of small and medium biogas plants on the basis of slurry and maize silage in Germany (Peter Schuenemann-Plag); 10 - experience feedback on important financing leviers (Gustav Wehner); 11 - Analysis of the different ways of methanation facilities financing (Robert Wagner); 12- The development of biogas project without recourse to purchase prices in France and Germany (Marc Mestrel)

  11. Application of titration methods for measuring the contents of ammonium nitrogen and volatile fatty acids in agricultural biogas plants.

    Science.gov (United States)

    Piątek, Michał; Lisowski, Aleksander; Lisowska, Barbara

    2017-12-20

    The aim of our research was to assess a relatively new method of estimating ammonium nitrogen concentration in anaerobic digestion of plant substrates. We analysed our own data, received from the anaerobic digestion of maize silage (PM), as well as data published by Purser et al. (2014) who measured energy crops and slurry (ECS), and food waste (FW). In our study, the process was monitored for VFA content that was determined by gas chromatography, and for the content of ammonium nitrogen determined using the HACH LANGE LCK 303 cuvette test. We created polynomial regression models that bind the content of ammonium nitrogen with the volume of H 2 SO 4 used to titrate the sample from initial pH to pH 5. To estimate parameters of model, the PM dataset was used. The obtained models were positively validated using ECS and FW datasets. Our results confirmed the effectiveness of the Purser et al. method with an average absolute error of less than 223mgl -1 of the VFA concentration, which was approximately 20-times less than the level that caused inhibition. In conclusion, we can affirm the suitability of using titration methods to assess the ammonium nitrogen content of bioreactors with a stable composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. THE ECONOMICS OF BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Kh. S. Karimov

    2013-11-01

    Full Text Available ABSTRACT: In this paper life-cycle cost analysis of three biogas digesters is presented. Results show that the cost of biogas depends on the construction of digesters, sizes of methane tank and possibility of heating of the slurry. Biogas and natural gas costs calaculated are observed and found to be comparable. It is recommended that the biogas digesters can be constructed and installed, in principle, for every family and there is no need to built long gas pipe lines. ABSTRAK: Kertaskerja ini membentangkan analisis kos kitar hayat tiga pencerna biogas. Keputusan menunjukkan kos biogas bergantung kepada pembinaan pencerna, saiz tangki metana dan kemungkinan pemanasan buburan. Pengiraan kos biogas dan gas asli diambil kira dan ianya didapati setanding. Adalah disarankan pencerna biogas boleh dibina dan dipasang secara teorinya, bagi setiap keluarga tanpa memerlukan pembinaan paip gas yang panjang.

  13. Socio-economic evaluation of selected biogas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, F.; Martinsen, L.

    2013-05-15

    Financial and welfare economic analyses are conducted of 15 different biogas production scenarios that vary in terms of plant size and type of input. All considered scenarios lead to welfare economic losses. Overall welfare economic GHG reduction costs seem to increase with increasing crop/crop material share of input, and although the costs vary significantly across scenarios they are quite high for all scenarios. The financial analyses suggest that biogas production generally will be financially profitable for the agricultural sector and local CHP facilities but unprofitable for the biogas plants and the State. Seen from a policy perspective the results highlights the importance of designing regulatory instruments in a way that create incentives for private actors to engage in welfare economically desirable biogas production activities while discouraging the expansion of welfare economically undesirable activities. (Author)

  14. International scientific conference biogas science 2009. Vol. 1. Lectures; Internationale Wissenschaftstagung Biogas Science 2009. Bd. 1. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Within the international conference of the Bavarian State Research Center for Agriculture (Munich, Federal Republic of Germany) at 2nd to 4th December, 2009, in Erding (Federal Republic of Germany), the following lectures were held: (1) Significance of the sector biogas within the scope of renewable energies (P. Schuesseler); (2) Anaerobic digestion, a superior renewable energy degradation method (G. Lettinga); (3) Trends of the biogas technology - Challenges for the practice (J. Pellmeyer); (4) Extensification of cultivation procedures for the production of biogas substrates (K. Deiglmayer et al.); (5) Approaches for the optimization of crop rotations for biogas plants at Bavarian conditions of cultivation (E. Sticksel et al.); (6) Development and comparison of site specific production systems for energy crops (Ch. Strauss et al.); (7) Which type of maize is useful for the production of biogas? (B. Eder et al.); (8) Fermentation of interim fruits, food stocks and residues of harvest: Review on the possibilities of power generation and avoidance of direct and indirect emissions of climatic gases (W. Stinner et al.); (9) Optimization of anaerobic fermentation by means of mineral additives (H. Heuwinkel et al.); (10) The accuracy of the measurement of gas yields of substrates using the batch method (H. Heuwinkel et al.); (11) Combined mechanical-enzymatic pre-treatment of an improved digestion of substrates during the fermentation of renewable raw materials (D. Schiedr et al.); (12) Anaerobic semi-continuous co-digestion of dairy cattle manure and agricultural residues: Effect of operational parameters (E. Alkaya et al.); (13) Do hydrolytic enzymes enhance methane formation of agricultural feedstock? (T. Suarez Quinones et al.); (14) DAUMEN-Energy ''Design fo Separation and Augmented Methanisation of Fibres Substrates - Contribution to sustainable biogas production'' (P. Stopp et al.); (15) Continuous two-phase solid-state anaerobic digestion

  15. Trend chart: biogas for electricity production. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities, methodology used

  16. Trend chart: biogas for electricity production. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  17. Trend chart: biogas for electricity production. Third quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2017-11-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  18. Trend chart: biogas for electricity production. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the situation of biogas-fueled power plants in continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, power range distribution of facilities, evolution of park facilities and projection, distribution by type of facilities, regional distribution of facilities, total connected load by region, overall national power generation from biogas, evolution of newly connected methanation facilities for power generation, power range distribution of methanation facilities, regional distribution of methanation facilities

  19. Digestion with initial biological hydrolysis step for enhanced methane production in sewage and biogas plants. Exploratory; Roetning med inledande biologiskt hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar. Foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrients, pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a separate

  20. Proceedings of the 1. annual Canadian farm and food biogas conference and exhibition

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for researchers, farmers, and electric utility operators to discuss issues related to the growth of Canada's biogas industry. Many farmers are now exploring methods of producing biogas from agricultural wastes using anaerobic digestion technologies. However, regulatory problems continue to stall the growth of the fledgling biogas industry. In addition, many biogas plants face challenges related to ensuring reliable grid connections. European and American perspectives on biogas development were presented at the conference along with issues related to provincial and federal regulations and policies. Technologies and strategies for connecting biogas systems with other power systems were presented. The conference was divided into 11 sessions and 2 plenary sessions: (1) B1 grid connection solutions; (2) B2D energy crops and other plant-based co-substrates; (3) B2E Ontario biogas today; (4) B3D mixed materials; (5) B3E siting, odour and safety; (6) B4D economics and policy issues; (7) B4E genset performance and efficiency panel; (8) B5D case studies of food or farm biogas systems; (9) B5E case studies of farm-based systems; (10) B6D biogas next steps; and (11) B6E biogas in an urban setting. The conference featured 42 presentations, of which 5 have been catalogued separately for inclusion in this database. A set of 12 poster presentations were also presented, as well as several networking forums. tabs., figs

  1. Life cycle assessment of biogas from sewage treatment sludge; Livscykelanalys av biogas fraan avloppsreningsverksslam

    Energy Technology Data Exchange (ETDEWEB)

    Palm, David; Ek, Mats (IVL Swedish Environmental Research Inst., Stockholm (Sweden))

    2010-08-15

    This report analyses the environmental impact from 1MJ of biogas (as vehicle fuel) produced by anaerobic digestion of sewage sludge. Data are primarily taken from Kaeppala sewage treatment plant, but have been complemented with data from literature. As a base case, the biogas has only been given the environmental burden from upgrading and purification of raw gas. This is because the anaerobic digestion is an inherent part of the waste water treatment in Sweden, biogas being produced regardless of its chosen end utilization. Calculations have also been performed with system expansion where the anaerobic digestion, sludge treatment and replaced mineral fertilizer have been included in the analysis, as well as calculations based on economic and energy allocation. The results have been characterised in accordance to CML (2007) for the potential of global warming on a 100 year perspective, eutrophication, acidification, photochemical oxidation creation and particles. The study represents a Swedish state-of-the-art plant for biogas production but also includes a sensitivity analysis that cover a Swedish average plant and a worst case plant. The sensitivity analysis shows a major impact on the results from methane leakage during anaerobic digestion and upgrading. The electricity consumption and choice of Swedish average electricity versus Swedish marginal electricity is of less importance for the outcome of the study

  2. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    International Nuclear Information System (INIS)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-01-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 o C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 ± 0.02 L g VS feed -1 to 0.55 ± 0.05 L g VS feed -1 as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  3. Sludge storage lagoon biogas recovery and use. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1991-07-01

    The City of Memphis has two wastewater treatment plants. The SWTP employs two large anaerobic digestion sludge lagoons as part of the overall sludge treatment system. Although these lagoons are effective in concentrating and digesting sludge, they can generate offensive odors. The SWTP uses aerobic digesters to partially stabilize the sludge and help reduce objectionable odors before it enters the lagoons. The anaerobic digestion of sludge in the lagoons results in the dispersion of a large quantity of biogas into the atmosphere. The City realized that if the lagoons could be covered, the odor problem could be resolved, and at the same, time, biogas could be recovered and utilized as a source of energy. In 1987, the City commissioned ADI International to conduct a feasibility study to evaluate alternative methods of covering the lagoons and recovering and utilizing the biogas. The study recommended that the project be developed in two phases: (1) recovery of the biogas and (2) utilization of the biogas. Phase 1 consists of covering the two lagoons with an insulated membrane to control odor and temperature and collect the biogas. Phase 1 was found to be economically feasible and offered a unique opportunity for the City to save substantial operating costs at the treatment facility. The Memphis biogas recovery project is the only application in the world where a membrane cover has been used on a municipal wastewater sludge lagoon. It is also the largest lagoon cover system in the world.

  4. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system

    International Nuclear Information System (INIS)

    Chen, Bin; Chen, Shaoqing

    2013-01-01

    Biogas plant construction has been boosted in rural China not only due to the immediate merit from biogas production but also the succeeding benefit from by-product utilization in agro-industry, both of which are significant strategies to address energy shortage and global warming issues. However, little work has been done to evaluate the coupling of biogas projects to traditional agrosystems from a life-cycle perspective, which is most important in process and system optimization in different senses. By taking persimmon cultivation and processing with supports from a household biogas plant as a case study, this study conducts a life cycle assessment of coupling biogas production to agro-industry in terms of energy, environmental and economic performance. The results suggest that each production stage following the biogas/digestate utilization chain (biogas operation-persimmon cultivation-product processing) is beneficial across all three aspects. However, a tradeoff only exists in utilizing digestate as top-dressing and employing biogas utilization as engine fuel, while biogas application in fresh-keeping and digestate reuse as base fertilizer fails to increase either energy production or greenhouse gas mitigation. The coupled system can be hopefully optimized through increasing fermentation efficiency and joint operation of biogas digesters. -- Highlights: •Biogas/digestate utilization is overall beneficial in all production stages. •Each bioresource application may not be profitable in all respects. •Tradeoffs in using biogas and digestate vary among different utilization ways. •Multi-user operation and fermentation efficiency elevation optimize system

  5. Challenges in biogas production

    DEFF Research Database (Denmark)

    Rennuit, Charlotte

    2017-01-01

    Anaerobic digestion (AnD) is a sustainable process combining waste treatment, nutrient recycling and energy production which can contribute to limit climate change and environmental problems. However, in order for this technique to be more widely used, production of biogas from available wastes...... from a mixture of pig manure and other waste materials by separating the solid fraction of digestate and recycling it back to the digester. It is shown that separation and recycling of the dry matter rich solid fraction could successfully increase biogas production and a preliminary economic evaluation...... showed a potential increase of 1.9 to 6.8€ per ton of biomass treated. In the second part of this study, a biological treatment to improve energy production from wastewater sludge was investigated. Wastewater sludge was subjected to thermophilic aerobic digestion (TAD) from 2h to 5d. Increase in biogas...

  6. 车用生物燃气工程范例余热定量评估及可利用性分析%Quantitive estimation and availability analysis of waste heat from vehicle biogas plant

    Institute of Scientific and Technical Information of China (English)

    张佳; 邢涛; 孙永明; 孔晓英; 康溪辉; 吕鹏梅; 王春龙; 李金平

    2017-01-01

    针对车用生物燃气工程能耗高、余热利用率低的问题,该文以国内4个典型工程为基础,构建了产气规模为1万m3/d的示例工程,并对其进行余热分析.分析结果显示,此类工程用能量大,占总产能的30.01%~36.44%;余热利用率低,只有部分贫液余热得以回收;系统余热主要由脱碳塔顶气余热、脱碳贫液余热、压缩机余热、沼液余热和锅炉尾气余热5部分组成,其多为低品位余热、量大稳定.余热计算表明,在最冷月和最热月系统余热潜力分别为5.87×104、4.79×104MJ/d,最大节能潜力分别为74.81%和73.92%,节能潜力降序排列为沼液余热>贫液余热>塔顶气余热>压缩机余热>锅炉余热.余热可利用性分析认为工程余热可利用性较高,回收价值较大.%Vehicle biogas, the product deriving from the organic waste anaerobic digestion accompanying with the purification and compression process, has the advantages of higher energy efficiency, environmentally friendliness, sustainability, and so on. The vehicle biogas plant has aroused attention from all walks of life and owned a broad prospect, because it can not only dispose organic waste, but also produce clean vehicle biogas. However, there were still several problems in its operation process, such as high operating costs, high energy consumption and low utilization rate of waste heat. In order to solve these problems, this paper establishes a model of vehicle biogas plant which produces 10 000 m3biogas daily. We firstly introduce the general situation of this model and calculate the potential of waste heat. What's more, the availability of waste heat is evaluated. Finally, combined with the requirement of heat, the suggestion of the waste heat utilization is put forward. Results of analysis show that this plant needs a lot of thermal energy, approximately accounting for 30.01%-36.44% of biogas energy. Moreover, merely recycling a part of the CO2-poor MEA liquid waste heat

  7. Biogas in Botswana

    Energy Technology Data Exchange (ETDEWEB)

    MacGarry, B

    1981-01-01

    The experience gained in small-scale experiments with a 600-1 horizontal plug-flow digester, made from three 200-1 drums, was used to investigate the possibility of using biogas as a diesel-fuel substitute for powering pump engines at boreholes used for cattle in the arid areas of Botswana. A 10-m/sup 3/ Chinese-type digester was used in these tests. The terms of reference of the test and details of the operational plan are included. The use of biogas toilets as efficient low-cost sanitation devices are also being promoted.

  8. Biogas: quo vadis?

    International Nuclear Information System (INIS)

    Perch-Nielsen, S.

    2009-01-01

    This article takes a look at the situation in Switzerland with respect to the use of biogas and the potential available for its increased use. The sharp increase of biogas production in Switzerland and its use for the production of heat, electrical power and methane for the gas mains is reviewed. The large potential for additional biomass is discussed. The political will to increase the use of renewable forms of energy in Switzerland, security of supply and regional added value are discussed. The article discusses the current situation as well as trends concerning substrates, systems and products

  9. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    Science.gov (United States)

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  10. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    Science.gov (United States)

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  11. A concise synthesis of the cortistatin core

    OpenAIRE

    Dai, Mingji; Danishefsky, Samuel J.

    2008-01-01

    We describe a concise and convergent route to the core matrix of the cortistatin steroidal alkaloids. The salient features of the synthesis are the Snieckus cascade methodology and the Masamune alkylative dearomatization. This chemistry lends itself to a total synthesis of the cortistatins and to the development of a SAR program based on diverted total synthesis.

  12. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  13. Value Chain Optimisation of Biogas Production

    DEFF Research Database (Denmark)

    Jensen, Ida Græsted

    economically feasible. In this PhD thesis, the focus is to create models for investigating the profitability of biogas projects by: 1) including the whole value chain in a mathematical model and considering mass and energy changes on the upstream part of the chain; and 2) including profit allocation in a value......, the costs on the biogas plant has been included in the model using economy of scale. For the second point, a mathematical model considering profit allocation was developed applying three allocation mechanisms. This mathematical model can be applied as a second step after the value chain optimisation. After...... in the energy systems model to find the optimal end use of each type of gas and fuel. The main contributions of this thesis are the methods developed on plant level. Both the mathematical model for the value chain and the profit allocation model can be generalised and used in other industries where mass...

  14. Performance of the biogas project in Ziyang sugar factory

    Energy Technology Data Exchange (ETDEWEB)

    Dezhao He [Chengdu Biogas Research Inst., Chengdu (China)

    2000-07-01

    Located in Houjiaping town, Ziyang county, Ziyang Sugar Factory was installed in 1958 as a state enterprise, which mainly processes sugar cane to produce sugar. Sideline products include alcohol and paper. Nowadays, its daily capacity of sugar cane extraction is 1,000 tons and potable alcohol production is 15 - 20 tons. Its annual output value is 25 million Yuan. This plant is one of the backbones in Sichuan sugar cane processing enterprises. The biogas project of the Ziyang Sugar Factory was one of the large biogas installations in China, completed during the Seventh Five-year Plan. The distillery wastewater (slops) from the alcoholic fermentation process of starch (fresh potato, dry potato, kernel and Chinese sorghum) and sugar molasses as substrates is disposed of. The slop has a low pH, a high organic concentration, a high content of suspended solids, a dark colour and a high temperature. Its daily discharge quantity is 200 tons corresponding to 2/3 of total wastewater in that plant. It is a serious source of water pollution when it is directly discharged into Tuojiang River. Therefore, due to its high concentration of polluting substances, anaerobic treatment of distillery wastewater has been decided. This is the first case of wastewater treatment in Nudging city. The construction of this biogas installation started in July 1987. On November 25, 1988, the digester began to produce biogas. Up to now, the digesters have properly operated for more than one year. Besides its use as daily household fuel for the 810 employees, biogas is also supplied to the plant cafeteria as cooking fuel and to some production purposes within the plant, which has achieved obvious economic benefits. The designed capacity of daily biogas production for this biogas plant is 3,000 - 4,000 m{sup 3}. (orig.)

  15. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  16. Occurrence and abatement of volatile sulfur compounds during biogas production.

    Science.gov (United States)

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  17. Biogas generation apple pulp.

    Science.gov (United States)

    Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R

    2009-09-01

    In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.

  18. Guide biogas. From production to utilization. 5. compl. rev. ed.; Leitfaden Biogas. Von der Gewinnung zur Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book under consideration is a guide for biogas and consists of the following contributions: (a) Targets of the guide (M. Kaltschmitt); (b) Fundamentals of anaerobic fermentation (J. Friehe); (c) Systems engineering for supplying biogas (J. Postel); (d) Description of selected substrates (J. Friehe); (e) Operation of biogas plants (J. Liebetrau); (f) Gas processing and possibilities of utilization (M. Wetthaeuser); (g) Legal and administrative framework conditions (H. von Bredow); (g) Economy (S. Hartmann); (h) Company organisation (G. Reinhold); (i) Quality and utilization of fermentation residues (H. Doehler); (j) Implementation of a project (E. Fischer); (k) Position and significance of biogas as a renewable energy resource in Germany (M. Kaltschmitt); (l) Project examples (J. Friehe).

  19. PEMETAAN POTENSI BIOGAS DI KOTA METRO

    Directory of Open Access Journals (Sweden)

    Riswanto Riswanto

    2017-09-01

    Full Text Available Metro City is a developing city that attracts many new citizens to come and live in the city of Metro. It affects the density and population growth in the city of Metro so it boils down to the increasing need for energy for fuel such as gas and electricity needs. UU No. 33 of 2007 the government seeks to optimize the role of PEMDA and communities and academics to be able to take advantage of the various potential that may be developed in their respective city in meeting energy needs. The survey results show the picture that the city of Metro has potential in the utilization of biogas energy. The availability of this organic material is quite common in Metro city. But the availability of the material has not been classified in number and variety. For that, we need to do research in mapping biogas potential in every area in Metro city. The research method used is the method of documentation, observation, and interview. As for data analysis techniques, conducted qualitatively and quantitatively through the findings of observations in the form of descriptions, calculation analysis, and tabulation. The results obtained show that the North Metro sub-district has the highest potential for biogas development. The most common materials are animal waste derived from cow dung as much as 84% and biogas from plants that are from rice straw (54% and Tahu/tempe processing waste (38%. Other organic ingredients found are chicken, goat, buffalo, and banana peels. This result shows that the biogas potency of Metro City is best developed that is through the use of cow dung

  20. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  1. A methodology for financial evaluation of biogas technology in India using cost functions

    International Nuclear Information System (INIS)

    Rubab, S.; Kandpal, T.C.

    1996-01-01

    A methodology for financial evaluation of biogas technology for domestic use in India using recently developed cost functions is reported. Analytical expressions for the unit cost of biogas and cost per unit of useful energy delivered by a biogas plant in combination with other suitable technologies have been developed. Net present value and discounted pay-back period have been calculated. The sensitivity of the unit cost of biogas, the cost per unit of useful energy, and the net present value with respect to a number of variables is also reported. (author)

  2. Analysis of small-scale biogas utilization systems on Ontario cattle farms

    International Nuclear Information System (INIS)

    White, Andrew J.; Kirk, Donald W.; Graydon, John W.

    2011-01-01

    The production of biogas through the anaerobic digestion of cattle manure and its subsequent use in the generation of electricity on larger farms in Ontario is currently economically attractive. This is a result of the Ontario Feed-In Tariff (FIT) program, which provides incentivized rates for the production of electricity from biogas. Although larger farms can take advantage of the higher rates for electricity, there are substantially more smaller farms for which individually designed and engineered biogas systems would be prohibitively expensive. By employing the concept of modular biogas plants, this analysis evaluates the economics of small-scale biogas utilization systems. Dairy farms with at least 33 animals and beef farms with at least 78 animals can operate economically attractive biogas systems. This analysis shows that approximately 9000 additional Ontario cattle farms would be able to take advantage of the FIT program, which would add 120 MW e of renewable energy capacity to the Ontario electrical grid. (author)

  3. Economies of scale in biogas production and the significance of flexible regulation

    DEFF Research Database (Denmark)

    Nielsen, Lise Skovsgaard; Klinge Jacobsen, Henrik

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find...... that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study......, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated...

  4. Solutions for Foaming Problems in Biogas Reactors Using Natural Oils or Fatty Acids as Defoamers

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2015-01-01

    Foaming is one of the most common and important problems in biogas plants, leading to severe operational, economical, and environmental drawbacks. Because addition of easily degradable co-substrates for boosting the biogas production can suddenly raise the foaming problem, the full-scale biogas...... results from our previous extensive research along with some unpublished data on defoaming by rapeseed oil and oleic acid in manure-based biogas reactors. It was found that both compounds exhibited remarkable defoaming efficiency ranging from 30 to 57% in biogas reactors suffering from foaming problems...... promoted by the addition of protein, lipid, or carbohydrate co-substrates. However, in most cases, the defoaming efficiency of rapeseed oil was greater than that of oleic acid, and therefore, rapeseed oil is recommended to be used in biogas reactors to solve foaming problems....

  5. Modelization of Biogas production in Sanitary landfills; Modelizacion de la produccion de Biogas en vertederos controlados

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Iglesias, J.; Castrillon, L.; Maranon, E.; Sastre, H. [Universidad de Oviedo (Spain)

    2000-07-01

    Amongst all the different alternatives for the eliminator or treatment of MSW (Municipal Solid Waste), sanitary landfills is probably the one that is most widely employed to date, due to its economic advantages. With the coming into effect of the Spanish Containers and Packaging Law, alongside that of the Council Directive 1999/31/CE, concerning waste disposal, this situation will be substantially modified. At the same time, the application of said Directive will influence the amount of biogas generated in landfills. The present research work a study of the influence that the aforementioned Directive will have on the production of biogas in a sanitary landfill which currently disposes of around 400.000 Tm/year of MSW, 52% of which is easily biodegradable organic matter. The model proposed by Marticorena was applied and the kinetic parameters, MPO and d, were experimentally obtained by means of a pilot-plant study of MSW anaerobic degradation, the values employed being 173 Nm3 of biogas/Tm of the organic fraction of MSW for MPO, and 3 years for d. The results obtained in the model are compared with those obtained experimentally at the COGERSA landfill, Asturias, Spain. Twenty wells were chosen to analyse the production of biogas, giving an overall average yield of 70%. In 1999, around 4,100 m''3/h of biogas were extracted at the COGERSA landfill. Application of the model gave an estimation for 1999 of an average production of 5,369 m''3/h giving a maximum yield in the extraction of biogas of around 75%. The difference between the two average yields obtained may be due to the fact that the model only takes into account the easily biodegradable organic fraction, whilst in the landfill, given that more time has passed, other substances with a longer period of degradation, such as paper and cardboard, may also be degraded. (Author) 10 refs.

  6. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  7. Improving biogas yields using an innovative pretreatment concept for conversion of the fiber fraction of manure

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    A new concept to enable economically feasible operation of manure based biogas plants was tested in lab-scale. Wet explosion (WEx) was implemented as treatment of the residual manure fibers separated after the anaerobic digestion process for enhancing the biogas production before reintroducing...

  8. MATHEMATIC MODELING IN ANALYSIS OF BIO-GAS PURIFICATION FROM CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Y. A. Losiouk

    2009-01-01

    Full Text Available The paper considers a possibility to involve bio-gas generated at testing grounds of hard domestic garbage in power supply system in the Republic of Belarus. An example of optimization using mathematical modeling of plant operation which is used for bio-gas enrichment is given in the paper. 

  9. Concise encyclopedia of history of energy

    CERN Document Server

    2009-01-01

    "The Concise Encyclopedia of the History of Energy" draws together in a single volume a comprehensive account of the field from the prestigious and award-winning "Encyclopedia of Energy" (2004). This volume covers all aspects of energy history with authoritative articles authoritatively contributed and edited by an interdisciplinary team of experts. Extensively revised since the original publication of the "Encylopedia of Energy", this work describes the most interesting historical developments of the past five years in the energy sector. It is a concise desk reference for researchers and those interested in any aspect of the history of energy science. It provides eminently cost-effective access to some of the most interesting articles in "Encyclopedia of Energy". It is significantly revised to accommodate the latest trends in each field of enquiry.

  10. Potentials of the separation of cow manure. Utilization of solid materials as an alternative fermentation substrate in biogas conversion plants; Potentiale der Rinderguelleseparation. Nutzung der Feststoffe als alternatives Gaersubstrat in Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Rhena; Hothan, Andreas; Theuvsen, Ludwig; Broll, Gabriele; Brauckmann, Hans-Joerg; Bronsema, Hauke [Goettingen Univ. (Germany). Dept. fuer Agraroekonomie und Rurale Entwicklung, Betriebswirtschaftslehre des Agribusiness

    2013-10-01

    The increasing regional concentration of dairy farming requires alternatives for the use of the accruing slurry to defuse the nutrient problem. One possibility is to separate the manure and use the solid fraction for an energetic use in biogas plants in nutrient undersupplied regions. First practical tests on dairy slurry separation have shown that separators are able to achieve a performance 1.3 to 16.6 tons of mass flow per hour. The nutrients are disproportionately deposited in the solid fraction. Furthermore, the solid fractions show a methane building potential that is double as high as the raw slurry methane yield. An energetic use of the solid fraction allows the reduction of other substrates. Thus, it is possible to decrease the land requirements and the costs for other substrates. (orig.)

  11. State of the art of the production and utilization of biogas using the NawaRo plant; Stand der Technik bei der Erzeugung und Nutzung von Biogas unter Einsatz von NawaRo-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, P.; Rieger, C.; Schroeder, J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany); Kissel, R.; Bachmaier, H. [LfL, Freising (Germany); Plogsties, V. [ATB, Potsdam (Germany); Vogtherr, J. [Hohenheim Univ., Stuttgart (Germany)

    2007-07-01

    With amending the Renewable Energy Law (EEG) in August 2004 the fundamentals for the utilization of renewable raw materials in biological gas facilities were created. Since that time the number of installed plants processing energy plants grew very fast, although at the time of amending only few experiences with NawaRo plants were present. Therefore, in order to attain secured informations about the current state of the art in the production and utilization of fermentation gas to, in the context of a country wide measuring program, NawaRo plants are examined and evaluated according to technical and economic criteria. The results determined so far show that due to the intensified employment by energy plants completely new dosing systems and agitating systems are applied, and also pure fermentation techniques for solids increasingly are used for the mono fermentation of renewable raw materials. Although the common generation of current and heat in cogeneration plants dominate, new use routes like the feed of bio methane in the natural gas grid as well as the utilization of the gas as fuel gain in importance.

  12. Hydrogen assisted biological biogas upgrading

    DEFF Research Database (Denmark)

    Bassani, Ilaria

    Wind and biomass are promoted worldwide as sustainable forms of energy. Anaerobic digestion of biomass produces biogas with ∼50−70% CH4 and 30−50% CO2. However, biogas with >90% CH4 content has higher heating value, can be injected into the natural gas grid or used as alternative to natural gas...... as vehicle fuel. Methods currently available for biogas upgrading mainly consists of physicochemical CO2 removal, requiring the use of chemical substances and energy input and, thus, increasing process costs. This PhD project proposes an alternative to existing biogas upgrading technologies, where H2......, produced by water electrolysis, using excess of electricity from wind mills, is coupled with the CO2 contained in the biogas to convert them to CH4. This process is defined as biological biogas upgrading and is carried out by hydrogenotrophic methanogenic archaea that couples CO2 with H2 to produce...

  13. 17. Annual meeting on biogas and bioenergy in agriculture. Lectures; 17. Jahrestagung Biogas und Bioenergie in der Landwirtschaft. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the 17th annual meeting at 9th to 10th December, 2008, at the energy centre Wolpertshausen (Federal Republic of Germany), the following lectures were held: (1) Energy - But how? Biogas and bioenergy in the agriculture (Winfried Binder); (2) Models for ecologically useful concepts at agricultural biogas plants (Dr. Manfred Dederer); (3) Innovative and deserving promotion concepts of utilization of heat at fermentation plants in Baden-Wuerttemberg (Konrad Raab); (4) Utilization of heat and strengthening of the regional value-added chain from the view of a franconian plant operator (Christian Endress); (5) Perspectives of an energetic utilization of materials for landscape conservation (Christof Thoss); (6) Meadow grass steps on the accelerator (Peter Stiegler); (7) Biogas from grass: Experiences from northern Germany (Jens Geveke); (8) Experience report of an agricultural biogas plant - Fermentation of grass and effective utilization (Thomas Rott); (9) State of the art of the fermentation of bio waste in a batch process (Jakovos Theodoridis); (10) Integration of a continuous dry fermentation plant into an existing compost heap - an experience report (Michael Buchheit): (11) Coldness from heat: Providing coldness with ammonia / water refrigerating absorbers (Sebastian Zuerich); (12) Current state the Renewable Energy Resources Act 2009 (Otto K. Koerner); (13) The eco-auditor in the Renewable Energy Resources Act 2009 (Peter Vassen); (14) Greenhouse-gas emissions from biogas plants (Carsten Cuhls); (15) Management of crashes and crisis at biogas plants (Anton-Rupert Baumann); (16) SINNRGIE brilliantly simple (Sauter); (17) Fermentation of grass-clover ley in ecological agriculture (Hans Holland).

  14. Emergy analysis of biogas systems based on different raw materials.

    Science.gov (United States)

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.

  15. Emergy Analysis of Biogas Systems Based on Different Raw Materials

    Science.gov (United States)

    Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan

    2013-01-01

    Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134

  16. Prospects for expanded utilization of biogas in Germany

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The prospects for expanded utilization of biogas systems in German was analysed, by identifying the operational and policy factors affecting the complete chain of processes from implementation process for biogas plants, through to biogas production and utilization. It was found that the Renewable Energies Act (EEG) and energy tax reliefs provide bases for the support of expanded utilization. Upgrading of biogas to natural gas quality for utilization in the transportation sector was arguably the most promising technology that could support rapid utilization expansion. Sustainable deployment of biogas systems in light of the unstable feedstock prices and availability, and the need for subsidy-free operation in the long term requires; enhancement of feedstock flexibility and quality characteristics to maximise gas yield, and optimisation of the anaerobic digestion process management. Assessment of energy balance and potential environmental impacts of the integrated process chain provides a holistic assessment of sustainability. The results also support the development and foster of policies and framework for development of biogas as environmentally friendly energy resource, among a mix of renewable energy sources, hence, compete favourably with fossil fuels to enhance the prospects for expanded utilization. (author)

  17. Environmental consequences of future biogas technologies based on separated slurry.

    Science.gov (United States)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  18. Climate balance of biogas upgrading systems

    International Nuclear Information System (INIS)

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-01

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO 2 .

  19. Profile and Perceptions of Biogas as Automobile Fuel : A Study of Svensk Biogas

    OpenAIRE

    Larsson, Anneli

    2008-01-01

    From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a...

  20. Biogas Opportunities Roadmap Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  1. Economies of scale in biogas production and the significance of flexible regulation

    International Nuclear Information System (INIS)

    Skovsgaard, Lise; Jacobsen, Henrik Klinge

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated by the new regulation providing similar support to upgraded biogas fed into the natural gas grid, however in order to keep transport costs low, we suggest that the biogas plants should be allowed to use and combine as many co-substrates as possible, respecting the sustainability criteria regarding energy crops in Danish legislation. - Highlights: • For Denmark we find economies of scale in biogas production based on pure manure. • Adding sugar beet outweigh economy of scale due to increased transport costs. • We investigate the main risks associated with input prices, yield and output prices. • Biogas fed into the gas grid should receive similar support as directly used in CHP. • Regulation should allow large biogas plants with few restrictions on co-substrates.

  2. Biogas of sanitary fillers

    International Nuclear Information System (INIS)

    Serrano Camacho, Ciro

    2007-01-01

    The author proposes a methodology for the preliminary estimation of the energetic potential and environmental improvement derivates of the implementation of these technologies that allows to make the first estimative of biogas generation of sanitary fillers with base in the results of the simulation of three predictive model: One Mexican, other denominated Scholl-Canyon of North American origin and the designed by the EPA. The three models use different versions and constants for a differential equation of degradation of first degree

  3. Guide for biogas energy utilization in Hokkaido; Hokkaido bio gas energy riyo guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of smoothly introducing biogas plants to Hokkaido in the future, the following were conducted: collection of the data on samples of development/introduction of biogas plants, survey of the organizations concerned, etc., study of economical efficiency, etc. Those were arranged as a guide for biogas energy utilization in Hokkaido. In the biogas plant, organic matters such as animal faces, garbage, etc. are anaerobicly fermented at medium temperatures between 35 and 38 degrees C or at about 55 degrees C to obtain biogas including methane gas of approximately 60%. From this gas, heat is obtained by gas boiler, and also electricity and heat are obtained by gas cogeneration or fuel cells. In the case of introducing the biogas plant using animal faces as raw material in Hokkaido, it is important to cover all the electricity and heat used to maintain the plant with the biogas obtained, from a viewpoint of economical efficiency. In the present situation, it is the most economical for each farmer to introduce an individual plant to be installed and to obtain the power generated and heat. (NEDO)

  4. Development of a biogas planning tool for project owners

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Kjær, Tyge

    are considered: Combined heat and power and natural gas grid injection. The main input to the model is the amount and types of substrates available for anaerobic digestion. By substituting the models’ default values with more project specific information, the model can be used in a biogas projects later phases......A spreadsheet model was developed, which can be used as a tool in the initial phases of planning a centralized biogas plant in Denmark. The model assesses energy production, total plant costs, operational costs and revenues and effect on greenhouse gas emissions. Two energy utilization alternatives...

  5. Justification of investment projects of biogas systems by the sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Perebijnos Vasilij Ivanovich

    2015-06-01

    Full Text Available Methodical features of sensitivity analysis application for evaluation of biogas plants investment projects are shown in the article. Risk factors of the indicated investment projects have been studied. Methodical basis for the use of sensitivity analysis and calculation of elasticity coefficient has been worked out. Calculation of sensitivity analysis and elasticity coefficient of three biogas plants projects, which differ in direction of biogas transformation: use in co-generation plant, application of biomethane as motor fuel and resulting carbon dioxide as marketable product, has been made. Factors strongly affecting projects efficiency have been revealed.

  6. The Role of Municipalities, Energy Companies and the Agricultural Sector in Denmark as Drivers for Biogas

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Christensen, Thomas Budde

    2014-01-01

    This paper examines the barriers to implementing biogas plants in Denmark and highlights advantages and barriers of the technology with a focus on the environment, energy and the agriculture. The article is based on a detailed study of development trends within the Danish biogas sector and identi......This paper examines the barriers to implementing biogas plants in Denmark and highlights advantages and barriers of the technology with a focus on the environment, energy and the agriculture. The article is based on a detailed study of development trends within the Danish biogas sector...... and identifies the most important current barriers for the biogas technology namely, difficulties in providing organic industrial waste, unfavorable funding options and low plant profitability. An element in overcoming these barriers concerns the inclusion of stakeholders from the energy sector and engaging...... municipalities more actively in the biogas development. Based on the analysis of the current situation and of the challenges and opportunities for the Danish Biogas sector, we propose that municipalities, energy companies and the agricultural sector take renewed actions and become drivers for the biogas sector...

  7. Study of the potential for biogas in Norway; Potensialstudie for biogass i Norge

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Schakenda, Vibeke; Morken, John

    2008-07-01

    The project 'Study of the potential for biogas in Norway' is accomplished as a cooperation between Oestfoldforskning and UMB on task for Enova SF. The aim of the project was to document theoretical energy potentials from biogas resources in Norway and to enlighten the possibility for increased production, distribution and usage of biogas. Landfill gases equivalent approximately 300 GWh or 25% of total methane emission from Norwegian waste disposal sites are totally collected in Norway. 61% of collected landfill gases are exposed to electricity and/or heat production, while the rest - 39% - is flaring. The project has surveyed that approximately 180 GWh is produced from biogas plants in Norway, based on data collected from the actual plants. It is emphasised that data from 30% of the plants are missing. Approximately half the produced biogas is used in heat production, 18% in electricity production, 19% flared while 9% has uncertain usage. The theoretical energy potential from biogas resources from waste/by-product is calculated close to 6TWh/year. Manure amount 42% (the greatest potential), then industry (23%) and garbage from household, communal establishment and trade (16%). Possible synergy between natural gas and biogas is also considered, and the most important barriers for increased production and usage of biogas are mapped. (AG). 58 refs., 16 figs., 14 tabs

  8. Biogas technology dissemination in Ghana: history, current status, future prospects, and policy significance

    Energy Technology Data Exchange (ETDEWEB)

    Bensah, Edem Cudjoe [Chemical Engineering Department, Kumasi Polytechnic, Box 854, Kumasi (Ghana); Brew-Hammond, Abeeku [Faculty of Mechanical and Agricultural Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Private Mail Bag, Kumasi (Ghana)

    2010-07-01

    Despite numerous benefits derived from biogas technology, Ghana is yet to develop a major programme that will promote the dissemination of biogas plants on a larger scale. This paper reviews biogas installations in Ghana and investigates challenges facing the design, construction, and operation of biogas plants. It further captures the current status and functions of biogas plants as well as the impact of these plants on the people who use them. The study was done by surveying fifty (50) biogas installations, and conducting interviews with both plant users and service providers. From the survey, twenty-nine (58 %) installations were institutional, fourteen (28 %) were household units, and the remaining seven (14 %) were community plants. Fixed-dome and water-jacket floating-drum digesters represented 82 % and 8 % of installations surveyed, respectively. It was revealed that sanitation was the main motivational reason for people using biogas plants. Of the 50 plants, 22 (44 %) were functioning satisfactorily, 10 (20 %) were functioning partially, 14 (28 %) were not functioning, 2 (4 %) were abandoned, and the remaining 2 (4 %) were under construction. Reasons for non-functioning include non-availability of dung, breakdown of balloon gasholders, absence of maintenance services, lack of operational knowledge, and gas leakages and bad odour in toilet chambers of biolatrines. This paper recommends the development of a national biogas programme focussing on three major areas -- sanitation, energy, and agricultural fertilizer production; it further supports the development of standardized digester models. The founding of a national body or the establishment of a dedicated unit within an existing organization with the sole aim of coordinating and managing biogas dissemination in Ghana is proposed.

  9. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Baral, Khagendra Raj; Fitamo, Temesgen Mathewos

    2016-01-01

    , utilising SB negatively affects the profitability of biogas production, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium-to large-sized biogas plants, using low shares of SB...

  10. New stakeholder actions and cooperate-design concepts for enhancing a future development and dissemination of the biogas technology in Denmark

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Christensen, Thomas Budde

    2013-01-01

    This paper emphasizes the barriers of implementing biogas plants in Denmark and highlights the many advantages of the technology as far as environmental, energy and agricultural related benefits, and showing the importance of a further biogas development. The most important current barriers...... for new and existing stakeholders to engage more actively in the biogas development. Thus, we propose that municipalities, energy companies and farmers take renewed action and become drivers and facilitators for the biogas sector. Municipalities must for example provide enhanced energy planning supporting...... the implementation of biogas plants, e.g. in their heat planning, whereas energy companies should benefit from the new market opportunities that biogas poses in e.g. distribution of bio-natural gas. Farmers on the other hand must look to alternative ways of implementing biogas plants, through new cooperate...

  11. A regional biogas infrastructure, prospects for the biogas grid

    NARCIS (Netherlands)

    Hengeveld, Evert Jan; van Gemert, Wim; Bekkering, Jan; Broekhuis, A.A.

    2014-01-01

    A model to describe biogas transport costs in a regional grid is presented. In the model biogas is collected to a central location by transport through dedicated pipelines. Costs have been calculated for two different lay-outs of the grid i.e. star and fishbone lay-out. The costs depend on the

  12. Seminar on Biogas in France and in Germany: Regulatory framework, potentials and challenges

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Boettcher, Katharina; Stolpp, Sebastian; Vincent, Eric; Chapron, Thibaut; Schuette, Andreas; Paquin, Laurent; Ingremeau, Claire; Moeller, Kurt; Trommler, Marcus; Denysenko, Velina; Bosso, Valerie

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a Seminar on biogas in France and Germany. In the framework of this French-German exchange of experience, about 120 participants exchanged views on the legal framework, the characteristics of this industry, and the opportunities and technical challenges of biogas use in both countries. Differences and similarities were noticed in both countries, for instance regarding the use of energy cultures and digestates. This document brings together the available presentations (slides) made during this event: 1 - The French biogas in the perspective of 2020 (Pierre-Marie Abadie); 2 - Biogas Opportunities in Germany - Status January 2014 (Katharina Boettcher); 3 - Biogas market in Germany (Sebastian Stolpp); 4 - Biogas in France and Germany, Current status and development outlooks in France (Eric Vincent); 5 - Biogas use in France and Germany - a comparison (Thibaut Chapron); 6 - Alternatives to the use of maize in biogas plants - Current research results from Germany (Andreas Schuette); 7 - Inter-crops in France: analysis of the potentials (Laurent Paquin); 8 - Digestates management in France, legislative and technical advances (Claire Ingremeau); 9 - The management of digestates in Germany: Fertilizer application and status of the art (Kurt Moeller); 10 - Status quo of Biomethane in Germany - Development, Technology and Costs (Marcus Trommler); 11 - GrDF's views and actions on biogas. Biomethane injection in France: state-of-the-art and first status (Valerie Bosso)

  13. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  14. Proposal for an multi-sectoral biogas strategy. Final report; Foerslag till en sektorsoevergripande biogasstrategi. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Compared with other forms of energy, biogas from anaerobic digestion of waste has a special value. No other form of bioenergy can close the natural cycle and thus provide the same unique environmental benefits of nutrient recycling and climate change mitigation. All ways to produce biogas do not create the same environmental benefits. Biogas Production, which involves collecting methane produced in manure piles, waste water treatment plants or landfill gives a large climate benefit. From other facilities - but also in connection with the distribution of methane - there can be a problem in climate respects from leakages. A recycling-oriented waste management is the most competitive form for biogas production. Several of the most attractive substrates are already utilized. An important task is therefore to exploit smaller assets of these substrates, and raise the efficiency of existing biogas production. In order to encourage greater use of less viable substrates, specific measures to increase the biogas production from manure are suggested. For other substrates, mainly crops for biogas production from agricultural sources, the conditions are less favorable. Crops for biogas production can, in general, be a efficient use of land but does not justifies further economic support. In a multi sectoral approach is important to consider and highlight biogas- specific environmental benefits and the complex of issues linked to the cycle of plant nutrients. There are additional opportunities to produce biogas from waste and sludge and to increase the yield from existing landfills. - Anaerobic digestion of manure provides great climate and environmental benefits that justify an economic assistance to improve private profitability. - It is more important to stimulate production than demand. - For larger plants for biogas production, upgrading to automotive fuel is given priority over other uses, where upgrading is economically justified. - Biogas makes the greatest environmental

  15. Simple biogas desulfurization by microaeration - Full scale experience.

    Science.gov (United States)

    Jeníček, P; Horejš, J; Pokorná-Krayzelová, L; Bindzar, J; Bartáček, J

    2017-08-01

    Hydrogen sulfide in biogas is common problem during anaerobic treatment of wastewater with high sulfate concentration (breweries, distilleries, etc.) and needs to be removed before biogas utilization. Physico-chemical desulfurization methods are energetically demanding and expensive compare to biochemical methods. Microaeration, i.e. dosing of small amount of air, is suitable and cost effective biochemical method of sulfide oxidation to elemental sulfur. It has been widely used in biogas plants, but its application in anaerobic reactors for wastewater treatment has been rarely studied or tested. The lack of full-scale experience with microaeration in wastewater treatment plants has been overcome by evaluating the results of seven microaerobic digesters in central Europe. The desulfurization efficiency has been more than 90% in most of the cases. Moreover, microaeration improved the degradability of COD and volatile suspended solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Compost, fertilizer, and biogas production from human and farm wastes in the People's Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M G; Stainforth, J [eds.

    1978-01-01

    This translation is divided into six parts: (1) The Practices and Management of Excreta and Farm Waste Composting, (2) Treatment of Livestock Manure and Human Waste for Reuse, (3) The Two-Partition Three-Tank Hygienic Toilet, (4) Construction of the Fixed Top Fully Enclosed Biogas Plant, (5) Research Results on the Effectiveness of Excreta Treatment in Biogas Plants, and (6) Biogas Production and Reuse from Farm and Human Wastes. A detailed description of the design and construction of fixed top, enclosed, three-stage biogas plants as well as the preparation of the building materials and accessories such as safety valves and gauges, biogas stores and lamps is presented. Safety precautions, examination procedures for water and gas leaks, the procedure of filling the plant, and proper treatment of the sludge and sediment are discussed. The results obtained on the effectiveness of these plants in settling out parasite eggs, in destroying hookworms and ascarid eggs and in totally eliminating schistosome flukes from the fecal liquid are described. It was also determined that the environment in the biogas plant greatly reduced the E. coli index, totally eliminated the Shigella bacillus and spirochetes in 30 hours and the typhoid B bacillus in 44 days. The use of a three-stage septic tank, which includes a biogas plant, in connection with pigpens and toilets is discussed. Particular attention is given to the location, size, structure and construction of the biogas tank. Descriptions of a safety pressure gauge and earthen-ware stoves and lamps operating on biogas are given.

  17. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  18. Logic and discrete mathematics a concise introduction

    CERN Document Server

    Conradie, Willem

    2015-01-01

    A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade.  The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy

  19. Barriers to the development of the biogas industry

    International Nuclear Information System (INIS)

    Foss, N.

    2009-01-01

    Barriers to the development of Canada's biogas industry were explored with the aim of resolving conflicting regulatory issues related to biogas. Four biogas farm systems are currently operating in Ontario, and funding for a further 20 systems is available. However, most projects have been blocked before construction, and other projects continue to be delayed by grid connection and power purchase issues. Planning permission, zoning, environmental regulations, and property taxation issues are also currently challenging the development of the industry. The use of off-farm waste for the plants has also caused planning problems and delays. Land used to transform or manufacture electricity will soon be included in the industrial tax class. The installation of generation capacity may also alter property values. The use of fats, oils, and greases also requires complicated monitoring and processing procedures. Obtaining certificates for waste handling is difficult and time-consuming. Biogas plants also face significant transmission constraints. Prospective generators are required to determine if their local sub-stations have spare capacity. Generators are also required to pay for all the costs associated with their connection to the grid. Connection to Hydro One is more expensive than connections to other distribution companies in Canada, and there are no existing connection standards. Biogas system operators also face difficulties with rural connections. The cost of anti-islanding protection is high. It was concluded that grid access is the key to renewable energy development in Ontario. tabs., figs

  20. Electricity production from biogas in Serbia: Assessment of emissions reduction

    Directory of Open Access Journals (Sweden)

    Cvetković Slobodan M.

    2016-01-01

    Full Text Available Biogas represents a promising source for the production of clean energy. The objective of this paper was to quantify the potential for the reduction of emissions to the environment during the production of electricity from biogas in comparison with environmental effects of the production of the same amount of electricity from fossil resources (coal from Kolubara basin and natural gas. Basis for comparison of environmental impacts in this work was the annual production of electricity in biogas plants of the total capacity of 80 MW. This study has shown that the annual production of electricity from biogas power plants of 80 MW results in: substitution of up to 840 kt of coal from Kolubara basin and 123.2 million m3 of natural gas; reduction in emissions of greenhouse gases in the range of 491.16 kt - 604.97 kt CO2-eq, depending on the energy efficiency of the process of electricity production from biogas; reduction in emissions of greenhouse gases up to 92.37 kt CO2-eq compared to the use of natural gas for electricity generation.

  1. SOFC Operation with Real Biogas

    DEFF Research Database (Denmark)

    Hagen, Anke; Winiwarter, Anna; Langnickel, Hendrik

    2017-01-01

    Biogas is a valuable energy source and will be available in future in systems relying on renewables. It is an attractive fuel for solid oxide fuel cells (SOFC), which are able to utilize the carbon contained in the biogas and which produce electricity with high efficiency. In the current paper......, state‐of‐the‐art SOFCs were studied regarding performance and durability in relation to biogas as fuel and considering important contaminants, specifically sulfur. First, the catalytic behavior in relevant synthetic biogas mixtures was studied and the potential of dry reforming was demonstrated....... Successful long term operation of an SOFC under both, conditions of steam and dry reforming, i.e., addition of steam or CO2 to avoid carbon formation was shown. For the steam reforming case a remarkable period of 3,500 h, hereof 3,000 h in the presence of H2S was achieved. Finally, a real biogas from...

  2. The potential of biogas energy

    International Nuclear Information System (INIS)

    Acaroglu, M.; Hepbasli, A.; Kocar, G.

    2005-01-01

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  3. Realtime control of biogas reactors. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Allan K.

    2010-12-15

    In this project several online methods were connected to a biogas pilot plant designed and built by Xergi A/S (Foulum, Denmark). The pilot plant was composed of two stainless steel tanks used as substrate storage and as digester, respectively. The total volume of the reactor tank was 300 L, the working volume 200 L and the headspace volume 100 L. The process temperature in the biogas reactor was maintained at 52 {+-} 0.5 deg. C during normal operating conditions. The biogas production was measured with a flow meter and a controller was used for automatic control of temperature, effluent removal, feeding and for data logging. A NIRS (near infrared spectrometer) was connected to a recurrent loop measuring on the slurry while a {mu}-GC (micro gas chromatograph) and a MIMS (membrane inlet mass spectrometer) enabled online measurements of the gas phase composition. During the project period three monitoring campaigns were accomplished. The loading rate of the biogas reactor was increased stepwise during the periods while the process was monitored. In the first two campaigns the load was increased by increasing the mass of organic material added to the reactor each day. However, this increasing amount changed the retention time in the reactor and in order to keep the retention time constant an increasing amount of inhibitor of the microbial process was instead added in the third campaign and as such maintaining a constant organic load mass added to the reactor. The effect is similar to an increase in process load, while keeping the load of organic material and hence retention time constant. Methods have been developed for the following online technologies and each technology has been evaluated with regard to future use as a tool for biogas process monitoring: 1) {mu}-GC was able to quantitative monitor important gas phase parameters in a reliable, fast and low-maintenance way. 2) MIMS was able to quantitative monitor gas phase composition in a reliable and fast manner

  4. Small Scale Regenerative Desulfurization of Biogas

    NARCIS (Netherlands)

    Linders, M.J.G.; Stille, L.C.; Miedema, M.C.; Groenestijn, J.W. van; Goetheer, E.L.V.

    2016-01-01

    The application of small scale biogas digesters to supply biogas to households in developing countries is well established. The biogas is used for different applications, amongst other cooking. Generally, no further treatment of the biogas is applied. Hydrogen Sulfide (H2S) is present in varying

  5. Study of Biogas for Power Generation at Pesantren Saung Balong Al-Barokah, Majalengka, West Java

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2012-03-01

    Full Text Available Utilization of biogas from cow manure as a fuel alternative for power plants is done through an anaerobic process. A pilot plant with biogas production of 7 m3/day has been installed at Pesantren Saung Balong. Biogas is used for everyday purposes such as cooking and lighting, and used as pure biogas with 2.500 Watt scale generator. Biogas produced with the rate of 0.080 m3/hr. Biogas produced during the measurement (450 minutes is 0.604 m3. With these data it is predicted that within a day (24 hours biogas which can be generated is equal to 1.92 m3. Meanwhile, consumption of biogas to the generator with 1.047 W load is 0.019 m3/minutes, the generator will operate for approximately 101.05 minutes or 1.68 hours. Thus electricity that can be saved is 1.759 kWh per day or 52.77 kWh per month and electricity cost that can be saved that is equal to Rp.40.896/month. 

  6. Special file: biogas

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Zebboudj, Idir; Mounissamy, Alice; Sandrin-Deforge, Armelle; Petitot, Pauline; De Santis, Audrey

    2015-01-01

    With some graphs indicating the number and types of existing and projected biogas production units, a first article outlines that the development rate is presently too low to be able to reach objectives defined for 2020. A second article comments the results of a benchmark study performed by the ADEME on the biogas sector status in European countries (a map indicates the levels of production and electricity purchase tariffs, the evolution of development conditions, and the types of financial support). In an interview, a GrDF manager in charge of strategy discusses the GrDF strategy on biomethane, the future management of gas networks, the operation of existing biomethane injection sites, future projects, the management of consumption variations, and the issue of biomethane injection tariff. An article then presents an experiment made by farmers in western France who gathered about a methanization site with a unit of injection of biomethane into the natural gas network. The assessment of another experiment (a Methanea methanization unit operated by two farmers in the Ain district) is then presented. The next article gives an overview of the various possibilities proposed by the legal framework for the contract between input providers and the methanization unit operator. Different assessment tools are then presented: Flash BMP (a fast and affordable method of measurement of the biochemical methane potential or BMP to perform feasibility studies), and a software for the precise assessment of the profitability of a methanization unit. In an interview, a member of Weltec Biopower proposes a brief overview of services and products proposed by this company which installs biogas and bio-methanization every where in the world. A last article addresses the recent evolutions and progress of certification of French digestates

  7. 以沼气为纽带的种养结合循环农业系统能值分析%Energy analysis on planting-breeding circulating agriculture ecosystem linked by biogas

    Institute of Scientific and Technical Information of China (English)

    钟珍梅; 黄勤楼; 翁伯琦; 黄秀声; 冯德庆; 陈钟佃

    2012-01-01

    将沼气工程与种植业相结合,构建以沼气为纽带的种养结合的循环农业模式是当前处理猪场粪水的循环农业新模式.该文针对循环农业模式缺乏科学评价体系,以单纯的生猪养殖(模式Ⅰ)为参照,运用能值理论对福清星源畜牧场循环农业模式(模式Ⅱ)进行评价,结果表明模式Ⅱ整体效益优于模式Ⅰ,环境负载率比模式Ⅰ降低了15.00%,可持续发展指数提高15.71%,经济效益比模式Ⅰ提高18.96%,生产效益略低于模式Ⅰ.模式Ⅱ实现“资源减量化、物质再循环和再利用”,并提高生态效益、经济效益,该文为种养结合循环农业模式推广提供科学依据.%Based on combining biogas engineering with planting, constructing circular agriculture model including planting and culture linked by biogas project is used to dealing with pig slurry at present. Taking model Ⅰ (system with only pig-breeding )as a reference, cycle agricultural system of livestock farm in Xingyuan Fuqing (the model Ⅱ )was evaluated using energy theory. Results indicated that whole benefit of the model Ⅱ was better than the the model I ; Compared with the model Ⅰ, the model Ⅱ decreased environmental loading ratio by 15.00%, increased sustainable development index by 15.71% and increased economic benefits by 18.96%, however slightly lowered at production efficiency. It was concluded that the model Ⅱ realized the aim that "reduction of resource, material recycling and reuse", and then eco-efficiency and economic benefits had been improved. This paper provides a scientific basis for extension of cycle agricultural system with planting and breeding.

  8. The Finnish biogas register no 16. Information compiled from 2012; Suomen biokaasulaitosrekisteri n:o 16. Tiedot vuodelta 2012

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.; Kuittinen, V.

    2013-11-01

    In Finland altogether 16 biogas reactor plants have been in operation at different municipal wastewater treatment plants by the end of 2012. Industrial wastewaters were treated anaerobically at three different plants. Farm-scale biogas plants were operating at 10 places. Municipal solid wastes were treated at 10 biogas plants. In 2012, the amount of biogas produced by the reactor installations was 55.9 million m{sup 3} and the combustion of surplus biogas 6.1 million m{sup 3}. Production of thermal, electrical and mechanical energy was 256.2 GWh. As compared to the previous year, there was a notable increase in the total amount of the produced biogas and the energy. There were altogether 40 landfill gas recovery plants operating at the end of 2012. The amount of the recovered biogas was 94.5 million m{sup 3}. The amount of recovered biogas used for the production of electrical and thermal energy was 74.8 million m{sup 3}, producing 312.2 GWh. (orig.)

  9. Evaluation and optimization of nutritional and environmental impact of biogas residues; Bewertung und Optimierung der Naehrstoff- und Umweltwirkung von Gaerrueckstaenden aus der Biogasgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Lichti, Fabian Heribert

    2013-04-29

    On the basis of the dynamic growth of biogas plants in Germany the fertilization with biogas residues has obtained an important role for recirculation of plant nutrients, particularly with regard to nitrogen. In this work the effect of N nutrition with biogas residues was assessed in a 3-year on-field trial conducted at four sites throughout Bavaria. The fertilizing effects were tested by varying rate and time of biogas residues application, using different application techniques and the addition of nitrification inhibitors on several crops. The biogas residues achieved mineral fertilizer equivalents of 30 - 45 %. Overall, the untreated biogas residues showed a slightly increased N efficiency compared to cattle manure, whereas particularly site-dependent differences resulted in large differences in N efficiency of biogas residues.

  10. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    Cossu, R.; Privato, A.; Raga, R.

    2005-01-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed [it

  11. Comparison of VFA titration procedures used for monitoring the biogas process

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Boe, Kanokwan; Fang, Cheng

    2014-01-01

    (GC) analysis. Two of the procedures are commonly used in biogas plants and two are discussed in literature. The results showed that the optimal titration results were obtained when 40mL of four times diluted digested manure was gently stirred (200rpm). Results from samples with different VFA......Titrimetric determination of volatile fatty acids (VFAs) contents is a common way to monitor a biogas process. However, digested manure from co-digestion biogas plants has a complex matrix with high concentrations of interfering components, resulting in varying results when using different...

  12. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in no