WorldWideScience

Sample records for conceptual design tool

  1. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    hand, the main software houses are trying to introduce powerful and effective user-friendly applications in the world of building designers, that are more and more able to fit their specific requirements; on the other hand, some groups of expert users with a basic programming knowledge seem to deal......This paper aims to discuss recent approaches in using more and more frequently computer tools as supports for the conceptual design phase of the architectural project. The present state-of-the-art about software as conceptual design tool could be summarized in two parallel tendencies. On the one...... with the problem of software as conceptual design tool by means of 'scripting', in other words by self-developing codes able to solve specific and well defined design problems. Starting with a brief historical recall and the discussion of relevant researches and practical experiences, this paper investigates...

  2. Conceptual design tool development for a Pb-Bi cooled reactor

    International Nuclear Information System (INIS)

    Lee, K. G.; Chang, S. H.; No, H. C.; Chunm, M. H.

    2000-01-01

    Conceptual design is generally ill-structured and mysterious problem solving. This leads the experienced experts to be still responsible for the most of synthesis and analysis task, which are not amenable to logical formulations in design problems. Especially because a novel reactor such as a Pb-Bi cooled reactor is going on a conceptual design stage, it will be very meaningful to develop the conceptual design tool. This tool consists of system design module with artificial intelligence, scaling module, and validation module. System design decides the optimal structure and the layout of a Pb-Bi cooled reactor, using design synthesis part and design analysis part. The designed system is scaled to be optimal with desired power level, and then the design basis accidents (Dbase) are analyzed in validation module. Design synthesis part contains the specific data for reactor components and the general data for a Pb-Bi cooled reactor. Design analysis part contains several design constraints for formulation and solution of a design problem. In addition, designer's intention may be externalized through emphasis on design requirements. For the purpose of demonstration, the conceptual design tool is applied to a Pb-Bi cooled reactor with 125 M Wth of power level. The Pb-Bi cooled reactor is a novel reactor concept in which the fission-generated heat is transferred from the primary coolant to the secondary coolant through a reactor vessel wall of a novel design. The Pb-Bi cooled reactor is to deliver 125 M Wth per module for 15 effective full power years without any on-site fuel handling. The conceptual design tool investigated the feasibility of a Pb-Bi cooled reactor. Application of the conceptual design tool will be, in detail, presented in the full paper. (author)

  3. Hybrid design tools for conceptual design and design engineering processes: bridging the design gap: towards an intuitive design tool

    NARCIS (Netherlands)

    Wendrich, Robert E.

    2016-01-01

    Hybrid Design Tools; Representation; Computational Synthesis. Non-linear, non-explicit, non-standard thinking and ambiguity in design tools has a great impact on enhancement of creativity during ideation and conceptualization. Tacit-tangible representation based on a mere idiosyncratic and

  4. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  5. A Simulation Tool for the Conceptual Design of Thermonuclear Pulsors

    International Nuclear Information System (INIS)

    Ramos, R.; Gonzalez, J.; Clausse, A.

    2003-01-01

    We worked with an effective model that calculates the neutron production of Plasma Focus devices.From experimental data we obtained different fitting functions for the model lumped parameters.By this way, we obtained a simple tool for neutron yield calculation.This tool is very useful at a conceptual design stage, because it can predict easily if a given PF device would be suitable for a certain application

  6. Developing a Conceptual Design Engineering Toolbox and its Tools

    Directory of Open Access Journals (Sweden)

    R. W. Vroom

    2004-01-01

    Full Text Available In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

  7. Paper-based mixed reality sketch augmentation as a conceptual design support tool

    NARCIS (Netherlands)

    dos Santos, G.J.D.; van Dijk, E.M.A.G.; Vyas, D.M.; Backwell, Alan

    2009-01-01

    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this

  8. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    Science.gov (United States)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  9. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  10. Computational Design Tools for Integrated Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    In an architectural conceptual sketching process, where an architect is working with the initial ideas for a design, the process is characterized by three phases: sketching, evaluation and modification. Basically the architect needs to address three areas in the conceptual sketching phase......: aesthetical, functional and technical requirements. The aim of the present paper is to address the problem of a vague or not existing link between digital conceptual design tools used by architects and designers and engineering analysis and simulation tools. Based on an analysis of the architectural design...... process different digital design methods are related to tasks in an integrated design process....

  11. Status of Conceptual Design Progress for ITER Sector Sub-assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung Kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Ki Hak; Robert, Shaw [ITER Organization, Paul lez Durance (France)

    2010-05-15

    The ITER (International Thermonuclear Experimental Reactor) Tokamak assembly tools are purpose-built tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the ITER organization, Korea has carried out the conceptual design of assembly tools. The 40 .deg. sector assemblies sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. In-pit assembly tools are the purpose-built assembly tools for the completion of final sector assembly at Tokamak hall. The 40 .deg. sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and bracing tools. The process of the ITER sector sub-assembly at assembly hall and status of research and development are described in this paper. The ITER Tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The 40 .deg. sectors are sub-assembled at assembly hall respectively and then 9 sectors which sub-assembled at assembly hall are finally assembled at Tokamak hall. As a basic assembly component, the assembly strategy and tools for the 40 .deg. sector sub-assembly and final assembly at inpit should be developed to satisfy the basic assembly requirements of the ITER Tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, safety, easy operation, efficient maintenance, and so on. The 40 .deg. sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in

  12. A Conceptual Design and Structural Analysis for ITER Mid-plane Brace Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Kihak; Robert, Shaw [ITER Organization, St Paul lez Durance Cedex (France)

    2010-10-15

    The ITER, International Thermonuclear Experimental Reactor, Tokamak machine is mainly composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The ITER Tokamak assembly tools are purpose-built tools to assemble the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the IO (ITER international organization), Korea has carried out the conceptual design of assembly tools with IO cooperation. The 40 .deg. sector assemblies attached mid-plane brace tools sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. The sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and mid-plane brace tools. The mid-plane brace tool is assembled to inner surface of VV and TFCs in phase of sector sub-assembly after completion of all sector components. VV, TFC and VVTS are separated fully before completion of 9 sectors at Tokamak in-pit. In this paper the mid-plane brace tools is introduced about function, structure and status of research and development are also described

  13. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  14. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  15. PRA and Conceptual Design

    Science.gov (United States)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  16. A Conceptual Framework for Integration of Evidence-Based Design with Lighting Simulation Tools

    Directory of Open Access Journals (Sweden)

    Anahita Davoodi

    2017-09-01

    Full Text Available The use of lighting simulation tools has been growing over the past years which has improved lighting analysis. While computer simulations have proven to be a viable tool for analyzing lighting in physical environments, they have difficulty in assessing the effects of light on occupant’s perception. Evidence-based design (EBD is a design method that is gaining traction in building design due to its strength in providing means to assess the effects of built environments on humans. The aim of this study was to develop a conceptual framework for integrating EBD with lighting simulation tools. Based on a literature review, it was investigated how EBD and lighting simulation can be combined to provide a holistic lighting performance evaluation method. The results show that they can mutually benefit from each other. EBD makes it possible to evaluate and/or improve performance metrics by utilizing user feedback. On the other hand, performance metrics can be used for a better description of evidence, and to analyze the effects of lighting with more details. The results also show that EBD can be used to evaluate light simulations to better understand when and how they should be performed. A framework is presented for integration of lighting simulation and EBD.

  17. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  18. Design Research as Conceptual Designing

    DEFF Research Database (Denmark)

    Ylirisku, Salu; Jacucci, Giulio; Sellen, Abigail

    2015-01-01

    define conceptual designing as a constructive framing and re-framing activity, which is mediated by and targeted at the creation of new design concepts. Conceptual designing as an approach is valuable for addressing the fuzziness and ambiguity typical of research that explores novel areas with new...... partners, methods and resources. It is by no means a new phenomenon, and the main contribution of the article is the clarification of conceptual designing as a particular approach to designing and researching. The approach embraces openness, resource-construction and collaboration. We conclude...... that conceptual designing can be especially useful in research and design projects that bring different kinds of people, organizations, technologies and domains together into the forming of new well-founded proposals for development. The presentation of conceptual designing in this paper is written...

  19. A conceptual design of assembly strategy and dedicated tools for assembly of 40o sector

    International Nuclear Information System (INIS)

    Park, H.K.; Nam, K.O.; Kim, D.J.; Ahn, H.J.; Lee, J.H.; Im, K.; Shaw, R.

    2010-01-01

    The International Thermanuclear Experimental Reactor (ITER) tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 o sectors. Each VV/TFCs/VVTS 40 o sector is made up of one 40 o VV, two 20 o TFCs and associated VVTS segments. The 40 o sectors are sub-assembled at assembly hall respectively and then nine 40 o sectors sub-assembled at assembly hall are finally assembled at tokamak in-pit hall. The assembly strategy and tools for the 40 o sector sub-assembly and final assembly should be developed to satisfy the basic assembly requirements of the ITER tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, cost, safety, easy operation, efficient maintenance, and so on. The 40 o sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in-pit assembly tools including lifting tool, central column, radial beams and their supports. This paper describes the current status of the assembly strategy and major tools for the VV/TFCs/VVTS 40 o sector assembly at in-pit hall and assembly hall. The conceptual design of the major assembly tools and assembly process at assembly hall and tokamak in-pit hall are presented also.

  20. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  1. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  2. MEDIATING COGNITIVE TRANSFORMATION WITH VR 3D SKETCHING DURING CONCEPTUAL ARCHITECTURAL DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Farzad Pour Rahimian

    2011-03-01

    Full Text Available Communications for information synchronization during the conceptual design phase require designers to employ more intuitive digital design tools. This paper presents findings of a feasibility study for using VR 3D sketching interface in order to replace current non-intuitive CAD tools. We used a sequential mixed method research methodology including a qualitative case study and a cognitive-based quantitative protocol analysis experiment. Foremost, the case study research was conducted in order to understand how novice designers make intuitive decisions. The case study documented the failure of conventional sketching methods in articulating complicated design ideas and shortcomings of current CAD tools in intuitive ideation. The case study’s findings then became the theoretical foundations for testing the feasibility of using VR 3D sketching interface during design. The latter phase of study evaluated the designers’ spatial cognition and collaboration at six different levels: "physical-actions", "perceptualactions", "functional-actions", "conceptual-actions", "cognitive synchronizations", and "gestures". The results and confirmed hypotheses showed that the utilized tangible 3D sketching interface improved novice designers’ cognitive and collaborative design activities. In summary this paper presents the influences of current external representation tools on designers’ cognition and collaboration as well as providing the necessary theoretical foundations for implementing VR 3D sketching interface. It contributes towards transforming conceptual architectural design phase from analogue to digital by proposing a new VR design interface. The paper proposes this transformation to fill in the existing gap between analogue conceptual architectural design process and remaining digital engineering parts of building design process hence expediting digital design process.

  3. Application of Deterministic and Probabilistic System Design Methods and Enhancements of Conceptual Design Tools for ERA Project

    Science.gov (United States)

    Mavris, Dimitri N.; Schutte, Jeff S.

    2016-01-01

    This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model

  4. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  5. New evaluation methods for conceptual design selection using computational intelligence techniques

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai; Xue, Lihua

    2013-01-01

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  6. Conceptual Design of a Mobile Application for Geography Fieldwork Learning

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2017-11-01

    Full Text Available The use of mobile applications on smartphones has a vast potential to support learning in the field. However, all learning technologies should be properly designed. To this end, we adopt User-Centered Design (UCD to design a mobile application, called GeoFARA (Geography Fieldwork Augmented Reality Application, for university geography fieldwork. This paper is about the conceptual design of GeoFARA based on its use and user requirements. The paper first establishes a review of selected existing mobile AR applications for outdoor use, in order to identify the innovative aspects and the improvements of GeoFARA. Thereafter, we present the results of use and user requirements derived from (1 an online survey of the current use of tools in undergraduate geography fieldwork, (2 a field experiment in which the use of paper maps and a mobile mapping tool were compared, (3 investigations during a human geography fieldwork, (4 post-fieldwork surveys among undergraduates from two universities, (5 our use case, and (6 a use scenario. Based on these requirements, a conceptual design of GeoFARA is provided in terms of technical specifications, main contents, functionalities, as well as user interactions and interfaces. This conceptual design will guide the future prototype development of GeoFARA.

  7. Hybrid Design Tools Intuit Interaction

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kyvsgaard Hansen, P.; Rasmussen, J.; Jorgensen, K.A.; Tollestrup, C.

    2012-01-01

    Non-linear, non-explicit, non-standard thinking and ambiguity in design tools has a great impact on enhancement of creativity during ideation and conceptualization. Tacit-tangible representation based on a mere idiosyncratic and individual approach combined with computational assistance allows the

  8. A conceptual design and structural stabilities of in-pit assembly tools for the completion of final sector assembly at tokamak hall

    International Nuclear Information System (INIS)

    Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Kim, K.K.; Im, K.; Shaw, R.

    2010-01-01

    The final assembly of main components of the International Thermonuclear Experimental Reactor (ITER) tokamak, Vacuum Vessel (VV) and Toroidal Field Coils (TFCs), is achieved by the sequential assembly of the nine sub-assembled 40 o sectors in tokamak pit. Each sub-assembled 40 o sector is composed of one VV 40 o sector, two TFCs, and in-between Vacuum Vessel Thermal Shield (VVTS) segments. Sub-assembly is carried out in the assembly building and then the sub-assembled sectors are transferred into tokamak pit, in sequence, to complete sector assembly. The role of in-pit assembly tool is to support and align the sub-assembled sectors in tokamak pit. It also plays the role of reference datum during assembly until the completion of main components assembly. Korea Domestic Agency (KO DA) has developed the conceptual design of most ITER purpose-built assembly tools under the collaboration with the ITER Organization. Among the conceptual designs carried out, this paper describes the function, the structure, the selected material and the design results of the in-pit assembly tools comprising central column, radial beams and their supports, TF inner supports and in-pit working floor. The results of structural analysis using ANSYS for the various loading cases are given as well. The resultant stresses and deflections turned out to fall within the allowable ranges.

  9. A Conceptual Design and Analysis Method for Conventional and Unconventional Airplanes

    NARCIS (Netherlands)

    Elmendorp, R.J.M.; Vos, R.; La Rocca, G.

    2014-01-01

    A design method is presented that has been implemented in a software program to investigate the merits of conventional and unconventional transport airplanes. Design and analysis methods are implemented in a design tool capable of creating a conceptual design based on a set of toplevel requirements.

  10. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Science.gov (United States)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  12. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  13. Evalution of BIM and Ecotect for Conceptual Architectural Design Analysis

    DEFF Research Database (Denmark)

    Thuesen, Niels; Kirkegaard, Poul Henning; Jensen, Rasmus Lund

    2010-01-01

    The main goal of the present paper is to investigate how BIM tools and Ecotect can be integrated as active part of an integrated design process for conceptual architectural design. The integrated design has an interaction between the skills of the architect and the engineer thought-out the process...... and thereby avoiding problems solving after the design has been finalised. The process has been analysed from an architect's point of view dealing with design at fictive sites in Copenhagen. The results of the research indicate that BIM tools combined with Ecotect can deliver useable qualitative input...

  14. Configuration management of the EU DEMO conceptual design data

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Botond; Shannon, Mark [EUROfusion Consortium, PPPT Department, Garching, Boltzmannstr. 2 (Germany); Marzullo, Domenico [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Woodley, Colin; Rowe, Steve [CCFE, Culham Science Centre, Oxfordshire OX14 3DB, Abingdon (United Kingdom); Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  15. Configuration management of the EU DEMO conceptual design data

    International Nuclear Information System (INIS)

    Meszaros, Botond; Shannon, Mark; Marzullo, Domenico; Woodley, Colin; Rowe, Steve; Di Gironimo, Giuseppe

    2016-01-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  16. Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft

    Science.gov (United States)

    Silva, Christopher; Johnson, Wayne; Solis, Eduardo

    2018-01-01

    Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.

  17. The impact of CmapTools utilization towards students' conceptual change on optics topic

    Science.gov (United States)

    Rofiuddin, Muhammad Rifqi; Feranie, Selly

    2017-05-01

    Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.

  18. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  19. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  20. Data management in an object-oriented distributed aircraft conceptual design environment

    Science.gov (United States)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  1. Conceptual optimal design of jackets

    DEFF Research Database (Denmark)

    Sandal, Kasper; Verbart, Alexander; Stolpe, Mathias

    Structural optimization can explore a large design space (400 jackets) in a short time (2 hours), and thus lead to better conceptual jacket designs.......Structural optimization can explore a large design space (400 jackets) in a short time (2 hours), and thus lead to better conceptual jacket designs....

  2. Robust Unconventional Interaction Design and Hybrid Tool Environments for Design and Engineering Processes

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kruiper, Ruben

    2017-01-01

    This paper investigates how and whether existing or current design tools, assist and support designers and engineers in the early-phases of ideation and conceptualization stages of design and engineering processes. The research explores how fluidly and/or congruously technology affords cognitive,

  3. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    Science.gov (United States)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-10-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  4. Mindfully implementing simulation tools for supporting pragmatic design inquiries

    NARCIS (Netherlands)

    Hartmann, Timo; olde Scholtenhuis, Léon Luc; Zerjav, Vedran; Champlin, Carissa J

    2015-01-01

    Based upon a conceptualization of the engineering design process as pragmatic inquiry, this paper introduces a framework for supporting designers and design managers with a better understanding of the trade-offs required for a successful implementation of simulation tools. This framework contributes

  5. The conceptual design of the ITER CODAC system

    International Nuclear Information System (INIS)

    Farthing, J.; Greenwald, M.; Jo Lister; Izuru Yonekawa

    2006-01-01

    The COntrol Data Access and Communication (CODAC) system for ITER is presently under conceptual design, revising the previous design dating from 1998. The design concentrates on the major perceived challenges: 35-year life of the project for maintenance and evolution; harmonizing strict access security with world-wide participation in the exploitation of ITER; the complexity of CODAC which has to control a large number of disparate procurements systems, 24 hours/365 days; the particular '' in-kind '' procurement of all Plant Systems. The design has so-far concentrated on appropriate methods for combating these challenges. Concepts include: strict application and enforcement of standards for interfacing procured systems at a high '' black-box '' level; reliance on standard high performance networks; reliance on the self-description of the procured systems; maximizing the use of data-driven applications, rather than device-specific coding. The interfacing and procurement specifications will be presented, especially the self-description of '' black-box '' systems, and the boundaries of CODAC will be defined. The breakdown of CODAC into a number of manageable systems and their interfaces will be outlined. The data volumes and data rates will be estimated, suggesting an appropriate conceptual design of the various parts of the CODAC network. There are no required CODAC features which could not be provided with today's tools. However, one element of this conceptual design is to identify areas where ideal solutions are not clearly available for which appropriate R(and)D will be proposed. (author)

  6. SCALES : A System Level Tool for Conceptual Design of Nano- and Microsatellites

    NARCIS (Netherlands)

    Aas, C.; Zandbergen, B.T.C.; Hamann, R.J.; Gill, E.K.A.

    2009-01-01

    A satellite design tool has been developed offering systems engineers a fast way to analyze the feasibility of a particular design concept. The tool differs from available tools on the market in that it is specifically targeted at small satellites in the mass range of 1-50 kg, and with a limited

  7. Virtual Reality based User Interface for Conceptual Design and Rapid Prototyping

    OpenAIRE

    Jadhav, Saurabh Subhash

    2017-01-01

    Computer Aided Design and Engineering (CAD/ CAE) tools currently available in the market have dramatically improved since their inception. In product development, CAD/ CAE has enabled the user to design, test, analyze and optimize the product virtually even before the first prototype is built. Use of direct modeling for product conceptualization allows the designer to create concept design iterations freely, quickly, flexibly and fast optimization. While modeling geometric databases have been...

  8. Landing Gear Integration in Aircraft Conceptual Design. Revision

    Science.gov (United States)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  9. Conceptual design for the next JAEA's enterprise resource planning system

    International Nuclear Information System (INIS)

    Kimura, Hideo; Aoyagi, Tetsuo; Sakai, Manabu; Sato, Taiichi; Tsuji, Minoru

    2008-11-01

    JAEA developed the ERP (Enterprise Resource Planning) system at the establishment in 2005, aiming to support and enhance its business-critical task such as financial accounting and contract management. We considered the conceptual design of the next ERP system, and we implemented the prototype system to validate its effectiveness. Moreover, we implemented the simple add-on tool for rapid and easy development. At the result, we gauged the future prospects that the XML-centric system which we designed will offer high modularity, flexibility, connectivity between other systems, independence among subsystems. The simple add-on tool also demonstrated its effectiveness. (author)

  10. Cost and performance analysis of conceptual designs of physical protection systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Snell, M.S.; Sandoval, J.S.; Potter, C.S.

    1998-01-01

    CPA -- Cost and Performance Analysis -- is a methodology that joins Activity Based Cost (ABC) estimation with performance based analysis of physical protection systems. CPA offers system managers an approach that supports both tactical decision making and strategic planning. Current exploratory applications of the CPA methodology are addressing analysis of alternative conceptual designs. To support these activities, the original architecture for CPA, is being expanded to incorporate results from a suite of performance and consequence analysis tools such as JTS (Joint Tactical Simulation), ERAD (Explosive Release Atmospheric Dispersion) and blast effect models. The process flow for applying CPA to the development and analysis conceptual designs is illustrated graphically

  11. ARCHITECTURAL FORM CREATION IN THE DESIGN STUDIO: PHYSICAL MODELING AS AN EFFECTIVE DESIGN TOOL

    Directory of Open Access Journals (Sweden)

    Wael Abdelhameed

    2011-11-01

    Full Text Available This research paper attempts to shed more light on an area of the design studio, which concerns with the use of physical modeling as a design medium in architectural form creation. An experiment has been carried out during an architectural design studio in order to not only investigate physical modeling as a tool of form creation but also improve visual design thinking that students employ while using this manual tool. To achieve the research objective, a method was proposed and applied to track form creation processes, based upon three types of operation, namely: sketching transformations, divergent physical-modeling transformations, and convergent physical-modeling transformations. The method helps record the innovative transitions of form during conceptual designing in a simple way. Investigating form creation processes and activities associated with visual design thinking enables the research to conclude to general results of the role of physical modeling in the conceptual phase of designing, and to specific results of the methods used in this architectural design studio experiment.

  12. Scenario for concurrent conceptual assembly line design: A case study

    Science.gov (United States)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  13. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  14. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    Science.gov (United States)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  15. A methodology for aeroelastic constraint analysis in a conceptual design environment

    Science.gov (United States)

    de Baets, Peter Wilfried Gaston

    The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method

  16. New Methods in Design Education: The Systemic Methodology and the Use of Sketch in the Conceptual Design Stage

    Science.gov (United States)

    Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis

    2011-01-01

    This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…

  17. Design of the ITER tokamak assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunki [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of)], E-mail: hkpark@nfri.re.kr; Lee, Jaehyuk; Kim, Taehyung [SFA Engineering Corp., 42-7 Palyong-dong, Changwon-si, Gyeongsangnam-do 641-847 (Korea, Republic of); Song, Yunju [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of); Im, Kihak [ITER Organization, CEA Cadarasche, 13108 Saint Paul-lez-Durance (France); Kim, Byungchul; Lee, Hyeongon; Jung, Ki-Jung [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of)

    2008-12-15

    ITER tokamak assembly is mainly composed of lower cryostat activities, sector sub-assembly, sector assembly, in-vessel activities and ex-vessel activities. The main tools for sector sub-assembly procedures consists of upending tool, sector lifting tool, vacuum vessel support and bracing tool and sector sub-assembly tool. Conceptual design of assembly tools for sector sub-assembly procedures is described herein. The basic structure for upending tool has been developed under the assumption that upending is performed with crane which will be installed in Tokamak building. Sector lifting tool is designed to adjust the position of a sector to minimize the difference between the center of the tokamak building crane and the center of gravity of the sector. Sector sub-assembly tool is composed of special frame for the fine adjustment of position control with 6 degrees of freedom. The design of VV support and bracing tool for four kinds of VV 40 deg. sectors has been developed. Also, structural analysis for upending tool, sector sub-assembly tool has been studied using ANSYS for the situation of an applied load with the same dead weight multiplied by 3/4. The results of structural analyses for these tools were below the allowable values.

  18. Multi Criteria Decision Support for Conceptual Integral Design of Flex(eble)(en)ergy Infrastructure

    NARCIS (Netherlands)

    Zeiler, W.; Savanovic, P.; Houten, van M.A.; Boxem, G.; Ehrgott, M; Naujoks, B; Stewart, T.J.; Wallenius, J

    2009-01-01

    The use of sustainable energy will soon be the major guiding principle for building and spatial planning practice. This asks for new sustainable energy infrastructures which need new design approaches. Design tools for the energy infrastructure of the built environment in the conceptual phase of

  19. A Conceptual Design Model for CBT Development: A NATO Case Study

    Science.gov (United States)

    Kok, Ayse

    2014-01-01

    CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…

  20. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  1. Exploratory shaft conceptual design report: Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Permian Basin locatd in the western part of Texas. Conceptualized designs for other possible locations (Paradox Basin in Utah and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  2. Exploratory shaft conceptual design report: Paradox Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Paradox Basin located in the southeastern part of Utah. Conceptualized designs for other possible locations (Permian Basin in Texas and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  3. Teaching conceptual design

    NARCIS (Netherlands)

    Ferreira, J.; Christiaans, H.H.C.M.

    2012-01-01

    This paper presents the first observational study of an ongoing research project. The research focuses on ‘teaching conceptual design’ and on the investigation of new teaching methods and strategies. Presently, in the commonly established educational setting, students practice the role of designing

  4. Vergnaud s Theory of Conceptual Fields as a tool for the didactic planning

    Directory of Open Access Journals (Sweden)

    Gabriel Dias de Carvalho Júnior

    2008-08-01

    Full Text Available The aim of this work is to present Vergnaud s Theory of Conceptual Fields (1990 as a tool for the design and analysis of Science teaching sequences. The classroom study was conducted in a Brazilian High School working with Thermal Physics. It was part of a Master Degree Thesis presented by one of the authors (CARVALHO JR., 2005, in which we followed up the learning pathways of 7 students. The results of this study were analyzed using the Theory of Conceptual Fields. We shall emphasize the main concepts and categories of Vergnaud s Theory and the appropriation we have done about them in this particular research.

  5. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  6. CONCEPTUAL PRODUCT DESIGN IN VIRTUAL PROTOTYPING

    Directory of Open Access Journals (Sweden)

    Debeleac Carmen

    2009-07-01

    Full Text Available A conceptual model of the industrial design process for isolation against vibrations is proposed and described. This model can be used to design products subject to functional, manufacturing, ergonomic, aesthetic constraints. In this paper, the main stages of the model, such as component organization, conception shape, product detailing and graphical design are discussed. The work has confirmed the validity of proposed model for rapid generation of aesthetic preliminary product designs using the virtual prototyping technique, by one of its main component that is conceptual product design.

  7. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    Science.gov (United States)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  8. Conceptual Design for the In-Pile Test Section(IPS) Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Shim, Bong Sik; Lee, Chung Young; Chi, Dae Young; Park, Su Ki; Ahn, Sung Ho; Kim, Young Ki; Lee, Kye Hong; Kim, Kwan Hyun

    2009-01-15

    Conceptual design on the IPS, instrumentation and 1/4' Tubing, test fuel supports, test fuel inspection station and inner assembly O-ring replacement was suggested for their improvement. There is a need Jacking bolt on the Top flange for the inner assembly disassemble from the outer assembly and the replacement about the top flange O-ring to metal gasket to secure pressure boundary. Mechanical sealing was suggested instead of brazing. Instrumentation and tubing route should be modified for the reduction of bending and protection from unexpected occasion. Concept on the test fuel inspection station under the consideration of canal dimension. Top flange Bolt handling tool, O-ring replacement platform and O-ring replacement tool was designed for the O-ring replacement at the inner assembly.

  9. Design of a new research reactor : 1st year conceptual design

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.

    2004-01-01

    A new research reactor model satisfying the strengthened regulatory environments and the changed circumstances around nuclear society should be prepared for the domestic and international demand of research reactor. This can also lead to the improvement of technologies and fostering manpower obtained during the construction and the operation of HANARO. In this aspect, this study has been launched and the 1st year conceptual design has been carried out in 2003. The major tasks performed at the first year of conceptual design stage are as follows; Establishments of general design requirements of research reactors and experimental facilities, Establishment of fuel and reactor core concepts, Preliminary analysis of reactor physics and thermal-hydraulics for conceptual core, Conceptual design of reactor structure and major systems, International cooperation to establish foundations for exporting

  10. High performance APCS conceptual design and evaluation scoping study

    International Nuclear Information System (INIS)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO x control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities

  11. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  12. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  13. Interactive tool that empowers structural understanding and enables FEM analysis in a parametric design environment

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Parigi, Dario; Kirkegaard, Poul Henning

    2014-01-01

    This paper introduces an interactive tool developed to integrate structural analysis in the architectural design environment from the early conceptual design stage. The tool improves exchange of data between the design environment of Rhino Grasshopper and the FEM analysis of Autodesk Robot...... Structural Analysis. Further the tool provides intuitive setup and visual aids in order to facilitate the process. Enabling students and professionals to quickly analyze and evaluate multiple design variations. The tool has been developed inside the Performance Aided Design course at the Master...... of Architecture and Design at Aalborg University...

  14. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  15. Instruction in Divergent Thinking for Conceptual Design: A Case Study Based on a Corkscrew

    OpenAIRE

    Ying-Chieh Liu; Chin-Yu Kao; Amaresh Chakrabarti

    2015-01-01

    Abstraction is a powerful tool for designers in the conceptual design stage. Such abstractions take various forms, and little is known as to how a particular method of abstraction would support designers in specific design cases. A method is proposed which includes a deliberate step for divergent thinking. The method presents learners with an abstract representation of an existing artifact, and encourages them to explore potential concepts that are different in style but are based on the same...

  16. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  17. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  18. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  19. Conceptual Underpinnings for Innovation Policy Design

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    of innovation policy. This serves two important purposes. Firstly, it allows the identification of problems in an innovation system that require public policy intervention through the choice of appropriate policy instruments. Secondly, it allows a theoretically based identification of input indicators......In cases where innovation indicators and data fail to serve properly as a (necessary) basis for the design of innovation policies, it often has its roots in conceptual unclarities in the underlying concepts. The aim of this paper is to provide a theoretical and conceptual basis for the design...

  20. Conceptual design of a laser fusion power plant

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Meier, W.R.; Monsler, M.J.

    1977-01-01

    A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned

  1. Effectiveness of Persona with Personality Traits on Conceptual Design

    DEFF Research Database (Denmark)

    Anvari, Farshid; Richards, Deborah; Hitchens, Michael

    2015-01-01

    traits) on students’ performance in creating conceptual designs. Our results indicate that the students were able to identify the personality traits of personas and their ratings of the personalities match closely with the intended personalities. A majority of the participants stated that their designs...... were tailored to meet the needs of the given personas’ personality traits. Results suggest that the Holistic Personas can help students to take into account personality traits in the conceptual design process. Further studies are warranted to assess the value of incorporating Holistic Personas......Conceptual design is an important skill in Software Engineering. Teaching conceptual design that can deliver a useful product is challenging, particularly when access to real users is limited. This study explores the effects of the use of Holistic Personas (i.e. a persona enriched with personality...

  2. Use of probabilistic safety assessment in structuring conceptual design of accident mitigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Nishiura, Hiroshi; Urata, Shigeru; Tsujikura, Yonezo [Kansai Electric Power Co., Inc., Osaka (Japan); Kuroiwa, Katsuya; Fujimoto, Haruo

    2000-07-01

    When there is an opportunity to develop a new safety design, it should be a rational design that serves its intended purpose while giving due consideration to factors such as reliability, economic efficiency, and others. Therefore, we have aimed to establish a methodical conceptual design process for accident mitigation systems as part of the core cooling system. In this consideration, we have proposed a process made up of 4 steps and have confirmed that the PSA method can be used as a tool in this process. (author)

  3. Use of probabilistic safety assessment in structuring conceptual design of accident mitigation systems

    International Nuclear Information System (INIS)

    Nishiura, Hiroshi; Urata, Shigeru; Tsujikura, Yonezo; Kuroiwa, Katsuya; Fujimoto, Haruo

    2000-01-01

    When there is an opportunity to develop a new safety design, it should be a rational design that serves its intended purpose while giving due consideration to factors such as reliability, economic efficiency, and others. Therefore, we have aimed to establish a methodical conceptual design process for accident mitigation systems as part of the core cooling system. In this consideration, we have proposed a process made up of 4 steps and have confirmed that the PSA method can be used as a tool in this process. (author)

  4. Performance Assessment Strategies: A computational framework for conceptual design of large roofs

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-01-01

    Full Text Available Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies

  5. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate

  6. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  7. A conceptual toolbox for designing CSCW applications

    DEFF Research Database (Denmark)

    Bødker, Susanne; Christiansen, Ellen

    1995-01-01

    This paper presents a conceptual toolbox, developed to support the design of CSCW applications in a large Esprit project, EuroCODE. Here, several groups of designers work to investigate computer support for cooperative work in large use organizations, at the same time as they work to develop...... an open development platform for CSCW applications. The conceptual toolbox has been developed to support communication in and among these design groups, between designers and users and in future use of the open development platform. Rejecting the idea that one may design from a framework describing CSCW......, the toolbox aims to support design by doing and help bridging between work with users, technical design, and insights gained from theoretical and empirical CSCW research....

  8. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  9. ITER conceptual design report

    International Nuclear Information System (INIS)

    1991-01-01

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  10. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  11. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  12. Methodology for the conceptual design of solar kitchens

    International Nuclear Information System (INIS)

    Macia G, A F; Estrada V, D A; Chejne J, F; Velasquez, H I; Rengifo, R

    2005-01-01

    A detailed description of the methodology for the conceptual design of solar kitchens has appeared, which allows its detailed design. The methodology is based on three main phases that natural and has been very intuitively identified given to the characteristics and conditions of the project: conceptual phase, detail phase and execution phase

  13. Conceptual Chemical Process Design for Sustainability.

    Science.gov (United States)

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  14. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  15. SLC ir conceptual design

    International Nuclear Information System (INIS)

    Keller, L.P.

    1982-01-01

    Work on a one interaction-region, push-pull conceptual design for the SLC is described. The concept which has received the most attention is described. It is a below-ground hall - a 15 m deep rectangular pit covered by a surface building which houses counting rooms, power supplies, cryogenics and other auxiliary equipment

  16. Research on SDG-Based Qualitative Reasoning in Conceptual Design

    Directory of Open Access Journals (Sweden)

    Kai Li

    2013-01-01

    Full Text Available Conceptual design is the initial stage throughout the product life cycle, whose main purposes include function creation, function decomposition, and function and subfunction designs. At this stage, the information about product function and structure has the characteristics of imprecision, incompleteness, being qualitative, and so forth, which will affect the validity of conceptual design. In this paper, the signed directed graph is used to reveal the inherent causal relationship and interactions among the variables and find qualitative interactions between design variables and design purpose with the help of causal sequence analysis and constraint propagation. In the case of incomplete information, qualitative reasoning, which has the function of qualitative behavior prediction, can improve conceptual design level aided by the computer. To some extent, qualitative reasoning plays a supplementary role in evaluating scheme and predicting function. At last, with the problem of planar four-bar mechanism design, a qualitative reasoning flowchart based on the Signed Directed Graph is introduced, and an analysis is made of how to adjust design parameters to make the trajectory of a moving point reach to the predetermined position so as to meet the design requirements and achieve the effect that aided designers expect in conceptual design.

  17. Integrated design support systems for conceptual design of a space power reactor

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Yoshikawa, Hidekazu; Takahashi, Makoto; Takeoka, Satoshi; Nagamatsu, Takashi; Ishizaki, Hiroaki

    1999-01-01

    In the process of conceptual design of large and complex engineering systems such as a nuclear power reactor, there must be various human works by several fields of engineers on each stage of design, analysis and evaluation. In this study, we have rearranged the design information to reduce the human workloads and have studied an efficient method to support the conceptual design works by new information technologies. For this purpose, we have developed two design support environments for conceptual design of a space power reactor as a concrete design target. When constructing an integrated design support environment, VINDS, which employs virtual reality(VR) technology, we focused on visualization of physical structure, functional organization and analysis calculation with full usage of easy perception and direct manipulation of VR. On the other hand, when constructing another asynchronous and distributed design support environment, WINDS, which employs WWW technology, we improved the support functions for cooperative design works among various fields of experts. In this paper, the basic concepts, configurations and functions of the design support environments are first described, then the future improvement is surveyed by their intercomparison. (author)

  18. FGMReview: design of a knowledge management tool on female genital mutilation.

    Science.gov (United States)

    Martínez Pérez, Guillermo; Turetsky, Risa

    2015-11-01

    Web-based literature search engines may not be user-friendly for some readers searching for information on female genital mutilation. This is a traditional practice that has no health benefits, and about 140 million girls and women worldwide have undergone it. In 2012, the website FGMReview was created with the aim to offer a user-friendly, accessible, scalable, and innovative knowledge management tool specialized in female genital mutilation. The design of this website was guided by a conceptual model based on the use of benchmarking techniques and requirements engineering, an area of knowledge from the computer informatics field, influenced by the Transcultural Nursing model. The purpose of this article is to describe this conceptual model. Nurses and other health care providers can use this conceptual model to guide their methodological approach to design and launch other eHealth projects. © The Author(s) 2014.

  19. Systematic approach to the conceptual design of physical protection systems for nuclear facilities

    International Nuclear Information System (INIS)

    1978-05-01

    A three-step approach is described which includes (1) facility characterization, (2) development and evaluation of hardware-based safeguards systems configurations, and (3) hardware and response force trade-off analysis. The purpose of the report is to establish a vehicle for initial examination and discussion by potential industry and government users of a formal sequence of activities for the conceptual design of physical protection systems and to identify currently available design tools, such as application reports, handbooks, and computer codes which might support these activities. 17 figs

  20. Safety methodology implementation in the conceptual design phase of a fusion reactor

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Elbez-Uzan, J.

    2007-01-01

    The licensing of ITER in France represents the first process for licensing a fusion facility in the framework of an experimental device with a total Tritium inventory of 3 kg. The main ITER parameters are far from those expected in the future demonstration reactors where the fusion power will be at least 5 times higher and the additional heating power could also reach up to 5 times the one foreseen in ITER. Main safety requirements for these reactors are based, among other conditions, on their inherent features as low amount of fuel, very low impurity content of structural materials, minimum waste repository, no active systems for safe shut-down, and no need for evacuation of population after the most severe accident. The design of such reactors is at the stage of conceptual studies and is mainly dealing with plasma performances, tritium breeding, blanket/divertor designs and solution of engineering issues, as well as bounding accidents or classification of waste. The methodological approach for integrating safety analysis as a tool for optimizing the design of the overall fusion installation for future reactors in the conceptual design phase is sketched, including the machine itself and the different auxiliary nuclear buildings. (author)

  1. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  2. Conceptual design of RFC reactor

    International Nuclear Information System (INIS)

    Kumazawa, R.; Adati, K.; Hatori, T.; Ichimura, M.; Obayashi, H.; Okamura, S.; Sato, T.; Watari, T.; Emmert, G.A.

    1982-01-01

    A parametic analysis and a preliminary conceptual design for RFC reactor (including cusp field) with and without alpha particle heating are described. Steady state operations can be obtained for various RF ponderomotive potential in cases of alpha particle heating. (author)

  3. Current status and new directions in conceptual aircraft design

    Science.gov (United States)

    Kidwell, George H., Jr.

    1990-01-01

    The following topics are discussed: systems analysis branch questions; systems analysis; historical perspective; background technology; conceptual design/evaluation program organization; system integration/vehicle closure; conceptual design synthesis programs; numerical optimization/mathematical programming; and current R&D interests. The discussion is presented in viewgraph format.

  4. A Study on Conceptual Design of Mechatronic System

    Institute of Scientific and Technical Information of China (English)

    YAO Li-ming; ZOU Ling-lin

    2008-01-01

    The conceptual design of mechatronic systems is addressed under the thrust of concurrent engineering and an enhanced conceptual design methodology describing the early design stage of mechatmnic systems is presented through an example illustration of a pick and place robot.This methodology treats each feasible solution as a solution strategy.In the methodology,Quality Function Deployment (QFD)is used as a baseline for the analysis of the mapping from customers to engineering requirements,Axiomatic Design(AD)is adopted as a guideline to generate feasible,good design solution alternatives,and Theory of Inventive Problem Solving(TRIZ)is applied to deal with domain conflicts in design.

  5. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume of the conceptual design report contains detailed information on the following: (1) plasma engineering, (2) tandem mirror optimization code, (3) configuration, (4) assembly and maintenance, (5) availability, (6) site and facilities, (7) magnet design, (8) end-cell shielding, (9) drift pumping system, (10) rf systems, (11) negative-ion neutral beam injection system, (12) sloshing-ion beamline, and (13) power balance and electrical systems

  6. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  7. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  8. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  9. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an

  10. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    International Nuclear Information System (INIS)

    Carro, C.A.

    2010-01-01

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 (micro)m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

  11. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  12. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and

  13. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  14. Conceptual design of repository facilities

    International Nuclear Information System (INIS)

    Beale, H.; Engelmann, H.J.; Souquet, G.; Mayence, M.; Hamstra, J.

    1980-01-01

    As part of the European Economic Communities programme of research into underground disposal of radioactive wastes repository design studies have been carried out for application in salt deposits, argillaceous formations and crystalline rocks. In this paper the design aspects of repositories are reviewed and conceptual designs are presented in relation to the geological formations under consideration. Emphasis has been placed on the disposal of vitrified high level radioactive wastes although consideration has been given to other categories of radioactive waste

  15. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina

    2015-01-01

    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  16. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina, E-mail: ekibrit@ipen.br, E-mail: jeprates@ipen.br, E-mail: glongo@ipen.br, E-mail: salvetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  17. Conceptual design of EAST flexible in-vessel inspection system

    International Nuclear Information System (INIS)

    Peng, X.B.; Song, Y.T.; Li, C.C.; Lei, M.Z.; Li, G.

    2010-01-01

    Remote handling technology, especially the flexible in-vessel inspection system (FIVIS) without breaking the working condition of the vacuum vessel, has been identified as one major challenge on the maintenance for the future tokamak fusion reactor. The FIVIS introduced here is specially developed for EAST superconducting tokamak that has actively cooled plasma facing components (PFCs). It aims flexible close-up inspection of EAST PFCs to help the understanding of operation issues that could occur in the vacuum vessel. This paper resumes the preliminary work of the FIVIS project, including the requirement analysis and the development of the conceptual design. The FIVIS consists out of a long reach multi-articulated manipulator and a process tool. The manipulator has a modular design for its subsystems and can reach all areas of the first wall in the distance of 15 mm and in the range of ±90 o along toroidal direction. It will be folded and hidden in the designated horizontal port during plasma discharge period.

  18. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  19. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  20. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  1. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  2. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    tems/components on holistic dynamic performance of mechatronic systems ... Conceptual design is a typical ill-definition solving problem. ..... Li R 2004 Research on theory and method of scheme creative design of mechatronic system. School.

  3. AP600 - an ALWR conceptual design

    International Nuclear Information System (INIS)

    Bruce, R.A.; Vijuk, R.P.

    1988-01-01

    The Electric Power Research Institute is spearheading an effort to develop utility requirements for the Advanced Light Water Reactor (ALWR) plants which will become the next generation nuclear power plants for the U.S. This EPRI ALWR Program involves utilities, the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and various industry suppliers. The ALWR Program is aimed at ALWR plants which incorporate step improvements in safety, reliability, operability and power generation costs. As part of the ALWR efforts, a Westinghouse team is conducting conceptual design development of a PWR plant design called the AP600, reflecting advanced passive safety features and the chosen 600 MWe plant output. The AP600 conceptual design provides significant improvements while employing proven component technology. This paper describes the basic reactor and primary coolant system features, the passive safety system features, and plant arrangement/construction features of AP600

  4. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  5. Conceptual design of a synchronous Mars telecommunications satellite

    Science.gov (United States)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  6. Development of 3D CAD system as a design tool for PEACER development

    International Nuclear Information System (INIS)

    Jeong, Kwang Jin; Lee, Hyoung Won; Jeong, Seung Ho; Shin, Jong Gye; Hwang, Il Soon

    2003-01-01

    In an effort to resolve generic concerns with current power reactors, PEACER has been developed as a proliferation-resistant waste transmutation reactor based on a unique combination of technologies of a proven fast reactor and the heavy liquid metal coolant. In order to develop engineering design and visualize its performance, a three-dimensional computer aided design (3D CAD) method has been devised. Based on conceptual design, system, structure and components of PEACER are defined. Using results from finite element stress analyzer, computational fluid dynamics tool, nuclear analysis tool, etc, 3D visualization is achieved on the geometric construct based on CATIA. A 3D visualization environment is utilized not only to overcome the integration complexity but also to manipulate data flow such as meshing information used in analysis codes. The 3D CAD system in this paper includes an open language, Virtual Reality Modeling Language (VRML), to deliver analyses results on 3D objects, interactively. Such modeling environment is expected to improve the efficiency of designing the conceptual reactor, PEACER, reducing time and cost. Results of 3D design and stress analysis simulation will be presented as an example case. (author)

  7. Development of 3D CAD system as a design tool for PEACER development

    International Nuclear Information System (INIS)

    Lee, H. W.; Jung, K. J.; Jung, S. H.; Hwang, I. S.

    2003-01-01

    In an effort to resolve generic concerns with current power reactors, PEACER[1] has been developed as a proliferation-resistant waste transmutation reactor based on a unique combination of technologies of a prove a fast reactor and the heavy liquid metal coolant. In order to develop engineering design and visualize its performance, a three dimensional computer aided design (3D CAD) method has been devised. Based on conceptual design, system, structure and components of PEACER are defined. Using resuIts from finite element stress analyzer, computational fluid dynamics tool, nuclear analysis tool, etc, 3D visualization is achieved on the geometric construct based on CATIA[3]. A 3D visualization environment is utilized not only to overcome the integration complexity but also to manipulate data flow such as meshing information used in analysis codes. The 3D CAD system in this paper includes an open language, Virtual Reality Modeling Language (VRML)[4,5], to deliver analyses results on 3D objects, interactively. Such modeling environment is expected to improve the efficiency of designing the conceptual reactor, PEACER, reducing time and cost. ResuIts of 3D design and system performance simulation will be presented

  8. NPP-Nuclear Island Design. From conceptual design to Project execution

    International Nuclear Information System (INIS)

    Lanchet, Dominique

    2014-01-01

    The second day opened with the lecture of Dominique Lanchet, Design Senior Vice President at AREVA Engineering and Project. Dominique Lanchet gave us an overview of the steps of a Nuclear Island Design creation from the conceptual design to the project execution, giving the examples of the EPR and ATMEA1 TM nuclear reactors

  9. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  10. Collaboratively Conceived, Designed and Implemented: Matching Visualization Tools with Geoscience Data Collections and Geoscience Data Collections with Visualization Tools via the ToolMatch Service.

    Science.gov (United States)

    Hoebelheinrich, N. J.; Lynnes, C.; West, P.; Ferritto, M.

    2014-12-01

    Two problems common to many geoscience domains are the difficulties in finding tools to work with a given dataset collection, and conversely, the difficulties in finding data for a known tool. A collaborative team from the Earth Science Information Partnership (ESIP) has gotten together to design and create a web service, called ToolMatch, to address these problems. The team began their efforts by defining an initial, relatively simple conceptual model that addressed the two uses cases briefly described above. The conceptual model is expressed as an ontology using OWL (Web Ontology Language) and DCterms (Dublin Core Terms), and utilizing standard ontologies such as DOAP (Description of a Project), FOAF (Friend of a Friend), SKOS (Simple Knowledge Organization System) and DCAT (Data Catalog Vocabulary). The ToolMatch service will be taking advantage of various Semantic Web and Web standards, such as OpenSearch, RESTful web services, SWRL (Semantic Web Rule Language) and SPARQL (Simple Protocol and RDF Query Language). The first version of the ToolMatch service was deployed in early fall 2014. While more complete testing is required, a number of communities besides ESIP member organizations have expressed interest in collaborating to create, test and use the service and incorporate it into their own web pages, tools and / or services including the USGS Data Catalog service, DataONE, the Deep Carbon Observatory, Virtual Solar Terrestrial Observatory (VSTO), and the U.S. Global Change Research Program. In this session, presenters will discuss the inception and development of the ToolMatch service, the collaborative process used to design, refine, and test the service, and future plans for the service.

  11. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  12. Conceptual design for the ZEPHYR neutral-beam injection system

    International Nuclear Information System (INIS)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs

  13. Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen

    2016-01-01

    Within conceptual design changes occur rapidly due to a combination of uncertainty and shifting requirements. To stay relevant in this fluid time, trade studies must also be performed rapidly. In order to drive down analysis time while improving the information gained by these studies, surrogate models can be created to represent the complex output of a tool or tools within a specified tradespace. In order to create this model however, a large amount of data must be collected in a short amount of time. By this method, the historical approach of relying on subject matter experts to generate the data required is schedule infeasible. However, by implementing automation and distributed analysis the required data can be generated in a fraction of the time. Previous work focused on setting up a tool called multiPOST capable of orchestrating many simultaneous runs of an analysis tool assessing these automated analyses utilizing heuristics gleaned from the best practices of current subject matter experts. In this update to the previous work, elements of graph theory are included to further drive down analysis time by leveraging data previously gathered. It is shown to outperform the previous method in both time required, and the quantity and quality of data produced.

  14. Exploratory shaft conceptual design report: Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Gulf Interior Region of the United States (Louisiana and Mississippi). Conceptualized designs for other possible locations (Paradox Basin in Utah and Permian Basin in Texas) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in-situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homoqeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptural design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  15. A systematic review of protocol studies on conceptual design cognition: design as search and exploration

    OpenAIRE

    Hay, Laura; Duffy, Alex H.B.; McTeague, Chris; Pidgeon, Laura M.; Vuletic, Tijana; Grealy, Madeleine

    2017-01-01

    This paper reports findings from the first systematic review of protocol studies focusing specifically on conceptual design cognition, aiming to answer the following research question: What is our current understanding of the cognitive processes involved in conceptual design tasks carried out by individual designers? We reviewed 47 studies on architectural design, engineering design and product design engineering. This paper reports 24 cognitive processes investigated in a subset of 33 studie...

  16. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    Science.gov (United States)

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  17. Outcomes of the DeepWind Conceptual Design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Borg, Michael; Aagaard Madsen, Helge

    2015-01-01

    DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW...... the Deepwind floating 1 kW demonstrator. The 5 MW simulation results, loading and performance are compared to the OC3-NREL 5 MW wind turbine. Finally the paper elaborates the conceptual design on cost modelling....... DeepWind conceptual design. The concept was evaluated at the Hywind test site, described on its few components, in particular on the modified Troposkien blade shape and airfoil design. The feasibility of upscaling from 5 MW to 20 MW is discussed, taking into account the results from testing...

  18. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  19. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  20. KALIMER preliminary conceptual design report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report

  1. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  2. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  3. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  4. Conceptual framework for development of comprehensive e-health evaluation tool.

    Science.gov (United States)

    Khoja, Shariq; Durrani, Hammad; Scott, Richard E; Sajwani, Afroz; Piryani, Usha

    2013-01-01

    The main objective of this study was to develop an e-health evaluation tool based on a conceptual framework including relevant theories for evaluating use of technology in health programs. This article presents the development of an evaluation framework for e-health programs. The study was divided into three stages: Stage 1 involved a detailed literature search of different theories and concepts on evaluation of e-health, Stage 2 plotted e-health theories to identify relevant themes, and Stage 3 developed a matrix of evaluation themes and stages of e-health programs. The framework identifies and defines different stages of e-health programs and then applies evaluation theories to each of these stages for development of the evaluation tool. This framework builds on existing theories of health and technology evaluation and presents a conceptual framework for developing an e-health evaluation tool to examine and measure different factors that play a definite role in the success of e-health programs. The framework on the horizontal axis divides e-health into different stages of program implementation, while the vertical axis identifies different themes and areas of consideration for e-health evaluation. The framework helps understand various aspects of e-health programs and their impact that require evaluation at different stages of the life cycle. The study led to the development of a new and comprehensive e-health evaluation tool, named the Khoja-Durrani-Scott Framework for e-Health Evaluation.

  5. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  6. WRAP 2A advanced conceptual design report comments

    International Nuclear Information System (INIS)

    Lamberd, D.L.

    1994-01-01

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report

  7. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae

    2017-04-01

    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  8. Conceptual Configuration of Pharmaceutical Plants in 3D

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Larsen, Bent Dalgaard; Gjøl, Mikkel

    2007-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. Configuration and 3D models can help validate the decisions made in the conceptual design process. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  9. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  10. Engineering features of the INTOR conceptual design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  11. Conceptual design activities and key issues on LHD-type reactor FFHR

    International Nuclear Information System (INIS)

    Sagara, A.; Mitarai, O.; Imagawa, S.; Morisaki, T.; Tanaka, T.; Mizuguchi, N.; Dolan, T.; Miyazawa, J.; Takahata, K.; Chikaraishi, H.; Yamada, S.; Seo, K.; Sakamoto, R.; Masuzaki, S.; Muroga, T.; Yamada, H.; Fukada, S.; Hashizume, H.; Yamazaki, K.; Mito, T.; Kaneko, O.; Mutoh, T.; Ohyabu, N.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.

    2006-01-01

    An overview of conceptual design activities on the LHD-type helical reactor FFHR is presented, mainly focusing on optimization studies on the reactor size and the proposal of a long-life blanket. A major radius of around 15 m is the present candidate under the constraints of the energy confinement achieved in LHD, a maximum magnetic field around 13 T with a current density around 30 A/mm 2 and a neutron wall loading around 1.5 MW/m 2 . R and D on super-conducting magnet systems of large scale, high field and high current-density are new challenging targets based on the LHD. The development of new design tools has been started aiming at establishing a virtual power plant (VPP) and a virtual reality system for 3D design assisting. Next design issues are mainly on engineering optimization of the first wall thickness, the detailed 3D blanket system, and unscheduled replacements of breeder blankets

  12. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  13. Recent developments in the design of conceptual fusion reactors

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1977-01-01

    Since the first round of conceptual fusion reactor designs in 1973 - 1974, there has been considerable progress in design improvement. Two recent tokamak designs of the Wisconsin and Culham groups, with increased plasma beta and wall loading (power density), lead to more compact reactors with easier maintenance. The Reference Theta-Pinch Reactor has undergone considerable upgrading in the design of the first wall insulator and blanket. In addition, a conceptual homopolar energy storage and transfer system has been designed. In the case of the mirror reactor, there are design changes toward improved modular construction and ease of handling, as well as improved direct converters. Conceptual designs of toroidal-multiple-mirror, liner-compression, and reverse-field pinch reactors are also discussed. A design is presented of a toroidal multiple-mirror reactor that combines the advantages of steady-state operation and high-aspect ratio. The liner-compression reactor eliminates a major problem of radiation damage by using a liquid-metal first wall that also serves as a neutron-thermalizing blanket. The reverse-field pinch reactor operates at higher beta, larger current density and larger aspect ratio than a tokamak reactor. These properties allow the possibility of ignition by ohmic heating alone and greater ease of maintenance

  14. Conceptual design for the HANARO web development

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Kang, Young Hwan

    2000-05-01

    Following the footsteps for internationalization and information-oriented society, we need to open the HANARO to the public, and to serve the more detail, accurate, and various information rapidly through the internet to enhance the HANARO utilization efficiency. Following items are described to develop the HANARO Web which has function as an information platform for research reactors: User requirements, Conceptual design, Development plan (method and schedule), Maintenance and management. The conceptual design, development method and schedule and functions are proposed in developing the HANARO Web. The data of the HANARO should be processed and organized systematically for better utilization of HANARO. A supplementation of the functions is needed and the HANARO Web should be operated practically with the maximum efficiency and advertised the activities locally and internationally.

  15. Conceptual design for the HANARO web development

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Kang, Young Hwan

    2000-05-01

    Following the footsteps for internationalization and information-oriented society, we need to open the HANARO to the public, and to serve the more detail, accurate, and various information rapidly through the internet to enhance the HANARO utilization efficiency. Following items are described to develop the HANARO Web which has function as an information platform for research reactors: User requirements, Conceptual design, Development plan (method and schedule), Maintenance and management. The conceptual design, development method and schedule and functions are proposed in developing the HANARO Web. The data of the HANARO should be processed and organized systematically for better utilization of HANARO. A supplementation of the functions is needed and the HANARO Web should be operated practically with the maximum efficiency and advertised the activities locally and internationally

  16. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  17. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  18. Useful design tools?

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    2005-01-01

    vague and contested concept of sustainability into concrete concepts and building projects. It describes a typology of tools: process tools, impact assessment tools, multi-criteria tools and tools for monitoring. It includes a Danish paradigmatic case study of stakeholder participation in the planning...... of a new sustainable settlement. The use of design tools is discussed in relation to innovation and stakeholder participation, and it is stressed that the usefulness of design tools is context dependent....

  19. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    Science.gov (United States)

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  20. AFB/open cycle gas turbine conceptual design study

    Science.gov (United States)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  1. Conceptual design of safety instrumentation for PFBR

    International Nuclear Information System (INIS)

    Muralikrishna, G.; Seshadri, U.; Raghavan, K.

    1996-01-01

    Instrumentation systems enable monitoring of the process which in turn enables control and shutdown of the process as per the requirements. Safety Instrumentation due to its vital importance has a stringent role and this needs to be designed methodically. This paper presents the details of the conceptual design for PFBR. (author). 4 figs, 3 tabs

  2. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield

  3. Analysis of the TREAT LEU Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  4. Recent progress in conceptual design of LMFR in China

    International Nuclear Information System (INIS)

    Xu Mi; Ma Dayuan; Chen Yishao

    1996-01-01

    The Chinese Experimental Fast Reactor (CEFR-25) with the thermal power 65MW and electric power 25MW is the first step of the FBR development in China. The aims of this project are as following: As a prototype to accumulate the experiences of design, construction and operation of a fast reactor; as an irradiation facility to develop fuels and materials with high breeding properties and burn up rate; and as a test reactor core, envisaged, to test the fast reactor core with the fuel Ac-contained. After three years preparation for the CEFR design including the development, collection and reviewing of about 50 computer codes and the decision of the main technical selections and of design boundary conditions, from 1990 to July 1992, the conceptual design of the CEFR-25 has been completed. The confirmation and some optimization of the conceptual design have been carried out from October 1992 to the end of 1993. Based on the conceptual design and related optimization, the main features and characteristics of the CEFR-25 has been given in this paper. Spent almost whole year 1994 for the input preparation the CEFR-25 technical design has been started in the early of the year 1995. The input for the technical design mainly includes: design criteria; input parameters; technical selections confirmed in conceptual design; design requirements, etc., which are briefly described in this paper. For the design requirements to the CEFR-25, of the most important is that the reactor should have passive safety properties, in other words, during any credible transient incident, for instance, ULOF-ULOHS and UTOP, etc., by the negative feedback of reactivity the reactor will enter into and be keeping at safety condition without needs of any personal interference. The residual heat will be removed away by natural convection and natural circulation. Finally, the paper gives the general descriptions about the research and development status for this reactor. (author). 5 figs, 4 tabs

  5. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  6. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  7. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  8. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  9. Gesture language use in natural UI: pen-based sketching in conceptual design

    Science.gov (United States)

    Ma, Cuixia; Dai, Guozhong

    2003-04-01

    Natural User Interface is one of the important next generation interactions. Computers are not just the tools of many special people or areas but for most people. Ubiquitous computing makes the world magic and more comfortable. In the design domain, current systems, which need the detail information, cannot conveniently support the conceptual design of the early phrase. Pen and paper are the natural and simple tools to use in our daily life, especially in design domain. Gestures are the useful and natural mode in the interaction of pen-based. In natural UI, gestures can be introduced and used through the similar mode to the existing resources in interaction. But the gestures always are defined beforehand without the users' intention and recognized to represent something in certain applications without being transplanted to others. We provide the gesture description language (GDL) to try to cite the useful gestures to the applications conveniently. It can be used in terms of the independent control resource such as menus or icons in applications. So we give the idea from two perspectives: one from the application-dependent point of view and the other from the application-independent point of view.

  10. Conceptual design of the alcohol waste treatment equipment

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Nitta, Kazuhiko; Morita, Yasuhiro; Nakada, Eiju

    2001-01-01

    This report describes the result of Conceptual Design of the Alcohol Waste Treatment Equipment. The experimental fast Reactor, JOYO, saves the radioactive alcohol waste at storage tank. As this alcohol waste is not able to treat with existing equipment, it is stored about 5 m 3 . And the amount of this is increasing every year. So it is necessary to treat the alcohol waste by chemical resolution for example. On account of this, the investigative test about filtration and dialyzer, and conceptual design about catalyst oxidation process, which is composed from head end process to resolution, are done. The results of investigation show as follows. 1. Investigative Test about filtration and dialyzer. (1) The electric conduction is suitable for the judgement of alkyl sodium hydrolysis Alkyl sodium hydrolysis is completed below 39% alcohol concentration. (2) The microfiltration is likely to separate the solid in alcohol waste. (3) From laboratory test, the electrodialyzer is effective for sodium separation in alcohol waste. And sodium remove rate, 96-99%, is confirmed. 2. Conceptual Design. The candidate process is as follows. (1) The head end process is electrodialyzer, and chemical resolution process is catalyst oxidation. (2) The head end process is not installed, and chemical resolution process is catalyst oxidation. (3) The head end process is electrodialyzer, and alcohol extracted by pervaporation. In this Conceptual Design, as far these process, the components, treatment ability, properties of waste, chemical mass balance, safety for fire and explosion, and the plot plan are investigated. As a result, remodeling the existing facility into catalyst oxidation process is effective to treat the alcohol waste, and treatment ability is about 1.25 l/h. (author)

  11. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  12. Conceptual assessment tool for advanced undergraduate electrodynamics

    Science.gov (United States)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  13. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  14. Conceptual design of the SMART dosimeter

    Science.gov (United States)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  15. Design and Validation of the Quantum Mechanics Conceptual Survey

    Science.gov (United States)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  16. Concepts and tools for the design of semantical databases

    CERN Document Server

    Meersman, Robert A

    1991-01-01

    The design and implementation of modern more "semantical" databases involves the use of high-level conceptual abstraction mechanisms and methodologies. An illustration of this process is given using the NIAM method and notation (lecture 1), its transformation into relational database with triggers (e.g. using SYBASE0 (lecture 2) and a study of the requirements for suitable tools (RIDL*) and their extension and applicability for e.g. object-oriented databases. A case study defined by a complex database for document handling will be used as example (lecture 3).

  17. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  18. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  19. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  20. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  1. Brownfields Green Avenue Sites: Technical Memorandum - Conceptual Design for Sustainable Redevelopment

    Science.gov (United States)

    This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations

  2. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  3. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  4. Designing courses for the Internet. A conceptual approach.

    Science.gov (United States)

    Carlton, K H; Ryan, M E; Siktberg, L L

    1998-01-01

    One current higher education paradigm shift is the movement from traditional classroom settings and interactive television satellite transmission to course and program delivery via the World Wide Web (WWW). The authors describe the experiences of faculty in reconceptualizing and redesigning course and program delivery via the Internet. An electronic "template" has been collaboratively developed by multidisciplinary university partners to facilitate this work. The template incorporates an advanced nursing practice conceptual framework based on American Association of Colleges of Nursing (AACN) core educational essentials for advanced practice combined with a continuum of electronic course tools. Strategies, tools, and applications are discussed.

  5. Biomechanical conceptual design of a passive transfemoral prosthesis.

    NARCIS (Netherlands)

    Ünal, Ramazan; Carloni, Raffaella; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.

    In this study, we present the conceptual design of a fully-passive transfemoral prosthesis. The proposed design is inspired by the analysis of the musculo-skeletal activity of the healthy human leg. In order to realize an energy efficient device, we introduce three storage elements, which are

  6. IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility

    CERN Document Server

    Abs, M; Alonso, J R; Axani, S; Barletta, W A; Barlow, R; Bartoszek, L; Bungau, A; Calabretta, L; Calanna, A; Campo, D; Castro, G; Celona, L; Collin, G H; Conrad, J M; Gammino, S; Johnson, R; Karagiorgi, G; Kayser, S; Kleeven, W; Kolano, A; Labrecque, F; Loinaz, W A; Minervini, J; Moulai, M H; Okuno, H; Owen, H; Papavassiliou, V; Shaevitz, M H; Shimizu, I; Shokair, T M; Sorensen, K F; Spitz, J; Toups, M; Vagins, M; Van Bibber, K; Wascko, M O; Winklehner, D; Winslow, L A; Yang, J J

    2015-01-01

    This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.

  7. Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model.

    Science.gov (United States)

    Wachs, Juan P; Frenkel, Boaz; Dori, Dov

    2014-11-01

    various levels of detail, each level is depicted in a separate diagram, and all the diagrams are "aware" of each other as part of the whole model. Providing ontology of verbal and non-verbal modalities of communication in the OR, the resulting conceptual model is a solid basis for analyzing and understanding the source of the large variety of errors occurring in the course of an operation, providing an opportunity to decrease the quantity and severity of mistakes related to the use and misuse of surgical instrumentations. Since the model is event driven, rather than person driven, the focus is on the factors causing the errors, rather than the specific person. This approach advocates searching for technological solutions to alleviate tool-related errors rather than finger-pointing. Concretely, the model was validated through a structured questionnaire and it was found that surgeons agreed that the conceptual model was flexible (3.8 of 5, std=0.69), accurate, and it generalizable (3.7 of 5, std=0.37 and 3.7 of 5, std=0.85, respectively). The detailed conceptual model of the tools handling subsystem of the operation performed in an OR focuses on the details of the communication and the interactions taking place between the surgeon and the surgical technician during an operation, with the objective of pinpointing the exact circumstances in which errors can happen. Exact and concise specification of the communication events in general and the surgical instrument requests in particular is a prerequisite for a methodical analysis of the various modes of errors and the circumstances under which they occur. This has significant potential value in both reduction in tool-handling-related errors during an operation and providing a solid formal basis for designing a cybernetic agent which can replace a surgical technician in routine tool handling activities during an operation, freeing the technician to focus on quality assurance, monitoring and control of the cybernetic agent

  8. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  9. Conceptual assessment tool for advanced undergraduate electrodynamics

    Directory of Open Access Journals (Sweden)

    Charles Baily

    2017-09-01

    Full Text Available As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II: the Colorado UppeR-division ElectrodyNamics Test (CURrENT. This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument’s development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  10. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    Science.gov (United States)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  11. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  12. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  13. Design as intentional action: a conceptual analysis

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    Drawing on methods and literature from the field of philosophy, an account is given of the general nature of the artefact production process in order to provide a conceptual platform for design research. Designing itself is defined as the production of design representations; and the latter notion......, and so the major philosophical difficulty is to propose a reasonably precise definition of ‘design representation’ without implying the existence of such non-existent things. To overcome that difficulty, a definition is developed in terms of human agents, their actions and ideas (including intentions...

  14. IFMIF accelerator conceptual design activities

    International Nuclear Information System (INIS)

    Jameson, R.A.; Lagniel, J.M.; Sugimoto, M.; Kein, H.; Piaszczyk, C.; Tiplyakov, V.

    1998-01-01

    A Conceptual Design Evaluation (CDE) for the International Fusion Materials Irradiation Facility (IFMIF) began in 1997 and will be completed in 1998, as an international program of the IEA involving the European Community, Japan, Russia and the United States. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators operating at 175 MHz, is a key element of the IFMIF facility. The objectives and accomplishments of the CDE accelerator studies are outlined

  15. Specifications in early conceptual design work

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2007-01-01

    In early conceptual design the design team is working in an uncertain situation, where the understanding of a need is limited and not much is known about the solution space. In this situation the design team has to both analyse need and explore solution space. Thus, the team has to formulate design...... specifications, which express attractive product goals, and has to synthesise the product idea. The authors of this paper see a challenge to enhance and improve our understanding of the nature of design specifications as a means to support the synthesis of a product idea. In this empirical study we analyse...... the structure and content of design specifications during early ideation activities, where initial design specifications are formulated and a product idea is synthesised. We have analysed specification documents of 19 teams of novice designers. Our analysis indicates that a productive product design...

  16. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    Science.gov (United States)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  17. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  18. Conceptual design of a large Spectral Shift Controlled Reactor

    International Nuclear Information System (INIS)

    Matzie, R.A.; Menzel, G.P.

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). This report describes the results of the development program and assesses the performance of the conceptual SSCR on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80/sup TM/ reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed

  19. Conceptual design of a large Spectral Shift Controlled Reactor

    International Nuclear Information System (INIS)

    Matzie, R.A.; Menzel, G.P.

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). The results are presented of the development program, and the performance of the conceptual SSCR is assessed on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80 reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed

  20. Conceptual designs for a long term 238PuO2 storage vessel

    International Nuclear Information System (INIS)

    Kwon, D.M.; Replogle, W.C.

    1996-08-01

    This is a report on conceptual designs for a long term, 250 years, storage container for plutonium oxide ([sup 238]PuO[sub 2]). These conceptual designs are based on the use of a quartz filter to release the helium generated during the plutonium decay. In this report a review of filter material selection, design concepts, thermal modeling, and filter performance are discussed

  1. Conceptual design studies of experimental and demonstration fusion reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Since 1973 the FINTOR Group has been involved in conceptual design studies of TOKAMAK-type fusion reactors to precede the construction of a prototype power reactor plant. FINTOR-1 was the first conceptual design aimed at investigating the main physics and engineering constraints on a minimum-size (both dimensions and thermal power) tokamak experimental reactor. The required plasma energy confinement time as evaluated by various power balance models was compared with the values resulting from different transport models. For the reference design, an energy confinement time ten times smaller than neoclassical was assumed. This also implied a rather high (thermally stable) working temperature (above 20 keV) for the reactor. Other relevant points of the design were: circular plasma cross section, single-null axisymmetric divertor; lithium breeder, stainless steel structures, helium coolant; modular blanket and shield structure; copper-stabilized, superconducting Nb-Ti toroidal field and divertor coils; vertical field and transformer coils inside the toroidal coils; vacuum-tight containment vessel. Solutions involving air and iron transformer cores were compared. These assumptions led to a minimum size reactor with a thermal power of about 100MW and rather large dimensions (major radius of about 9m) similar to those of full-scale power reactors considered in other conceptual studies. The FINTOR-1 analysis was completed by the end of 1976. In 1977 a conceptual design of a Demonstration Power Reactor Plant (FINTOR-D) was started. In this study the main working assumptions differing from those of FINTOR-1 are: non-circular plasma cross section; plasma confinement compatible with trapped ion instabilities; cold (gas) blanket sufficient for wall protection (no divertor); wall loading between 1-3MW/m 2 and thermal power of a few GW. (author)

  2. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  3. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  4. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  5. CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  6. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    Science.gov (United States)

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  7. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  8. Conceptual models in man-machine design verification

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-01-01

    The need for systematic methods for evaluation of design concepts for new man-machine systems has been rapidly increasing in consequence of the introduction of modern information technology. Direct empirical methods are difficult to apply when functions during rare conditions and support of operator decisions during emergencies are to be evaluated. In this paper, the problems of analytical evaluations based on conceptual models of the man-machine interaction are discussed, and the relations to system design and analytical risk assessment are considered. Finally, a conceptual framework for analytical evaluation is proposed, including several domains of description: 1. The problem space, in the form of a means-end hierarchy; 2. The structure of the decision process; 3. The mental strategies and heuristics used by operators; 4. The levels of cognitive control and the mechanisms related to human errors. Finally, the need for models representing operators' subjective criteria for choosing among available mental strategies and for accepting advice from intelligent interfaces is discussed

  9. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…

  10. Integrating conceptualizations of experience into the interaction design process

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2010-01-01

    From a design perspective, the increasing awareness of experiential aspects of interactive systems prompts the question of how conceptualizations of experience can inform and potentially be integrated into the interaction design process. This paper presents one approach to integrating theoretical...

  11. Design mentoring tool.

    Science.gov (United States)

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers : mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves se...

  12. Project W-420 Stack Monitoring system upgrades conceptual design report

    International Nuclear Information System (INIS)

    TUCK, J.A.

    1998-01-01

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks

  13. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  14. Conceptual air sparging decision tool in support of the development of an air sparging optimization decision tool

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The enclosed document describes a conceptual decision tool (hereinafter, Tool) for determining applicability of and for optimizing air sparging systems. The Tool was developed by a multi-disciplinary team of internationally recognized experts in air sparging technology, lead by a group of project and task managers at Parsons Engineering Science, Inc. (Parsons ES). The team included Mr. Douglas Downey and Dr. Robert Hinchee of Parsons ES, Dr. Paul Johnson of Arizona State University, Dr. Richard Johnson of Oregon Graduate Institute, and Mr. Michael Marley of Envirogen, Inc. User Community Panel Review was coordinated by Dr. Robert Siegrist of Colorado School of Mines (also of Oak Ridge National Laboratory) and Dr. Thomas Brouns of Battelle/Pacific Northwest Laboratory. The Tool is intended to provide guidance to field practitioners and environmental managers for evaluating the applicability and optimization of air sparging as remedial action technique.

  15. GCFR demonstration plant: conceptual design and status report

    International Nuclear Information System (INIS)

    1980-12-01

    Helium Breeder Associates (HBA), a non-profit corporation, has been the program manager and technical integrator of the Gas-Cooled Fast Reactor (GCFR) development effort since 1977. When DOE discontinued support of the GCFR in 1980, the HBA members undertook the task of providing for an orderly termination and documentation of the program. HBA does not agree with the government's rational for withdrawing support for this promising technology and has directed its termination and documentation toward preserving the current state of its development. Toward that end, HBA has compiled the following report which is a summary of the conceptual design of the demonstration plant and status of the program as of the end of 1980. It includes summaries of tasks that have not evolved to a final conclusion. Although the report has not been subjected to formal review and approval by the designers, it is intended to provide the reader with the design considerations that were current at the time of program termination. It is hoped that the report will be useful in restarting the program in the future by establishing the basis of the completed conceptual design and indicating a logical path for new design and development

  16. A conceptual design of intrinsically safe and economical reactor (ISER)

    International Nuclear Information System (INIS)

    Oda, Junro

    1985-01-01

    The purpose of this paper is to describe the reference conceptual designs of the ISER which were prepared for the ISER development forum in Japan. At the forum, participants from influential utilities, academia, as well as companies in the nuclear industry, discussed the development of the inherently safe reactor over the last two years. The conceptual designs described in this paper are preliminary trial designs at an early stage and essentially versions of the PIUS reactor developed by ASEA-ATOM. A notable feature of the ISER which is different from the original PIUS is its use of a steel reactor pressure vessel for reducing plant construction costs and improving plant performance

  17. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-01

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor

  18. Postclosure performance assessment of the SCP [Site Characterization Plan] conceptual design for horizontal emplacement: Revision 1

    International Nuclear Information System (INIS)

    1987-08-01

    This report is a preliminary postclosure performance assessment of the repository design specified in the Site Characterization Plan Conceptual Design Report (SCP-CDR) for horizontal emplacement of high-level nuclear waste. At the time that these analyses were done, horizontal emplacement was the preferred orientation for the waste packages but vertical emplacement is now the reference design. This assessment consists of (1) a review of the regulatory requirements and strategy to demonstrate compliance with these requirements, (2) an analysis of the performance of the total repository system, (3) an analysis of the thermomechanical behavior of the repository, (4) an analysis of brine mobility in the repository, (5) an analysis of the waste package performance, (6) an analysis of the performance of seals, and (7) comments on the sensitivity of the various performance measures to uncertainties in the data and models. These are preliminary analyses and, in most cases, involve bounding calculations of the repository behavior. They have several purposes including (1) assessing how well this conceptual design ''measures up'' against requirements, (2) gaining experience in implementing the performance assessment strategy and tools and thereby learning where improvements are needed, (3) helping to identify needed data, and (4) helping to indicate required design modifications. 26 refs., 40 figs., 20 tabs

  19. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  20. A strategic approach to the conceptual design of complex radwaste facilities

    International Nuclear Information System (INIS)

    Mackay, Stewart; Scott Dam, A.; Holmes, Robert G.G.

    1992-01-01

    The design of radwaste treatment facilities is often complicated by the variety of waste types being treated. Further uncertainties over their composition and final waste form specifications can make the normal conceptual design phase difficult and unreliable. This paper describes the strategic planning necessary to define the facility functions and the process to prepare a Functional Design Criteria. The paper shows clearly, that for complex waste management problems, it is vital to consider and resolve uncertainties by means of a strategic plan before embarking on conceptual design. The paper shows an approach to preparation of design criteria using functional analysis. The paper provides examples where these methods were and are being used, both in the U.K. and the U.S. Strategic plans and functional criteria can be used as a basis for conceptual design which then provides a more meaningful basis for detailed technology selection during the detailed design process. The paper discusses experiences and lessons learned in the planning process. This process is widely applicable to a number of complex waste treatment facilities being planned and developed to process wastes generated at government facilities. (author)

  1. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    Science.gov (United States)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  2. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  3. Conceptual design of reactor assembly of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  4. Gamma scanner conceptual design report

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1979-11-01

    The Fuels and Materials Examination Facility (FMEF) will include several stations for the nondestructive examination of irradiated fuels. One of these stations will be the gamma scanner which will be employed to detect gamma radiation from the irradiated fuel pins. The conceptual design of the gamma scan station is described. The gamma scanner will use a Standard Exam Stage (SES) as a positioner and transport mechanism for the fuel pins which it will obtain from a magazine. A pin guide mechanism mounted on the face of the collimator will assure that the fuel pins remain in front of the collimator during scanning. The collimator has remotely adjustable tungsten slits and can be manually rotated to align the slit at various angles. A shielded detector cart located in the operating corridor holds an intrinsic germanium detector and associated sodium-iodide anticoincidence detector. The electronics associated with the counting system consist of standard NIM modules to process the detector signals and a stand-alone multichannel analyzer (MCA) for counting data accumulation. Data from the MCA are bussed to the station computer for analysis and storage on magnetic tape. The station computer controls the collimator, the MCA, a source positioner and the SES through CAMAC-based interface hardware. Most of the electronic hardware is commercially available but some interfaces will require development. Conceptual drawings are included for mechanical hardware that must be designed and fabricated

  5. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  6. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  7. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  8. Evaluating a proposed apprach for managing collaborative design in the conceptual design phase

    NARCIS (Netherlands)

    Sebastian, R.

    2006-01-01

    This paper evaluates the findings of prior research on managing collaborative design in the conceptual design phase of a building project. The prior research was explorative. It used several building projects in the Netherlands as case studies - De Resident in The Hague, Nieuw Stadshart in Almere,

  9. Assembly tool design

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Nakahira, Masataka; Ohkawa, Yoshinao; Tada, Eisuke; Seki, Masahiro

    1996-06-01

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  10. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  11. Thermal analysis of NNWSI conceptual waste package designs

    International Nuclear Information System (INIS)

    Stein, W.; Hockman, J.N.; O'Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references

  12. MINU Main Injector Neutrino Upgrade: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Bogert, Dixon [Fermilab; Alber, Russ [Fermilab

    2007-02-01

    This Conceptual Design Report (CDR) is intended to be a selfconsistent basis for a project baseline cost estimate. It is not a Title 1 report and has not answered every technical design question. The current level of contingency is believed to be consistent with the degree of technical confidence in the design at this stage. It is recognized that some basic construction concerns will be reviewed and optimized during the remaining stages of the project.

  13. Utilizing Uncertainty Multidisciplinary Design Optimization for Conceptual Design of Space Systems

    NARCIS (Netherlands)

    Yao, W.; Guo, J.; Chen, X.; Van Tooren, M.

    2010-01-01

    With progress of space technology and increase of space mission demand, requirements for robustness and reliability of space systems are ever-increasing. For the whole space mission life cycle, the most important decisions are made in the conceptual design phase, so it is very crucial to take

  14. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  15. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  16. MFTF electron cyclotron resonance heating conceptual design study. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    This report presents conceptual designs, discusses research and development requirements, and provides schedule requirements and rough order of magnitude cost estimates for the ECRH system. Requirements for the basic equipment needed to implement the ECRH power generators and distribute the power have been developed. Conceptual approaches to the development and fabrication of such a system have been generated

  17. Conceptual design supporting tool between architectural design office and its client

    NARCIS (Netherlands)

    Shen, JiangTao

    2012-01-01

    Accompanied with the continuation of rapid Chinese economic growth through the past decades, I have experienced great changes happened in the architectural design industry. Computer science and various architectural design theories had been widely applied; traditional design institutes, which based

  18. Conceptual design of nuclear power plants database system

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Izumi, Fumio; Sudoh, Takashi.

    1984-03-01

    This report is the result of the joint study on the developments of the nuclear power plants database system. The present conceptual design of the database system, which includes Japanese character processing and image processing, has been made on the data of safety design parameters mainly found in the application documents for reactor construction permit made available to the public. (author)

  19. Designing Public Library Websites for Teens: A Conceptual Model

    Science.gov (United States)

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  20. Recent progress in stellarator reactor conceptual design

    International Nuclear Information System (INIS)

    Miller, R.L.

    1985-01-01

    The Stellarator/Torsatron/Heliotron (S/T/H) class of toroidal magnetic fusion reactor designs continues to offer a distinct and in several ways superior approach to eventual commercial competitiveness. Although no major, integrated conceptual reactor design activity is presently underway, a number of international research efforts suggest avenues for the substantial improvement of the S/T/H reactor embodiment, which derive from recent experimental and theoretical progress and are responsive to current trends in fusion-reactor projection to set the stage for a third generation of designs. Recent S/T/H reactor design activity is reviewed and the impact of the changing technical and programmatic context on the direction of future S/T/H reactor design studies is outlined

  1. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    . Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  2. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  3. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  4. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  5. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  6. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  7. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  8. Conceptual design of the JAERI demonstration fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Tone, T.; Seki, Y.

    1976-01-01

    Conceptual design of a tokamak demonstration fusion reactor is carried out. This design is an extended and improved version of the previous design which was presented at the 5th IAEA Conference. The main design parameters are as follows: the reactor thermal power 2000 MW, torus radius 10.5 m, plasma radius 2.7 m, first wall radius 3.0 m, toroidal magnetic field on axis 6T, blanket fertile material Li 2 O, coolant He, structural material Mo-alloy and tritium breeding ratio 1.2

  9. FRG conceptual design and design basis

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1979-01-01

    For the site-independent conceptual design the following requirements have been laid down: (1) for safety reasons retrievability is not considered; (2) standard mining techniques and experience gained at Asse should be used; (3) two shafts should be sufficient; (4) different waste forms and containers shall be disposed of in different storage areas; (5) ventilated sections must allow the shutting off of each storage area from the rest of the mine; (6) the mining method of retreat working should be applied; (7) the mine works shall have a lateral safety distance to the caprock of 200 m and a vertical safety zone beneath salt level of 300 m; (8) all disposal areas shall be on one level; (9) salt and waste shall be transported in different drifts, mainly in a one way system

  10. Conceptual design for a laminar-flying-wing aircraft

    Science.gov (United States)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  11. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D

    2006-01-01

    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  12. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-01-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWRs) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario increases by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  13. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-09-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWR's) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario is insensitive to the capital cost of the hybrid, increasing by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  14. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  15. Conceptual design Fusion Experimental Reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Nagashima, Takashi; Ikeda, Yoshitaka

    1991-11-01

    This report describes a conceptual design of Lower Hybrid Wave (LH) system for FER and ITER. In JAERI, the conceptual design of LH system for FER has been performed in these 3 years in parallel to that of ITER. There must be a common design part with ITER and FER. The physical requirement of LH system is the saving of volt · sec in the current start-up phase, and the current drive at the boundary region. The frequency of 5GHz is mainly chosen for avoidance of the α particle absorption and for the availability of electron tube development. Seventy-two klystrons (FER) and one hundred klystrons (ITER) are necessary to inject the 30 MW (FER) and 45-50 MW (ITER) rf power into plasma using 0.7 - 0.8 MW klystron per one tube. The launching system is the multi-junction type and the rf spectrum must be as sharp as possible with high directivity to improve the current drive efficiency. One port (FER) and two ports (ITER) are used and the injection direction is in horizontal, in which the analysis of the ray-tracing code and the better coupling of LH wave is considered. The transmission line is over-sized waveguide with low rf loss. (author)

  16. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  17. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  18. OOTW Force Design Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  19. Conceptual Type - a commentary on the Internet’s design development?

    DEFF Research Database (Denmark)

    Engholm, Ida

    2013-01-01

    Conceptual type” is not a well-defined term. The concept doesn’t have any established encyclopedic definition and has not yet served as the subject of a definitional exploration in the literature related to graphic design. When you search the term on Google, links pop up to phrases like ”amazing...... for conceptual type and for discussions centered on the relationship between typefaces and the underlying ideas. Within the realm of art history, conceptual art has been the object of various definitions, although this category is based primarily on the viewpoint that art exists first and foremost as idea...

  20. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  1. Annotated outline for the SCP conceptual design report: Office of Geologic Repositories

    International Nuclear Information System (INIS)

    1987-06-01

    The Nuclear Waste Policy Act of 1982 (NWPA) requires that site characterization plans (SCPs) be submitted to the Nuclear Regulatory Commission (NRC), affected States and Indian tribes, and the general public for review and comment prior to the sinking of shafts at a candidate repository site. The SCP is also required by the NRC licensing procedures for the disposal of high-level waste. An Annotated Outline (AO) for Site Characterization Plans (OGR/B-5) has been prepared to provide DOE's standard format and guidance for preparation of SCPs. Consistent with the AO for SCPs. Chapter 6 of the SCP is to provide the requirements and references the media-specific design data base, describe the current design concepts, and discuss design information needs. In order to develop this design information, the Office of Geologic Repositories program is planning a SCP conceptual design phase as part of the overall repository design process. This phase is the first step in the design process, and the result and design can be expected to change as the program moves through the site characterization phase. The Annotated Outline which follows provides the standard format and guidance for the preparation of the SCP Conceptual Design Reports. It is considered to meet the intent of NRC's proposed Generic Technical Position philosophy contained therein. The SCP Conceptual Design Report will be the primary basis for preparation of Chapter 6 of the SCP and will be stand-alone reference document for the SCP. Appendix 1 to this Annotated Outline provides a correlation between Chapter 6 of the SCP and SCP Conceptual Design Report for the information purposes

  2. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  3. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2013-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2 (BR2). Revision 0 of this report was prepared at the end of government fiscal year 2012 when most of the resources for furthering DDE design work were expected to be postponed. Hence, the conceptual design efforts were summarized to provide the status of key objectives, notable results, and provisions for future design work. Revision 1 of this report was prepared at the end of fiscal year 2013 in order to include results from a neutronic study performed by BR2, to incorporate further details that had been achieved in the engineering sketches of the irradiation devices, and to provide an update of the DDE-MURR campaign in relation to program objectives and opportunities for its eventual irradiation. These updates were purposed to bring the DDE-MURR conceptual design to level of maturity similar to that of the other two DDE efforts (DDE-MITR and DDE-NBSR). This report demonstrates that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also puts forth several recommendations in order to facilitate success of the irradiation campaign.

  4. Conceptual TRU waste container design specifications

    International Nuclear Information System (INIS)

    Doty, J.W.; Peterson, J.B.

    1978-01-01

    A contractor questionnaire was used to gather pertinent data. Site visits were made to formulate an integrated contractor consensus; a packaging meeting was held to examine, discuss, and integrate packaging philosophies; and data collected from these activities and from Task Force meetings were consolidated to provide input to the Basic Application Checklist and Criteria Checklists. Conceptual Design Criteria were developed from an analysis and evaluation of the application data against federal regulations and interim/terminal storage constraints

  5. Fuel pin design algorithm for conceptual design studies

    International Nuclear Information System (INIS)

    Uselman, J.P.

    1979-01-01

    Two models are available which are currently verified by part of the requirements and which are adaptable as algorithms for the complete range. Fuel thermal performance is described by the HEDL SIEX model. Cladding damage and total deformation are determined by the GE GRO-II structural analysis code. A preliminary fuel pin performance model for analysis of (U, P/sub U/)O 2 pins in the COROPT core conceptual design system has been constructed by combining the key elements of SIEX and GRO-II. This memo describes the resulting pin performance model and its interfacing with COROPT system. Some exemplary results are presented

  6. Conceptual design of Decade Half, a 15-MA, 300-ns PRS driver

    International Nuclear Information System (INIS)

    Spence, Phil; Corcoran, Pat; Douglas, John; Tucker, Terry; Altes, Bob; Childers, Kendall; Sincerny, Peter; Whitehead, Lavell; Kenyon, Van; Babineau, Marc; Cotter, Tim; Kurucz, Pete; Davis, R.

    2002-01-01

    The Decade radiation effects simulator is located at AEDC and presently consists of four modules capable of operation as either a large area bremsstrahlung source (Decade Quad LAB) or a plasma radiation source (Decade Quad PRS). During 2001 we investigated several conceptual system architectures for connecting the current of eight Decade modules to a single PRS load. This Decade Half radiation source will be used in combination with other synchronized radiation effects simulators to offer a combined-effects testing capability at AEDC. We describe and compare the projected performance, risk, and relative cost of several rough conceptual designs, and discuss in more detail the 'water bridge' concept that was selected for more complete conceptual design development. We present a self-consistent electrical and mechanical conceptual design for Decade Half, including an equivalent circuit model, details of the mechanical architecture (including operation, maintenance, and turnaround considerations), and electrical performance estimates of approximately 15 MA peak current delivered to a representative large radius, ∼ 300 ns implosion time PRS load

  7. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  8. GridAPPS-D Conceptual Design v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Ronald B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McDermott, Thomas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vadari, Subramanian V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-31

    The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

  9. Conceptual design of helium gas turbine for MHTGR-GT

    International Nuclear Information System (INIS)

    Matsuo, E.; Tsutsumi, M.; Ogata, K.; Nomura, S.

    1996-01-01

    Conceptual designs of the direct-cycle helium gas turbine for a practical unit (450 MWt) and an experimental unit (1200kWt) of MHTGR were conducted and the results as shown below were obtained. The power conversion vessel for this practical unit can further be downsized to an outside diameter of 7.4m and a height of 22m as compared with the conventional design examples. Comparison of the conceptual designs of helium gas turbines using single-shaft type employing the axial-flow compressor and twin-shaft type employing the centrifugal compressor shows that the former provides advantages in terms of structure and control designs whereas the latter offers a higher efficiency. In order to determine which of them should be selected, a further study to investigate various aspects of safety features and startup characteristics will be needed. Either of the two types can provide a cycle efficiency of 46 to 48%. The third mode natural frequencies of the twin-shart type's low-pressure rotational shaft and the single shaft type are below the designed rotational speed, but their vibrational controls are made available using the magnetic bearing system. Elevation of the natural frequency for the twin-shaft type would be possible by altering the arrangements of its shafting configuration. As compared with the earlier conceptual designs, the overall systems configuration can be made simpler and more compact; five stages of turbines for the single-shaft type and seven stages of turbines for the twin-shaft type employing one shaft for the low-pressure compressor and the power turbine and; 26 stages of compressors for the axial-flow type with the single shaft system and five stages of compressors for the centrifugal type with the twin-shaft system. 9 refs, 12 figs, 4 tabs

  10. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  11. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    International Nuclear Information System (INIS)

    1995-01-01

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project

  12. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    International Nuclear Information System (INIS)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests

  13. Conceptual design of the field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-01-01

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate

  14. Conceptual design report, plutonium stabilization and handling,project W-460

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  15. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  16. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  17. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  18. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  19. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  20. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  1. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  2. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  3. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs

  4. LUX-ZEPLIN (LZ) Conceptual Design Report

    CERN Document Server

    Akerib, D S; Akimov, D. Yu.; Alsum, S.K.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Balashov, S.; Barry, M.J.; Bauer, P.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; Boast, K.E.; Bolozdynya, A.I.; Boulton, E.M.; Bramante, R.; Buckley, J.H.; Bugaev, V.V.; Bunker, R.; Burdin, S.; Busenitz, J.K.; Carels, C.; Carlsmith, D.L.; Carlson, B.; Carmona-Benitez, M.C.; Cascella, M.; Chan, C.; Cherwinka, J.J.; Chiller, A.A.; Chiller, C.; Craddock, W.W.; Currie, A.; Cutter, J.E.; da Cunha, J.P.; Dahl, C.E.; Dasu, S.; Davison, T.J.R.; de Viveiros, L.; Dobi, A.; Dobson, J.E.Y.; Druszkiewicz, E.; Edberg, T.K.; Edwards, B.N.; Edwards, W.R.; Elnimr, M.M.; Emmet, W.T.; Faham, C.H.; Fiorucci, S.; Ford, P.; Francis, V.B.; Fu, C.; Gaitskell, R.J.; Gantos, N.J.; Gehman, V.M.; Gerhard, R.M.; Ghag, C.; Gilchriese, M.G.D.; Gomber, B.; Hall, C.R.; Harris, A.; Haselschwardt, S.J.; Hertel, S.A.; Hoff, M.D.; Holbrook, B.; Holtom, E.; Huang, D.Q.; Hurteau, T.W.; Ignarra, C.M.; Jacobsen, R.G.; Ji, W.; Ji, X.; Johnson, M.; Ju, Y.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A.V.; Konovalov, A.M.; Korolkova, E.V.; Kraus, H.; Krebs, H.J.; Kudryavtsev, V.A.; Kumpan, A.V.; Kyre, S.; Larsen, N.A.; Lee, C.; Lenardo, B.G.; Lesko, K.T.; Liao, F. -T.; Lin, J.; Lindote, A.; Lippincott, W.H.; Liu, J.; Liu, X.; Lopes, M.I.; Lorenzon, W.; Luitz, S.; Majewski, P.; Malling, D.C.; Manalaysay, A.G.; Manenti, L.; Mannino, R.L.; Markley, D.J.; Martin, T.J.; Marzioni, M.F.; McKinsey, D.N.; Mei, D. -M.; Meng, Y.; Miller, E.H.; Mock, J.; Monzani, M.E.; Morad, J.A.; Murphy, A. St. J.; Nelson, H.N.; Neves, F.; Nikkel, J.A.; O'Neill, F.G.; O'Dell, J.; O'Sullivan, K.; Olevitch, M.A.; Oliver-Mallory, K.C.; Palladino, K.J.; Pangilinan, M.; Patton, S.J.; Pease, E.K.; Piepke, A.; Powell, S.; Preece, R.M.; Pushkin, K.; Ratcliff, B.N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C.; Rodrigues, J.P.; Rose, H.J.; Rosero, R.; Saba, J.S.; Sarychev, M.; Schnee, R.W.; Schubnell, M.S.G.; Scovell, P.R.; Shaw, S.; Shutt, T.A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solovov, V.N.; Sorensen, P.; Sosnovtsev, V.V.; Stancu, I.; Stark, M.R.; Stephenson, S.; Stiegler, T.M.; Sumner, T.J.; Sundarnath, K.; Szydagis, M.; Taylor, D.J.; Taylor, W.; Tennyson, B.P.; Terman, P.A.; Thomas, K.J.; Thomson, J.A.; Tiedt, D.R.; To, W.H.; Tomás, A.; Tripathi, M.; Tull, C.E.; Tvrznikova, L.; Uvarov, S.; Va'vra, J.; van der Grinten, M.G.D.; Verbus, J.R.; Vuosalo, C.O.; Waldron, W.L.; Wang, L.; Webb, R.C.; Wei, W. -Z.; While, M.; White, D.T.; Whitis, T.J.; Wisniewski, W.J.; Witherell, M.S.; Wolfs, F.L.H.; Woods, E.; Woodward, D.; Worm, S.D.; Yeh, M.; Yin, J.; Young, S.K.; Zhang, C.

    2015-01-01

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  5. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  6. UWMAK-II: a conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes the conceptual design of a Tokamak fusion power reactor, UWMAK-II. The aim of this study is to perform a self consistent and thorough analysis of a probable future fusion power reactor in order to assess the technological problems posed by such a system and to examine feasible solutions. UWMAK-II is a conceptual Tokamak fusion reactor designed to deliver 1716 MWe continuously and to generate 5000 MW(th) during the plasma burn. The structural material is 316 stainless steel and the primary coolant is helium. UWMAK-II is a low aspect ratio, low field design and includes a double null, axisymmetric poloidal field divertor for impurity control. In addition, a carbon curtain, made of two dimensional woven carbon fiber, is mounted on the first vacuum chamber wall to protect the plasma from high Z impurities and to protect the first wall from erosion by charged particle bombardment. The blanket is designed to minimize the inventory of both tritium and lithium while achieving a breeding ratio greater than one. This has led to a blanket design based on the use of a solid breeding material (LiAlO 2 ) with beryllium as a neutron multiplier. The lithium is enriched to 90 percent 6 Li and the blanket coolant is helium at a maximum pressure of 750 psia (5.2 x 10 6 N/m 2 ). A cell of the UWMAK-II blanket design is shown. The breeding ratio is between 1.11 and 1.19 based on one-dimensional discrete ordinates transport calculations, depending on the method of homogenization. Detailed Monte Carlo calculations, which take into account the more complicated geometry, give a breeding ratio of 1.06. The total energy per fusion is 21.56 MeV, which is fairly high

  7. A study on conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)

  8. Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility

    International Nuclear Information System (INIS)

    Abánades, A.; García, A.; Casal, N.; Perlado, J.M.; Ibarra, A.

    2012-01-01

    Highlights: ► Conceptual design of a liquid Li facility. ► Components and cost estimation. ► Liquid metal laboratory into TEHNOFUSION proposal. - Abstract: The application of liquid metal technology in fusion devices requires R and D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.

  9. Mixed Reality Tools for Playful Representation of Ideation, Conceptual Blending and Pastiche in Design and Engineering

    NARCIS (Netherlands)

    Wendrich, Robert E.

    2014-01-01

    This paper describes the development and evaluation of mixed reality tools for the early stages of design and engineering processing. Externalization of ideal and real scenes, scripts, or frames are threads that stir the imaginative exploration of the mind to ideate, formulate, and represent ideas,

  10. Target/blanket conceptual design for the Los Alamos ATW concept

    International Nuclear Information System (INIS)

    Ames, K.; Cappiello, M.; Ireland, J.; Sapir, J.; Farnum, G.

    1992-01-01

    The Los Alamos Accelerator Transmutation of Waste (ATW) concept has many potential applications that include defense waste transmutation, defense material production (i.e., tritium and 238 Pu), and the transmutation of hazardous nuclear wastes from commercial nuclear reactors (fission products and actinides). A more advanced long-term Los Alamos effort is investigating the potential of an accelerator- driven system to produce fission energy with a minimal nuclear waste stream. All applications employ a high-energy (800- to 1600-MeV), high-current (25--250 mA) proton linear accelerator as the driver. In this report, we discuss only the target/blanket conceptual design for the commercial nuclear waste application. A conceptual design for the target/blanket of the Los Alamos ATW concept has been presented. The neutronics, mechanical design, and heat transfer have been investigated in some detail for the base-case design. Much more work needs to be done, but at this point it appears that the design is feasible and will approach the design goal of supporting two commercial power reactors with each target/blanket module

  11. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  12. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  13. Conceptual design of shallow ground repository (SGR)

    International Nuclear Information System (INIS)

    Roehl, J.L.; Franzen, H.R.

    1986-01-01

    A conceptual design to guide the development of the preliminary and final designs of a shallow ground waste disposal site for low and intermediate level radioactive wastes, complying with the Brazilian necessities, interpreted by Brazilian CNEN, is discussed. The general and specific criteria for the design of such installations, considering the reposing period, the isolation of personnel and environment, the operational activities, the characteristics of the site and of the subsoil and the set of necessary installations and services, are presented. An aboveground landfill, with concrete monoliths and concrete packages arranged in stacks disposed on an impermeable soil layer, is proposed. The disposed elements are covered by another impermeable soil stratum. (Author) [pt

  14. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    Due to the impact that the fire safety design has on the building's layout and on other complementary systems, as installations, it is important during the conceptual design stage to evaluate continuously the safety level in the building. In case that the task is carried out too late, additional...... changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  15. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    Science.gov (United States)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  16. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  17. Space systems conceptual design : Analysis methods for engineering-team support

    NARCIS (Netherlands)

    Ridolfi, G.

    2013-01-01

    The research can be placed in the framework of designing methods for complex systems focused on the conceptual design phase of the systems’ life-cycle. More specifically, the methods presented in the dissertation belong to the category of Operational Research methods. They aim at the creation of

  18. Development strategy and conceptual design of China Lead-based Research Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Huang, Qunying; Zhao, Zhumin; Hu, Liqin

    2016-01-01

    Highlights: • China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. • The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. • Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented. - Abstract: Chinese Academy of Sciences (CAS) launched an engineering project to develop an Accelerator Driven System (ADS) for nuclear waste transmutation since 2011, and China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. In this paper, the development strategy and conceptual design of China Lead-based Research Reactor are proposed. The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented.

  19. Building a Case-Based Design Assistant for Workplace Environment Design

    NARCIS (Netherlands)

    Mallory-Hill, S.M.; Timmermans, H.J.P.

    1998-01-01

    This paper reports on the early stages of development of a case-based design tool. The purpose of this tool, called the Workplace Environment Design Advisor (WEDA), is to support architects in the conceptual design of workplace environments. The objective of this system is to provide electronic

  20. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  1. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  2. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  3. LUX-ZEPLIN (LZ) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2015-03-09

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  4. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  5. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  6. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  7. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  8. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  9. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  10. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  11. Design tools

    Science.gov (United States)

    Anton TenWolde; Mark T. Bomberg

    2009-01-01

    Overall, despite the lack of exact input data, the use of design tools, including models, is much superior to the simple following of rules of thumbs, and a moisture analysis should be standard procedure for any building envelope design. Exceptions can only be made for buildings in the same climate, similar occupancy, and similar envelope construction. This chapter...

  12. Plutonium Immobilization Can Loading Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  13. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  14. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health

  15. Conceptual design of the IFMIF Start-Up monitoring module

    Energy Technology Data Exchange (ETDEWEB)

    Gouat, Philippe, E-mail: philippe.gouat@sckcen.be [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Leysen, Willem; Goussarov, Andrei; Galledou, Papa Sally [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Rapisarda, David; Mota, Fernando; Garcia, Angela [CIEMAT – Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, 28040 Madrid (Spain)

    2013-10-15

    Highlights: ► IFMIF test module conceptual design. ► IFMIF test module foreseen instrumentation. ► Cerenkov photon flux monitor. -- Abstract: The preliminary engineering design of the test facilities, including the various test modules to be used in the IFMIF plant is a part of the IFMIF/EVEDA (Engineering Validation and Engineering Design Activities) project from the Broader Approach to fusion. One presents the current status of the conceptual development of the IFMIF Start-Up Monitoring Module, a dedicated device used in the IFMIF test cell during the commissioning phase of the installation, in order to completely characterise the irradiation conditions behind the target on which the beam of deuterons will be focused. This STUMM embarks a lot of instrumentation to precisely characterise the neutron field, the nuclear heating and the temperatures in the test cell. One briefly describes the measuring instruments (including a specific radiation flux monitor under development), the possible layouts and the possible positioning. One also defines which types of measurements are expected by this especially dedicated commissioning module.

  16. Design for Motivation: Evaluation of a Design Tool

    OpenAIRE

    Chasanidou, Dimitra

    2018-01-01

    Design for motivation constitutes a design practice that focuses on the activation of human motives to perform an action. There is an increasing need to design motivational and engaging mechanisms for voluntary systems, such as innovation platforms, where user participation is a key target. When designing for motivation, a challenge of the early design phases is the selection of appropriate design tool and strategy. The current work presents a design tool, namely DEMO (DEsign for MOtivation),...

  17. SASD-tools for program design

    International Nuclear Information System (INIS)

    Gather, K.S.

    1989-01-01

    An overview of Structured Analysis Structured Design (SASD) methodology is given. Some emphasis is put on the time needed to start in a HEP environment with software design methodologies, and on the motivation for SASD. The need for tools is indicated, and examples of their usefulness in analysis and design steps are discussed. Limitations of certain design methods are indicated and additional tools are briefly discussed. Criteria for the selection of tools to be used in large systems design are discussed, and some attention is given to implications for management structures. (orig.)

  18. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  19. Conceptual safety design analysis of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  20. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    Science.gov (United States)

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  1. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1998-01-01

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design

  2. Using conceptual work products of health care to design health IT.

    Science.gov (United States)

    Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark

    2016-02-01

    This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  4. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  5. Site characterization plan: Conceptual design report, Volume 1: Chapters 1-3

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases

  6. A Framework for IT-based Design Tools

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    The thesis presents a new apprach to develop design tools that can be integrated, bypresenting a framework consisting of a set of guidelines for design tools, an integration andcommunication scheme, and a set of design tool schemes.This framework has been based onanalysis of requirements to integ...... to integrated design enviornments, and analysis of engineeringdesign and design problem solving methods. And the developed framework has been testedby applying it to development of prototype design tools for realistic design scenarios.......The thesis presents a new apprach to develop design tools that can be integrated, bypresenting a framework consisting of a set of guidelines for design tools, an integration andcommunication scheme, and a set of design tool schemes.This framework has been based onanalysis of requirements...

  7. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  8. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  9. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  10. Conceptual design of laser fusion reactor KOYO-fast

    International Nuclear Information System (INIS)

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.

    2006-01-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200 K is the primary candidate for the compression laser and an OPCPA (optical parametric chirped pulse amplification) system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone. (authors)

  11. Framework for Tectonic Thinking, a Conceptual Approach

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    This research paper is a contribution to the field of architectural design theory in the area of tectonics. From the designer’s point of view, it will develop an overarching conceptual framework for tectonic thinking (FTT), which will serve as a tool for the comparative analysis and interpretation...

  12. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  13. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  14. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  15. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  16. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  17. Status of ITER TBM port plug conceptual design and analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Yoon, E-mail: byoungyoon.kim@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sabourin, Flavien; Merola, Mario; Giancarli, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Villari, R. [ENEA Frascati (Italy); Di Maio, P.A. [University of Palermo (Italy); Lucca, F.; Marconi, M. [LTCalcoli, Piazza Prinetti 26/B, 23807 Merate (Italy); Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: •ITER TBM PP conceptual design with two dummy TBMs was summarized. •TBM PP shielding capability was assessed to allow hands-on operation. •TBM PP steady state hydraulic performance was investigated. •EM and structural analysis was performed to evaluate structural margin. -- Abstract: The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.

  18. Status of ITER TBM port plug conceptual design and analyses

    International Nuclear Information System (INIS)

    Kim, Byoung Yoon; Sabourin, Flavien; Merola, Mario; Giancarli, Luciano; Villari, R.; Di Maio, P.A.; Lucca, F.; Marconi, M.; Levesy, B.

    2014-01-01

    Highlights: •ITER TBM PP conceptual design with two dummy TBMs was summarized. •TBM PP shielding capability was assessed to allow hands-on operation. •TBM PP steady state hydraulic performance was investigated. •EM and structural analysis was performed to evaluate structural margin. -- Abstract: The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design

  19. Conceptual design and costs of large wind turbines

    International Nuclear Information System (INIS)

    Hau, E.; Harrison, R.; Cockerill, T.T.; Snel, H.

    1996-01-01

    The development of large wind turbines, with capacities in excess of 1 MW is reviewed. Despite statistical evidence to the contrary, there are some reasons to be optimistic that further development will render large machines economic for commercial uses. The direction in which such development should proceed is unclear, however. A cost model, founded on the principles of conceptual design, with the objective of evaluating large wind turbine design options is described. Use of the model allows conclusions to be drawn regarding the potential for development of certain large wind turbine configurations. (author)

  20. Learning Design Tools

    NARCIS (Netherlands)

    Griffiths, David; Blat, Josep; Garcia, Rocío; Vogten, Hubert; Kwong, KL

    2005-01-01

    Griffiths, D., Blat, J., Garcia, R., Vogten, H. & Kwong, KL. (2005). Learning Design Tools. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 109-136). Berlin-Heidelberg: Springer Verlag.

  1. CONCEPTUAL DESIGN OF THE NSLS-II INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    SHAFTAN,T.; ROSE, T.; PINAYEV, I.; HEESE, R.; BENGTSSON, J.; SKARITKA, J.; MENG, W.; OZAKI, S.; MEIER, R.; STELMACH, C.; LITVINENKO, V.; PJEROV, S.; SHARMA, S.; GANETIS, G.; HSEUH, H.C.; JOHNSON, E.D.; TSOUPAS, N.; GUO, W.; BEEBE-WANG, J.; LUCCIO, A.U.; YU, L.H.; RAPARIA, D.; WANG, D.

    2007-06-25

    We present the conceptual design of the NSLS-II injection system [1,2]. The injection system consists of a low-energy linac, booster and transport lines. We review two different injection system configurations; a booster located in the storage ring tunnel and a booster housed in a separate building. We briefly discuss main parameters and layout of the injection system components.

  2. Physics-Based Conceptual Design Flying Qualities Analysis using OpenVSP and VSPAero, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s OpenVSP tool suite provides a common parametrically driven geometry model formany different analyses for aircraft and is primarily used in the conceptual...

  3. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  4. Geometric modeling for computer aided design

    Science.gov (United States)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  5. A conceptual design strategy for liquid-metal-wall inertial fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-01-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade are reviewed from the perspective of formulating a conceptual design strategy for such chambers. The basis for the design strategy is set by enumerating both the attractive and unattractive features of a LMW chamber. Past concepts are then reviewed to identify conceptual design approaches and physical configurations that enhance the positive aspects and minimize the negative aspects. A detailed description of the engineering considerations is given, including such topics as the selection of a liquid metal, control of radiation damage, selection of structural material, control of tritium breeding and extraction, control of wall stress, and designing for a given rep-rate. Finally, a design strategy is formulated which accomodates the engineering constraints while minimizing the liquid-metal flow rate. (orig.)

  6. Conceptual design of the national nuclear emergency management information system

    International Nuclear Information System (INIS)

    Wang Xingyu; Shi Zhongqi

    2003-01-01

    A Conceptual Design of the National Nuclear Emergency Management Information System was brought forward in this paper, based on the summarization of some emergency management information systems used in China and some other countries. The conceptual system should have four basic characteristics, that are (1) a graphic displaying and querying interface based on GIS (2) data and results shared with the assessment software of nuclear accident (3) a complete set of databases and (4) the capability of on-line data receiving or real-time distributing of the commands and information for emergency response

  7. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2012-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MURR.

  8. DDE-MITR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; J.D. Wiest; J.W. Nielsen; G.A. Roth; S.D. Snow

    2012-09-01

    The Design Demonstration Experiment for the Massachusetts Institute of Technology Reactor (DDE-MITR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MITR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MITR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MITR.

  9. DDE-NBSR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; B.P. Durtschi; C.R. Glass; G.A. Roth; D.T. Clark

    2012-09-01

    The Design Demonstration Experiment for the National Bureau of Standard Reactor (DDE-NBSR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the NBSR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-NBSR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the NBSR.

  10. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  11. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    Science.gov (United States)

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Conceptual Design for BOP of the Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoo, Tae Geun; Kim, Seong O; Kim, Eui Kwang; Seong, Seung Hwan

    2010-01-01

    The heavy dependence on nuclear power eventually raise the issues of an efficient utilization of uranium resources, which Korea presently imports from abroad, end of a spent fuel storage. From the viewpoint that sodium-cooled fast Reactors (SFR s ) have the potential of an enhanced safety by utilizing inherent safety characteristics, trans-uranics (TRU) reduction and resolving the spent fuel storage problems through a proliferation-resistant actinide recycling. SFR s are sure to be most promising nuclear power operation. The Korea Atomic Energy Research Institute (KAERI) has been developing SFR design technologies since 1997. And nowadays, the preliminary heat balance of the demonstration SFR is calculated. However, in order to verify design condition of the NSSS, it is necessary to set the heat balance and the conceptual design for BOP of the SFR as a part of the SFR design technique development business. Moreover, in order to confirm whether the heat balance can actually appropriate via the turbine characteristic, it is required to carry out the performance analysis of the turbine cycle. For that, the main purposes of this study are; 1) to derivate the conceptual design for BOP, 2) to analyze the performance of the turbine cycle, 3) to derivate the main consideration for BOP design

  13. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  14. Conceptual design of a high current ISOL target area at TRIUMF

    International Nuclear Information System (INIS)

    Beveridge, J.L.; Buchmann, L.; Clark, G.S.; Sprenger, H.; Thorson, I.; Vincent, J.; D'Auria, J.M.; Dombsky, M.

    1993-05-01

    Two similar conceptual designs for the handling of highly activated components at the target area of a high current radioactive beam facility have been investigated. The proposed designs are sufficiently flexible that practical detailed designs could be realized. Personnel exposure to radiation during the handling procedures is expected to be minimal. (author) 3 refs., 4 figs

  15. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  16. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  17. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  18. Conceptual design of JT-60SA cryostat

    International Nuclear Information System (INIS)

    Shibama, Y.K.; Sakurai, S.; Masaki, K.; Sukekawa, A.M.; Kaminaga, A.; Sakasai, A.; Matsukawa, M.

    2008-01-01

    This paper describes the conceptual design of cryostat for the JT-60SA, which is a research device for the commercial production of electricity from the controlled fusion reaction in the future. JT-60SA is designed to be a fully superconducting device and cryostat is one of the main components to allow the normal operation. Cryostat covers up the tokamak device, which is 15 m of total height and 7 m of radius, and supports the total weight of 25 MN. Cryostat components consist of vessel body, gravity support and auxiliary systems, such as 80 K thermal shield and vacuum exhaust. The functions required of cryostat are these three, thermal insulation for superconducting magnets, gravity support for the tokamak device, and bio-shielding. The design conditions for each cryostat component are outlined and the features of auxiliary systems such as capacity of vacuum exhaust related to 80 K thermal shield design are summarized

  19. EPR design tools. Integrated data processing tools

    International Nuclear Information System (INIS)

    Kern, R.

    1997-01-01

    In all technical areas, planning and design have been supported by electronic data processing for many years. New data processing tools had to be developed for the European Pressurized Water Reactor (EPR). The work to be performed was split between KWU and Framatome and laid down in the Basic Design contract. The entire plant was reduced to a logical data structure; the circuit diagrams and flowsheets of the systems were drafted, the central data pool was established, the outlines of building structures were defined, the layout of plant components was planned, and the electrical systems were documented. Also building construction engineering was supported by data processing. The tasks laid down in the Basic Design were completed as so-called milestones. Additional data processing tools also based on the central data pool are required for the phases following after the Basic Design phase, i.e Basic Design Optimization; Detailed Design; Management; Construction, and Commissioning. (orig.) [de

  20. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  1. The Metacity: A Conceptual Framework for Integrating Ecology and Urban Design

    Directory of Open Access Journals (Sweden)

    S. T. A. Pickett

    2011-10-01

    Full Text Available We introduce the term metacity as a conceptual framework that can be shared by ecologists and designers and applied across the wide variety of urban habitats found around the world. While the term metacity was introduced by UN-HABITAT to designate hyper cities of over twenty million people, for us it is not limited to large urban agglomerations, but rather refers to the proliferation of new forms of urbanization, each with distinct ecological and social attributes. These various urban configurations when combined with new digital sensing, communication and social networking technologies constitute a virtual meta-infrastructure, present in all cities today. This new metacity has the potential to integrate new activist forms of ecological and urban design research and practice in making the transition from sanitary to sustainable city models globally. The city of Baltimore, Maryland will be used both as a site to illustrate these recent urban trends, and also as an example of the integration of ecology and urban design pursued by the two authors over the past seven years [1,2]. Metacity theory is drawn from both an architectural analysis of contemporary forms of urbanism, new forms of digital monitoring and communication technologies, as well as metapopulation and metacommunity theories in ecology. We seek to provide tools and lessons from our experiences for realizing an integrated metacity approach to achieving social sustainability and ecological resilience on an increasingly urbanized planet.

  2. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  3. Software for Evaluation of Conceptual Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    by the prototype, it addresses the requirements that the methods imply, and it explains the actual implementation of the prototype. Finally it discusses what have been learned from developing and testing the prototype. In this paper it is suggested, that a software tool which supports evaluation of design can...... be developed with a limited effort, and that such tools could support a structured evaluation process as opposed to no evaluation. Compared to manual evaluation, the introduced software based evaluation tool offers automation of tasks, such as performing assessments, when they are based on prior evaluations...

  4. SwissFEL - Conceptual design report

    International Nuclear Information System (INIS)

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  5. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Glenzinski, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  6. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, R. J.

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process μ- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  7. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  8. Design mentoring tool : [technical summary].

    Science.gov (United States)

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves seni...

  9. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  10. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  11. Design for Motivation: Evaluation of a Design Tool

    Directory of Open Access Journals (Sweden)

    Dimitra Chasanidou

    2018-02-01

    Full Text Available Design for motivation constitutes a design practice that focuses on the activation of human motives to perform an action. There is an increasing need to design motivational and engaging mechanisms for voluntary systems, such as innovation platforms, where user participation is a key target. When designing for motivation, a challenge of the early design phases is the selection of appropriate design tool and strategy. The current work presents a design tool, namely DEMO (DEsign for MOtivation, and evaluates its design process. The tool provides multidisciplinary teams with a user-centred, structured method to ideate and ultimately develop a consistent design plan to engage the users of innovation platforms. The evaluation study analysed the tool’s contribution to the design of motivational innovation platforms, utilising three data collection methods: a protocol analysis, interviews and questionnaires. The results discuss the experiences of 32 users with the development of motivation concepts, the group and the user activities, as well as their creativity aspects. Structured processes and the use of artefacts were found to be productive practices in the early design phases. The results also highlight the importance of multidisciplinary and user-centred teams that can enhance collaboration and communication during the design processes.

  12. A Clinical Reasoning Tool for Virtual Patients: Design-Based Research Study.

    Science.gov (United States)

    Hege, Inga; Kononowicz, Andrzej A; Adler, Martin

    2017-11-02

    Clinical reasoning is a fundamental process medical students have to learn during and after medical school. Virtual patients (VP) are a technology-enhanced learning method to teach clinical reasoning. However, VP systems do not exploit their full potential concerning the clinical reasoning process; for example, most systems focus on the outcome and less on the process of clinical reasoning. Keeping our concept grounded in a former qualitative study, we aimed to design and implement a tool to enhance VPs with activities and feedback, which specifically foster the acquisition of clinical reasoning skills. We designed the tool by translating elements of a conceptual clinical reasoning learning framework into software requirements. The resulting clinical reasoning tool enables learners to build their patient's illness script as a concept map when they are working on a VP scenario. The student's map is compared with the experts' reasoning at each stage of the VP, which is technically enabled by using Medical Subject Headings, which is a comprehensive controlled vocabulary published by the US National Library of Medicine. The tool is implemented using Web technologies, has an open architecture that enables its integration into various systems through an open application program interface, and is available under a Massachusetts Institute of Technology license. We conducted usability tests following a think-aloud protocol and a pilot field study with maps created by 64 medical students. The results show that learners interact with the tool but create less nodes and connections in the concept map than an expert. Further research and usability tests are required to analyze the reasons. The presented tool is a versatile, systematically developed software component that specifically supports the clinical reasoning skills acquisition. It can be plugged into VP systems or used as stand-alone software in other teaching scenarios. The modular design allows an extension with new

  13. Conceptual design and structural analysis of the CFETR cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@ipp.ac.cn; Yang, Qingxi; Xu, Hao

    2015-04-15

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10{sup −4} Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results.

  14. Conceptual design and structural analysis of the CFETR cryostat

    International Nuclear Information System (INIS)

    Wang, Zhen; Yang, Qingxi; Xu, Hao

    2015-01-01

    Highlights: • The CFETR cryostat is a large vacuum container surrounding the tokamak basic machine. • Two conceptual design schemes of CFETR cryostat were proposed. • A series of structural analyses were performed for cryostat cylinder. • The design of base section is feasible for cryostat. - Abstract: CFETR (China Fusion Engineering Test Reactor) is a new tokamak device, one important component of which is cryostat and it is now under designing by China national integration design group. The CFETR cryostat is a large single-wall vacuum-tight container surrounding the tokamak basic machine, which consists of top dome-shape lid, two cylindrical sections with circumferential stiffening ribs and bottom flat head. It shall provide a vacuum environment (10 −4 Pa) for the operation of the superconducting coils and all the loads that derive from cryostat itself and inner components should be transferred to the floor of tokamak pit. In this paper, two schemes of cryostat were proposed and then the structural analyses including seismic response analysis, elastic stress analysis and buckling analysis were performed to validate the conceptual design of CFETR cryostat. Based on the analysis results, it can be inferred that the cryostat II has a higher stiffness and stability. The structure of cryostat I needs to be improved against buckling and it is more difficult to manufacture for cryostat II due to its complex curved surface compared with cryostat I. Finally, the structural analysis for base section was performed and the design of main support was proved to be feasible. The design of CFETR cryostat has not been finalized and structural optimization still need to be proceeded based on the analysis results

  15. Design of tool monitor simulator

    International Nuclear Information System (INIS)

    Yao Yonggang; Deng Changming; Zhang Jia; Meng Dan; Zhang Lu; Wang Zhi'ai; Shen Yang

    2011-01-01

    It is based on tool monitor in Qinshan Nuclear Power Plant for the object of study, and manufacture a tool monitor simulator. The device is designed to automatically emulate-monitor the contamination level of objects for training students. Once if the tool monitor reports the contamination, the students can handle properly. The brief introduction of main function and system design of the simulator are presented in the paper. (authors)

  16. Designing a Tool for History Textbook Analysis

    Directory of Open Access Journals (Sweden)

    Katalin Eszter Morgan

    2012-11-01

    Full Text Available This article describes the process by which a five-dimensional tool for history textbook analysis was conceptualized and developed in three stages. The first stage consisted of a grounded theory approach to code the content of the sampled chapters of the books inductively. After that the findings from this coding process were combined with principles of text analysis as derived from the literature, specifically focusing on the notion of semiotic mediation as theorized by Lev VYGOTSKY. We explain how we then entered the third stage of the development of the tool, comprising five dimensions. Towards the end of the article we show how the tool could be adapted to serve other disciplines as well. The argument we forward in the article is for systematic and well theorized tools with which to investigate textbooks as semiotic mediators in education. By implication, textbook authors can also use these as guidelines. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs130170

  17. Experiential learning and cognitive tools: The impact of simulations on conceptual change in continuing healthcare education

    NARCIS (Netherlands)

    Reeves, Thomas; Reeves, Patricia; McKenney, Susan

    2014-01-01

    Reeves, T. C., Reeves, P. M., & McKenney, S. (2013). Experiential learning and cognitive tools: The impact of simulations on conceptual change in continuing healthcare education. In J. M. Spector, B. B. Lockee, S. E. Smaldino, & M. Herring (eds.), Learning, problem solving, and mindtools: Essays in

  18. Design of the ITER Tokamak Assembly Tools

    International Nuclear Information System (INIS)

    Park, Hyunki; Her, Namil; Kim, Byungchul; Im, Kihak; Jung, Kijung; Lee, Jaehyuk; Im, Kisuk

    2006-01-01

    ITER (International Thermonuclear Experimental Reactor) Procurement allocation among the seven Parties, EU, JA, CN, IN , KO, RF and US had been decided in Dec. 2005. ITER Tokamak assembly tools is one of the nine components allocated to Korea for the construction of the ITER. Assembly tools except measurement and common tools are supplied to assemble the ITER Tokamak and classified into 9 groups according to components to be assembled. Among the 9 groups of assembly tools, large-sized Sector Sub-assembly Tools and Sector Assembly Tools are used at the first stage of ITER Tokamak construction and need to be designed faster than seven other assembly tools. ITER IT (International Team) proposed Korea to accomplish ITA (ITER Transitional Arrangements) Task on detailed design, manufacturing feasibility and contract specification of specific, large sized tools such as Upending Tool, Lifting Tool, Sector Sub-assembly Tool and Sector Assembly Tool in Oct. 2004. Based on the concept design by ITER IT, Korea carried out ITA Task on detailed design of large-sized and specific Sector Sub-assembly and Sector Assembly Tools until Mar. 2006. The Sector Sub-assembly Tools mainly consist of the Upending, Lifting, Vacuum Vessel Support and Bracing, and Sector Sub-assembly Tool, among which the design of three tools are herein. The Sector Assembly Tools mainly consist of the Toroidal Field (TF) Gravity Support Assembly, Sector In-pit Assembly, TF Coil Assembly, Vacuum Vessel (VV) Welding and Vacuum Vessel Thermal Shield (TS) Assembly Tool, among which the design of Sector In-pit Assembly Tool is described herein

  19. Conceptual framework for the design and conception of an electronic trade platform in agribusiness

    OpenAIRE

    Hausen, Tobias; Helbig, Ralf; Schiefer, Gerhard

    2002-01-01

    This article gives an overview of a conceptual framework for the designing and implementation of an electronic trade platform. The trade platform prototype is the basis of a general conception for the design and implementation of internet-based trade platforms in agribusiness. The main platform focus related to the concept are to convert traditional business relationships and transactions into an electronic system. The conceptual framework provides clarification with regard to the benefit of ...

  20. Conceptual design Alcator C-MOD magnetic systems

    International Nuclear Information System (INIS)

    Schultz, J.H.; Becker, H.; Fertl, K.; Gwinn, D.; Montgomery, D.B.; Pierce, N.T.; Pillsbury, R.D. Jr.; Thome, R.J.

    1986-01-01

    The conceptual designs of the magnetic systems for Alcator C-MOD, a proposed tokamak at M.I.T., are described, including the toroidal magnet, the poloidal field coils and the cryogenic system. The toroidal magnet is constructed from rectangular plates, connected by sliding joints. Toroidal magnet forces are contained by a steel superstructure. Poloidal coil system options are largely or wholly inside the TF magnet, in order to control plasmas with high current, strong shaping, and expanded boundaries. All magnets are cryocooled by the natural circulation of boiling liquid nitrogen. 3 refs., 5 figs

  1. Conceptual design report of hot cell modification and process for fission Mo-99 production

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C.

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report

  2. Conceptual design report of hot cell modification and process for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report.

  3. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  4. Conceptual designs for NLC ubitrons with permanent-magnet wigglers

    International Nuclear Information System (INIS)

    Phillips, R.

    1994-09-01

    This paper describes three embodiments of the ubitron (FEL) amplifier that will be analyzed for possible use on the NLC. The design frequency and power are 11.424 GHz and 200 MW peak rf output power. The baseline against which these conceptual designs are to be evaluated is the PPM-focused 50-MW SIAC klystron, which in simulation shows 65% efficiency. In order to remain competitive in cost and power consumption, only ubitron beam-wave configurations that can use permanent-magnet wigglers are considered

  5. Conceptual design study on advanced aqueous reprocessing system for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Takata, Takeshi; Koma, Yoshikazu; Sato, Koji; Kamiya, Masayoshi; Shibata, Atsuhiro; Nomura, Kazunori; Ogino, Hideki; Koyama, Tomozo; Aose, Shin-ichi

    2003-01-01

    As a feasibility study on commercialized fast reactor cycle system, a conceptual design study is being progressed for the aqueous and pyrochemical processes from the viewpoint of economical competitiveness, efficient utilization of resources, decreasing environmental impact and proliferation resistance in Japan Nuclear Cycle Development Institute (JNC). In order to meet above-mentioned requirements, the survey on a range of reprocessing technologies and the evaluation of conceptual plant designs against targets for the future fast reactor cycle system have been implemented as the fist phase of the feasibility study. For an aqueous reprocessing process, modification of the conventional PUREX process (a solvent extraction process with purification of U/Pu, with nor recovery of minor actinides (MA)) and investigation of alternatives for the PUREX process has been carried out and design study of advanced aqueous reprocessing system and its alternatives has been conducted. The conceptual design of the advanced aqueous reprocessing system has been updated and evaluated by the latest R and D results of the key technologies such as crystallization, single-cycle extraction, centrifugal contactors, recovery of Am/Cm and waste processing. In this paper, the outline of the design study and the current status of development for advanced aqueous reprocessing system, NEXT process, are mentioned. (author)

  6. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  7. Conceptual design report for the spent fuel management technology research and test (SMATER) facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S W; Ro, S G; Lee, J S; Min, D K; Shin, Y J [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. The study was focused on establishing design criteria and conceptual design of the SMATER facility. The results of this study should be an essential and useful basis upon optimization for further work to basic design of the facility. (author). 17 figs., 12 tabs.

  8. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    objectives of climate-responsive design meet other objectives (i.e. spatial, functional and structural. Finally, the impact of climatere sponsive building elements on the appearance of design is relevant to concept orientated architects. Together this can be considered as the content requirements of the design-decision support tool. In the early stages of the design process climate-responsive design is about the generation of energy concepts. In this phase accessible guidelines and the option to compare alternatives is more important than to assess absolute performance. The conceptual design phase is dynamic and has many iterations. Informative, context specific knowledge reduces the number of iterations before the architect has generated a satisfying number of design options from which it can continue to the next design phase of assessment. Functional requirements for the framework of the design decision support tool are the inclusion of a knowledge base with expert knowledge and best practice examples, the provision of informative, context-specific knowledge, the provision of accessible guidelines, the provision of an option to compare alternatives, the inclusion of the ability to inform during and assist in decision-making (i.e. intelligence and the limitation of complexity and the generation of easy to interpret output. The tool is primarily developed for the architect so it needs to blend in the architect’s workflow enabling the architect’s creativity and guiding his intuition. Other form requirements of the design-decision support tool are the presence of customisation options and custom navigation patterns, all presented in a visual style. A concept of the web-based tool has been developed in order to illustrate what a climate-responsive design-decision support tool could look like. The heart of the tool is formed by the knowledge base, constructed from items grouped into one of four categories: principles, solutions, projects and guidelines. Relationships between

  9. Exoskeleton for gait rehabilitation of children: Conceptual design.

    Science.gov (United States)

    Cornejo, Jorge L; Santana, Jesus F; Salinas, Sergio A

    2017-07-01

    This paper presents the conceptual design of an exoskeleton for gait rehabilitation of children. This system has electronics, mechanicals and software sections, which are implemented and tested using a mannequin of a child. The prototype uses servomotors to move robotic joints that are attached to simulated patient's legs. The design has 4 DOF (degrees of freedom) two for hip joints and other two for knee joints, in the sagittal plane. A microcontroller measures sensor signals, controls motors and exchanges data with a computer. The user interacts with a graphical interface to configure, control and monitor the exoskeleton activities. The laboratory tests show soften movements in joint angle tracking.

  10. New conceptual design of portable bamboo bridge for emergency purposes

    Science.gov (United States)

    Musthaffa, A. A.; Nor, N. M.; Yusof, M. A.; Yuhazri, M. Y.

    2018-02-01

    Portable bridges serve as routes for troops during the military operations and the disaster relief operation. Nowadays, bamboo has been regarded as one of the alternative construction materials for building and bridge structures. This paper presents the conceptual design of the portable bridge. Several types of portable bridges and bamboo bridges are reviewed in the current work. The characteristics, capability and method of construction of each bridge are discussed. Finally, the conceptual of the portable bamboo bridge for emergency purposes is presented. The idea of producing portable bridge is proposed in the current work as it is crucial for providing route for communities affected by natural disasters.

  11. Conceptual design considerations and neutronics of lithium fall laser target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  12. PHENIX Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  13. Conceptual design study of the K-DEMO magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Oh, Sangjun; Park, Jong Sung; Lee, Chulhee; Im, Kihak; Kim, Hyung Chan; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Brown, Thomas; Kessel, Charles; Titus, Peter; Zhai, Yuhu [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-10-15

    Highlights: • Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. • Present a preliminary design of TF (toroidal field) magnet. • Present a preliminary design of CS (central solenoid) magnet. • Present a preliminary design of PF (toroidal field) magnet. - Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy. A major design philosophy for the initiated conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) is engineering feasibility. A two-staged development plan is envisaged. K-DEMO is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used, in its initial stage, as a component test facility. Then, in its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electricity generation on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively. In order to minimize wave deflection, a top-launch high frequency (>200 GHz) electron cyclotron current drive (ECCD) system will be the key system for the current profile control. For matching the high frequency ECCD, a high toroidal field (TF) is required and can be achieved by using high current density Nb{sub 3}Sn superconducting conductor. The peak magnetic field reaches to 16 T with the magnetic field at the plasma center above 7 T. Key features of the K-DEMO magnet system include the use of two TF coil winding packs, each of a different conductor design, to reduce the construction cost and save the space for the magnet structure material.

  14. Conceptual design study of the K-DEMO magnet system

    International Nuclear Information System (INIS)

    Kim, Keeman; Oh, Sangjun; Park, Jong Sung; Lee, Chulhee; Im, Kihak; Kim, Hyung Chan; Lee, Gyung-Su; Neilson, George; Brown, Thomas; Kessel, Charles; Titus, Peter; Zhai, Yuhu

    2015-01-01

    Highlights: • Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. • Present a preliminary design of TF (toroidal field) magnet. • Present a preliminary design of CS (central solenoid) magnet. • Present a preliminary design of PF (toroidal field) magnet. - Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy. A major design philosophy for the initiated conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) is engineering feasibility. A two-staged development plan is envisaged. K-DEMO is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used, in its initial stage, as a component test facility. Then, in its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electricity generation on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively. In order to minimize wave deflection, a top-launch high frequency (>200 GHz) electron cyclotron current drive (ECCD) system will be the key system for the current profile control. For matching the high frequency ECCD, a high toroidal field (TF) is required and can be achieved by using high current density Nb_3Sn superconducting conductor. The peak magnetic field reaches to 16 T with the magnetic field at the plasma center above 7 T. Key features of the K-DEMO magnet system include the use of two TF coil winding packs, each of a different conductor design, to reduce the construction cost and save the space for the magnet structure material.

  15. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  16. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  17. Physician perceptions of primary prevention: qualitative base for the conceptual shaping of a practice intervention tool

    Directory of Open Access Journals (Sweden)

    Kuo Christina L

    2002-08-01

    Full Text Available Abstract Background A practice intervention must have its basis in an understanding of the physician and practice to secure its benefit and relevancy. We used a formative process to characterize primary care physician attitudes, needs, and practice obstacles regarding primary prevention. The characterization will provide the conceptual framework for the development of a practice tool to facilitate routine delivery of primary preventive care. Methods A focus group of primary care physician Opinion Leaders was audio-taped, transcribed, and qualitatively analyzed to identify emergent themes that described physicians' perceptions of prevention in daily practice. Results The conceptual worth of primary prevention, including behavioral counseling, was high, but its practice was significantly countered by the predominant clinical emphasis on and rewards for secondary care. In addition, lack of health behavior training, perceived low self-efficacy, and patient resistance to change were key deterrents to primary prevention delivery. Also, the preventive focus in primary care is not on cancer, but on predominant chronic nonmalignant conditions. Conclusions The success of the future practice tool will be largely dependent on its ability to "fit" primary prevention into the clinical culture of diagnoses and treatment sustained by physicians, patients, and payers. The tool's message output must be formatted to facilitate physician delivery of patient-tailored behavioral counseling in an accurate, confident, and efficacious manner. Also, the tool's health behavior messages should be behavior-specific, not disease-specific, to draw on shared risk behaviors of numerous diseases and increase the likelihood of perceived salience and utility of the tool in primary care.

  18. Conceptual Design of a 150-Passenger Civil Tiltrotor

    Science.gov (United States)

    Costa, Guillermo

    2012-01-01

    The conceptual design of a short-haul civil tiltrotor aircraft is presented. The concept vehicle is designed for runway-independent operations to increase the capacity of the National Airspace System without the need for increased infrastructure. This necessitates a vehicle that is capable of integrating with conventional air traffic without interfering with established flightpaths. The NASA Design and Analysis of Rotorcraft software was used to size the concept vehicle based on the mission requirements of this market. The final configuration was selected based upon performance metrics such as acquisition and maintenance costs, fuel fraction, empty weight, and required engine power. The concept presented herein has a proposed initial operating capability date of 2035, and is intended to integrate with conventional air traffic as well as proposed future air transportation concepts.

  19. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  20. Conceptual design of small-sized HTGR system (4). Plant design and technical feasibility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing L.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

    2013-09-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2020s. HTR50S was designed for steam supply and electricity generation by the steam turbine with the reactor outlet temperature of 750degC as a reference plant configuration. On the other hand, the intermediate heat exchanger (IHX) will be installed in the primary loop to demonstrate the electricity generation by the helium gas turbine and hydrogen production by thermochemical water splitting by utilizing the secondary helium loop with the reactor outlet temperature of 900degC as a future plant configuration. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750degC to 900degC and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems (i.e., reactor internal components, reactor pressure vessel, vessel cooling system, shutdown cooling system, steam generator (SG), gas circulator, SG isolation and drainage system, reactor containment vessel, steam turbine and heat supply system) satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S. (author)

  1. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate

  2. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  3. Conceptual design of a system for detecting national diversion of LWR spent fuel

    International Nuclear Information System (INIS)

    Holmes, J.P.

    1978-09-01

    A conceptual design for detecting the national diversion of light water reactor spent fuel in water basin storage or in transit between facilities is described. This is the third in a series of reports dealing with this topic. The first report provides the spent fuel facilities and operations baseline description; the second report discusses cost and performance tradeoffs for three inspection and surveillance concepts for the detection of a national diversion of spent fuel. The conceptual design presented herein will provide a basis for future feasibility investigations and tradeoff analyses of hardware configurations and inspection options

  4. Conceptual design for the breakwater system of the south of Doson naval base : Optimisation versus deterministic design

    NARCIS (Netherlands)

    Viet, N.D.; Verhagen, H.J.; Van Gelder, P.H.A.J.M.; Vrijling, J.K.

    2008-01-01

    In 2006 a Vietnamese Engineering Consultancy Company carried out a design study of a Naval Base at the location of the South of Doson Peninsula in Vietnam. A deterministic approach applied to the conceptual design of the breakwater system of the Naval Base resulted in a cross-section with a big

  5. Conceptual design of data management and communication networks for KALIMER MMIS

    International Nuclear Information System (INIS)

    Cha, K. H.; Kwon, K. C.

    1998-01-01

    This paper describes the design progress for data management and communication networks to be co-operated as subsystems in KALIMER MMIS. Main functions and design bases are being established and validated for functional modules of these subsystems. Real-time data acquisition and signal validation, databases, and data logging have been designed as each functional module of data management while data interfaces of communication networks have been designed with the system information from Top-Tier Requirements for KALIMER MMIS. The conceptual design shall be refined through the iterative and detailed one

  6. Conceptual design of data management and communication networks for KALIMER MMIS

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K. H.; Kwon, K. C. [KAERI, Taejon (Korea, Republic of)

    1998-10-01

    This paper describes the design progress for data management and communication networks to be co-operated as subsystems in KALIMER MMIS. Main functions and design bases are being established and validated for functional modules of these subsystems. Real-time data acquisition and signal validation, databases, and data logging have been designed as each functional module of data management while data interfaces of communication networks have been designed with the system information from Top-Tier Requirements for KALIMER MMIS. The conceptual design shall be refined through the iterative and detailed one.

  7. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  8. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  9. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  10. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education

    Science.gov (United States)

    Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…

  11. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...

  12. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  13. Compositional gossip: a conceptual architecture for designing gossip-based applications

    OpenAIRE

    Rivière, Étienne; Baldoni, Roberto; Li, Harry; Pereira, José

    2007-01-01

    Most proposed gossip-based systems use an ad-hoc design. We observe a low degree of reutilization among this proposals. We present how this limits both the systematic development of gossip-based applications and the number of applications that can benefit from gossip-based construction. We posit that these reinvent-the-wheel approaches poses a significant barrier to the spread and usability of gossip protocols. This paper advocates a conceptual design framework based upon aggregating basic an...

  14. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  15. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  16. Conceptual design of the Purdue compact torus/passive liner fusion reactor

    International Nuclear Information System (INIS)

    Terry, W.K.

    1981-01-01

    This proposal describes a program for the conceptual development of a novel fusion reactor design, the Purdue Compact Torus/Passive Liner Reactor. The key features of the concept are described and a comparison is made with a conventional tokamak

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    Science.gov (United States)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  18. Conceptual design finalisation of the ITER In-Vessel Viewing and Metrology System (IVVS)

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, Gregory, E-mail: gregory.dubus@f4e.europa.eu [Fusion for Energy, c/ Josep Pla, n°2 - Torres Diagonal Litoral - Edificio B3, 08019 Barcelona (Spain); Puiu, Adrian; Damiani, Carlo; Van Uffelen, Marco; Lo Bue, Alessandro; Izquierdo, Jesus; Semeraro, Luigi [Fusion for Energy, c/ Josep Pla, n°2 - Torres Diagonal Litoral - Edificio B3, 08019 Barcelona (Spain); Martins, Jean-Pierre; Palmer, Jim [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    The In-Vessel Viewing and Metrology System (IVVS) is a fundamental tool for the ITER machine operations, aiming at performing inspections as well as providing information related to the erosion of in-vessel components. Periodically or on request, the IVVS probes will be deployed into the Vacuum Vessel from their storage positions (still within the ITER primary confinement) in order to perform both viewing and metrology on plasma facing components (blanket, divertor, heating/diagnostic plugs, test blanket modules) and, more generically, to provide information on the status of the in-vessel components. In 2011, the IO proposed to simplify and strengthen the six IVVS port extensions situated at the divertor level. Among other important consequences, such as the relocation of the Glow Discharge Cleaning (GDC) electrodes at other levels of the machine, this major design change implied the need for a substantial redesign of the IVVS plug, which took part to an on-going effort to bring the integrated IVVS concept – including the scanning probe and its deployment system – to the level of maturity suitable for the Conceptual Design Review. This paper gives an overview of the various design and R and D activities in progress: plug design integration, probe concept validation under environmental conditions, development of a metrology strategy, the whole supported by a nuclear analysis.

  19. A conceptual design of multidisciplinary-integrated C.F.D. simulation on parallel computers

    International Nuclear Information System (INIS)

    Onishi, Ryoichi; Ohta, Takashi; Kimura, Toshiya.

    1996-11-01

    A design of a parallel aeroelastic code for aircraft integrated simulations is conducted. The method for integrating aerodynamics and structural dynamics software on parallel computers is devised by using the Euler/Navier-Stokes equations coupled with wing-box finite element structures. A synthesis of modern aircraft requires the optimizations of aerodynamics, structures, controls, operabilities, or other design disciplines, and the R and D efforts to implement Multidisciplinary Design Optimization environments using high performance computers are made especially among the U.S. aerospace industries. This report describes a Multiple Program Multiple Data (MPMD) parallelization of aerodynamics and structural dynamics codes with a dynamic deformation grid. A three-dimensional computation of a flowfield with dynamic deformation caused by a structural deformation is performed, and a pressure data calculated is used for a computation of the structural deformation which is input again to a fluid dynamics code. This process is repeated exchanging the computed data of pressures and deformations between flowfield grids and structural elements. It enables to simulate the structure movements which take into account of the interaction of fluid and structure. The conceptual design for achieving the aforementioned various functions is reported. Also the future extensions to incorporate control systems, which enable to simulate a realistic aircraft configuration to be a major tool for Aircraft Integrated Simulation, are investigated. (author)

  20. Conceptual design of a continuous fluorinator experimental facility (CFEF)

    International Nuclear Information System (INIS)

    Lindauer, R.B.; Hightower, J.R. Jr.

    1976-07-01

    A conceptual design has been made of a circulating salt system, consisting principally of a fluorinator and reduction column, to demonstrate uranium removal from the salt by fluorination. The fluorinator vessel wall will be protected from fluorine corrosion by a frozen salt film. The circulating salt in the fluorinator will be kept molten by electrical heating that simulates fission product heating in an actual MSBR system

  1. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    Science.gov (United States)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  2. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    Directory of Open Access Journals (Sweden)

    Moro Alessandro

    2017-01-01

    Full Text Available A demonstration fusion power plant (DEMO producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC, ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components. Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  3. Conceptual design of a neutron camera for MAST Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Weiszflog, M., E-mail: matthias.weiszflog@physics.uu.se; Sangaroon, S.; Cecconello, M.; Conroy, S.; Ericsson, G.; Klimek, I. [Department of Physics and Astronomy, Uppsala University, EURATOM-VR Association, Uppsala (Sweden); Keeling, D.; Martin, R. [CCFE, Culham Science Centre, Abingdon (United Kingdom); Turnyanskiy, M. [ITER Physics Department, EFDA CSU Garching, Boltzmannstrae 2, D-85748 Garching (Germany)

    2014-11-15

    This paper presents two different conceptual designs of neutron cameras for Mega Ampere Spherical Tokamak (MAST) Upgrade. The first one consists of two horizontal cameras, one equatorial and one vertically down-shifted by 65 cm. The second design, viewing the plasma in a poloidal section, also consists of two cameras, one radial and the other one with a diagonal view. Design parameters for the different cameras were selected on the basis of neutron transport calculations and on a set of target measurement requirements taking into account the predicted neutron emissivities in the different MAST Upgrade operating scenarios. Based on a comparison of the cameras’ profile resolving power, the horizontal cameras are suggested as the best option.

  4. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    Science.gov (United States)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  5. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  6. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  7. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    International Nuclear Information System (INIS)

    Jang, Yu Jin

    2013-01-01

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  8. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yu Jin [Dongguk University, GyeongJu (Korea, Republic of)

    2013-07-15

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  9. Conceptual Design of the ITER ECE Diagnostic - An Update

    Science.gov (United States)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  10. Conceptual structures in practice

    CERN Document Server

    Hitzler, Pascal

    2009-01-01

    Exploring fundamental research questions, Conceptual Structures in Practice takes you through the basic yet nontrivial task of establishing conceptual relations as the foundation for research in knowledge representation and knowledge mining. It includes contributions from leading researchers in both the conceptual graph and formal concept analysis (FCA) communities.This accessible, self-contained book begins by providing the formal background in FCA and conceptual graphs. It then describes various software tools for analysis and computation, including the ToscanaJ suite. Written by the origina

  11. Development and analysis of vent-filtered containment conceptual designs

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Walling, H.C.

    1980-01-01

    Conceptual filtered-vented containment systems have been postulated for a reference large, dry, pressurized water reactor containment, and the systems have been analyzed to determine design parameters, actuation/operation requirements, and overall feasibility. The primary design challenge has been found to emanate from pressure spikes caused by core debris bed interactions with water and by hydrogen deflagrations. Circumvention of the pressure spikes may require a more complicated actuation logic than has previously been considered. Otherwise, major reductions in consequences for certain severe accidents appear to be possible with relatively simple systems. A probabilistic assessment of competing risks remains to be performed

  12. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  13. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  14. ASTROS: A multidisciplinary automated structural design tool

    Science.gov (United States)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  15. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    OpenAIRE

    Lee, Jin Kook; Kim, Mi Jeong

    2014-01-01

    This paper describes how a building information modelling (BIM)-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs), which follow an object-oriented data modelli...

  16. Helium gas turbine conceptual design by genetic/gradient optimization

    International Nuclear Information System (INIS)

    Yang, Long; Yu, Suyuan

    2003-01-01

    Helium gas turbine is the key component of the power conversion system for direct cycle High Temperature Gas-cooled Reactors (HTGR), of which an optimal design is essential for high efficiency. Gas turbine design currently is a multidisciplinary process in which the relationships between constraints, objective functions and variables are very noisy. Due to the ever-increasing complexity of the process, it has becomes very hard for the engineering designer to foresee the consequences of changing certain parts. With classic design procedures which depend on adaptation to baseline design, this problem is usually averted by choosing a large number of design variables based on the engineer's judgment or experience in advance, then reaching a solution through iterative computation and modification. This, in fact, leads to a reduction of the degree of freedom of the design problem, and therefore to a suboptimal design. Furthermore, helium is very different in thermal properties from normal gases; it is uncertain whether the operation experiences of a normal gas turbine could be used in the conceptual design of a helium gas turbine. Therefore, it is difficult to produce an optimal design with the general method of adaptation to baseline. Since their appearance in the 1970s, Genetic algorithms (GAs) have been broadly used in many research fields due to their robustness. GAs have also been used recently in the design and optimization of turbo-machines. Researchers at the General Electronic Company (GE) developed an optimization software called Engineous, and used GAs in the basic design and optimization of turbines. The ITOP study group from Xi'an Transportation University also did some work on optimization of transonic turbine blades. However, since GAs do not have a rigorous theory base, many problems in utilities have arisen, such as premature convergence and uncertainty; the GA doesn't know how to locate the optimal design, and doesn't even know if the optimal solution

  17. A plea for rigorous conceptual analysis as central method in transnational law design

    NARCIS (Netherlands)

    Rijgersberg, R.; van der Kaaij, H.

    2013-01-01

    Although shared problems are generally easily identified in transnational law design, it is considerably more difficult to design frameworks that transcend the peculiarities of local law in a univocal fashion. The following exposition is a plea for giving more prominence to rigorous conceptual

  18. Ontologies and Formation Spaces for Conceptual ReDesign of Systems

    Directory of Open Access Journals (Sweden)

    J. Bíla

    2005-01-01

    Full Text Available This paper discusses ontologies, methods for developing them and languages for representing them. A special ontology for computational support of the Conceptual ReDesign Process (CRDP is introduced with a simple illustrative example of an application. The ontology denoted as Global context (GLB combines features of general semantic networks and features of UML language. The ontology is task-oriented and domain-oriented, and contains three basic strata – GLBExpl(stratum of Explanation, GLBFAct (stratum of Fields of Activities and GLBEnv (stratum of Environment, with their sub-strata. The ontology has been developed to represent functions of systems and their components in CRDP. The main difference between this ontology and ontologies which have been developed to identify functions (the semantic details in those ontologies must be as deep as possible is in the style of the description of the functions. In the proposed ontology, Formation Spaces were used as lower semantic categories the semantic deepness of which is variable and depends on the actual solution approach of a specialised Conceptual Designer.

  19. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    Science.gov (United States)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  20. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  1. Implementation of decommissioning criteria in the conceptual design of the MRS facility

    International Nuclear Information System (INIS)

    Gross, D.L.; Wilcox, A.D.; Huang, S.

    1986-01-01

    The US Department of Energy (DOE) selected the Ralph M. Parsons Company (RMP) to prepare the conceptual design of the Monitored Retrievable Storage (MRS) Facility. The purpose of this facility is to consolidate and temporarily store spent fuel from civilian nuclear power plants. In addition, it will overpack, handle, and store high-level radioactive waste from non-defense related sources. The Functional Design Criteria (FDC) prepared by Pacific Northwest Laboratories, as well as 10 CFR 72, requires the facility to be designed for decommissioning, with provisions to facilitate decontamination of structures and equipment to minimize the volume of radioactive wastes and contaminated equipment at the time of decommissioning. Many problems associated with decommissioning a nuclear facility have been identified in recent years and the design for the MRS Facility presents a unique opportunity for RMP to implement decommissioning criteria into the conceptual design of a major nuclear facility. The provisions made in the design to facilitate decommissioning include good housekeeping during operations, controlled personnel access, access for equipment removal, equipment design, installed radiation monitors, adequate work space, installed decontamination systems and areas, control of all effluents, and operational documentation. These topics will be the major points of discussion for this paper

  2. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  3. Conceptual design of planetary gearbox system for constant generator speed in hydro power plant

    Directory of Open Access Journals (Sweden)

    Bhargav

    2018-01-01

    Full Text Available Micro Hydro Power Plant (MHPP is emerging as one of the most clean, renewable and reliable energy technology for harnessing power. In MHPP hydro governors are avoided, that results in turbine speed fluctuation. MHPP requires either speed or torque amplification of generator for constant power generation. To achieve this, planetary gear transmission system is explored for MHPP due to its higher efficiency and compact size. A conceptual planetary gearbox system is developed for MHPP to maintain constant generator speed. The conceptual gearbox is designed, modelled and analysed using ADAMS software. Simulation results are found to be in close agreement with analytical results. Hence, conceptual design of planetary gearbox can be used to govern constant generator speed. In this paper, a MHPP which generate constant power of 5 kW at constant generator speed of 1490 rpm is analysed and validated

  4. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  5. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  6. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  7. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  8. Conceptual design and assessment of in-service inspection and maintenance of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Seok Hun; Kim, Jong Bum; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    In the conceptual design stage of KALIMER, the philosophy and methodology of in-service inspection (ISI) and maintenance for the reactor system and components are proposed and described. The ISI and maintenance should be carried out throughout plant life to ensure the structural integrity and safety of KALIMER. The conceptual design of ISI and maintenance are performed for considering the design characteristics of KALIMER and the intents of the ASME XI Division 3. This report describes and summarizes the requirements and available methods of ISI and maintenance. The visual inspection and continuous monitoring play a great role in the in-service inspection of KALIMER. The major structures of KALIMER reactor system are designed for maintenance free operation for the plant life time and the maintenance philosophy is to replace major components rather than repair them. The assessment of the ISI accessibility and maintainability is performed and reviewed each major component. The postulated failure defects for each component are estimated and evaluated for KALIMER safety and reliability. 8 refs., 16 figs., 13 tabs. (Author)

  9. Thermal battery automated assembly station conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D

    1988-08-01

    Thermal battery assembly involves many operations which are labor- intense. In August 1986, a project team was formed at GE Neutron Devices to investigate and evaluate more efficient and productive battery assembly techniques through the use of automation. The result of this study was the acceptance of a plan to automate the piece part pellet fabrication and battery stacking operations by using computerized pellet presses and robots which would be integrated by a main computer. This report details the conceptual design and development plan to be followed in the fabrication, development, and implementation of a thermal battery automated assembly station. 4 figs., 8 tabs.

  10. EVALUATION OF CONCEPTUAL FRAMEWORKS IN ASTRONOMY

    Directory of Open Access Journals (Sweden)

    David Pundak

    2016-02-01

    Full Text Available Even though astronomy is the oldest science, it is still an open question how to evaluate students’ understanding in astronomy. In spite of the fact that some methods and evaluation tools have been developed for that purpose, the sources of students' difficulties in astronomy are still unclear. This paper presents an investigation of the changes in conceptual frameworks in astronomy among 50 engineering students as a result of learning a general course in astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA, which was initially used in 1989, was adopted to gather data for the present research. In its new version, the tool includes 23 questions and five to six optional answers to each question. Each of the answers characterizes one of the four conceptual frameworks: pre-scientific, geocentric, heliocentric and sidereal. These four conceptual frameworks act as a taxonomical system that enables us to evaluate astronomical understanding. The paper describes the background of the CFA, its development, and discusses its validity and reliability. Using the CFA we were able to: (1 identify the students’ conceptual frameworks at the beginning of the course and at its end, (2 to evaluate the students’ paradigmatic change following the course. It was found that the measure of the students’ improvement (gain index was g = 0.37. Approximately 45% of the students in the course improved their conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks. The CFA can also be applied as an evaluation tool in all schools and institutions that teach astronomy.

  11. Improving Conceptual Design for Launch Vehicles

    Science.gov (United States)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  12. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    Science.gov (United States)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  13. Daylight prediction techniques in energy design tools

    Energy Technology Data Exchange (ETDEWEB)

    Milne, M.; Zurick, J. [California Univ., Los Angeles, Dept. of Architecture, CA (United States)

    1998-09-01

    Four different whole-building energy design tool systems that calculate energy savings from daylighting and that display annual performance on an-hour-by-hour basis, have been tested. The nature of design tools, the sources of hourly outdoor illuminance data, the ways of predicting indoor illumination, the assumptions of each tool, and the resulting energy savings of the design tools tested are discussed. The tests were carried out with the essential criteria for evaluating whole-building daylighting and energy design tools in mind. These have been identified as user confidence, accuracy, response time, and the amount of detail. Results of the tests, all four of them run on a single elementary school classroom for the sake of comparability, were provided. 9 refs., 2 figs.

  14. MAPIT: A new software tool to assist in the transition from conceptual model to numerical simulation models

    International Nuclear Information System (INIS)

    Canales, T.W.; Grant, C.W.

    1996-01-01

    MapIt is a new software tool developed at Lawrence Livermore National Laboratory to assist ground water remediation professionals in generating numerical simulation models from a variety of physical and chemical data sources and the corresponding 1, 2, and 3 dimensional conceptual models that emerge from analysis of such data

  15. Integración conceptual Green-Lean en el diseño, planificación y construcción de proyectos Green-Lean conceptual integration in the project design, planning and construction

    Directory of Open Access Journals (Sweden)

    Patricia Martinez

    2009-01-01

    begin to be managed by all the agents involved: engineers, architects, owners, among others. Sustainability concept, being of general character, has remained in a conceptual context, becoming difficult the development of tools that facilitate its consideration through the entire project life cycle. This study had as purpose to integrate the philosophies of Sustainable Construction, or Green Building, and Lean Construction, the latter employee as the necessary complement to give an analysis baseline focused on the production management. The design, planning and construction stages were defined as the enclosed life cycle, being determined integration vectors by means of the morphological analysis and cross-impact matrix. The vectors with direct relationship for the implementation of the Green-Lean integration were determined. As implementation tool of the Green-Lean integration, Constructability was used which allowed sequencing the construction processes. This conceptual exercise was only applied at design level. As a result, at conceptual level was stated that the tools applied in the project management (Lean Construction and Constructability, give a sound support for the implementation, and future application, of Sustainability criteria in the processes and stages involving the whole project life cycle.

  16. Chinese FBR program and its first FR conceptual design

    International Nuclear Information System (INIS)

    Xu Mi

    1991-01-01

    As the preliminary study results, The long term strategy of FBR development in China would be divided into three steps: Experimental Fast Reactor, Modulized Fast Breeder Reactor and Large Fast Breeder Reactor. The design requirements, main technical selections and design boundary conditions for the first step, experimental fast reactor, which is named FFR (First Fast Reactor) in China have been given in the paper. The conceptual design of FFR, based on core neutronics, core subassemblies thermo-hydraulics, reactor block and mechanics, fuel handling system, main heat transfer system and steam-electricity generation system has been completed and also presented in this paper. Finally, the R and D program of FFR which is carring on and will be done is briefly introduced. (author)

  17. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    International Nuclear Information System (INIS)

    Meier, W.R.; Thomson, W.B.

    1978-01-01

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage

  18. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  19. KrF amplifier design issues and application to inertial confinement fusion system design

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Allen, G.R.; Berggren, R.R.

    1993-01-01

    Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future single-pulse KrF lasers. The next opportunity to exercise these tools is with the design of the second-generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Los Alamos has applied these amplifier design tools to the conceptual design of a 100-kJ Laser Target Test Facility and a 3-MJ Laboratory Microfusion Facility. (author)

  20. Analytical Tools for Space Suit Design

    Science.gov (United States)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  1. Using Annotated Conceptual Models to Derive Information System Implementations

    Directory of Open Access Journals (Sweden)

    Anthony Berglas

    1994-05-01

    Full Text Available Producing production quality information systems from conceptual descriptions is a time consuming process that employs many of the world's programmers. Although most of this programming is fairly routine, the process has not been amenable to simple automation because conceptual models do not provide sufficient parameters to make all the implementation decisions that are required, and numerous special cases arise in practice. Most commercial CASE tools address these problems by essentially implementing a waterfall model in which the development proceeds from analysis through design, layout and coding phases in a partially automated manner, but the analyst/programmer must heavily edit each intermediate stage. This paper demonstrates that by recognising the nature of information systems, it is possible to specify applications completely using a conceptual model that has een annotated with additional parameters that guide automated implementation. More importantly, it will be argued that a manageable number of annotations are sufficient to implement realistic applications, and techniques will be described that enabled the author's commercial CASE tool, the Intelligent Develope to automated implementation without requiring complex theorem proving technology.

  2. Prospects of application structural mathematical constructs as bases tool conceptualization the subject domain of sociology (statement of a problem

    Directory of Open Access Journals (Sweden)

    E. V. Maslennikov

    2016-01-01

    Full Text Available In article the approach to the decision of a problem of conceptual integration of sociology as the set of theoretical knowledge belonging to type - conceptually difficult - the big theories. Development of theoretical sociology with use of forms of the mathematical theory is considered as a private problem in relation to more general problem of development of theoretical knowledge with use of forms of the mathematical theory. Development the theoretical sociology is offered to carry out with use of forms of the mathematical theory on the basis of properties structural mathematical constructs and with application the mathematical methods developed in a scientific direction “The Conceptual analysis and designing”[40] . In the given direction it is used not only a paradigm of structuralism, but also a principle of an ascention from abstract to concrete in the knowledge, realized in procedure of synthesis of formal theories with use of the device of structural mathematics. The system analysis, the theory of systems and the theory of structures of N. Burbaki concerns to sources of occurrence of a method of the conceptual analysis. The method is intended for the analysis of subject domains of a high level of complexity, realization of conceptual modeling of objects from these subject domains and reception of new knowledge about essence of subject domains and their relations. Conceptual complexity of phenomena is understood as complexity of the structures expressing the relations and interrelations between concepts, describing interesting area from the point of view of solved tasks. For a subject domain conceptual complexity is potentially established by quantity of basic sets on which scales of sets and the steps belonging to them representing definitions of developed theory of a subject domain are constructed. In article is exposed to the analysis role structural mathematical constructs device in expansion integrating tool conceptualization

  3. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    Science.gov (United States)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  4. Present status of the conceptual design of IFMIF target facility

    International Nuclear Information System (INIS)

    Katsuta, H.; Kato, Y.; Konishi, S.; Miyauchi, Y.; Smith, D.; Hua, T.; Green, L.; Benamati, G.; Cevolani, S.; Roehrig, H.; Schutz, W.

    1998-01-01

    The conceptual design activity (CDA) for the international fusion materials irradiation facility (IFMIF) has been conducted. For the IFMIF target facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly: The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm 2 lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the-high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 l/s and the total lithium inventory is about 21 m 3 . The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive waste generated by the target facilities is estimated. (orig.)

  5. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  6. Preclosure safety analysis for a prospective Yucca Mountain conceptual design repository

    International Nuclear Information System (INIS)

    Ma, C.W.; Jardine, L.J.

    1989-12-01

    A preliminary probabilistic risk assessment was performed for the prospective Yucca Mountain conceptual design repository. A new methodology to quantify radioactive source terms was developed and applied in the analysis. The study identified 42 event trees comprising 278 accident scenarios. The maximum offsite dose evaluated in this study is about 1000 mrem. For the majority of the accident scenarios, either the offsite dose is less than 100 mrem or the probability of occurrence is less than 1 x 10 -9 /yr. Only 11 accident scenarios with a dose larger than 100 mrem and an associated probability greater than 1 x 10 -9 /yr were identified. A more detailed follow-on analysis for seismic events of various severity was also performed, and similar results were obtained. Therefore, based on the results of this analysis, no significant risk to the general public was identified during the preclosure period for the conceptual repository design. 13 refs., 4 figs., 2 tabs

  7. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  8. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  9. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  10. CIT divertor conceptual design

    International Nuclear Information System (INIS)

    Wesley, J.C.; Sevier, D.L.

    1988-06-01

    A conceptual design of the divertor target assembly for the 1.75-m CIT baseline device has been developed. The divertor target assembly consists of four toroidal arrays of pyrolytic graphite plates that cover the inside surface of the ends of the vacuum vessel in the locations where the magnetic separatrices of the plasma intersect the vessel wall. During the course of the plasma discharge, the currents on the poloidal field coils that establish the plasma equilibrium are varied to sweep the separatrix strike locations across the divertor targets. This spreads the plasma heat loading over sufficient area to keep the peak target surface temperature within allowable limits. The required magnetic sweep (/+-/5 cm for the inside strike location and /+-/12 cm for the outside strike location) can be affected by programming either the external poloidal strike location) can be effected by programming either the external poloidal field (PF) coils or the internal PF control coils plus the external PF solenoid coils (PF1 and PF2). The ensuing variations in the elongation and triangularity of the plasma are modest, and fall within the ranges of plasma elongation and triangularity specified in the CIT General Requirements Document. 17 figs., 13 tabs

  11. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  12. Conceptual design for transmission line inspection robot

    International Nuclear Information System (INIS)

    Jalal, M F Abdul; Sahari, K S Mohamed; Anuar, A; Arshad, A D Mohd; Idris, M S

    2013-01-01

    Power transmission line is used for power distribution purposes due to their cost effective measure compared to underlying cable. However, prolonged exposure to natural weather may cause fatigue stress to the lines as well as induce material failure. Therefore, periodical line inspection is considered uttermost important as a preventive measure to avoid power outage. However, transmission line inspection has always been a high risk and expensive work. Hazardous works that may harm operator as well as routine that requires precise handling can be performed by robots. Various types of robots have been designed and developed for line inspection but only perform well on a straight and continuous line. As these robots encounter an obstacle during the inspection, then the real problem in terms of robot stability and smooth operation arises. In this paper, conceptual design and evaluation for transmission line inspection robot is presented. The inspection robot mobile robot must be able to bypass or avoid obstacles as it travels along the power transmission line.

  13. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  14. Conceptual design report: Exploratory Shaft Waterline (ESWL) Project B-415

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, B.K. (Kaiser Engineers Hanford Co., Richland, WA (USA))

    1982-03-01

    This project will consist of installing a buried sanitary water transport line from the 200 West Area to the ES site. The size and type of line is to be determined by the A-E during conceptual and Title II design. The present concept is to use an 8-in. PVC line which will meet the required capacity and reliability at minimum cost. This line is not planned for use in the nuclear waste repository in basalt due to the size and source. This will be reconsidered during Title I design of the repository.

  15. Conceptual design report: Exploratory Shaft Waterline (ESWL) Project B-415

    International Nuclear Information System (INIS)

    Schroeder, B.K.

    1982-03-01

    This project will consist of installing a buried sanitary water transport line from the 200 West Area to the ES site. The size and type of line is to be determined by the A-E during conceptual and Title II design. The present concept is to use an 8-in. PVC line which will meet the required capacity and reliability at minimum cost. This line is not planned for use in the nuclear waste repository in basalt due to the size and source. This will be reconsidered during Title I design of the repository

  16. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  17. Functional design and implementation proposal of a tool to support collaborative knwoledge building

    Directory of Open Access Journals (Sweden)

    Iolanda Garcia Gonzalez

    2013-02-01

    Full Text Available 0 0 1 147 810 USAL 6 1 956 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} This article describes the process of conceptualization and functional design of an electronic forum, which aims to facilitate learning processes based on communication, but also on collaboration and social knowledge building, and their monitoring and evaluation. The experience is based on an innovation project involving the design, development and pilot implementation of an asynchronous communication tool, in the context of the Open University of Catalonia (UOC virtual campus. The design of the tool is based on the analysis of different reference models regarding the use of technology to support collaborative learning and social knowledge building processes. In parallel, and after analyzing some models for the study of collaborative knowledge building processes in virtual environments, the article presents a proposal for the analysis and assessment of such processes mediated by asynchronous communication tools similar to the one designed.

  18. Effectiveness of Adaptive Concept Maps for Promoting Conceptual Understanding: Findings from a Design-Based Case Study of a Learner-Centered Tool

    Science.gov (United States)

    Moore, Jacob; Williams, Christopher B.; North, Christopher; Johri, Aditya; Paretti, Marie

    2015-01-01

    Traditional instructional materials such as textbooks contain significant educational content, but the navigational mechanisms to access that content are limited and, more importantly, not designed with learning in mind. To address this gap, we present the Adaptive Map, a novel organization and navigation tool designed to help students better…

  19. The Conceptual Design of Innovative Safe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Gon [Centural Research Institute, Daejeon (Korea, Republic of); Heo, Sun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Most of countries operating NPPs have been performed post-Fukushima improvements as short-term countermeasure to enhance the safety of operating NPPs. Separately, vendors have made efforts on developing passive safety systems as long-term and ultimate countermeasures. AP1000 designed by Westinghouse Electric Company has passive safety systems including the passive emergency core cooling system (PECCS), the passive residual heat removal system (PRHRS), and the passive containment cooling system (PCCS). ESBWR designed by GE-Hitachi also has passive safety systems consisting of the isolation condenser system, the gravity driven cooling system and the PCCS. Other countries including China and Russia have made efforts on developing passive safety systems for enhancing the safety of their plants. In this paper, we summarize the design goals and main design feature of innovative safe PWR, iPOWER which is standing for Innovative Passive Optimized World-wide Economical Reactor, and show the developing status and results of research projects. To mitigate an accident without electric power and enhance the safety level of PWR, the conceptual designs of passive safety system and innovative safe PWR have been performed. It includes the PECCS for core cooling and the PCCS for containment cooling. Now we are performing the small scale and separate effect tests for the PECCS and the PCCS and preparing the integral effect test for the PECCS and real scale test for the PCCS.

  20. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    Science.gov (United States)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  1. Conceptual design of interim storage facility for CNAI

    International Nuclear Information System (INIS)

    Fuenzalida Troyano, Carlos S.; Bergallo, Juan E.; Nassini, Horacio E.P.; Blanco, Anibal; Delmastro, Dario F.

    2007-01-01

    The reduced storage capacity available in the two spent fuel pools of argentine PHWR Atucha-1 power plant, the current plans for extending the reactor operation beyond its design lifetime, and the government decision on Atucha-2 NPP construction ending, have motivated the evaluation of a dry storage option for the interim management of spent fuel assemblies. Two different designs are presently being analyzed by an expert working group, from both technical and economical points of views. Authors are proposing a modular system consisting of an arrangement of reinforced concrete structures into which welded metallic canisters loaded with 37 spent fuel assemblies each stored in horizontal position. The reinforced concrete module is designed to provide the necessary physical protection and biological shielding to the loaded canisters during long-term storage, as well as passive means to remove the spent fuel decay heat by a combination of radiation, conduction and natural air convection. In this works are presented advances in the conceptual designs for a spent nuclear fuel system to Atucha I nuclear power plant. (author) [es

  2. Conceptual design of the CMS 4 Tesla solenoid

    International Nuclear Information System (INIS)

    Baze, J.M.; Desportes, H.; Duthil, R.; Lesmond, C.; Lottin, J.C.; Pabot, Y.

    1992-02-01

    A large and important meeting 'Toward the LHC experimental programme' is due to be held at EVIAN-les-BAINS, on 5-8 March 1992. The major goal accurate measurement of muon momenta makes necessary, for the detectors, the use of large and powerful magnetic system producing high bending power. The CMS experiment is based on a solenoidal magnetic configuration. It has been designed to produce a high magnetic induction (4 T) in a 14 m long, 5.9 m bore cylindrical volume surrounding the interaction point. The diameter has been fixed to the maximum dimension compatible with road transportation to CERN. This long solenoid with its 12 500 ton iron yoke is a fully shielded magnet. The paper presents the conceptual design of the superconducting coil and its technical characteristics

  3. Conceptual engineering design study of thermionic topping of fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-15

    Primary objectives of this study are to investigate alternative design concepts of thermal coupling of thermionic energy converters (TECs) to the steam cycle and the mechanical and electrical aspects of integrating TEC design into the steam power station. The specific tasks include: (1) evaluate design concepts of TEC topping of solvent refined liquified coal-fired steam power plants, with main emphasis devoted to thermal, mechanical, and electrical design aspects. (2) Develop preliminary conceptual design of a modular TEC assembly. (3) Develop preliminary cost estimates of the design modification to a liquified coal-fired steam power plant with TEC topping. (4) Provide support to Thermo Electron Corporation in planning TEC hardware testing. Results are presented in detail.

  4. ADOxx Modelling Method Conceptualization Environment

    Directory of Open Access Journals (Sweden)

    Nesat Efendioglu

    2017-04-01

    Full Text Available The importance of Modelling Methods Engineering is equally rising with the importance of domain specific languages (DSL and individual modelling approaches. In order to capture the relevant semantic primitives for a particular domain, it is necessary to involve both, (a domain experts, who identify relevant concepts as well as (b method engineers who compose a valid and applicable modelling approach. This process consists of a conceptual design of formal or semi-formal of modelling method as well as a reliable, migratable, maintainable and user friendly software development of the resulting modelling tool. Modelling Method Engineering cycle is often under-estimated as both the conceptual architecture requires formal verification and the tool implementation requires practical usability, hence we propose a guideline and corresponding tools to support actors with different background along this complex engineering process. Based on practical experience in business, more than twenty research projects within the EU frame programmes and a number of bilateral research initiatives, this paper introduces the phases, corresponding a toolbox and lessons learned with the aim to support the engineering of a modelling method. ”The proposed approach is illustrated and validated within use cases from three different EU-funded research projects in the fields of (1 Industry 4.0, (2 e-learning and (3 cloud computing. The paper discusses the approach, the evaluation results and derived outlooks.

  5. Checking the numbers for the labyrinths shown in the SSC [Superconducting Super Collider] conceptual design

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    Reviewed are the designs for access labyrinths presently shown in the Conceptual Design Report to see if they are reasonable for radiation protection purposes. This matter was previously studied two years ago in a Fermilab TM (Co85a). The methods used are based upon scaling the results of calculations done by Gollon and Awschalom. Confidence in the results has been fortified by a successful experimental test. The Conceptual Design Report shows two types of access labyrinths which are significantly different. The first type is that at a Sector Service Area, while the second is that provided for personnel entry to the Interaction Regions

  6. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-01-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report

  7. Status of experimental data for the VHTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The VHTR (Very High Temperature Reactor) is being emerged as a next generation nuclear reactor to demonstrate emission-free nuclear-assisted electricity and hydrogen production. The VHTR could be either a prismatic or pebble type helium cooled, graphite moderated reactor. The final decision will be made after the completion of the pre-conceptual design for each type. For the pre-conceptual design for both types, computational tools are being developed. Experimental data are required to validate the tools to be developed. Many experiments on the HTGR (High Temperature Gas-cooled Reactor) cores have been performed to confirm the design data and to validate the design tools. The applicability and availability of the existing experimental data have been investigated for the VHTR core design in this report.

  8. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    Science.gov (United States)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  9. Report on design rules of μ-tools for hybrid tooling

    DEFF Research Database (Denmark)

    Esmoris, Jose Ignacio; Azcarate, S.; Tosello, Guido

    2011-01-01

    -effectively, especially for micro injection moulding. This particular deliverable has the objective to present the design rules for high performance μ-tools and inserts manufacture based on the new standard manufacturing process chains established during the WP 2.2 work. In particular, the achievable features, surfaces......Tooling is one of the critical stages of the process chain for polymer micro products manufacture and in particular for the COTECH process chain. Therefore, within the scope of SP2 “Tooling”, the WP 2.2 “New tool-making solutions for μ-IM and HE” is designed to investigate, develop and standardize...

  10. Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Ewing, J.J.; Center, R.E.; Mumola, P.; Olson, T.

    1981-01-01

    The results of a conceptual design for an angular multiplexed 50 kJ KrF amplifier for ICF are presented. Optical designs, amplifier scaling with a KrF kinetics code and limitations imposed by pulsed power technology are described

  11. Definition and conceptual design of a small fusion reactor

    International Nuclear Information System (INIS)

    1979-04-01

    The objective of this project is to evaluate various mirror fusion reactor concepts that might result in small systems for the effective production of electrical power or stored energy (e.g., nuclear and chemical fuels). The basic two-year program goal is to select a particular concept and develop the conceptual design of a pilot plant that could provide a useful output from fusion. The pilot plant would be built and operated in the late 1980s

  12. Potential and limitations of environmental design with LCA tools

    Directory of Open Access Journals (Sweden)

    Alexander Hollberg

    2017-10-01

    Full Text Available The built environment has a very high impact on the environment. Architects can largely define the environmental impact a building will cause throughout its lifetime through its design. Especially the choice of material and the type of construction can be influenced in early design stages. To quantify the environmental impact, tools for Life Cycle Assessment (LCA are used. This paper discusses the results of four case studies of applying four different novel LCA tools in four different academic courses at different universities. The results show that the success of applying LCA tools highly depends on the point of time during the design process and the design strategy the student pursues. If the right tool is used at the right moment and matches the design strategy, it can help to improve the architectural quality and reduce environmental impacts. In most cases however, the time of application did not fit, resulting in additional effort for applying the LCA tool. In consequence, the architectural elaboration of the design and the improvement of environmental performance compete against each other. Either the architectural quality suffers or the tool is employed late and the environmental performance cannot be improved. Even if the point in time of the tool application is right, the success depends highly on the design strategy. The number of tools is growing and there is an adequate tool available for each design stage. The design strategy has to match the tool and this requires a willingness to adapt the design approach. The issue of environmental design shifted from a lack of adequate tools to the lack of adequate design approaches. Tools can be easily taught in seminars. Environmental design strategies, however, have to be included in design studios and developed throughout the entire design phase to become part of architectural education.

  13. Design tools and materials in creative work

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen; Dalsgaard, Peter; Halskov, Kim

    2017-01-01

    -oriented perspectives, we wish to examine the potentials and limitations in current uses of design tools and materials, and discuss and explore when and how we can introduce ones. Participation in the workshop requires participants to document and analyse central themes in a case, and the resulting material will serve......This workshop aims to examine and discuss the role and nature of design tools and materials in creative work, and to explore how novel tools can meaningfully combine existing and novel tools to support and augment creative work. By exploring and combining methodological, theoretical, and design...

  14. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    Science.gov (United States)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  15. Evidence-Based Design and Research-Informed Design: What's the Difference? Conceptual Definitions and Comparative Analysis.

    Science.gov (United States)

    Peavey, Erin; Vander Wyst, Kiley B

    2017-10-01

    This article provides critical examination and comparison of the conceptual meaning and underlying assumptions of the concepts evidence-based design (EBD) and research-informed design (RID) in order to facilitate practical use and theoretical development. In recent years, EBD has experienced broad adoption, yet it has been simultaneously critiqued for rigidity and misapplication. Many practitioners are gravitating to the term RID to describe their method of integrating knowledge into the design process. However, the term RID lacks a clear definition and the blurring of terms has the potential to weaken advances made integrating research into practice. Concept analysis methods from Walker and Avant were used to define the concepts for comparison. Conceptual definitions, process descriptions, examples (i.e., model cases), and methods of evaluation are offered for EBD and RID. Although EBD and RID share similarities in meaning, the two terms are distinct. When comparing evidence based (EB) and research informed, EB is a broad base of information types (evidence) that are narrowly applied (based), while the latter references a narrow slice of information (research) that is broadly applied (informed) to create an end product of design. Much of the confusion between the use of the concepts EBD and RID arises out of differing perspectives between the way practitioners and academics understand the underlying terms. The authors hope this article serves to generate thoughtful dialogue, which is essential to the development of a discipline, and look forward to the contribution of the readership.

  16. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  17. Research on conceptual design of simplified nuclear safety instrument and control system

    International Nuclear Information System (INIS)

    Huang Jie

    2015-01-01

    The Nuclear safety instrument and control system is directly related to the safety of the reactor. So redundant and diversity design is used to ensure the system's security and reliability. This make the traditional safety system large, more cabinets and wiring complexity. To solve these problem, we can adopt new technology to make the design more simple. The simplify conceptual design can make the system less cabinets, less wiring, but high security, strong reliability. (author)

  18. A SCWR core design with a conceptual fuel assembly using a cruciform moderator

    International Nuclear Information System (INIS)

    Bae, Kang Mok; Joo, Hyung Kook; Lee, Hyun Chul; Noh, Jae Man; Bae, Yoon Yong

    2005-01-01

    A super critical water cooled reactor (SCWR) system has a potential to compete with the advanced fossil plant by achieving a high thermal efficiency up to 44% and a plant simplification by eliminating steam generators, steam dryers, steam separators, and recirculation pumps. Due to these advantages, a SCWR is considered as one of the most promising nuclear plants for the Generation-IV (Gen-IV) system. As a first step of a feasibility study a rectangular fuel assembly with a cruciform solid moderator was suggested as a conceptual assembly design at the Korea Atomic Energy Research Institute (KAERI) for the SCWR on a thermal neutron spectrum. In this paper, based on the system parameters proposed by the Gen-IV road map, a preliminary SCWR core design was performed using a conceptual assembly design focused on the power shape control, reactivity coefficients, and cladding temperature limit

  19. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  20. User requirements and conceptual design of the ITER Electron Cyclotron Control System

    Energy Technology Data Exchange (ETDEWEB)

    Carannante, Giuseppe, E-mail: Giuseppe.Carannante@F4E.europa.eu [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Cavinato, Mario [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Granucci, Gustavo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy); Henderson, Mark; Purohit, Dharmesh [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, Gabriella; Sartori, Filippo [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Sozzi, Carlo [Istituto di Fisica del Plasma ENEA-CNR-EURATOM, via Cozzi 53, 20125 Milano (Italy)

    2015-10-15

    The ITER Electron Cyclotron (EC) plant is a complex system, essential for plasma operation. The system is being designed to supply up to 20 MW of power at 170 GHz; it consists of 24 RF sources (or Gyrotrons) connected by switchable transmission lines to four upper and one equatorial launcher. The complexity of the EC plant requires a Plant Controller, which provides the functional and operational interface with CODAC and the Plasma Control System and coordinates the various Subsystem Control Units, i.e. the local controllers of power supplies, Gyrotrons, transmission lines and launchers. A conceptual design of the Electron Cyclotron Control System (ECCS) was developed, starting from the collection of the user requirements, which have then been organized as a set of operational scenarios exploiting the EC system. The design consists in a thorough functional analysis, including also protection functions, and in the development of a conceptual I&C architecture. The main aim of the work was to identify the physics requirements and to translate them into control system requirements, in order to define the interfaces within the components of the ECCS. The definition of these interfaces is urgent because some of the subsystems are already in an advanced design phase. The present paper describes both the methodology used and the resulting design.