WorldWideScience

Sample records for conceptual design method

  1. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities in topolo......This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  2. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities in topolo......This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  3. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses......This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  4. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...... and frames are implemented. The developed procedures allow for the exploration of new territories in optimization of architectural structures, and offer new methodological strategies for bridging conceptual gaps between optimization and architectural practice....

  5. A Conceptual Design and Analysis Method for Conventional and Unconventional Airplanes

    NARCIS (Netherlands)

    Elmendorp, R.J.M.; Vos, R.; La Rocca, G.

    2014-01-01

    A design method is presented that has been implemented in a software program to investigate the merits of conventional and unconventional transport airplanes. Design and analysis methods are implemented in a design tool capable of creating a conceptual design based on a set of toplevel requirements.

  6. Space systems conceptual design : Analysis methods for engineering-team support

    NARCIS (Netherlands)

    Ridolfi, G.

    2013-01-01

    The research can be placed in the framework of designing methods for complex systems focused on the conceptual design phase of the systems’ life-cycle. More specifically, the methods presented in the dissertation belong to the category of Operational Research methods. They aim at the creation of

  7. Teaching conceptual design

    NARCIS (Netherlands)

    Ferreira, J.; Christiaans, H.H.C.M.

    2012-01-01

    This paper presents the first observational study of an ongoing research project. The research focuses on ‘teaching conceptual design’ and on the investigation of new teaching methods and strategies. Presently, in the commonly established educational setting, students practice the role of designing

  8. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  9. Development of a conceptual flight vehicle design weight estimation method library and documentation

    Science.gov (United States)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  10. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    This paper aims to discuss recent approaches in using more and more frequently computer tools as supports for the conceptual design phase of the architectural project. The present state-of-the-art about software as conceptual design tool could be summarized in two parallel tendencies. On the one...... with the problem of software as conceptual design tool by means of 'scripting', in other words by self-developing codes able to solve specific and well defined design problems. Starting with a brief historical recall and the discussion of relevant researches and practical experiences, this paper investigates...... for conceptual design in architecture....

  11. The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Directory of Open Access Journals (Sweden)

    Nien-Te Liu

    2016-11-01

    Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.

  12. Design Research as Conceptual Designing

    DEFF Research Database (Denmark)

    Ylirisku, Salu; Jacucci, Giulio; Sellen, Abigail

    2015-01-01

    The term ‘conceptual designing’ refers to an activity that various practitioners already undertake, but for which we lack a clear definition. This article provides that definition and uses an example of a design concept called ‘Manhattan’ to present how exactly this type of process happens. We...... that conceptual designing can be especially useful in research and design projects that bring different kinds of people, organizations, technologies and domains together into the forming of new well-founded proposals for development. The presentation of conceptual designing in this paper is written...... with an intention to provide designers and researchers with terminology and concepts that they may use to structure their work as well as to become more resourceful in reflecting upon their projects....

  13. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene; Kirkegaard, Poul Henning

    2010-01-01

    with the problem of software as conceptual design tool by means of 'scripting', in other words by self-developing codes able to solve specific and well defined design problems. Starting with a brief historical recall and the discussion of relevant researches and practical experiences, this paper investigates...

  14. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  15. SLC ir conceptual design

    International Nuclear Information System (INIS)

    Keller, L.P.

    1982-01-01

    Work on a one interaction-region, push-pull conceptual design for the SLC is described. The concept which has received the most attention is described. It is a below-ground hall - a 15 m deep rectangular pit covered by a surface building which houses counting rooms, power supplies, cryogenics and other auxiliary equipment

  16. ITER conceptual design report

    International Nuclear Information System (INIS)

    1991-01-01

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  17. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  18. PRA and Conceptual Design

    Science.gov (United States)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  19. A plea for rigorous conceptual analysis as central method in transnational law design

    NARCIS (Netherlands)

    Rijgersberg, R.; van der Kaaij, H.

    2013-01-01

    Although shared problems are generally easily identified in transnational law design, it is considerably more difficult to design frameworks that transcend the peculiarities of local law in a univocal fashion. The following exposition is a plea for giving more prominence to rigorous conceptual

  20. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  1. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  2. Shuttle freezer conceptual design

    Science.gov (United States)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  3. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an

  4. Peer Tutoring in Conceptual Design

    Science.gov (United States)

    Schleyer, G. K.; Langdon, G. S.; James, S.

    2005-01-01

    A peer tutoring scheme has been introduced into the Department of Engineering at the University of Liverpool to help 2nd year undergraduate students tackle conceptual design problems. Conceptual design is an iterative process consisting of a series of generative and evaluative stages, which gradually converge on a preferred conceptual solution.…

  5. Lunar lander conceptual design

    Science.gov (United States)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  6. Conceptual optimal design of jackets

    DEFF Research Database (Denmark)

    Sandal, Kasper; Verbart, Alexander; Stolpe, Mathias

    Structural optimization can explore a large design space (400 jackets) in a short time (2 hours), and thus lead to better conceptual jacket designs.......Structural optimization can explore a large design space (400 jackets) in a short time (2 hours), and thus lead to better conceptual jacket designs....

  7. CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  8. PHENIX Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  9. PHENIX Conceptual Design Report

    International Nuclear Information System (INIS)

    1993-01-01

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The eμ coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study π 0 and η production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the φ meson (via K + K - decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p T spectra, and J/ψ and Υ production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources

  10. Effect of Software Designed by Computer Conceptual Map Method in Mobile Environment on Learning Level of Nursing Students

    Directory of Open Access Journals (Sweden)

    Salmani N

    2015-12-01

    Full Text Available Aims: In order to preserve its own progress, nursing training has to be utilized new training methods, in such a case that the teaching methods used by the nursing instructors enhance significant learning via preventing superficial learning in the students. Conceptual Map Method is one of the new training strategies playing important roles in the field. The aim of this study was to investigate the effectiveness of the designed software based on the mobile phone computer conceptual map on the learning level of the nursing students. Materials & Methods: In the semi-experimental study with pretest-posttest plan, 60 students, who were studying at the 5th semester, were studied at the 1st semester of 2015-16. Experimental group (n=30 from Meibod Nursing Faculty and control group (n=30 from Yazd Shahid Sadoughi Nursing Faculty were trained during the first 4 weeks of the semester, using computer conceptual map method and computer conceptual map method in mobile phone environment. Data was collected, using a researcher-made academic progress test including “knowledge” and “significant learning”. Data was analyzed in SPSS 21 software using Independent T, Paired T, and Fisher tests. Findings: There were significant increases in the mean scores of knowledge and significant learning in both groups before and after the intervention (p0.05. Nevertheless, the process of change of the scores of significant learning level between the groups was statistically significant (p<0.05.   Conclusion: Presenting the course content as conceptual map in mobile phone environment positively affects the significant learning of the nursing students.

  11. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    Energy Technology Data Exchange (ETDEWEB)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site.

  12. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    International Nuclear Information System (INIS)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site

  13. Industrial best practices of conceptual process design

    NARCIS (Netherlands)

    Harmsen, G.J.

    2004-01-01

    The chemical process industry aims particularly at energy, capital expenditure and variable feedstock cost savings due to fierce global competition, the Kyoto Protocol and requirements for sustainable development. Increasingly conceptual process design methods are used in the industry to achieve

  14. Conceptual design of RFC reactor

    International Nuclear Information System (INIS)

    Kumazawa, R.; Adati, K.; Hatori, T.; Ichimura, M.; Obayashi, H.; Okamura, S.; Sato, T.; Watari, T.; Emmert, G.A.

    1982-01-01

    A parametic analysis and a preliminary conceptual design for RFC reactor (including cusp field) with and without alpha particle heating are described. Steady state operations can be obtained for various RF ponderomotive potential in cases of alpha particle heating. (author)

  15. Monitored retrievable storage facility conceptual design

    International Nuclear Information System (INIS)

    Stringer, J.B.

    1994-01-01

    The United States Congress has enacted legislation directing the Department of Energy to take title to and dispose of high level nuclear waste. As part of a contract which resulted from this act, a conceptual design for a Monitored Retrievable Storage facility has been completed. This paper presents the results of that conceptual design. Six design concepts were investigated for handling and storing spent nuclear fuel assemblies from commercial reactors. All six of these design concepts satisfy program requirements and provide safe and efficient methods to handle and store spent nuclear fuel. Provided in this paper is an overview of the basis for conceptual design, a discussion of the function and purpose of the MRS, schedule information, and discussions of the six design concepts. This conceptual design is an important step towards furthering the civilian radioactive waste management system program. (author). 2 figs, 1 tab

  16. IMPROVING CONCEPTUAL DESIGN QUALITY

    DEFF Research Database (Denmark)

    Bush, Stuart; Robotham, Antony John

    1999-01-01

    This paper will consider how Quality Function Deployment (QFD) and Design for Manufacture and Assembly (DFMA) processes can be used to improve the design quality of products at the concept stage. We appreciate that both QFD and DFMA are techniques that have been used for some time by mature product...... quality is maintained in design project work. The projects described have been carried out with products manufactured by small to medium sized enterprises (SME's), where we have found significant opportunities for product improvement. The quantitative nature of DFMA analysis results allows the novice...... for continuous improvement of their products. However, we consider that if novice designers are able to successfully utilise design tools like QFD and DFMA and achieve improvements in design quality, then SME’s have no excuses for ignoring the benefits they could bring to their own product development activity....

  17. FMIF conceptual design activities

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.; Lance, J. [Westinghouse Science & Technology Center, Pittsburgh, PA (United States); Rathke, J.; Reusch, M.; Todd, A.; Bruhwiler, D. [Northrop Grumman Corp., Bethpage, NY (United States); Bazinet, J. [Westinghouse Hanford Co., Richland, WA (United States); Piechowiak, E. [Westinghouse ESG, Baltimore, MD (United States); Thomson, S. [Bechtel National Inc., Oak Ridge, TN (United States)

    1994-11-01

    A scoping design study was performed for a Fusion Materials Irradiation Facility (FMIF). This work summarizes the industry contribution to the national effort. Other organizations involved have included the DOE and national laboratories, as well as the industrial partners. The objective of this work was to obtain a general facility layout incorporating advances in accelerator technology and beam optics design and control since the FMIT design was done, and an associated scoping cost estimate. The baseline design has two beamlines each delivering 125 mA of 35 MeV deuterons onto one of two flowing liquid lithium targets. The system has been designed for a future upgrade to four beamlines delivering up to a total of 500 mA on target. This system can provide an equivalent 14 MeV neutron flux of 2 MW/m{sup 2} in a volume greater than one liter at a flux gradient of less than 10% per centimeter.

  18. FMIF conceptual design activities

    International Nuclear Information System (INIS)

    Green, L.; Lance, J.; Rathke, J.; Reusch, M.; Todd, A.; Bruhwiler, D.; Bazinet, J.; Piechowiak, E.; Thomson, S.

    1994-01-01

    A scoping design study was performed for a Fusion Materials Irradiation Facility (FMIF). This work summarizes the industry contribution to the national effort. Other organizations involved have included the DOE and national laboratories, as well as the industrial partners. The objective of this work was to obtain a general facility layout incorporating advances in accelerator technology and beam optics design and control since the FMIT design was done, and an associated scoping cost estimate. The baseline design has two beamlines each delivering 125 mA of 35 MeV deuterons onto one of two flowing liquid lithium targets. The system has been designed for a future upgrade to four beamlines delivering up to a total of 500 mA on target. This system can provide an equivalent 14 MeV neutron flux of 2 MW/m 2 in a volume greater than one liter at a flux gradient of less than 10% per centimeter

  19. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates

  20. MINIMARS conceptual design: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  1. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate

  2. Design as intentional action: a conceptual analysis

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    Drawing on methods and literature from the field of philosophy, an account is given of the general nature of the artefact production process in order to provide a conceptual platform for design research. Designing itself is defined as the production of design representations; and the latter notio...

  3. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  4. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    Science.gov (United States)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  5. PEP conceptual design report

    International Nuclear Information System (INIS)

    1976-02-01

    The accelerator system design, the physical plant, the experimental areas, cost estimates, and schedules for PEP are discussed. The main component of the proposed facility is a storage ring in which beams of positrons and electrons circulate in opposite directions in a vacuum chamber embedded in a magnetic guide field having six bending arcs and six long straight sections. The electrons and positrons to be stored in it are produced in the SLAC linac and are introduced into the storage ring via two beam transport paths emanating from the end of the two-mile accelerator. Beams of energies up to 18 GeV can be stored, and, at a future date, components could be added to permit energies as high as 22 GeV. Provisions are also made in the design of the ring housing so that a synchrotron-radiation research facility could be added in the future. The energy lost from the beams by synchrotron radiation is restored by a high-power radio frequency accelerating system which employs klystrons to drive the accelerating structures at a frequency of 353 MHz. The system is capable of delivering five megawatts of power to the beams. Low pressures will be sustained by means of long, narrow sputter-ion pumps located in the vacuum chamber in the bending magnets directly alongside the beams. The proposed storage ring is designed to generate a luminosity (reaction rate per unit reaction cross section) of more than 10 31 cm -2 sec -1 per interaction region at beam energies between 5 GeV and 18 GeV and a maximum luminosity of 10 32 cm -2 sec -1 per interaction region at a beam energy of 15 GeV

  6. PEP Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    The accelerator system design, the physical plant, the experimental areas, cost estimates, and schedules for PEP are discussed. The main component of the proposed facility is a storage ring in which beams of positrons and electrons circulate in opposite directions in a vacuum chamber embedded in a magnetic guide field having six bending arcs and six long straight sections. The electrons and positrons to be stored in it are produced in the SLAC linac and are introduced into the storage ring via two beam transport paths emanating from the end of the two-mile accelerator. Beams of energies up to 18 GeV can be stored, and, at a future date, components could be added to permit energies as high as 22 GeV. Provisions are also made in the design of the ring housing so that a synchrotron-radiation research facility could be added in the future. The energy lost from the beams by synchrotron radiation is restored by a high-power radio frequency accelerating system which employs klystrons to drive the accelerating structures at a frequency of 353 MHz. The system is capable of delivering five megawatts of power to the beams. Low pressures will be sustained by means of long, narrow sputter-ion pumps located in the vacuum chamber in the bending magnets directly alongside the beams. The proposed storage ring is designed to generate a luminosity (reaction rate per unit reaction cross section) of more than 10/sup 31/ cm/sup -2/sec/sup -1/ per interaction region at beam energies between 5 GeV and 18 GeV and a maximum luminosity of 10/sup 32/cm/sup -2/sec/sup -1/ per interaction region at a beam energy of 15 GeV.

  7. ESOPO: Conceptual Design

    Science.gov (United States)

    Gonzalez, J.; Cobos, F.; Echevarria, J.; Costero, R.; Farah, A.; Garfias, F.; Sierra, G.; Pedrayes, M.; Colorado, E.; Quiros, F.; Murillo, F.; Michel, R.

    2006-08-01

    The ESOPO spectrograph is a key project of the Instituto de Astronomía of the Universidad Nacional Autónoma de México to upgrade its 2.1m telescope as a competitive facility for the next decade. The science goals call for a high-efficiency general-purpose spectrograph that covers, in a single exposure, the whole 3500 - 9000 Å spectral interval with a R~ 4000 spectral resolution, for the study of stellar and extended galactic and extragalactic sources. The double arm spectrograph provides R~5000) modes for detailed studies under limited wavelength ranges, with minimal moving parts. The instrument has a variable-width 10´-long slit, but the optical design was optimized also to for multi-object masks and direct imaging. This poster summarizes the ESOPO specifications and requirements, as well as some design details of this highly efficient and stable spectrograph, showing the capabilities that substantially increase the scientific grasp of a moderate aperture telescope.

  8. Conceptual design of repository facilities

    International Nuclear Information System (INIS)

    Beale, H.; Engelmann, H.J.; Souquet, G.; Mayence, M.; Hamstra, J.

    1980-01-01

    As part of the European Economic Communities programme of research into underground disposal of radioactive wastes repository design studies have been carried out for application in salt deposits, argillaceous formations and crystalline rocks. In this paper the design aspects of repositories are reviewed and conceptual designs are presented in relation to the geological formations under consideration. Emphasis has been placed on the disposal of vitrified high level radioactive wastes although consideration has been given to other categories of radioactive waste

  9. ITER Conceptual design: Interim report

    International Nuclear Information System (INIS)

    1990-01-01

    This interim report describes the results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activities after the first year of design following the selection of the ITER concept in the autumn of 1988. Using the concept definition as the basis for conceptual design, the Design Phase has been underway since October 1988, and will be completed at the end of 1990, at which time a final report will be issued. This interim report includes an executive summary of ITER activities, a description of the ITER device and facility, an operation and research program summary, and a description of the physics and engineering design bases. Included are preliminary cost estimates and schedule for completion of the project

  10. Conceptual design summary

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world's best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy's (DOE's) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 x 10 19 m -2 · s -1 . The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE's Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments

  11. To Whom Belongs Conceptual Design?

    Directory of Open Access Journals (Sweden)

    J. Bíla

    2003-01-01

    Full Text Available The field of Conceptual Design is very alive and is rapidly developing. This paper investigates the disciplines and domains which substantially form its profile. There are considered disciplines such as Semiotics, Formal Logic, Evolutionary analogies, Qualitative Modelling, Ontologies, Artificial Intelligence and Emergent Synthesis. The answer to the question posed in the title lies nowadays in disciplines related to Cognitive Science.

  12. Seismic Conceptual Design of Buildings

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. Seismic Conceptual Design of Buildings. K R Y Simha. Book Review Volume 12 Issue 8 August 2007 pp 82-84. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/08/0082-0084 ...

  13. Conceptual design of safety instrumentation for PFBR

    International Nuclear Information System (INIS)

    Muralikrishna, G.; Seshadri, U.; Raghavan, K.

    1996-01-01

    Instrumentation systems enable monitoring of the process which in turn enables control and shutdown of the process as per the requirements. Safety Instrumentation due to its vital importance has a stringent role and this needs to be designed methodically. This paper presents the details of the conceptual design for PFBR. (author). 4 figs, 3 tabs

  14. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume of the conceptual design report contains detailed information on the following: (1) plasma engineering, (2) tandem mirror optimization code, (3) configuration, (4) assembly and maintenance, (5) availability, (6) site and facilities, (7) magnet design, (8) end-cell shielding, (9) drift pumping system, (10) rf systems, (11) negative-ion neutral beam injection system, (12) sloshing-ion beamline, and (13) power balance and electrical systems

  15. KALIMER preliminary conceptual design report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report

  16. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  17. An efficient fluid-structure interaction method for conceptual design of flexible micro air vehicle wings: Development, comparison, and application

    Science.gov (United States)

    Combes, Thomas P.

    This thesis summarizes the development, comparison, and applications of an efficient fluid-structure interaction method capable of simulating the effects that wing flexibility has on micro air vehicle (MAV) performance. Micro air vehicles wing designs often incorporate flexible wing structures that mimic the skeleton / membrane designs found in natural flyers such as bats and insects. However, accurate performance prediction for these wings requires the coupling of the simulation of the fluid physics around the wing and the simulation of the structural deformation. These fluid-structure interaction (FSI) simulations are often accomplished using high fidelity, computationally expensive techniques such as computational fluid dynamics (CFD) for the fluid physics and nonlinear finite element analysis (FEA) for the structural simulation. The main drawback of these methods, especially for use simulating vehicles that are able to be manufactured relatively quickly, is that the computational cost required to perform relevant trade studies on the design is prohibitively large and time-consuming. The main goal of this research is the development of a coupled fluid-structure interaction method computationally efficient and accurate enough to be used for conceptual design of micro air vehicles. An advanced potential flow model is used to calculate aerodynamic performance and loading, while a simplified finite element structural model using frame and shell elements calculates the wing deflection due to aerodynamic loading. The contents of this thesis include a literature survey of current approaches, an introduction to the efficient FSI formulation, comparison of the presented FSI method with higher-fidelity simulation methods, demonstrations of the method's capability for tradeoff and optimization studies, and an overview of contributions to a nonlinear dynamic algorithm for the simulation of flapping flight.

  18. Conceptual framework for potential implementations of multicriteria decision making (MCDM) methods for design quality assesment

    NARCIS (Netherlands)

    Hartpulugil, T.; Prins, M.; Gultekin, A.T.; Topcu, Y.L.

    2011-01-01

    Architectural design can be considered as a process influenced by many stakeholders, each of which has different decision power. Each stakeholder might have his/her own criteria and weightings depending on his/her own perspective and role. Hence design can be seen as a multi-criteria decision making

  19. Conceptual framework for potential implementations of multi criteria decision making (MCDM) methods for design quality assessment

    NARCIS (Netherlands)

    Harputlugil, T.; Prins, M.; Tanju Gültekin, A.; Ilker Topçu, Y.

    2011-01-01

    Architectural design can be considered as a process influenced by many stakeholders, each of which has different decision power. Each stakeholder might have his/her own criteria and weightings depending on his/her own perspective and role. Hence design can be seen as a multi-criteria decision making

  20. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  1. A method to reduce ambiguities of qualitative reasoning for conceptual design applications

    NARCIS (Netherlands)

    D'Amelio, V.; Chmarra, M.K.; Tomiyama, T.

    2013-01-01

    Qualitative reasoning can generate ambiguous behaviors due to the lack of quantitative information. Despite many different research results focusing on ambiguities reduction, fundamentally it is impossible to totally remove ambiguities with only qualitative methods and to guarantee the consistency

  2. Conceptual design of question-answer processing method for operator educational system

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Kato, Kanji.

    1993-01-01

    It is necessary to develop an interface with easy communication for the practical use of an operator educational system. This paper describes the concept of the 'answer output processing method' which makes the communication easy using the characteristics of the operator educational system. The main features of the method are as follows: (1) The prototype of the operator educational system is provided with educational materials which are expressed in terms of cause and effect relationships of events. Answer generating functions are introduced to infer the relationships easily during the question-answer process. (2) It is easy to provide the materials of the educational unit optimally adapted to the degree of achievement which is already included in the prototype and is also easy to change the level of the materials based on the questionary history which is newly introduced for recording the question-answer performed everywhere in the learning process. (author)

  3. Gamma scanner conceptual design report

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1979-11-01

    The Fuels and Materials Examination Facility (FMEF) will include several stations for the nondestructive examination of irradiated fuels. One of these stations will be the gamma scanner which will be employed to detect gamma radiation from the irradiated fuel pins. The conceptual design of the gamma scan station is described. The gamma scanner will use a Standard Exam Stage (SES) as a positioner and transport mechanism for the fuel pins which it will obtain from a magazine. A pin guide mechanism mounted on the face of the collimator will assure that the fuel pins remain in front of the collimator during scanning. The collimator has remotely adjustable tungsten slits and can be manually rotated to align the slit at various angles. A shielded detector cart located in the operating corridor holds an intrinsic germanium detector and associated sodium-iodide anticoincidence detector. The electronics associated with the counting system consist of standard NIM modules to process the detector signals and a stand-alone multichannel analyzer (MCA) for counting data accumulation. Data from the MCA are bussed to the station computer for analysis and storage on magnetic tape. The station computer controls the collimator, the MCA, a source positioner and the SES through CAMAC-based interface hardware. Most of the electronic hardware is commercially available but some interfaces will require development. Conceptual drawings are included for mechanical hardware that must be designed and fabricated

  4. Integrated Variable Fidelity Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CADNexus proposes to develop an Integrated Variable Fidelity Conceptual Design tool. The application will enable design and analysis of unconventional and advanced...

  5. Design as intentional action: a conceptual analysis

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    Drawing on methods and literature from the field of philosophy, an account is given of the general nature of the artefact production process in order to provide a conceptual platform for design research. Designing itself is defined as the production of design representations; and the latter notion......, and so the major philosophical difficulty is to propose a reasonably precise definition of ‘design representation’ without implying the existence of such non-existent things. To overcome that difficulty, a definition is developed in terms of human agents, their actions and ideas (including intentions...

  6. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    . Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  7. Conceptual design for the HANARO web development

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Kang, Young Hwan

    2000-05-01

    Following the footsteps for internationalization and information-oriented society, we need to open the HANARO to the public, and to serve the more detail, accurate, and various information rapidly through the internet to enhance the HANARO utilization efficiency. Following items are described to develop the HANARO Web which has function as an information platform for research reactors: User requirements, Conceptual design, Development plan (method and schedule), Maintenance and management. The conceptual design, development method and schedule and functions are proposed in developing the HANARO Web. The data of the HANARO should be processed and organized systematically for better utilization of HANARO. A supplementation of the functions is needed and the HANARO Web should be operated practically with the maximum efficiency and advertised the activities locally and internationally

  8. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    Based on the fact that function-structure generating and function solving are alternant processes with mutual causality during the conceptual design phase of mechatronic systems, a conceptual design cyclic feedback solving model of a mechatronic system is put forward on the basis of mapping between function layer, effect ...

  9. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    Abstract. Based on the fact that function-structure generating and function solving are alternant processes with mutual causality during the conceptual design phase of mechatronic systems, a conceptual design cyclic feedback solving model of a mechatronic system is put forward on the basis of mapping between function.

  10. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  11. Conceptual methods for actinide partitioning

    International Nuclear Information System (INIS)

    Leuze, R.E.; Bond, W.D.; Tedder, D.W.

    1978-01-01

    The conceptual processing sequence under consideration is based on a combination of modified Purex processing and secondary processing of the high-level waste. In this concept, iodine will be removed from dissolver solution prior to extraction, and the Purex processing will be modified so that low- and intermediate-level wastes, all the way through final product purification, are recycled. A supplementary extraction is assumed to ensure adequate recovery of uranium, neptunium and possibly plutonium. Technetium may be removed from the high-level waste if a satisfactory method can be developed. Extraction into a quaternary amine is being evaluated for this removal. Methods that have been used in the past to recover americium and curium have some rather serious deficiencies, including inadequate recovery, solids formation and generation of large volumes of low- and intermediate-level wastes containing significant quantities of chemical reagents

  12. Software for Evaluation of Conceptual Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    by the prototype, it addresses the requirements that the methods imply, and it explains the actual implementation of the prototype. Finally it discusses what have been learned from developing and testing the prototype. In this paper it is suggested, that a software tool which supports evaluation of design can......This paper describes a prototype for evaluating design options. The prototype has been developed as part of a research project which sought to establish understanding of how evaluation of conceptual design can be improved. The paper describes the evaluation methods which are supported...... be developed with a limited effort, and that such tools could support a structured evaluation process as opposed to no evaluation. Compared to manual evaluation, the introduced software based evaluation tool offers automation of tasks, such as performing assessments, when they are based on prior evaluations...

  13. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...

  14. Conceptual Design Studies of Composite AMST

    Science.gov (United States)

    1974-10-01

    TR-74-164 CONCEPTUAL DESIGN STUDIES OF COMPOSITE AMST MCDONNELL DOUGLAS CORPORATION _ DOUGLAS AIRCRAFT COMPANY LONG BEACH, CALIFORNIA 90846 OCTOBER...COVERED Final Technical Report of Work Pet orTied CONCEPTUAL DESIGN STUDIES OF COMPOSITE AMST between 29 May 1973 and 23 May 1974 4 PERFORMING ORG...bases for the composite design studies , structural analyses, and cost estimating. The latter airplane was initially rusized to meet the basic

  15. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  16. Safety orientations during ASTRID conceptual design phase

    International Nuclear Information System (INIS)

    Lo Pinto, P.; Dousson, R.; Robin, J.C.; Carluec, B.; Ehster-Vignoud, S.; Beils, S.; Mariteau, P.; Giffon, F.

    2013-01-01

    In comparison with previous SFR, safety improvement is expected through the conceptual design by implementation of ASTRID safety orientations. Some of them are: • Appropriate treatment of local faults (detection, progressiveness …); • Approach by events family for both prevention and mitigation of SA; • Enhanced inherent plant behavior as a third prevention level of SA; • Generic approach of CDA considering: all types of initiating transients, typical degraded core states, key parameters leading to a range of results; • New concept of “lines of mitigation” method (LoM); • Decoupling between CDA results and design of SA mitigation provisions facing: - Hypothetical mechanical energy release, - Potential radiological source term. • Rational demonstration of practically eliminated situations (SPE); • Integration of Fukushima lessons through hazards concerns beyond the Design Basis, including the “hard core” notion (see dedicated presentation during FR13)

  17. Design and Validation of the Quantum Mechanics Conceptual Survey

    Science.gov (United States)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  18. CONCEPTUAL PRODUCT DESIGN IN VIRTUAL PROTOTYPING

    Directory of Open Access Journals (Sweden)

    Debeleac Carmen

    2009-07-01

    Full Text Available A conceptual model of the industrial design process for isolation against vibrations is proposed and described. This model can be used to design products subject to functional, manufacturing, ergonomic, aesthetic constraints. In this paper, the main stages of the model, such as component organization, conception shape, product detailing and graphical design are discussed. The work has confirmed the validity of proposed model for rapid generation of aesthetic preliminary product designs using the virtual prototyping technique, by one of its main component that is conceptual product design.

  19. Conceptual development of a method to determine the principal stresses around coal mine workings to ensure safe mine design

    CSIR Research Space (South Africa)

    Coetzer, S

    1997-06-01

    Full Text Available The objective of this project is to identify or to develop methods or procedures for the determination of the principal stresses in coal mine workings, which in turn would provide improved criteria for mine design layouts in coal mines. To address...

  20. Conceptual Design for Consolidation TCAP

    International Nuclear Information System (INIS)

    Klein, J.E.

    1999-01-01

    Two alternate Thermal Cycling Absorption Process (TCAP) designs have been developed for the Tritium Facility Modernization and Consolidation (TFM and C) Project. The alternate designs were developed to improve upon the existing Replacement Tritium Facility (RTF) TCAP design and to eliminate the use of building distributed hot and cold nitrogen system.A brief description of TCAP theory and modeling is presented, followed by an overview of the design criteria for the Isotope Separation System (ISS). Both designs are described in detail, along with a generic description of the complete TCAP system. A design is recommend for the Consolidation Project, and a development plan for both designs is proposed

  1. Engineering features of the INTOR conceptual design

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1981-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations

  2. KALIMER-600 Conceptual Design Report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Yeong Il; Kim, Young Gyun

    2007-02-01

    This report, which summarizes the design concepts developed during Phase 4, follows the format of a safety analysis report. The purpose of publishing this report is to gather all of design information developed, so far in a systematic way, so that KALIMER-600 designers have a common and consistent source of for design information necessary for their future design and technology development activities on a SFR. Chapter 1 describes the KALIMER-600 Project. Chapter 2 includes the top-tier design requirements of KALIMER-600 and a general plant description. Chapter 3 summarizes the designs of the structures, components, equipment and systems. And the remaining chapters present the results of the design and safety analysis

  3. KALIMER-600 Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Yeong Il; Kim, Young Gyun (and others)

    2007-02-15

    This report, which summarizes the design concepts developed during Phase 4, follows the format of a safety analysis report. The purpose of publishing this report is to gather all of design information developed, so far in a systematic way, so that KALIMER-600 designers have a common and consistent source of for design information necessary for their future design and technology development activities on a SFR. Chapter 1 describes the KALIMER-600 Project. Chapter 2 includes the top-tier design requirements of KALIMER-600 and a general plant description. Chapter 3 summarizes the designs of the structures, components, equipment and systems. And the remaining chapters present the results of the design and safety analysis.

  4. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...

  5. AI applications to conceptual aircraft design

    Science.gov (United States)

    Chalfan, Kathryn M.

    1990-01-01

    This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.

  6. Specifications in early conceptual design work

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2007-01-01

    In early conceptual design the design team is working in an uncertain situation, where the understanding of a need is limited and not much is known about the solution space. In this situation the design team has to both analyse need and explore solution space. Thus, the team has to formulate design...... the structure and content of design specifications during early ideation activities, where initial design specifications are formulated and a product idea is synthesised. We have analysed specification documents of 19 teams of novice designers. Our analysis indicates that a productive product design...

  7. Conceptual Design of Geophysical Microsatellite

    Directory of Open Access Journals (Sweden)

    Matviyenko, S.A.

    2014-10-01

    Full Text Available The article covers the issue of Earth gravitational field (EGF parameters measurement from space. The radiophysical method of measurement of gravitational frequency shift of electromagnetic radiation using existent GNSS and its two variants are developed by the author. The designlayout drawing of geophysical microsatellite, which implements the radiophysical method of EGF measurement and provides Earth plasmasphere and magnetosphere monitoring, is offered.

  8. A conceptual toolbox for designing CSCW applications

    DEFF Research Database (Denmark)

    Bødker, Susanne; Christiansen, Ellen

    1995-01-01

    This paper presents a conceptual toolbox, developed to support the design of CSCW applications in a large Esprit project, EuroCODE. Here, several groups of designers work to investigate computer support for cooperative work in large use organizations, at the same time as they work to develop...... an open development platform for CSCW applications. The conceptual toolbox has been developed to support communication in and among these design groups, between designers and users and in future use of the open development platform. Rejecting the idea that one may design from a framework describing CSCW......, the toolbox aims to support design by doing and help bridging between work with users, technical design, and insights gained from theoretical and empirical CSCW research....

  9. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  10. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  11. Conceptual Underpinnings for Innovation Policy Design

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    In cases where innovation indicators and data fail to serve properly as a (necessary) basis for the design of innovation policies, it often has its roots in conceptual unclarities in the underlying concepts. The aim of this paper is to provide a theoretical and conceptual basis for the design...... of innovation policy. This serves two important purposes. Firstly, it allows the identification of problems in an innovation system that require public policy intervention through the choice of appropriate policy instruments. Secondly, it allows a theoretically based identification of input indicators...

  12. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  13. Conceptual design of simplified PWR

    International Nuclear Information System (INIS)

    Tabata, Hiroaki

    1996-01-01

    The limited availability for location of nuclear power plant in Japan makes plants with higher power ratings more desirable. Having no intention of constructing medium-sized plants as a next generation standard plant, Japanese utilities are interested in applying passive technologies to large ones. So, Japanese utilities have studied large passive plants based on AP600 and SBWR as alternative future LWRs. In a joint effort to develop a new generation nuclear power plant which is more friendly to operator and maintenance personnel and is economically competitive with alternative sources of power generation, JAPC and Japanese Utilities started the study to modify AP600 and SBWR, in order to accommodate the Japanese requirements. During a six year program up to 1994, basic concepts for 1000 MWe class Simplified PWR (SPWR) and Simplified BWR (SBWR) were developed, though there still remain several areas to be improved. These studies have now stepped into the phase of reducing construction cost and searching for maximum power rating that can be attained by reasonably practical technology. These results also suggest that it is hopeful to develop a large 3-loop passive plant (∼1200 MWe). Since Korea mainly deals with PWR, this paper summarizes SPWR study. The SPWR is jointly studied by JAPC, Japanese PWR Utilities, EdF, WH and Mitsubishi Heavy Industry. Using the AP-600 reference design as a basis, we enlarged the plant size to 3-loops and added engineering features to conform with Japanese practice and Utilities' preference. The SPWR program definitively confirmed the feasibility of a passive plant with an NSSS rating about 1000 MWe and 3 loops. (J.P.N.)

  14. Conceptual design of automated freight transport systems

    NARCIS (Netherlands)

    Pielage, B.A.

    2005-01-01

    The conceptual design of automated freight transport systems is a challenging matter. It involves many different parties, types of people and disciplines which all have to work together to develop a system which is often new and complex. Automated freight transport systems typically have a long

  15. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  16. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  17. Conceptualizing Aesthetics in Design: A Phenomenological Framework

    DEFF Research Database (Denmark)

    Folkmann, Mads Nygaard

    2018-01-01

    of aesthetic meaning construction on experience. First, the chapter raises the phenomenological question of the relationship between design and experience, specifically, how design conditions experience. Second, in looking at aesthetics in terms of a) the sensual appeal of design, b) design objects......The aim of this chapter is to introduce and discuss aesthetics as an approach to understand how design frames experience. In doing so, the chapter combines two philosophical interests in design, design phenomenology and design aesthetics, in order to promote a framework for discussing the impact...... experience: We can look at sensual, conceptual, and contextual aesthetic dimensions of design and examine their contribution to the framing of experience, that is, how different dimensions of meaning articulation in design offer different framings of the experiences promoted by design objects and solutions...

  18. Specifications in early conceptual design work

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2007-01-01

    In early conceptual design the design team is working in an uncertain situation, where the understanding of a need is limited and not much is known about the solution space. In this situation the design team has to both analyse need and explore solution space. Thus, the team has to formulate design...... specifications, which express attractive product goals, and has to synthesise the product idea. The authors of this paper see a challenge to enhance and improve our understanding of the nature of design specifications as a means to support the synthesis of a product idea. In this empirical study we analyse...

  19. Conceptual design of the National Ignition Facility

    International Nuclear Information System (INIS)

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-01-01

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 μm) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program's site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002

  20. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  1. Conceptual design of the SMART dosimeter

    Science.gov (United States)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  2. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  3. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and

  4. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  5. Conceptual design of shallow ground repository (SGR)

    International Nuclear Information System (INIS)

    Roehl, J.L.; Franzen, H.R.

    1986-01-01

    A conceptual design to guide the development of the preliminary and final designs of a shallow ground waste disposal site for low and intermediate level radioactive wastes, complying with the Brazilian necessities, interpreted by Brazilian CNEN, is discussed. The general and specific criteria for the design of such installations, considering the reposing period, the isolation of personnel and environment, the operational activities, the characteristics of the site and of the subsoil and the set of necessary installations and services, are presented. An aboveground landfill, with concrete monoliths and concrete packages arranged in stacks disposed on an impermeable soil layer, is proposed. The disposed elements are covered by another impermeable soil stratum. (Author) [pt

  6. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  7. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  8. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  9. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  10. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  11. A conceptual framework to analyse supply chain designs

    Directory of Open Access Journals (Sweden)

    J. A. Badenhorst-Weiss

    2011-12-01

    Full Text Available Objectives: Supply chain design (SCD is a concept that forms an integral part of supply chain management (SCM. Effective SCD enhances supply chain integration (SCI which in turn contributes towards improved supply chain performance. Therefore, organisations' supply chain designs need to be analysed. This article proposes a conceptual framework to analyse organisations' supply chain designs. The objective of this article is to determine whether the proposed conceptual framework is a workable instrument with which organisations can analyse their supply chain designs. Problem investigated: Effective SCD is a complex and demanding undertaking and has become a major challenge for organisations. Moreover, the literature suggests that organisations allow their supply chains to evolve rather than consciously designing them. Although the importance of SCD is emphasised, very little attention is given to what it entails exactly. The problem statement of this article is thus: What are the elements of SCD and how can these elements be included in a conceptual framework to analyse organisations' supply chain designs? Methodology: The methodology used in this article comprised two phases. Firstly, a literature review was conducted to identify SCD elements. The elements were used to develop a conceptual framework with which organisations can analyse their supply chain designs. Secondly, the conceptual framework was tested in 13 organisations to determine whether it is a workable instrument to analyse supply chain designs. The respondents were selected by means of non-probability sampling. Purposive, judgmental and convenience sampling methods were used to select the sample. Findings and implications: As mentioned, the conceptual framework was tested empirically within 13 organisations. The findings show that the conceptual framework is in fact a workable instrument to analyse supply chain designs. Value of the research: The research will make a contribution in

  12. ATA diagnostic beam dump conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium.

  13. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  14. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  15. Recent progress in stellarator reactor conceptual design

    International Nuclear Information System (INIS)

    Miller, R.L.

    1985-01-01

    The Stellarator/Torsatron/Heliotron (S/T/H) class of toroidal magnetic fusion reactor designs continues to offer a distinct and in several ways superior approach to eventual commercial competitiveness. Although no major, integrated conceptual reactor design activity is presently underway, a number of international research efforts suggest avenues for the substantial improvement of the S/T/H reactor embodiment, which derive from recent experimental and theoretical progress and are responsive to current trends in fusion-reactor projection to set the stage for a third generation of designs. Recent S/T/H reactor design activity is reviewed and the impact of the changing technical and programmatic context on the direction of future S/T/H reactor design studies is outlined

  16. Analysis of the TREAT LEU Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  17. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  18. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  19. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  20. Conceptual Design of Compliant Mechanism Based on Port Ontology

    Directory of Open Access Journals (Sweden)

    Zhanwei Li

    2013-01-01

    Full Text Available It is an effective method for port-based ontology (PBO to be used to represent and organize product design information and, support product conceptualization. As port is used to map and link components together, it plays an important role in capturing component information. This paper establishes a design method of compliant mechanism based on port ontology. Firstly, the coding rules are constituted based on PBO, and knowledge base of compliant mechanism is constructed, which includes stiffness base and inherent frequency base of flexible cells. Secondly, incidence matrix is established to denote the relationship of components, and based on incidence matrix design, schemes are generated by adopting the genetic algorithm. Thirdly, by selecting suitable parameters, scheme populations are generated towards training neural network (NN, and the trained NN model is employed for choosing preferential schemes to be satisfied with users' demands. At last, an application case is given to demonstrate the conceptual design of compliant mechanism based on port ontology.

  1. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  2. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  3. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Glenzinski, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  4. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, R. J.

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process μ- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  5. LUX-ZEPLIN (LZ) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2015-03-09

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  6. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  7. Conceptual design of a spaceborne lightning sensor

    Science.gov (United States)

    Wolfe, W. L.; Nagler, M.

    1980-01-01

    A conceptual design of a broad-area optical lightning telescope sensor (BOLTS) designed to provide full-time (day/night) coverage of the continental United States from a geosynchronous orbit is described. Variations are discussed that could cover the whole globe from four to five geosynchronous satellites or cover only smaller areas with a high (2.5 km) resolution. The design is based on research results of the initial phase of a NASA-sponsored program. The ground resolution will be 8 x 8 km. The focal plane is an 800 x 800 pixel CCD array, electronically subdivided to allow for the high data rates (1000 frames per sec) imposed by the characteristics of lightning flashes. It will detect lightning strokes whose optical power is greater than 10 million watts, with a probability of detection of 0.9, and a false alarm rate of 0.1.

  8. LUX-ZEPLIN (LZ) Conceptual Design Report

    CERN Document Server

    Akerib, D S; Akimov, D. Yu.; Alsum, S.K.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Balashov, S.; Barry, M.J.; Bauer, P.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; Boast, K.E.; Bolozdynya, A.I.; Boulton, E.M.; Bramante, R.; Buckley, J.H.; Bugaev, V.V.; Bunker, R.; Burdin, S.; Busenitz, J.K.; Carels, C.; Carlsmith, D.L.; Carlson, B.; Carmona-Benitez, M.C.; Cascella, M.; Chan, C.; Cherwinka, J.J.; Chiller, A.A.; Chiller, C.; Craddock, W.W.; Currie, A.; Cutter, J.E.; da Cunha, J.P.; Dahl, C.E.; Dasu, S.; Davison, T.J.R.; de Viveiros, L.; Dobi, A.; Dobson, J.E.Y.; Druszkiewicz, E.; Edberg, T.K.; Edwards, B.N.; Edwards, W.R.; Elnimr, M.M.; Emmet, W.T.; Faham, C.H.; Fiorucci, S.; Ford, P.; Francis, V.B.; Fu, C.; Gaitskell, R.J.; Gantos, N.J.; Gehman, V.M.; Gerhard, R.M.; Ghag, C.; Gilchriese, M.G.D.; Gomber, B.; Hall, C.R.; Harris, A.; Haselschwardt, S.J.; Hertel, S.A.; Hoff, M.D.; Holbrook, B.; Holtom, E.; Huang, D.Q.; Hurteau, T.W.; Ignarra, C.M.; Jacobsen, R.G.; Ji, W.; Ji, X.; Johnson, M.; Ju, Y.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A.V.; Konovalov, A.M.; Korolkova, E.V.; Kraus, H.; Krebs, H.J.; Kudryavtsev, V.A.; Kumpan, A.V.; Kyre, S.; Larsen, N.A.; Lee, C.; Lenardo, B.G.; Lesko, K.T.; Liao, F. -T.; Lin, J.; Lindote, A.; Lippincott, W.H.; Liu, J.; Liu, X.; Lopes, M.I.; Lorenzon, W.; Luitz, S.; Majewski, P.; Malling, D.C.; Manalaysay, A.G.; Manenti, L.; Mannino, R.L.; Markley, D.J.; Martin, T.J.; Marzioni, M.F.; McKinsey, D.N.; Mei, D. -M.; Meng, Y.; Miller, E.H.; Mock, J.; Monzani, M.E.; Morad, J.A.; Murphy, A. St. J.; Nelson, H.N.; Neves, F.; Nikkel, J.A.; O'Neill, F.G.; O'Dell, J.; O'Sullivan, K.; Olevitch, M.A.; Oliver-Mallory, K.C.; Palladino, K.J.; Pangilinan, M.; Patton, S.J.; Pease, E.K.; Piepke, A.; Powell, S.; Preece, R.M.; Pushkin, K.; Ratcliff, B.N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C.; Rodrigues, J.P.; Rose, H.J.; Rosero, R.; Saba, J.S.; Sarychev, M.; Schnee, R.W.; Schubnell, M.S.G.; Scovell, P.R.; Shaw, S.; Shutt, T.A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solovov, V.N.; Sorensen, P.; Sosnovtsev, V.V.; Stancu, I.; Stark, M.R.; Stephenson, S.; Stiegler, T.M.; Sumner, T.J.; Sundarnath, K.; Szydagis, M.; Taylor, D.J.; Taylor, W.; Tennyson, B.P.; Terman, P.A.; Thomas, K.J.; Thomson, J.A.; Tiedt, D.R.; To, W.H.; Tomás, A.; Tripathi, M.; Tull, C.E.; Tvrznikova, L.; Uvarov, S.; Va'vra, J.; van der Grinten, M.G.D.; Verbus, J.R.; Vuosalo, C.O.; Waldron, W.L.; Wang, L.; Webb, R.C.; Wei, W. -Z.; While, M.; White, D.T.; Whitis, T.J.; Wisniewski, W.J.; Witherell, M.S.; Wolfs, F.L.H.; Woods, E.; Woodward, D.; Worm, S.D.; Yeh, M.; Yin, J.; Young, S.K.; Zhang, C.

    2015-01-01

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  9. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  10. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  11. New conceptual design of portable bamboo bridge for emergency purposes

    Science.gov (United States)

    Musthaffa, A. A.; Nor, N. M.; Yusof, M. A.; Yuhazri, M. Y.

    2018-02-01

    Portable bridges serve as routes for troops during the military operations and the disaster relief operation. Nowadays, bamboo has been regarded as one of the alternative construction materials for building and bridge structures. This paper presents the conceptual design of the portable bridge. Several types of portable bridges and bamboo bridges are reviewed in the current work. The characteristics, capability and method of construction of each bridge are discussed. Finally, the conceptual of the portable bamboo bridge for emergency purposes is presented. The idea of producing portable bridge is proposed in the current work as it is crucial for providing route for communities affected by natural disasters.

  12. Transitioning from conceptual design to construction performance specification

    Science.gov (United States)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  13. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  14. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  15. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  16. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  17. StructuralComponents : A software system for conceptual structural design

    NARCIS (Netherlands)

    Van de Weerd, B.; Rolvink, A.; Coenders, J.L.

    2012-01-01

    Conceptual design is the starting point of the design process. The conceptual design stage comprises the formation of several ideas or design concepts to meet the imposed constraints. StructuralComponents is a software application that attempts to provide the designing engineer with a suitable set

  18. The Conceptual Design of Innovative Safe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Gon [Centural Research Institute, Daejeon (Korea, Republic of); Heo, Sun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Most of countries operating NPPs have been performed post-Fukushima improvements as short-term countermeasure to enhance the safety of operating NPPs. Separately, vendors have made efforts on developing passive safety systems as long-term and ultimate countermeasures. AP1000 designed by Westinghouse Electric Company has passive safety systems including the passive emergency core cooling system (PECCS), the passive residual heat removal system (PRHRS), and the passive containment cooling system (PCCS). ESBWR designed by GE-Hitachi also has passive safety systems consisting of the isolation condenser system, the gravity driven cooling system and the PCCS. Other countries including China and Russia have made efforts on developing passive safety systems for enhancing the safety of their plants. In this paper, we summarize the design goals and main design feature of innovative safe PWR, iPOWER which is standing for Innovative Passive Optimized World-wide Economical Reactor, and show the developing status and results of research projects. To mitigate an accident without electric power and enhance the safety level of PWR, the conceptual designs of passive safety system and innovative safe PWR have been performed. It includes the PECCS for core cooling and the PCCS for containment cooling. Now we are performing the small scale and separate effect tests for the PECCS and the PCCS and preparing the integral effect test for the PECCS and real scale test for the PCCS.

  19. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten

    1999-01-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display...... design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from...

  20. Conceptual Design - Polar Drive Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R

    2012-04-05

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design

  1. Conceptual design study of IFMIF target system

    International Nuclear Information System (INIS)

    Kato, Y.; Nakamura, H.; Ida, M.; Maekawa, H.; Katsuta, H.; Hua, T.; Cevolani, S.

    1997-01-01

    IFMIF-CDA (International Fusion Materials Irradiation Facility - Conceptual Design Activity) had been carried out during 1995 and 1996, under the auspices of the IEA. The mission of this facility is to provide an accelerator based deuterium-lithium (D-Li) neutron source to test the candidate materials of radiation - resistant and low - activation materials up to about a full lifetime of anticipated use in fusion energy reactors. The neutrons of about 14 MeV are obtained by the stripping reaction of the deuteron of Max. 40 MeV with target lithium. Total deuteron beam current is about 250 mA and beam footprint is 20 cm x 5 cm on the free surface of lithium jet. In this report general characteristics of the target lithium system and the results of thermal and flow analysis for the target lithium jet are described. (author)

  2. Effectiveness of Persona with Personality Traits on Conceptual Design

    DEFF Research Database (Denmark)

    Anvari, Farshid; Richards, Deborah; Hitchens, Michael

    2015-01-01

    Conceptual design is an important skill in Software Engineering. Teaching conceptual design that can deliver a useful product is challenging, particularly when access to real users is limited. This study explores the effects of the use of Holistic Personas (i.e. a persona enriched with personality...... in conceptual design training for imparting skills of producing in-depth design by taking personalities into account....

  3. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  4. The conceptual design of the ITER CODAC system

    International Nuclear Information System (INIS)

    Farthing, J.; Greenwald, M.; Jo Lister; Izuru Yonekawa

    2006-01-01

    The COntrol Data Access and Communication (CODAC) system for ITER is presently under conceptual design, revising the previous design dating from 1998. The design concentrates on the major perceived challenges: 35-year life of the project for maintenance and evolution; harmonizing strict access security with world-wide participation in the exploitation of ITER; the complexity of CODAC which has to control a large number of disparate procurements systems, 24 hours/365 days; the particular '' in-kind '' procurement of all Plant Systems. The design has so-far concentrated on appropriate methods for combating these challenges. Concepts include: strict application and enforcement of standards for interfacing procured systems at a high '' black-box '' level; reliance on standard high performance networks; reliance on the self-description of the procured systems; maximizing the use of data-driven applications, rather than device-specific coding. The interfacing and procurement specifications will be presented, especially the self-description of '' black-box '' systems, and the boundaries of CODAC will be defined. The breakdown of CODAC into a number of manageable systems and their interfaces will be outlined. The data volumes and data rates will be estimated, suggesting an appropriate conceptual design of the various parts of the CODAC network. There are no required CODAC features which could not be provided with today's tools. However, one element of this conceptual design is to identify areas where ideal solutions are not clearly available for which appropriate R(and)D will be proposed. (author)

  5. SwissFEL - Conceptual design report

    International Nuclear Information System (INIS)

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  6. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  7. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  8. Conceptual evaluation of population health surveillance programs: method and example.

    Science.gov (United States)

    El Allaki, Farouk; Bigras-Poulin, Michel; Ravel, André

    2013-03-01

    Veterinary and public health surveillance programs can be evaluated to assess and improve the planning, implementation and effectiveness of these programs. Guidelines, protocols and methods have been developed for such evaluation. In general, they focus on a limited set of attributes (e.g., sensitivity and simplicity), that are assessed quantitatively whenever possible, otherwise qualitatively. Despite efforts at standardization, replication by different evaluators is difficult, making evaluation outcomes open to interpretation. This ultimately limits the usefulness of surveillance evaluations. At the same time, the growing demand to prove freedom from disease or pathogen, and the Sanitary and Phytosanitary Agreement and the International Health Regulations require stronger surveillance programs. We developed a method for evaluating veterinary and public health surveillance programs that is detailed, structured, transparent and based on surveillance concepts that are part of all types of surveillance programs. The proposed conceptual evaluation method comprises four steps: (1) text analysis, (2) extraction of the surveillance conceptual model, (3) comparison of the extracted surveillance conceptual model to a theoretical standard, and (4) validation interview with a surveillance program designer. This conceptual evaluation method was applied in 2005 to C-EnterNet, a new Canadian zoonotic disease surveillance program that encompasses laboratory based surveillance of enteric diseases in humans and active surveillance of the pathogens in food, water, and livestock. The theoretical standard used for evaluating C-EnterNet was a relevant existing structure called the "Population Health Surveillance Theory". Five out of 152 surveillance concepts were absent in the design of C-EnterNet. However, all of the surveillance concept relationships found in C-EnterNet were valid. The proposed method can be used to improve the design and documentation of surveillance programs. It

  9. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  10. Conceptual design for transmission line inspection robot

    International Nuclear Information System (INIS)

    Jalal, M F Abdul; Sahari, K S Mohamed; Anuar, A; Arshad, A D Mohd; Idris, M S

    2013-01-01

    Power transmission line is used for power distribution purposes due to their cost effective measure compared to underlying cable. However, prolonged exposure to natural weather may cause fatigue stress to the lines as well as induce material failure. Therefore, periodical line inspection is considered uttermost important as a preventive measure to avoid power outage. However, transmission line inspection has always been a high risk and expensive work. Hazardous works that may harm operator as well as routine that requires precise handling can be performed by robots. Various types of robots have been designed and developed for line inspection but only perform well on a straight and continuous line. As these robots encounter an obstacle during the inspection, then the real problem in terms of robot stability and smooth operation arises. In this paper, conceptual design and evaluation for transmission line inspection robot is presented. The inspection robot mobile robot must be able to bypass or avoid obstacles as it travels along the power transmission line.

  11. Conceptual design of the KSTAR Motor Generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Kong, Jong-Dea; Eom, Dae-Young; Joung, Nam-Young; Lee, Woo-Jin; Kim, Yang-Soo; Kwon, Myeun [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Han, Chul-Woo; Lee, Sel-Ki [Vitzrotech Co. Ltd, 605-2 Seonggok-dong, Danwon-gu, Ansan, Gyeonggi-do 425-833 (Korea, Republic of); Parker, F.J.; Hopkinson, D.; Le Flem, G.D. [Converteam UK Ltd, Leicester Road, Rugby, Warwickshire CV21 1BD (United Kingdom)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The design of the MG which is required to allow the PF MPS to operate at its full power rating has been completed. Black-Right-Pointing-Pointer This system will increase the supply capability to the MPS to 200 MVA, 1.6 GJ and will supply reactive power to the MPS. Black-Right-Pointing-Pointer A VVVF of 12 MW will control the MG and will supply additional active power to the PF MPS in parallel with the MG. Black-Right-Pointing-Pointer The MG will be installed in August 2012. Black-Right-Pointing-Pointer The dummy coil testing will commence in December 2012 with superconducting coil testing scheduled for 2013. - Abstract: The Korean Superconducting Tokamak Advanced Research (KSTAR) superconducting magnet power supply is composed of a Poloidal Field Magnet Power Supply (PF MPS) and a Toroidal Field Magnet Power Supply (TF MPS). When the PF MPS is operated, it requires a large amount of power instantaneously from the KSTAR electric power system. To achieve the KSTAR operational goal, with a long pulse scenario, a peak power of 200 MVA is required and the total power demand for the KSTAR system can exceed 200 MVA. The available grid power is only 100 MVA at the KSTAR site. Increasing the available grid power was uneconomical and inefficient which is why NFRI are installing a Motor Generator (MG). National Fusion Research Institute (NFRI) has made a contract with Vitzrotech and Converteam to design, manufacture and install the MG. Converteam has designed the electromagnetic and mechanical specification of the MG and Variable Voltage Variable Frequency (VVVF) converter. In this paper we discuss the conceptual design, including energy saving and electrical capacity of the MG system and the performance of the MG to satisfy the KSTAR 300 s operation scenario. In addition, the manufacturing and installation plan for the KSTAR MG is discussed.

  12. Physics-Based Conceptual Design Tools, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Approaches for weight prediction, in the conceptual design phase, typically consist of parametric relations or empirical databases. Historical databases work...

  13. A development of maintenance educational support method by using navigation method. Pt. 1. A conceptual design of RHR pump maintenance educational support prototype system

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Hirotsu, Yuko; Fujimoto, Junzo; Gouda, Hidenori

    2001-01-01

    The purpose of this research is before hand prevention of the systematic error produced from the fault of command / command system on the different organization in a nuclear power plant, and the individual error of the demand level of maintenance work, and knowledge and experience level of a maintenance worker produced from it being incongruent (mismatch), and generating of the serious accident and a serious trouble. This research attains optimization with the difficulty of maintenance work, and work execution capability, such as the persons concerned (a supervision person, a construction person, work person), and proposes the new 'maintenance educational support technique' which is useful to the improvement in 'work reliability' and 'before hand prevention of a human error' in the maintenance work spot. The main results concerning this research are shown below. (1) In this research, concept design of RHR pump maintenance work educational support prototype system was performed on the basis of the examination result of a process analysis of RHR pump maintenance work, load mapping, a rule base/knowledge base and a data base/filing system. Consequently, when an educator-ed talked with a data base/filing system along with load mapping of maintenance work (Why, How, What), a possibility that it could reach exactly from work start to the sub goal or the last goal and timely was suggested. (2) As a result of classifying 'the difficulty of maintenance work', and man's work execution capability' and comparing the result using SRK (behavior of human) index which Rasmussen proposed, among both, it turns out that difference (inharmonious) arises. The exact presentation of the educational method or educational material which responded to knowledge and experience level of an educational achievement target or an educator-ed can be referred to as being connected with the improvement in work reliability, and before hand prevention of a human error as a result by then, incorporating

  14. Conceptual design of industrial process displays.

    Science.gov (United States)

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  15. Conceptual design pattern for ergonomic workplaces.

    Science.gov (United States)

    Fonseca, Bernardo Bastos; Aguilera, Maria Victoria Cabrera; Vidal, Mario Cesar Rodríguez

    2012-01-01

    In this paper, we analyzed two laboratories of liquid chromatography (LC), separation technique of mixtures and identification of its components, in order to identify projectual gaps relating to the environment and the working station. The methodology used was the ergonomic analysis with interactional and participatory techniques applied during the activity performance. This work incorporated and adapted the concept developed by Alexander (1979)--pattern languages--passing from architectural projects to workstations project and physical arrangement of the work environment. The adaptation of the concept resulted in a list of recommendations, requirements and concepts that have brought design solutions for the problematic aspects observed in the ergonomic analysis. The employed methodology, strongly supported in ergonomics principles, and in interactional and participatory techniques, contributed to achieve our gold that is what we now call Conceptual Standards. The patterns go beyond of a usual model of book a of ergonomics specification, once incorporating the viewpoint of the end user, it is also a set of best project practices and of project management in conception ergonomics.

  16. Conceptual design of multiple parallel switching controller

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Ozawa, K.

    1996-01-01

    This paper discusses the conceptual design and the development of a preliminary model of a multiple parallel switching (MPS) controller. The introduction of several advanced controllers has widened and improved the control capability of nonlinear dynamical systems. However, it is not possible to uniquely define a controller that always outperforms the others, and, in many situations, the controller providing the best control action depends on the operating conditions and on the intrinsic properties and behavior of the controlled dynamical system. The desire to combine the control action of several controllers with the purpose to continuously attain the best control action has motivated the development of the MPS controller. The MPS controller consists of a number of single controllers acting in parallel and of an artificial intelligence (AI) based selecting mechanism. The AI selecting mechanism analyzes the output of each controller and implements the one providing the best control performance. An inherent property of the MPS controller is the possibility to discard unreliable controllers while still being able to perform the control action. To demonstrate the feasibility and the capability of the MPS controller the simulation of the on-line operation control of a fast breeder reactor (FBR) evaporator is presented. (author)

  17. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  18. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  19. Aircraft conceptual design - an adaptable parametric sizing methodology

    Science.gov (United States)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  20. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  1. Methodology for the conceptual design of solar kitchens

    International Nuclear Information System (INIS)

    Macia G, A F; Estrada V, D A; Chejne J, F; Velasquez, H I; Rengifo, R

    2005-01-01

    A detailed description of the methodology for the conceptual design of solar kitchens has appeared, which allows its detailed design. The methodology is based on three main phases that natural and has been very intuitively identified given to the characteristics and conditions of the project: conceptual phase, detail phase and execution phase

  2. Conceptual design of an energy efficient transfemoral prosthesis

    NARCIS (Netherlands)

    Ünal, Ramazan; Carloni, Raffaella; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.

    2010-01-01

    In this study, we present the conceptual design of a fully-passive transfemoral prosthesis. The design is inspired by the power flow in human gait in order to have an energy efficient device. The working principle of the conceptual mechanism is based on three storage elements, which are responsible

  3. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    Science.gov (United States)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  4. Fuel pin design algorithm for conceptual design studies

    International Nuclear Information System (INIS)

    Uselman, J.P.

    1979-01-01

    Two models are available which are currently verified by part of the requirements and which are adaptable as algorithms for the complete range. Fuel thermal performance is described by the HEDL SIEX model. Cladding damage and total deformation are determined by the GE GRO-II structural analysis code. A preliminary fuel pin performance model for analysis of (U, P/sub U/)O 2 pins in the COROPT core conceptual design system has been constructed by combining the key elements of SIEX and GRO-II. This memo describes the resulting pin performance model and its interfacing with COROPT system. Some exemplary results are presented

  5. Helium gas turbine conceptual design by genetic/gradient optimization

    International Nuclear Information System (INIS)

    Yang, Long; Yu, Suyuan

    2003-01-01

    Helium gas turbine is the key component of the power conversion system for direct cycle High Temperature Gas-cooled Reactors (HTGR), of which an optimal design is essential for high efficiency. Gas turbine design currently is a multidisciplinary process in which the relationships between constraints, objective functions and variables are very noisy. Due to the ever-increasing complexity of the process, it has becomes very hard for the engineering designer to foresee the consequences of changing certain parts. With classic design procedures which depend on adaptation to baseline design, this problem is usually averted by choosing a large number of design variables based on the engineer's judgment or experience in advance, then reaching a solution through iterative computation and modification. This, in fact, leads to a reduction of the degree of freedom of the design problem, and therefore to a suboptimal design. Furthermore, helium is very different in thermal properties from normal gases; it is uncertain whether the operation experiences of a normal gas turbine could be used in the conceptual design of a helium gas turbine. Therefore, it is difficult to produce an optimal design with the general method of adaptation to baseline. Since their appearance in the 1970s, Genetic algorithms (GAs) have been broadly used in many research fields due to their robustness. GAs have also been used recently in the design and optimization of turbo-machines. Researchers at the General Electronic Company (GE) developed an optimization software called Engineous, and used GAs in the basic design and optimization of turbines. The ITOP study group from Xi'an Transportation University also did some work on optimization of transonic turbine blades. However, since GAs do not have a rigorous theory base, many problems in utilities have arisen, such as premature convergence and uncertainty; the GA doesn't know how to locate the optimal design, and doesn't even know if the optimal solution

  6. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  7. Conceptual design interpretations, mindset and models

    CERN Document Server

    Andreasen, Mogens Myrup; Cash, Philip

    2015-01-01

    Maximising reader insights into the theory, models, methods and fundamental reasoning of design, this book addresses design activities in industrial settings, as well as the actors involved. This approach offers readers a new understanding of design activities and related functions, properties and dispositions. Presenting a ‘design mindset’ that seeks to empower students, researchers, and practitioners alike, it features a strong focus on how designers create new concepts to be developed into products, and how they generate new business and satisfy human needs.   Employing a multi-faceted perspective, the book supplies the reader with a comprehensive worldview of design in the form of a proposed model that will empower their activities as student, researcher or practitioner. We draw the reader into the core role of design conceptualisation for society, for the development of industry, for users and buyers of products, and for citizens in relation to public systems. The book also features original con...

  8. Integrating conceptualizations of experience into the interaction design process

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2010-01-01

    From a design perspective, the increasing awareness of experiential aspects of interactive systems prompts the question of how conceptualizations of experience can inform and potentially be integrated into the interaction design process. This paper presents one approach to integrating theoretical...

  9. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  10. Conceptual design of the field-reversed mirror reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-05-19

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate.

  11. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  12. Conceptual design for the ZEPHYR neutral-beam injection system

    International Nuclear Information System (INIS)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs

  13. Conceptual design for the ZEPHYR neutral-beam injection system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  14. Integrated design support systems for conceptual design of a space power reactor

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Yoshikawa, Hidekazu; Takahashi, Makoto; Takeoka, Satoshi; Nagamatsu, Takashi; Ishizaki, Hiroaki

    1999-01-01

    In the process of conceptual design of large and complex engineering systems such as a nuclear power reactor, there must be various human works by several fields of engineers on each stage of design, analysis and evaluation. In this study, we have rearranged the design information to reduce the human workloads and have studied an efficient method to support the conceptual design works by new information technologies. For this purpose, we have developed two design support environments for conceptual design of a space power reactor as a concrete design target. When constructing an integrated design support environment, VINDS, which employs virtual reality(VR) technology, we focused on visualization of physical structure, functional organization and analysis calculation with full usage of easy perception and direct manipulation of VR. On the other hand, when constructing another asynchronous and distributed design support environment, WINDS, which employs WWW technology, we improved the support functions for cooperative design works among various fields of experts. In this paper, the basic concepts, configurations and functions of the design support environments are first described, then the future improvement is surveyed by their intercomparison. (author)

  15. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  16. Conceptual Teaching Based on Scientific Storyline Method and Conceptual Change Texts: Latitude-Parallel Concepts

    Science.gov (United States)

    Uzunöz, Abdulkadir

    2018-01-01

    The purpose of this study is to identify the conceptual mistakes frequently encountered in teaching geography such as latitude-parallel concepts, and to prepare conceptual change text based on the Scientific Storyline Method, in order to resolve the identified misconceptions. In this study, the special case method, which is one of the qualitative…

  17. Software for Evaluation of Conceptual Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    by the prototype, it addresses the requirements that the methods imply, and it explains the actual implementation of the prototype. Finally it discusses what have been learned from developing and testing the prototype. In this paper it is suggested, that a software tool which supports evaluation of design can...... be developed with a limited effort, and that such tools could support a structured evaluation process as opposed to no evaluation. Compared to manual evaluation, the introduced software based evaluation tool offers automation of tasks, such as performing assessments, when they are based on prior evaluations...

  18. Conceptual design of a laser fusion power plant

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Meier, W.R.; Monsler, M.J.

    1977-01-01

    A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned

  19. Quality Functional Deployment as a Conceptual Aircraft Design Tool

    National Research Council Canada - National Science Library

    Tan, Rendell

    2000-01-01

    Quality Functional Deployment (QFD) methodology was applied as a possible system integration tool for use during the conceptual configuration design phase of low speed High Altitude Long Endurance (HALE) UAVs...

  20. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  1. UWMAK-II: a conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes the conceptual design of a Tokamak fusion power reactor, UWMAK-II. The aim of this study is to perform a self consistent and thorough analysis of a probable future fusion power reactor in order to assess the technological problems posed by such a system and to examine feasible solutions. UWMAK-II is a conceptual Tokamak fusion reactor designed to deliver 1716 MWe continuously and to generate 5000 MW(th) during the plasma burn. The structural material is 316 stainless steel and the primary coolant is helium. UWMAK-II is a low aspect ratio, low field design and includes a double null, axisymmetric poloidal field divertor for impurity control. In addition, a carbon curtain, made of two dimensional woven carbon fiber, is mounted on the first vacuum chamber wall to protect the plasma from high Z impurities and to protect the first wall from erosion by charged particle bombardment. The blanket is designed to minimize the inventory of both tritium and lithium while achieving a breeding ratio greater than one. This has led to a blanket design based on the use of a solid breeding material (LiAlO 2 ) with beryllium as a neutron multiplier. The lithium is enriched to 90 percent 6 Li and the blanket coolant is helium at a maximum pressure of 750 psia (5.2 x 10 6 N/m 2 ). A cell of the UWMAK-II blanket design is shown. The breeding ratio is between 1.11 and 1.19 based on one-dimensional discrete ordinates transport calculations, depending on the method of homogenization. Detailed Monte Carlo calculations, which take into account the more complicated geometry, give a breeding ratio of 1.06. The total energy per fusion is 21.56 MeV, which is fairly high

  2. Evolution of property predictability during conceptual design

    DEFF Research Database (Denmark)

    Salonen, Mikko; Hansen, Claus Thorp; Perttula, Matti

    2005-01-01

    of design alternatives, and identify the alternative which properties are best predicted to fulfil the requirements. The objective of this paper is to study the evolution of property predictability during the early phases of design in a case study context, and reflect on the implications this may have......A product is designed with the purpose of possessing certain properties, which are prescribed as requirements in the design specification. It is a common understanding that early design work and the resulting selected design concept have a significant impact on the subsequent phases of the design...... process and on the properties of the obtained design result. However, during the early phases of design every decision and choice of solution is based on incomplete information. The nature of early design work is to formulate the design problem based on an interpretation of a need, to generate a set...

  3. Gemini high-resolution optical spectrograph conceptual design

    Science.gov (United States)

    Szeto, Kei; McConnachie, Alan; Anthony, André; Bohlender, David; Crampton, David; Desaulniers, Pierre; Dunn, Jennifer; Hardy, Tim; Hill, Alexis; Monin, Dmitry; Pazder, John; Schwab, Christian; Spano, Paola; Starkenburg, Else; Thibault, Simon; Walker, Gordon; Venn, Kim; Zhang, Hu

    2012-09-01

    A multiplexed moderate resolution (R = 34,000) and a single object high resolution (R = 90,000) spectroscopic facility for the entire 340 - 950nm wavelength region has been designed for Gemini. The result is a high throughput, versatile instrument that will enable precision spectroscopy for decades to come. The extended wavelength coverage for these relatively high spectral resolutions is achieved by use of an Echelle grating with VPH cross-dispersers and for the R = 90,000 mode utilization of an image slicer. The design incorporates a fast, efficient, reliable system for acquiring targets over the7 arcmin field of Gemini. This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study instrument group of the Herzberg Institute of Astrophysics has been commissioned by the Gemini Observatory as one of the three competing organizations to conduct a conceptual design study for a new Gemini High-Resolution Optical Spectrograph (GHOS). This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study.

  4. Conceptual design of SC magnet system for ITER, (2)

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Hasegawa, Mitsuru; Yoshida, Kiyoshi

    1991-08-01

    The International Thermonuclear Experimental Reactor (ITER) is an experimental tokamak machine testing the basic plasma performance and technologies required for future tokamak reactor. The design proposals for the Superconducting (SC) Magnet System from Japan were summarized by the Fusion Experimental Reactor (FER) Design Team and the Superconducting Magnet Laboratory of the Japan Atomic Energy Research Institute (JAERI). This report is one of the series reports on 'Conceptual design of superconducting magnet system for ITER', and describes the major results of the stress analysis regarding the Toroidal Field (TF) coil, the Center Solenoid (CS) coil and the Equilibrium Field (EF) coil and their support structures. Among the design issues, the mechanical design of the coil system was one of the most critical items, not only because of the huge electromagnetic loads due to large size and high magnetic field, but also because of the demand of high reliability under neutron irradiation. In order to satisfy both the coil performance and the mechanical reliability, different types of conductors were employed for each coils. The mechanical behaviors and the safety margin of each coil were analyzed by using finite element method (FEM) of MSC/NASTRAN. The procedure to obtain the equivalent winding stiffness employed for the each FEM analysis is also described in this report. The details on the coil specifications, conductor design and mechanical design for each coils are described in other report of the series reports. (J.P.N.)

  5. Design and validation of the Quantum Mechanics Conceptual Survey

    Directory of Open Access Journals (Sweden)

    S. B. McKagan

    2010-11-01

    Full Text Available The Quantum Mechanics Conceptual Survey (QMCS is a 12-question survey of students’ conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only, sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.

  6. Designing Public Library Websites for Teens: A Conceptual Model

    Science.gov (United States)

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  7. AIDA. Artificial Intelligence supported conceptual Design of Aircraft

    NARCIS (Netherlands)

    Rentema, D.W.E.

    2004-01-01

    This thesis describes the development of a computer support tool that supports the initial, conceptual design process. In this first design phase one or more concepts are defined which are assumed to be able to comply with the design specifications. These concepts can be elaborated in more detail

  8. TFTR neutral beam systems conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The functions, design requirements, and design descriptions of the injection system are described. Cost summaries are given for each system and subsystem. The costs presented are for: materials procurement; and shipping, assembly, and installation at the Princeton site. (MOW)

  9. Graphic Design in Libraries: A Conceptual Process

    Science.gov (United States)

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  10. Conceptual design of K DEMO containment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kye Min; Heo, Gyun Young [Kyung Hee Univ., Seoul (Korea, Republic of); Lee, Young Seok; Kim, Hyoung Chan [National Fusion Research Institute, Daejeon (Korea, Republic of); Moon, Young Tae [KEPCO Engineering and Construction Company, Yongin (Korea, Republic of)

    2012-10-15

    The most important safety goal of nuclear systems is to prevent the release of radiation into the environment, and fusion power plants should not be an exception. Containment is the final wall to avoid leaking radioactive materials in malfunction of vacuum vessel and fuel cycle failure. It is important barrier to protect the plant against external events such as aircraft crashing, earthquake, and tsunami. After the Fukushima accident in Japan, the passive safety systems are being researched due to their high reliability, simple computation systems and small number of components. However, it is hard to say well because of negative points, which are low efficiency and uncontrollability. So, it is necessary to confirm its performance and suitability using simulation and experiments. Passive safety systems work on the basis of differential head, natural convection and gas compression force without operator and a power supply. Currently, safety systems using the passive power are applied in APR 1400 and next generation of power plants in domestic. However, it's hard to verify the performance of passive safety systems. Though code calculation and numerical analysis are suitable to certain extent for the system(s) with differential head and gas compressive force but these methods are difficult to apply for analysis of natural convection systems. These safety systems are mainly used in containment cooling systems. It is most plausible that such kind of containment cooling system will sustain its design in the next generation nuclear power plants. The application of this safety system requires internal authentication whereas there is not sufficient experimentation or codes for authentication. This paper is written under one program of Nuclear Fusion Research Institute (NRFI). Henceforth, the performance analysis method is being developed for the analysis of Passive Containment Cooling System (PCCS) using the basic accident analysis code for the fission plant. The

  11. Conceptual design for the STAR barrel electromagnetic calorimeter support rings

    International Nuclear Information System (INIS)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1994-01-01

    The STAR electromagnetic calorimeter (EMC) will be used to measure the energy of photons and electrons from collisions of beams of particles in the RHIC accelerator under construction at Brookhaven National Laboratory. The present design is documented in the EMC Conceptual Design Report, and consists of a cylindrical barrel and two flat endcap calorimeter sections. The barrel EMC will consist of 120 modules, each subtending 6 degrees in azimuthal angle about the beam (φ), and half the barrel length. Each module will be subdivided into ''towers'' of alternating scintillator and lead, which project to the nominal interaction point. There is a strong coupling between the designs for the EMC and for the conventional solenoidal magnet, which will be located immediately outside the barrel EMC. For example, the inner radius of the magnet must be minimized to lower costs and to reduce the STAR detector's outer diameter to fit within constraints of the existing detector building. This condition requires the calorimeter modules to be just thick enough to accomplish physics goals and to support their weight with small deflections. This note describes progress in the design of the EMC support rings. Several ring designs and methods of construction have been considered. In addition, installation and alignment problems for both the rings and the rails have been considered in more depth. Finally, revised stress calculations for the recommended ring designs have been performed. Most of this work has been done in close collaboration with the STAR magnet subgroup

  12. Languaging and Visualisation Method for Grammar Teaching: A Conceptual Change Theory Perspective

    Science.gov (United States)

    Rattya, Kaisu

    2013-01-01

    Conceptual grammatical knowledge is an area which causes problems at different levels of education. This article examines the ideas of conceptual change theory as a basis for establishing a new grammar teaching method. The research strategy which I use is educational design research and the research data have been collected from teacher students…

  13. Evolution of property predictability during conceptual design

    DEFF Research Database (Denmark)

    Salonen, Mikko; Hansen, Claus Thorp; Perttula, Matti

    2005-01-01

    A product is designed with the purpose of possessing certain properties, which are prescribed as requirements in the design specification. This paper studies the evolution of property predictability during the early phases of design in a case study context. By the term property predictability, we...... refer to the designers’ confidence in predicting product properties based on the available information. In the case study, with use of the produced design models at four different stages of concept concretisation, the designers evaluated their confidence in predicting product properties related...... to the requirements set for the task. As a result, we identified three different patterns of property predictability behaviour. These patterns consist of properties of which predictability is relatively high throughout the early phases of the design process, properties of which predictability shows a high increase...

  14. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  15. Advanced Modeling Concepts for Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary design of aircraft structures is multidisciplinary, involving knowledge of structural mechanics, aerodynamics, aeroelasticity, structural dynamics and...

  16. MINIMARS conceptual design: Report I. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1985-12-01

    This report contains separate articles of seven aspects of the MINIMARS programs. The areas discussed are Fusion Engineering Design Center, Halo Model and Computer Code, safety design, the University of Wisconsin blankets, activation product transport in a FLiBe-VANADIUM alloy HT-9 system, a halo scraper/direct converter system, and heat transport power conversion. The individual articles are cataloged separately. (WRF)

  17. ITER isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1989-05-01

    This paper presents integrated Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar, with the only major difference being the requirements for an additional large water distillation column for ALSB water detritiation. The fact that the cryogenic distillation portions of the two ISS designs are almost identical, indicates that the cryogenic distillation cascade design is very flexible and can readily accommodate significant changes in processing requirements without requiring significant redesign. The front-end process for extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180g, which is less than the ITER single-failure release limit of 200g. Further design optimization and isolation of components is expected to reduce the inventory further

  18. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  19. U10.0 Undulator conceptual design report

    International Nuclear Information System (INIS)

    Hoyer, E.

    1994-06-01

    The U10.0 Undulator described here is a 43 period, 10 cm period, 4.5 meter long insertion device. Designed for the Advanced Light Source (ALS) storage ring at the Lawrence Berkeley Laboratory. This insertion device will provide high brightness, quasi-monochromatic radiation in the 5-950 eV energy range. This conceptual design report includes sections on: parameter development, spectral performance, and accelerator requirements, physics specifications and the detailed conceptual design of the magnetic structure, the support/drive systems, the insertion device control system, the vacuum system, and installation for the U10.0 Undulator

  20. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  1. Conceptual design of a Mars transportation system

    Science.gov (United States)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  2. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  3. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  4. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  5. Potential of conceptual design methodology for food process innovation

    NARCIS (Netherlands)

    Hadiyanto, M.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.; Esveld, D.C.

    2008-01-01

    The available time span for food product and process innovation is steadily decreasing, and to increase the efficacy of the development cycles, systematic design procedures can be used to develop new and to redesign existing processes. The Conceptual Process Design (CPD) methodologies used in

  6. Exploratory shaft conceptual design report: Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Gulf Interior Region of the United States (Louisiana and Mississippi). Conceptualized designs for other possible locations (Paradox Basin in Utah and Permian Basin in Texas) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in-situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homoqeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptural design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  7. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  8. Creativity Methods in Interaction Design

    DEFF Research Database (Denmark)

    Biskjaer, Michael Mose; Dalsgaard, Peter; Halskov, Kim

    2010-01-01

    The field of interaction design encompasses a variety of methods for fostering innovation and creativity. In this paper, we present a selection of such methods that scaffold ideation and concept development in the early phases of design. As a conceptual frame for discussing these methods, we...... introduce four aspects that are particularly salient in the field of interaction design: tradition and transcendence, convergence and divergence, degree of structure, and sources of inspiration. We then outline how the methods relate to each of these aspects. The paper contributes to design practitioners...... by providing an overview of the methods and insights into when and how they may be employed to foster creativity and innovation in the design process; with regards to design research, the main contribution of the paper lies in the establishment and discussion of the four aspects as a frame for analyzing...

  9. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  10. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  11. Conceptual design studies for a CEPC detector

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V.; Demarteau, M.

    2016-11-30

    The physics potential of the Circular Electron Positron Collider (CEPC) can be significantly strengthened by two detectors with complementary designs. A promising detector approach based on the Silicon Detector (SiD) designed for the International Linear Collider (ILC) is presented. Several simplifications of this detector for the lower energies expected at the CEPC are proposed. A number of cost optimizations of this detector are illustrated using full detector simulations. We show that the proposed changes will enable one to reach the physics goals at the CEPC.

  12. Conceptual Design Studies for a CEPC Detector

    Science.gov (United States)

    Chekanov, S. V.; Demarteau, M.

    The physics potential of the Circular Electron Positron Collider (CEPC) can be significantly strengthened by two detectors with complementary designs. A promising detector approach based on the Silicon Detector (SiD) designed for the International Linear Collider (ILC) is presented. Several simplifications of this detector for the lower energies expected at the CEPC are proposed. A number of cost optimizations of this detector are illustrated using full detector simulations. We show that the proposed changes will enable one to reach the physics goals at the CEPC.

  13. Designing the pension system : Conceptual framework

    NARCIS (Netherlands)

    Bovenberg, A.L.; van Ewijk, C.; Bovenberg, A.L.; van Ewijk, C.; Westerhout, E.

    2012-01-01

    This paper develops an analytical framework for the design of pension systems, taking the functions of the pension system as the guiding principle. It discusses the economic principles underlying these functions and their implementation in practice. In particular, it distinguishes three functions:

  14. Designing the pension system: conceptual framework

    NARCIS (Netherlands)

    Bovenberg, L.; van Ewijk, C.

    2011-01-01

    This paper develops an analytical framework for the design of pension systems, taking the functions of the pension system as the guiding principle. It discusses the economic principles underlying these functions and their implementation in practice. In particular, it distinguishes three functions:

  15. MINIMARS conceptual design: Report I. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1985-12-01

    Engineering parameters and by features of MINIMARS are presented. Topics discussed are startup, halo physics, drift pumping, magnet design, shielding, injector systems, electrical systems, fueling systems, free electric laser, blankets, heat tansport, tritium systems, configuration, assembly and maintainence, and cost. 115 refs., 112 figs., 44 tabs. (WRF)

  16. Conceptual frames for changing production system design

    DEFF Research Database (Denmark)

    Jensen, Per Langå; Broberg, Ole

    2003-01-01

    In order to integrate ergonomic aspects into the design of products and production systems many tools and procedures are available. For the ergonomists, however, it is a question of recognizing the organizational context and the role to play for making integration possible. Based on an understand...

  17. The conceptual design and simulation of 30m RIT

    Science.gov (United States)

    Liu, Zhong; Yichun, Dai; Jin, Zhenyu; Jun, Xu; Lin, Jing

    2008-07-01

    As one of the preliminary research projects of Chinese ELT, 30m RIT--Ring Interferometric Telescope are being simulated and tentatively designed by Yunnan Astronomical Observatory, CAS. The simulations of 30m RIT are mainly included as follows: PSF transform and the image quality at limited photons mode, active control mode of the primary ring mirror, the phasing mode of 30m segmented ring mirror, the turbulent atmosphere and adaptive optics etc. This paper also introduces some tentative design results of 30m RIT, such as the optical design, the conceptual design of the enclosure. The astronomical experiments at seeing limited case and diffraction limited case are introduced in this paper too. A ring aperture mask was put on the entrance pupil of a one meter telescope, real astronomical objects were observed by this "ring telescope" and reconstructed by high resolution imaging techniques such as speckle masking, iterative shift and add methods. The diffraction imaging ability and the full u-v coverage property of a ring aperture were proved by these astronomical experiments.

  18. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  19. Conceptual design of a hybrid HCPB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V. E-mail: lorenzo.boccaccini@iket.fzk.de; Fischer, U.; Gordeev, S.; Malang, S

    2001-11-01

    Following previous studies on helium cooled pebble bed (HCPB) blanket concepts based on different structural materials, a hybrid HCPB blanket has been proposed to combine the high load capability of the steel concepts with the high thermal efficiency of the SiC{sub f}/SiC ones. A radial division of the blanket in two components allows us to design the first wall and the first breeder zone with steel as the structural material, while a second breeder zone uses SiC{sub f}/SiC with the possibility to increase the helium outlet temperature. At the same time an advantageous maintenance strategy based on the radial division of the blanket zone into components of different lifetimes can be adopted; this strategy promises a considerable waste reduction and lower fabrication cost. Neutronic and thermohydraulic calculations show that the proposed requirements can be met; on their basis a design of an outboard segment is presented.

  20. Conceptual design of a hybrid HCPB blanket

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Gordeev, S.; Malang, S.

    2001-01-01

    Following previous studies on helium cooled pebble bed (HCPB) blanket concepts based on different structural materials, a hybrid HCPB blanket has been proposed to combine the high load capability of the steel concepts with the high thermal efficiency of the SiC f /SiC ones. A radial division of the blanket in two components allows us to design the first wall and the first breeder zone with steel as the structural material, while a second breeder zone uses SiC f /SiC with the possibility to increase the helium outlet temperature. At the same time an advantageous maintenance strategy based on the radial division of the blanket zone into components of different lifetimes can be adopted; this strategy promises a considerable waste reduction and lower fabrication cost. Neutronic and thermohydraulic calculations show that the proposed requirements can be met; on their basis a design of an outboard segment is presented

  1. A conceptual design of circular Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2016-11-30

    Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF, emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.

  2. Conceptual design studies for surface infrastructure

    Science.gov (United States)

    Bufkin, Ann L.; Jones, William R., II

    1986-01-01

    The utimate design of a manned Mars base will be the result of considerable engineering analysis and many trade studies to optimize the configuration. Many options and scenarios are available and all need to be considered at this time. Initial base elements, two base configuration concepts, internal space architectural concerns, and two base set-up scenarios are discussed. There are many variables as well as many unknowns to be reckoned with before people set foot on the red planet.

  3. WRAP 2A advanced conceptual design report comments

    International Nuclear Information System (INIS)

    Lamberd, D.L.

    1994-01-01

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report

  4. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  5. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  6. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  7. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  8. Economic analysis of KNGR's conceptual design

    International Nuclear Information System (INIS)

    Roh, Myung-Sub; Chung, Kyung-Nam; Hong, Jang-Hee

    1997-01-01

    During the last two decades in Korea, with the rapid economic growth and industrialization, nuclear power has played an important role in electric power production. At present, Korea has 11 nuclear units in operation with total installed capacity of 9,916MWe and 7 units under construction with total capacity of 6,100MWe. An advanced reactor development program, called Korean Next Generation Reactor (KNGR), has been started for the coming 21st century. It aims to enhance safety features compared to existing plants and follow the target to maintain the economic competitiveness of nuclear energy with alternative energy sources. In order to meet these requirements, a number of technical and economical factors have been taken into the program. These factors include the economy of plant size, design simplification and optimization, and reduction of construction period. This paper addresses the preliminary economic analysis results for the KNGR design. It is indicated that KNGR has about 17% economic advantage compared to the current 1,000 MWe PWR. This paper also describes some of the experiences gained and important factors related to reducing the investment and operation costs. 5 refs., 2 figs., 5 tabs

  9. Hybrid design tools for conceptual design and design engineering processes: bridging the design gap: towards an intuitive design tool

    NARCIS (Netherlands)

    Wendrich, Robert E.

    2016-01-01

    Hybrid Design Tools; Representation; Computational Synthesis. Non-linear, non-explicit, non-standard thinking and ambiguity in design tools has a great impact on enhancement of creativity during ideation and conceptualization. Tacit-tangible representation based on a mere idiosyncratic and

  10. The Beijing ISOL initial conceptual design report

    Science.gov (United States)

    Cui, Baoqun; Gao, Yuan; Ge, Yucheng; Guo, Zhiyu; Li, Zhihong; Liu, Weiping; Peng, Shixiang; Peng, Zhaohua; Wang, Zhi; Yan, Sha; Ye, Yanlin; Zeng, Sheng; Zhang, Guohui; Zhu, Feng

    2013-12-01

    Peking University (PKU) and China Institute of Atomic Energy (CIAE) are jointly proposing to construct a large science facility, temporarily called “Beijing ISOL”. This facility aims at both basic science and application goals, and is based on the double driver system, namely reactor driving and intense deuteron-beam driving. On the basic science side, the radioactive ion beams produced from the isotope separation online (ISOL) device will be used to study the new physics and technologies at the limit of nuclear stability. On the other side regarding to the applications, the facility will be devoted to material research for the nuclear energy system by using typically the intense neutron and ion beams. In the whole process of design, construction and operation, an opening policy will be pursued, and the domestic and international cooperation will be emphasized. Through this project, a joint research and education mode will be established.

  11. Guided synthesis of accumulative solutions for the conceptual design of an efficient stove working with biomass

    International Nuclear Information System (INIS)

    Álvarez Cabrales, Alexis; Gaskins Espinosa, Benjamín Gabriel; Pérez Rodríguez, Roberto; Simeón Monet, Rolando Esteban

    2014-01-01

    The conceptual design is closely related to a product functional structure and the search of solution principles for its definition. This work exposes an accumulative method for the traceability of the functional structure that implements the guided conceptual synthesis of solutions in the preliminary analysis of this designing process stage. The method constitutes a contribution to Pahls and Beitzs classic design model. In it, the functional information system is manipulated, providing the designer with a help so that he can examine the different solutions that are obtained, giving him the possibility of selecting the most convenient one. The guided analysis of the accumulative solutions synthesis is illustrated by means of the conceptual design of an efficient stove working with biomass. (author)

  12. Conceptual design of JT-60SA cryostat

    International Nuclear Information System (INIS)

    Shibama, Y.K.; Sakurai, S.; Masaki, K.; Sukekawa, A.M.; Kaminaga, A.; Yoshida, K.; Matsukawa, M.

    2007-01-01

    JT-60U modification program to fully superconducting device has been proceeded, namely ''JT-60SA'', toward early realization of fusion energy based on tokamak concept. The design of JT-60SA cryostat is expected to achieve a vacuum thermal insulation for super conducting coils, a bio-shielding boundary and structural gravity support. The cryostat is required to cover JT-60SA tokamak device, which is 15 m of total height and 7 m of radius, but there is geometrical limit due to surrounding devices reutilized. Although the cryostat consists of vessel body and gravity support, and the structural material is low cobalt 304 stainless steel (Co: 2 , and the design of the leaf spring is considered to reduce thermal stress, and to withstand the mechanical loads of plasma disruption and seismic loads. The coolant is 80 K gas helium and both sides of panel are covered with multi-layers super insulation (SI) to reduce heat load (radiation) up to 1/100. Fraction of non-covered region is assumed to be 2% due to many port-joints and supports for the vacuum vessel. Total heat load for inner surface of cryostat (600 m 2 ) is 9kW and the heat load for the port-joints (-300 m 2 ) is assumed up to 9 kW. The operational pressure of the cryostat is required to keep less than 10 -2 Pa and about 100,000 m 2 of structural surfaces is considered for exhaust system specification. Another role of the cryostat is the radiation protection. Biological shielding up to 10 micro-Sv/h (for maintenance acceptance) is required of the cryostat surface after the 10 years operation. Thus the cryostat consists of boron (2 wt%) doped concrete of 220 mm thickness and structural SS304 of total 40 mm thickness. The concrete reduces the air activation (41Ar) in the torus hall by 90% rather than the normal one by the thermal neutron absorption of boron. (orig.)

  13. The Beijing ISOL initial conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Baoqun [Division of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Gao, Yuan; Ge, Yucheng; Guo, Zhiyu [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Li, Zhihong; Liu, Weiping [Division of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Peng, Shixiang [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Peng, Zhaohua [Division of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Wang, Zhi; Yan, Sha [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ye, Yanlin, E-mail: yeyl@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Zeng, Sheng [Division of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Guohui; Zhu, Feng [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2013-12-15

    Highlights: • Peking University and China Institute of Atomic Energy are proposing to construct a facility called “Beijing ISOL”. • Beijing ISOL is aimed at both basic science and application goals. • Beijing ISOL is the double driver system, namely reactor driving (RD) and intense deuteron-beam driving (IDD). • Multi-beam, multi-energy and multi-terminal will be used to meet the users’ requirements. -- Abstract: Peking University (PKU) and China Institute of Atomic Energy (CIAE) are jointly proposing to construct a large science facility, temporarily called “Beijing ISOL”. This facility aims at both basic science and application goals, and is based on the double driver system, namely reactor driving and intense deuteron-beam driving. On the basic science side, the radioactive ion beams produced from the isotope separation online (ISOL) device will be used to study the new physics and technologies at the limit of nuclear stability. On the other side regarding to the applications, the facility will be devoted to material research for the nuclear energy system by using typically the intense neutron and ion beams. In the whole process of design, construction and operation, an opening policy will be pursued, and the domestic and international cooperation will be emphasized. Through this project, a joint research and education mode will be established.

  14. SCALE--A Conceptual and Transactional Method of Legal Study.

    Science.gov (United States)

    Johnson, Darrell B.

    1985-01-01

    Southwestern University School of Law's two-year, intensive, year-round program, the Southwestern Conceptual Approach to Legal Education, which emphasizes hypothetical problems as teaching tools rather than the case-book method, is described. (MSE)

  15. Recent developments in the design of conceptual fusion reactors

    International Nuclear Information System (INIS)

    Ribe, F.L.

    1977-01-01

    Since the first round of conceptual fusion reactor designs in 1973 - 1974, there has been considerable progress in design improvement. Two recent tokamak designs of the Wisconsin and Culham groups, with increased plasma beta and wall loading (power density), lead to more compact reactors with easier maintenance. The Reference Theta-Pinch Reactor has undergone considerable upgrading in the design of the first wall insulator and blanket. In addition, a conceptual homopolar energy storage and transfer system has been designed. In the case of the mirror reactor, there are design changes toward improved modular construction and ease of handling, as well as improved direct converters. Conceptual designs of toroidal-multiple-mirror, liner-compression, and reverse-field pinch reactors are also discussed. A design is presented of a toroidal multiple-mirror reactor that combines the advantages of steady-state operation and high-aspect ratio. The liner-compression reactor eliminates a major problem of radiation damage by using a liquid-metal first wall that also serves as a neutron-thermalizing blanket. The reverse-field pinch reactor operates at higher beta, larger current density and larger aspect ratio than a tokamak reactor. These properties allow the possibility of ignition by ohmic heating alone and greater ease of maintenance

  16. Conceptual design of the ECH upper launcher system for ITER

    NARCIS (Netherlands)

    Heidinger, R.; Bertizzolo, R.; Bruschi, A.; Chavan, R.; Cirant, S.; Collazos, A.; de M. Baar,; Elzendoorn, B.; Farina, D.; Fischer, U.; Gafert, J.; Gandini, F.; Gantenbein, G.; Goede, A.; Goodman, T.; Hailfinger, G.; Henderson, M.; Kasparek, W.; Kleefeldt, K.; Landis, J. D.; Meier, A.; Moro, A.; Platania, P.; Poli, E.; Ramponi, G.; Saibene, G.; Sanchez, F.; Sauter, O.; Scherer, T.; Serikov, A.; Shidara, H.; Sozzi, C.; Spaeh, P.; Strauss, D.; Udintsev, V.S.; Vaccaro, A.; Zohm, H.; Zucca, C.

    2009-01-01

    The challenge of developing the conceptual design of the ECH Upper Launcher system for MHD control in the ITER plasmas has been tackled by team of European Associations together with the European Domestic Agency ("F4E"). The launcher system has to meet the following requirements: (a) a

  17. Extended Dry Storage Signature Bench Scale Detector Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    This report is the conceptual design of a detector based on research within the Extended Dry Storage Signature Development project under the DOE-­NE MPACT campaign. This is the second year of the project; from this year’s positive results, the next step is building a prototype and testing with real materials .

  18. Small pipe characterization system (SPCS) conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D&D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S&M). Because of the extent of contamination, all inactive facilities require some type of S&M. These S&M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D&D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D&D activities.

  19. Small pipe characterization system (SPCS) conceptual design

    International Nuclear Information System (INIS)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D ampersand D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S ampersand M). Because of the extent of contamination, all inactive facilities require some type of S ampersand M. These S ampersand M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D ampersand D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D ampersand D activities

  20. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  1. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  2. Evalution of BIM and Ecotect for Conceptual Architectural Design Analysis

    DEFF Research Database (Denmark)

    Thuesen, Niels; Kirkegaard, Poul Henning; Jensen, Rasmus Lund

    2010-01-01

    The main goal of the present paper is to investigate how BIM tools and Ecotect can be integrated as active part of an integrated design process for conceptual architectural design. The integrated design has an interaction between the skills of the architect and the engineer thought-out the process...... and thereby avoiding problems solving after the design has been finalised. The process has been analysed from an architect's point of view dealing with design at fictive sites in Copenhagen. The results of the research indicate that BIM tools combined with Ecotect can deliver useable qualitative input...

  3. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  4. GridAPPS-D Conceptual Design v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Ronald B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McDermott, Thomas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vadari, Subramanian V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-31

    The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

  5. Conceptual design of the Relativistic Heavy Ion Collider [RHIC

    International Nuclear Information System (INIS)

    1989-05-01

    In August 1984 Brookhaven National Laboratory submitted a proposal for the construction of a Relativistic Heavy Ion Collider (RHIC) to the US Department of Energy. A Conceptual Design Report for the RHIC facility was completed in May 1986 after detailed reviews of the machine design, and of the requirements of the physics research program. Since that time an extensive R ampersand D program has been initiated and considerable work has been carried out to refine the design and specification of the major accelerator components, as well as the needs for research detectors, and to prepare the project for construction. This document is an update of the Conceptual Design Report, incorporating the results of work carried out since the beginning of Fiscal Year 1987 when a formal R ampersand D program for the RHIC project funded by DOE was initiated

  6. Scenario for concurrent conceptual assembly line design: A case study

    Science.gov (United States)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  7. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  8. Ocean thermal energy conversion (OTEC) power system development. Conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-30

    The conceptual design of a power system for application to the OTEC 100-MWe Demonstration Plant is presented. System modeling, design, and performance are described in detail. Materials considerations, module assembly, and cost considerations are discussed. Appendices include: A) systems analysis, B) general arrangements, C) system equipment, D) ammonia system material considerations; E) ammonia cycle, F) auxiliary subsystems, G) DACS availability analysis, H) heat exchanger supporting data, I) rotating machinery, and J) platform influences. (WHK)

  9. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  10. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  11. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  12. Retrievable surface storage facility conceptual system design description

    International Nuclear Information System (INIS)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts

  13. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  14. Conceptual Design of a Mobile Application for Geography Fieldwork Learning

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2017-11-01

    Full Text Available The use of mobile applications on smartphones has a vast potential to support learning in the field. However, all learning technologies should be properly designed. To this end, we adopt User-Centered Design (UCD to design a mobile application, called GeoFARA (Geography Fieldwork Augmented Reality Application, for university geography fieldwork. This paper is about the conceptual design of GeoFARA based on its use and user requirements. The paper first establishes a review of selected existing mobile AR applications for outdoor use, in order to identify the innovative aspects and the improvements of GeoFARA. Thereafter, we present the results of use and user requirements derived from (1 an online survey of the current use of tools in undergraduate geography fieldwork, (2 a field experiment in which the use of paper maps and a mobile mapping tool were compared, (3 investigations during a human geography fieldwork, (4 post-fieldwork surveys among undergraduates from two universities, (5 our use case, and (6 a use scenario. Based on these requirements, a conceptual design of GeoFARA is provided in terms of technical specifications, main contents, functionalities, as well as user interactions and interfaces. This conceptual design will guide the future prototype development of GeoFARA.

  15. Global shutdown dose rate maps for a DEMO conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  16. Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen

    2016-01-01

    Within conceptual design changes occur rapidly due to a combination of uncertainty and shifting requirements. To stay relevant in this fluid time, trade studies must also be performed rapidly. In order to drive down analysis time while improving the information gained by these studies, surrogate models can be created to represent the complex output of a tool or tools within a specified tradespace. In order to create this model however, a large amount of data must be collected in a short amount of time. By this method, the historical approach of relying on subject matter experts to generate the data required is schedule infeasible. However, by implementing automation and distributed analysis the required data can be generated in a fraction of the time. Previous work focused on setting up a tool called multiPOST capable of orchestrating many simultaneous runs of an analysis tool assessing these automated analyses utilizing heuristics gleaned from the best practices of current subject matter experts. In this update to the previous work, elements of graph theory are included to further drive down analysis time by leveraging data previously gathered. It is shown to outperform the previous method in both time required, and the quantity and quality of data produced.

  17. Rapid Prediction of Configuration Aerodynamics in the ConceptualDesign Phase

    Directory of Open Access Journals (Sweden)

    C. Munro

    2001-01-01

    Full Text Available Conceptual aircraft design is characterised by the requirement to analyse a large number of configurations rapidly and cost effectively. For unusual configurations such as those typified by unmanned combat air vehicles (UCAVs adequately predicting their aerodynamic characteristics through existing empirical methods is fraught with uncertainty. By utilising rapid and low cost experimental tools such as the water tunnel and subscale flight testing it is proposed that the required aerodynamic characteristics can rapidly be acquired with sufficient fidelity for the conceptual design phase. Furthermore, the initial design predictions can to some extent be validated using flight-derived aerodynamic data from subscale flight testing.

  18. Checking the numbers for the labyrinths shown in the SSC [Superconducting Super Collider] conceptual design

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    Reviewed are the designs for access labyrinths presently shown in the Conceptual Design Report to see if they are reasonable for radiation protection purposes. This matter was previously studied two years ago in a Fermilab TM (Co85a). The methods used are based upon scaling the results of calculations done by Gollon and Awschalom. Confidence in the results has been fortified by a successful experimental test. The Conceptual Design Report shows two types of access labyrinths which are significantly different. The first type is that at a Sector Service Area, while the second is that provided for personnel entry to the Interaction Regions

  19. Conceptual design of the Brazilian near surface repository

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Freire, Carolina Braccini

    2013-01-01

    CNEN is presently in the planning phase of the implementation of a repository for low and intermediate level wastes. One of the present activities of this project is to define a concept for the disposal of radioactive wastes to be received. The conceptual design of the repository takes into account the quantities and characteristics of the waste, the disposal arrangement, the waste acceptance criteria, the site characteristics, the period of the facility operation and institutional control, the engineering barriers to be used, as well as the facility's operational aspects. The facility will be a near-surface repository, an internationally accepted concept and adopted for example in France (L'Aube repository) and Spain (El Cabril). An acceptable site for such a repository must have characteristics that minimize the risk of human exposure to the radiation and environmental contamination. For this, the chosen site must meet specific technical and socioeconomic requirements, such as favorable physiographic, meteorological, geotechnical and tectonic characteristics, low demographic density, absence of agricultural activities and mineral deposits and proximity to the paved road grid. In this work the technical and socioeconomic requirements necessary and sufficient for site selection are presented. Also discussed is the method for the establishment of the main features that the different facility's buildings must have. Since a specific site has not yet been selected, a simulated area with straight and parallel sides, no gradient, served by access road and having a surface sufficient to hold the disposal structures and support facilities, as well as the legal exclusion zones. The buildings were designed and positioned in order to meet the needs in terms of flow of waste, personnel, supplies and materials necessary to perform the activities within the enterprise. The methodology for compilation of information related to buildings is presented. This information will be

  20. Conceptual design of laser fusion reactor KOYO-fast

    International Nuclear Information System (INIS)

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.

    2006-01-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200 K is the primary candidate for the compression laser and an OPCPA (optical parametric chirped pulse amplification) system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone. (authors)

  1. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  2. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  3. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  4. Conceptual design of the alcohol waste treatment equipment

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Nitta, Kazuhiko; Morita, Yasuhiro; Nakada, Eiju

    2001-01-01

    This report describes the result of Conceptual Design of the Alcohol Waste Treatment Equipment. The experimental fast Reactor, JOYO, saves the radioactive alcohol waste at storage tank. As this alcohol waste is not able to treat with existing equipment, it is stored about 5 m 3 . And the amount of this is increasing every year. So it is necessary to treat the alcohol waste by chemical resolution for example. On account of this, the investigative test about filtration and dialyzer, and conceptual design about catalyst oxidation process, which is composed from head end process to resolution, are done. The results of investigation show as follows. 1. Investigative Test about filtration and dialyzer. (1) The electric conduction is suitable for the judgement of alkyl sodium hydrolysis Alkyl sodium hydrolysis is completed below 39% alcohol concentration. (2) The microfiltration is likely to separate the solid in alcohol waste. (3) From laboratory test, the electrodialyzer is effective for sodium separation in alcohol waste. And sodium remove rate, 96-99%, is confirmed. 2. Conceptual Design. The candidate process is as follows. (1) The head end process is electrodialyzer, and chemical resolution process is catalyst oxidation. (2) The head end process is not installed, and chemical resolution process is catalyst oxidation. (3) The head end process is electrodialyzer, and alcohol extracted by pervaporation. In this Conceptual Design, as far these process, the components, treatment ability, properties of waste, chemical mass balance, safety for fire and explosion, and the plot plan are investigated. As a result, remodeling the existing facility into catalyst oxidation process is effective to treat the alcohol waste, and treatment ability is about 1.25 l/h. (author)

  5. A Simulation Tool for the Conceptual Design of Thermonuclear Pulsors

    International Nuclear Information System (INIS)

    Ramos, R.; Gonzalez, J.; Clausse, A.

    2003-01-01

    We worked with an effective model that calculates the neutron production of Plasma Focus devices.From experimental data we obtained different fitting functions for the model lumped parameters.By this way, we obtained a simple tool for neutron yield calculation.This tool is very useful at a conceptual design stage, because it can predict easily if a given PF device would be suitable for a certain application

  6. Conceptual design report of a refuse-fired steam plant

    Energy Technology Data Exchange (ETDEWEB)

    Bedinger, L. B.

    1982-08-01

    This is a conceptual design report for the installation of a refuse-fired boiler to produce steam. The refuse, mostly paper waste, would come from two adjacent facilities, Sandia National Laboratories, Livermore and Lawrence Livermore National Laboratory. The new steam plant, to be located at SNLL, would produce close to 100% of the steam requirements at SNLL. Unfortunately it does not have an attractive payback.

  7. Design games : A conceptual framework for dynamic evolutionary design

    NARCIS (Netherlands)

    Sönmez, N.O.; Erdem, A.

    2014-01-01

    Most evolutionary computation (EC) applications in design fields either assume simplified, static, performance-oriented procedures for design or focus on well-defined sub-problems, to be able to impose problem-solving and optimization schemes on design tasks, which render known EC techniques

  8. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2013-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2 (BR2). Revision 0 of this report was prepared at the end of government fiscal year 2012 when most of the resources for furthering DDE design work were expected to be postponed. Hence, the conceptual design efforts were summarized to provide the status of key objectives, notable results, and provisions for future design work. Revision 1 of this report was prepared at the end of fiscal year 2013 in order to include results from a neutronic study performed by BR2, to incorporate further details that had been achieved in the engineering sketches of the irradiation devices, and to provide an update of the DDE-MURR campaign in relation to program objectives and opportunities for its eventual irradiation. These updates were purposed to bring the DDE-MURR conceptual design to level of maturity similar to that of the other two DDE efforts (DDE-MITR and DDE-NBSR). This report demonstrates that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also puts forth several recommendations in order to facilitate success of the irradiation campaign.

  9. Configuration management of the EU DEMO conceptual design data

    International Nuclear Information System (INIS)

    Meszaros, Botond; Shannon, Mark; Marzullo, Domenico; Woodley, Colin; Rowe, Steve; Di Gironimo, Giuseppe

    2016-01-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  10. Aircraft Performance Analysis in Conceptual Design Phase based on System-of-Systems Simulations

    Directory of Open Access Journals (Sweden)

    Tian Yifeng

    2016-01-01

    Full Text Available To obtain a competitive design in aircraft conceptual design phase, this paper propose an aircraft performance analysis method based on system-of-systems (SoS simulations. The analysis process includes design space exploration and mission effectiveness analysis and the stochastic nature in SoS mission is captured based on a Monte Carlo method. Meanwhile as an example, the performance of UAVs which are applied in earthquake search and rescue SoS is analysed based on SoS simulations. The results show that the level of aircraft performance which leads to an optimum SoS effectiveness could be designed below the maximum performance. And it is necessary to apply SoS simulations into aircraft conceptual design phase to help designers optimize aircraft performance.

  11. High performance APCS conceptual design and evaluation scoping study

    International Nuclear Information System (INIS)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO x control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities

  12. High performance APCS conceptual design and evaluation scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  13. DDE-NBSR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; B.P. Durtschi; C.R. Glass; G.A. Roth; D.T. Clark

    2012-09-01

    The Design Demonstration Experiment for the National Bureau of Standard Reactor (DDE-NBSR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the NBSR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-NBSR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the NBSR.

  14. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2012-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MURR.

  15. DDE-MITR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; J.D. Wiest; J.W. Nielsen; G.A. Roth; S.D. Snow

    2012-09-01

    The Design Demonstration Experiment for the Massachusetts Institute of Technology Reactor (DDE-MITR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MITR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MITR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MITR.

  16. A conceptual design methodology for low speed high altitude long endurance unmanned aerial vehicles

    OpenAIRE

    Altman, Aaron

    2000-01-01

    A conceptual design methodology was produced and subsequently coded into a Visual C++ (GUI) environment to facilitate the rapid comparison of several possible configurations to satisfy High Altitude Long Endurance (FIALE) unmanned aircraft (UAV) missions in the Low Speed (propeller driven aircraft) regime. Several comparative studies were performed to verify the applicability of traditional design methods. The traditional computational design methodologies fail in several areas...

  17. KJRR-FAI Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; B.P. Nielson; D.B. Chapman; J.W. Nielsen; P.E. Murray; D.S. Crawford; S.D. Snow

    2013-12-01

    The Korea Atomic Energy Research Institute has initiated the Ki-Jang Research Reactor (KJRR) project to construct a new dedicated radio-isotope production facility in the KiJang province of South Korea. The KJRR will employ a uranium-molybdenum dispersion plate-type fuel clad in aluminum. The KJRR fuel assembly design will undergo irradiation in the Advanced Test Reactor (ATR) as part of the regulatory qualification of the fuel. The Idaho National Laboratory performed a multi-disciplined conceptual design effort and found that one full-size KJRR fuel assembly can be irradiated in the ATR’s north east flux trap. The analyses accomplished during the conceptual design phase are sufficient to prove viability of the overall design and irradiation campaign. Requirements for fission power can be met. The desired burnup can be achieved well within 15% depending on reactor operating availability. Mechanical design and structural analysis show that structural integrity of the irradiation test is maintained. It is recommended that future detailed design efforts be based on the concept described in this report.

  18. Conceptual design of a large Spectral Shift Controlled Reactor

    International Nuclear Information System (INIS)

    Matzie, R.A.; Menzel, G.P.

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). This report describes the results of the development program and assesses the performance of the conceptual SSCR on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80/sup TM/ reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed

  19. Conceptual design of helium gas turbine for MHTGR-GT

    International Nuclear Information System (INIS)

    Matsuo, E.; Tsutsumi, M.; Ogata, K.; Nomura, S.

    1996-01-01

    Conceptual designs of the direct-cycle helium gas turbine for a practical unit (450 MWt) and an experimental unit (1200kWt) of MHTGR were conducted and the results as shown below were obtained. The power conversion vessel for this practical unit can further be downsized to an outside diameter of 7.4m and a height of 22m as compared with the conventional design examples. Comparison of the conceptual designs of helium gas turbines using single-shaft type employing the axial-flow compressor and twin-shaft type employing the centrifugal compressor shows that the former provides advantages in terms of structure and control designs whereas the latter offers a higher efficiency. In order to determine which of them should be selected, a further study to investigate various aspects of safety features and startup characteristics will be needed. Either of the two types can provide a cycle efficiency of 46 to 48%. The third mode natural frequencies of the twin-shart type's low-pressure rotational shaft and the single shaft type are below the designed rotational speed, but their vibrational controls are made available using the magnetic bearing system. Elevation of the natural frequency for the twin-shaft type would be possible by altering the arrangements of its shafting configuration. As compared with the earlier conceptual designs, the overall systems configuration can be made simpler and more compact; five stages of turbines for the single-shaft type and seven stages of turbines for the twin-shaft type employing one shaft for the low-pressure compressor and the power turbine and; 26 stages of compressors for the axial-flow type with the single shaft system and five stages of compressors for the centrifugal type with the twin-shaft system. 9 refs, 12 figs, 4 tabs

  20. The case method of instruction, conceptual change, and student attitude

    Science.gov (United States)

    Gallucci, Kathleen K.

    The purpose of this study was to investigate the effect of the case method of instruction (CMI) on conceptual change in students' understanding of genes, biodiversity, and evolution topics, and to investigate the effect of learning with CMI on student attitude regarding the discipline of science, and learning about science. The study also investigated students' perceptions of their learning gains based on CMI. This was a mixed-methods action research study that used a quasi-experimental design. The study participants were enrolled in three sections (n1 = 20, n2 = 16, n3 = 30) of the same introductory biology course during the spring of 2006 at a small, private university in the southeastern United States. At the beginning of the semester, students completed a pretest composed of six open-ended questions (two on each topic) to uncover their alternative conceptions---or lack of them, and after instruction using CMI, students answered the same questions as a post-test on two hourly class exams. The answers were scored with original rubrics and the differences between the scores were analyzed using the Student's paired t-Test. In addition, twelve student volunteers were interviewed twice, once after each exam, by an independent interviewer, to elicit their understanding about the method of CMI, their understanding of the topics from the recent exam, and their attitudes about science and learning about science. The interviews were audio taped and transcribed, and analyzed for themes and comments about conceptual understanding and learning about science. Students also completed two instruments anonymously: the Science Attitude Inventory (SAI II) and the Student Assessment of Learning Gains (SALG). The SAI II was completed on the first and the last day of the semester to assess change in student attitude about science and the pretest and posttest scores were analyzed for significant differences. Students completed the SALG online immediately before the course final exam

  1. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  2. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  3. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  4. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  5. Conceptual design for the next JAEA's enterprise resource planning system

    International Nuclear Information System (INIS)

    Kimura, Hideo; Aoyagi, Tetsuo; Sakai, Manabu; Sato, Taiichi; Tsuji, Minoru

    2008-11-01

    JAEA developed the ERP (Enterprise Resource Planning) system at the establishment in 2005, aiming to support and enhance its business-critical task such as financial accounting and contract management. We considered the conceptual design of the next ERP system, and we implemented the prototype system to validate its effectiveness. Moreover, we implemented the simple add-on tool for rapid and easy development. At the result, we gauged the future prospects that the XML-centric system which we designed will offer high modularity, flexibility, connectivity between other systems, independence among subsystems. The simple add-on tool also demonstrated its effectiveness. (author)

  6. Development and analysis of vent-filtered containment conceptual designs

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Walling, H.C.

    1980-01-01

    Conceptual filtered-vented containment systems have been postulated for a reference large, dry, pressurized water reactor containment, and the systems have been analyzed to determine design parameters, actuation/operation requirements, and overall feasibility. The primary design challenge has been found to emanate from pressure spikes caused by core debris bed interactions with water and by hydrogen deflagrations. Circumvention of the pressure spikes may require a more complicated actuation logic than has previously been considered. Otherwise, major reductions in consequences for certain severe accidents appear to be possible with relatively simple systems. A probabilistic assessment of competing risks remains to be performed

  7. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... optimization with elasto-plastic material modeling. Concrete and steel are both considered as elasto-plastic materials, including the appropriate yield criteria and post-yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response...

  8. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Dudziak, D.J.; Krakowski, R.A.

    1981-08-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  9. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  10. Conceptual Design of the ITER ECE Diagnostic - An Update

    Science.gov (United States)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  11. Conceptual Design of the ITER ECE Diagnostic – An Update

    Directory of Open Access Journals (Sweden)

    Ouroua A.

    2012-09-01

    Full Text Available The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  12. Design of a new research reactor : 1st year conceptual design

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.

    2004-01-01

    A new research reactor model satisfying the strengthened regulatory environments and the changed circumstances around nuclear society should be prepared for the domestic and international demand of research reactor. This can also lead to the improvement of technologies and fostering manpower obtained during the construction and the operation of HANARO. In this aspect, this study has been launched and the 1st year conceptual design has been carried out in 2003. The major tasks performed at the first year of conceptual design stage are as follows; Establishments of general design requirements of research reactors and experimental facilities, Establishment of fuel and reactor core concepts, Preliminary analysis of reactor physics and thermal-hydraulics for conceptual core, Conceptual design of reactor structure and major systems, International cooperation to establish foundations for exporting

  13. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests.

  14. Conceptual design study for a laser fusion hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.

    1976-01-01

    Lawrence Livermore Laboratory and Bechtel Corporation have been involved in a joint effort to conceptually design a laser fusion hybrid reactor. The design which has evolved is a depleted-uranium fueled fast-fission blanket which produces fissile plutonium and electricity. A major objective of the design study was to evaluate the feasibility of producing fissile fuel with laser fusion. This feasibility evaluation was carried out by analyzing the integrated engineering performance of the complete conceptual design and by identifying the required laser/pellet performance. The performance of the laser fusion hybrid has also been compared to a typical fast breeder reactor. The results show that the laser fusion hybrid produces enough fissile material to fuel more than six light water reactors (LWRs) of equivalent thermal power while operating in a regime which requires an order of magnitude less laser and pellet performance than pure laser fusion. In comparison to a fast breeder reactor the hybrid produces 10 times more fissile fuel. An economic analysis of the design shows that the cost of electricity in a combined hybrid-LWR scenario increases by only 20 to 40 percent when the capital cost of the hybrid ranges from 2 to 3 times more than an LWR

  15. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  16. A Conceptual Grey Analysis Method for Construction Projects

    Directory of Open Access Journals (Sweden)

    Maria Mikela Chatzimichailidou

    2015-05-01

    Full Text Available Concerning engineers, project management is a crucial field of research and development. Projects of high uncertainty and scale are characterized by risk, primarily related to their completion time. Thus, safe duration estimations, throughout the planning of a project, are a key objective for project managers. However, traditional linear approaches fail to include and sufficiently serve the dynamic nature of activities duration. On this ground, attention should be paid to designing and implementing methodologies that approximate the duration of the activities during the phase of planning and scheduling too. The grey analysis mathematical modeling seems to gain grounds, since it gradually becomes a well-adapted and up-to-date technique for numerous scientific sectors. This paper examines the contribution of the logic behind the aforementioned analysis, aiming to predict possible future divergences of task durations in big construction projects. Based on time observations of critical instances, a conceptual method is developed for making duration estimations and communicating deviations from the original schedule, in a way that approximations will fit reality better. The whole procedure endeavors to investigate the decrease of uncertainty, regarding project completion time and reduce, up to a scale, a possible inaccurate estimation of a project manager. The utmost effort is about exploiting the gained experience and eliminating the “hedgehog syndrome”. This is attainable by designing a reliable, easily updated, and readable information system. An enlightening example is to be found in the last section.

  17. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  18. Conceptual design of CFETR divertor remote handling compatible structure

    International Nuclear Information System (INIS)

    Dai, Huaichu; Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei

    2016-01-01

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  19. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  20. Conceptual design of superferric magnets for PS2

    CERN Document Server

    Bottura, L; Maglioni, C; Parma, V; de Rijk, G; Rossi, L; Scandale, Walter; Serio, L; Tommasini, D

    2007-01-01

    We analyze feasibility and cost of a superferric magnet design for the PS2. Specifically, we provide the conceptual design of dipole and quadrupoles, including considerations on cryogenics and powering. The magnets have warm iron yoke, and cryostated superconducting coils embedded in the magnet, which reduces AC loss at cryogenic temperature. The superconductor has large Operating margin to endure beam loss and operating loads over a long period of time. Although conservative, and without any critical dependence on novel technology developments, this superconducting option appears to be attractive as a low-power alternative to the normal-conducting magnets that are the present baseline for the PS2 design. In addition it provides flexibility in the selection of flat-top duration at no additional cost. This study is the conclusion of the conceptual design work started within the scope of the CARE HHH-AMT activities, following inputs from the workshops ECOMAG and LUMI-06, and finally spurred by the recent discus...

  1. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Miki, Nobuharu; Iida, Fumio; Suzuki, Shohei; Wachi, Yoshihiro; Toyoda, Katsuyoshi; Hashizume, Takashi; Konno, Masayuki.

    1987-09-01

    This report summarizes the FER magnet design which was conducted last year (1986). Main objective of the new FER design is to have better cost performance of the machine. The physics assumptions are reviewed to reduce risks. Optimization of the physics design and improvements of the engineering design have been done without changing missions of the device. After a preliminary investigation for the optimization and improvements, six FER concepts have been developed to establish the improved design point, and have been studied in more detail. In the magnet design, the improvements of superconducting magnet design were mainly investigated to reduce the reactor size. A normal conductor was studied as an alternative option for appling to the special poloidal field coils that were located on the interior to the toroidal field coils. Some improvements were made on the superconducting magnet design. Based on the preliminary investigation, the magnet design specifications have been modified somewhat. The conceptual design of the magnet system components have been done for the candidate FER concepts. (author)

  2. MEDIATING COGNITIVE TRANSFORMATION WITH VR 3D SKETCHING DURING CONCEPTUAL ARCHITECTURAL DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Farzad Pour Rahimian

    2011-03-01

    Full Text Available Communications for information synchronization during the conceptual design phase require designers to employ more intuitive digital design tools. This paper presents findings of a feasibility study for using VR 3D sketching interface in order to replace current non-intuitive CAD tools. We used a sequential mixed method research methodology including a qualitative case study and a cognitive-based quantitative protocol analysis experiment. Foremost, the case study research was conducted in order to understand how novice designers make intuitive decisions. The case study documented the failure of conventional sketching methods in articulating complicated design ideas and shortcomings of current CAD tools in intuitive ideation. The case study’s findings then became the theoretical foundations for testing the feasibility of using VR 3D sketching interface during design. The latter phase of study evaluated the designers’ spatial cognition and collaboration at six different levels: "physical-actions", "perceptualactions", "functional-actions", "conceptual-actions", "cognitive synchronizations", and "gestures". The results and confirmed hypotheses showed that the utilized tangible 3D sketching interface improved novice designers’ cognitive and collaborative design activities. In summary this paper presents the influences of current external representation tools on designers’ cognition and collaboration as well as providing the necessary theoretical foundations for implementing VR 3D sketching interface. It contributes towards transforming conceptual architectural design phase from analogue to digital by proposing a new VR design interface. The paper proposes this transformation to fill in the existing gap between analogue conceptual architectural design process and remaining digital engineering parts of building design process hence expediting digital design process.

  3. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    International Nuclear Information System (INIS)

    Jang, Yu Jin

    2013-01-01

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  4. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  5. Conceptual design study of the K-DEMO magnet system

    International Nuclear Information System (INIS)

    Kim, Keeman; Oh, Sangjun; Park, Jong Sung; Lee, Chulhee; Im, Kihak; Kim, Hyung Chan; Lee, Gyung-Su; Neilson, George; Brown, Thomas; Kessel, Charles; Titus, Peter; Zhai, Yuhu

    2015-01-01

    Highlights: • Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. • Present a preliminary design of TF (toroidal field) magnet. • Present a preliminary design of CS (central solenoid) magnet. • Present a preliminary design of PF (toroidal field) magnet. - Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy. A major design philosophy for the initiated conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) is engineering feasibility. A two-staged development plan is envisaged. K-DEMO is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used, in its initial stage, as a component test facility. Then, in its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electricity generation on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively. In order to minimize wave deflection, a top-launch high frequency (>200 GHz) electron cyclotron current drive (ECCD) system will be the key system for the current profile control. For matching the high frequency ECCD, a high toroidal field (TF) is required and can be achieved by using high current density Nb 3 Sn superconducting conductor. The peak magnetic field reaches to 16 T with the magnetic field at the plasma center above 7 T. Key features of the K-DEMO magnet system include the use of two TF coil winding packs, each of a different conductor design, to reduce the construction cost and save the space for the magnet structure material.

  6. Conceptual designs for modular OTEC SKSS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-29

    This volume presents the results of the first phase of the Station Keeping Subsystem (SKSS) design study for 40 MW/sub e/ capacity Modular Experiment OTEC Platforms. The objectives of the study were: (1) establishment of basic design requirements; (2) verification of technical feasibility of SKSS designs; (3) identification of merits and demerits; (4) estimates of sizes for major components; (5) estimates of life cycle costs; (6) deployment scenarios and time/cost/risk assessments; (7) maintenance/repair and replacement scenarios; (8) identifications of interface with other OTEC subsystems; (9) recommendations for and major problems in preliminary design; and (10) applicability of concepts to commercial plant SKSS designs. A brief site suitability study was performed with the objective of determining the best possible location at the Punta Tuna (Puerto Rico) site from the standpoint of anchoring. This involved studying the vicinity of the initial location in relation to the prevailing bottom slopes and distances from shore. All subsequent studies were performed for the final selected site. The two baseline OTEC platforms were the APL BARGE and the G and C SPAR. The results of the study are presented in detail. The overall objective of developing two conceptual designs for each of the two baseline OTEC platforms has been accomplished. Specifically: (1) a methodology was developed for conceptual designs and followed to the extent possible. At this stage, a full reliability/performance/optimization analysis based on a probabilistic approach was not used due to the numerous SKSS candidates to be evaluated. A deterministic approach was used. (2) For both of the two baseline platforms, the APL BARGE and the G and C SPAR, all possible SKSS candidate concepts were considered and matrices of SKSS concepts were developed.

  7. NPP-Nuclear Island Design. From conceptual design to Project execution

    International Nuclear Information System (INIS)

    Lanchet, Dominique

    2014-01-01

    The second day opened with the lecture of Dominique Lanchet, Design Senior Vice President at AREVA Engineering and Project. Dominique Lanchet gave us an overview of the steps of a Nuclear Island Design creation from the conceptual design to the project execution, giving the examples of the EPR and ATMEA1 TM nuclear reactors

  8. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs

  9. Conceptual design Alcator C-MOD magnetic systems

    International Nuclear Information System (INIS)

    Schultz, J.H.; Becker, H.; Fertl, K.; Gwinn, D.; Montgomery, D.B.; Pierce, N.T.; Pillsbury, R.D. Jr.; Thome, R.J.

    1986-01-01

    The conceptual designs of the magnetic systems for Alcator C-MOD, a proposed tokamak at M.I.T., are described, including the toroidal magnet, the poloidal field coils and the cryogenic system. The toroidal magnet is constructed from rectangular plates, connected by sliding joints. Toroidal magnet forces are contained by a steel superstructure. Poloidal coil system options are largely or wholly inside the TF magnet, in order to control plasmas with high current, strong shaping, and expanded boundaries. All magnets are cryocooled by the natural circulation of boiling liquid nitrogen. 3 refs., 5 figs

  10. Application of uncertainty analysis in conceptual fusion reactor design

    International Nuclear Information System (INIS)

    Wu, T.; Maynard, C.W.

    1979-01-01

    The theories of sensitivity and uncertainty analysis are described and applied to a new conceptual tokamak fusion reactor design--NUWMAK. The responses investigated in this study include the tritium breeding ratio, first wall Ti dpa and gas productions, nuclear heating in the blanket, energy leakage to the magnet, and the dpa rate in the superconducting magnet aluminum stabilizer. The sensitivities and uncertainties of these responses are calculated. The cost/benefit feature of proposed integral measurements is also studied through the uncertainty reductions of these responses

  11. A disposal centre for irradiated nuclear fuel: conceptual design study

    International Nuclear Information System (INIS)

    1980-09-01

    This report describes a conceptual design of a disposal centre for irradiated nuclear fuel. The surface facilities consist of plants for the preparation of steel cylinders containing irradiated nuclear fuel immobilized in lead, shaft headframe buildings, and all necessary support facilities. The undergound disposal vault is located on one level at a depth of 1000 metres. The cylinders containing the irradiated fuel are emplaced on a one-metre thick layer of backfill material and then completely covered with backfill. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  12. Conceptual design of the IFMIF Start-Up monitoring module

    Energy Technology Data Exchange (ETDEWEB)

    Gouat, Philippe, E-mail: philippe.gouat@sckcen.be [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Leysen, Willem; Goussarov, Andrei; Galledou, Papa Sally [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Rapisarda, David; Mota, Fernando; Garcia, Angela [CIEMAT – Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, 28040 Madrid (Spain)

    2013-10-15

    Highlights: ► IFMIF test module conceptual design. ► IFMIF test module foreseen instrumentation. ► Cerenkov photon flux monitor. -- Abstract: The preliminary engineering design of the test facilities, including the various test modules to be used in the IFMIF plant is a part of the IFMIF/EVEDA (Engineering Validation and Engineering Design Activities) project from the Broader Approach to fusion. One presents the current status of the conceptual development of the IFMIF Start-Up Monitoring Module, a dedicated device used in the IFMIF test cell during the commissioning phase of the installation, in order to completely characterise the irradiation conditions behind the target on which the beam of deuterons will be focused. This STUMM embarks a lot of instrumentation to precisely characterise the neutron field, the nuclear heating and the temperatures in the test cell. One briefly describes the measuring instruments (including a specific radiation flux monitor under development), the possible layouts and the possible positioning. One also defines which types of measurements are expected by this especially dedicated commissioning module.

  13. Outcomes of the DeepWind Conceptual Design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Borg, Michael; Aagaard Madsen, Helge

    2015-01-01

    DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW D...... the Deepwind floating 1 kW demonstrator. The 5 MW simulation results, loading and performance are compared to the OC3-NREL 5 MW wind turbine. Finally the paper elaborates the conceptual design on cost modelling.......DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW...... DeepWind conceptual design. The concept was evaluated at the Hywind test site, described on its few components, in particular on the modified Troposkien blade shape and airfoil design. The feasibility of upscaling from 5 MW to 20 MW is discussed, taking into account the results from testing...

  14. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  15. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  16. Conceptual Design of Superferric Magnets for PS2

    CERN Document Server

    Bottura, L; Kirby, G; MacCaferri, R; Maglioni, C; Parma, V; de Rijk, G; Richter, D; Rossi, L; Scandale, Walter; Serio, L; Tommasini, D

    2008-01-01

    We analyze feasibility and cost of a superferric magnet design for the PS2, the 50 GeV ring that should replace the PS in the CERN injector chain. Specifically, we provide the conceptual design of dipole and quadrupoles, including considerations on cryogenics and powering. The magnets have warm iron yoke, and cryostated superconducting coils embedded in the magnet, which reduces AC loss at cryogenic temperature. The superconductor has large operating margin to endure beam loss and operating loads over a long period of time. Although conservative, and without any critical dependence on novel technology developments, this superconducting option appears to be attractive as a low-power alternative to the normal-conducting magnets that are the present baseline for the PS2 design. In addition it provides flexibility in the selection of flat-top duration at no additional cost.

  17. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  18. Present status of the conceptual design of IFMIF target facility

    International Nuclear Information System (INIS)

    Katsuta, H.; Kato, Y.; Konishi, S.; Miyauchi, Y.; Smith, D.; Hua, T.; Green, L.; Benamati, G.; Cevolani, S.; Roehrig, H.; Schutz, W.

    1998-01-01

    The conceptual design activity (CDA) for the international fusion materials irradiation facility (IFMIF) has been conducted. For the IFMIF target facility, the conceptual designs of the following two main components have been performed. The design concept of IFMIF utilizes a high energy deuteron beam of 30-40 MeV and total current of 250 mA, impinging on a flowing lithium jet to produce high energy neutrons for irradiation of candidate fusion materials. (1) The target assembly: The kinetic energy of the deuteron beam is deposited on a Li-jet target and neutrons are produced through the d-Li stripping reaction in this target. The assembly is designed to get a stable lithium jet and to prevent the onset of lithium boiling. For 40-MeV deuteron beam (total current of 250 mA) and a beam footprint of 5 x 20 cm 2 lithium jet dimensions are designed to be 2.5 cm thick and 26 cm wide. The lithium jet parameters are given. (2) Lithium loop: The loop circulates the lithium to and from the target assembly and removes the heat deposited by the deuteron beam containing systems for maintaining the-high purity of the lithium required for radiological safety and to minimize corrosion. The maximum lithium flow rate is 130 l/s and the total lithium inventory is about 21 m 3 . The IFMIF policy requires that the lithium loop system be designed to guarantee no combustion of lithium in the event of a lithium leak. This can be achieved by use of multiple confinement of the lithium carrying components. The radioactive waste generated by the target facilities is estimated. (orig.)

  19. UXO Engineering Design. Technical Specification and ConceptualDesign

    Energy Technology Data Exchange (ETDEWEB)

    Beche, J-F.; Doolittle, L.; Greer, J.; Lafever, R.; Radding, Z.; Ratti, A.; Yaver, H.; Zimmermann, S.

    2005-04-23

    The design and fabrication of the UXO detector has numerous challenges and is an important component to the success of this study. This section describes the overall engineering approach, as well as some of the technical details that brought us to the present design. In general, an array of sensor coils is measuring the signal generated by the UXO object in response to a stimulation provided by the driver coil. The information related to the location, shape and properties of the object is derived from the analysis of the measured data. Each sensor coil is instrumented with a waveform digitizer operating at a nominal digitization rate of 100 kSamples per second. The sensor coils record both the large transient pulse of the driver coil and the UXO object response pulse. The latter is smaller in amplitude and must be extracted from the large transient signal. The resolution required is 16 bits over a dynamic range of at least 140 dB. The useful signal bandwidth of the application extends from DC to 40 kHz. The low distortion of each component is crucial in order to maintain an excellent linearity over the full dynamic range and to minimize the calibration procedure. The electronics must be made as compact as possible so that the response of its metallic parts has a minimum signature response. Also because of a field system portability requirement, the power consumption of the instrument must be kept as low as possible. The theory and results of numerical and experimental studies that led to the proof-of-principle multitransmitter-multireceiver Active ElectroMagnetic (AEM) system, that can not only accurately detect but also characterize and discriminate UXO targets, are summarized in LBNL report-53962: ''Detection and Classification of Buried Metallic Objects, UX-1225''.

  20. Conceptualization

    NARCIS (Netherlands)

    Scheerens, Jaap; Scheerens, Jaap

    2017-01-01

    In the second chapter a conceptual analysis of Opportunity to Learn (OTL) is given, covering also related terms, such as instructional alignment and test preparation. The OTL issue is highlighted from three educational research traditions: educational effectiveness research, curriculum research and

  1. Northeast Oregon Hatchery Project conceptual design report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  2. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  3. Conceptual design of a measurement network of the global change

    Directory of Open Access Journals (Sweden)

    P. Hari

    2016-01-01

    Full Text Available The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.

  4. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  5. A conceptual design for the STAR endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.G.

    1993-01-01

    In order to make measurements of the gluon spin or helicity distribution in the proton or the gluon spin average distribution in nuclei, both a barrel and an endcap electromagnetic calorimeter must be added to the STAR baseline detector. Information on the gluon will be obtained in inclusive direct-γ + jet and jet + jet production. In order to be sensitive to the proper gluon kinematic regions, either the direct-γ or the jet must be in the endcap electromagnetic calorimeter (EMC). However, the endcap EMC is not large enough to completely contain the jets, so that the barrel EMC is also needed. This note describes a conceptual design for the STAR endcap EMC. Constraints are imposed by the space available between the end of the time projection chamber (TPC) and the inside of the magnet pole tip iron. Severe constraints also occur near |η| = 1, where the barrel and endcap EMC's meet. Cables from detectors inside the EMC, including those from the TPC, will exit from STAR near |η| = 1. The constraints in this region have not yet been seriously studied since no decision on the detailed routing of these cables was available at the time this work was being done. This report includes details of the conceptual design, analytical and finite element calculations of stresses in various structural members for the endcap EMC, and a preliminary cost estimate

  6. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  7. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  8. Conceptual design requirements for Korean Reference HLW disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Son; Lee, Jong Youl; Kim, Kyung Soo; Kim, Sung Ki; Cho, Dong Keun; Lee, Yang

    2005-05-15

    This report outlined the requirements for the conceptual design of KRS(Korean Reference HLW disposal System). The site for the disposal of high-level radioactive wastes has not yet been selected in Korea. Since the KRS should be designed under these circumstances, the necessary requirements which should be determined are studied in the report. The amounts of spent fuels from the nuclear power plants in the long-term national power development plan are projected. With this estimation the disposal rates of CANDU and PWR spent fuels are analyzed and determined. The national and international regulations regarding the disposal of HLW are summarized. The functions of the underground facilities are defined. The representative geological conditions are determined since no site is yet decided in Korea.

  9. Conceptual design of SC magnet system for ITER, (5)

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Nishi, Masataka; Yoshida, Kiyoshi; Tsuji, Hiroshi; Egusa, Shigenori; Seguchi, Tadao; Hagiwara, Miyuki; Kirk, M.A.; Birtcher, R.C.

    1991-08-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a superconducting magnet system for a fusion reactor. One of the key items in developing the superconducting magnets is material development and evaluation. The data of superconducting materials, structural alloys, and non-metallic materials are generated to establish a material data base at JAERI. This report is prepared to provide available data generated by JAERI to designers of superconducting magnets throughout the world. The following review papers written for the International Thermonuclear Experimental Reactor (ITER) report on conceptual design of magnet system are combined here. I. Superconducting Material Data II. Mechanical Properties of the Japanese Cryogenic Steels (JCS) at Cryogenic Temperature III. Review of Radiation Degradation Studies at JAERI on Composite Organic Insulators Used in Fusion Magnets (author)

  10. Conceptual design for simulator of irradiation test reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Ohto, Tsutomu; Magome, Hirokatsu; Izumo, Hironobu; Hori, Naohiko

    2012-03-01

    A simulator of irradiation test reactors has been developed since JFY 2010 for understanding reactor behavior and for upskilling in order to utilize a nuclear human resource development (HRD) and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR, one of the irradiation test reactors, and it simulates operation, irradiation tests and various kinds of accidents caused by the reactor and irradiation facility. The development of the simulator is sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. The training using the simulator will be started for the nuclear HRD from JFY 2012. This report summarizes the result of the conceptual design of the simulator in JFY 2010. (author)

  11. Conceptual design of the CMS 4 Tesla solenoid

    International Nuclear Information System (INIS)

    Baze, J.M.; Desportes, H.; Duthil, R.; Lesmond, C.; Lottin, J.C.; Pabot, Y.

    1992-02-01

    A large and important meeting 'Toward the LHC experimental programme' is due to be held at EVIAN-les-BAINS, on 5-8 March 1992. The major goal accurate measurement of muon momenta makes necessary, for the detectors, the use of large and powerful magnetic system producing high bending power. The CMS experiment is based on a solenoidal magnetic configuration. It has been designed to produce a high magnetic induction (4 T) in a 14 m long, 5.9 m bore cylindrical volume surrounding the interaction point. The diameter has been fixed to the maximum dimension compatible with road transportation to CERN. This long solenoid with its 12 500 ton iron yoke is a fully shielded magnet. The paper presents the conceptual design of the superconducting coil and its technical characteristics

  12. Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft

    Science.gov (United States)

    Silva, Christopher; Johnson, Wayne; Solis, Eduardo

    2018-01-01

    Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.

  13. Evaluating a proposed apprach for managing collaborative design in the conceptual design phase

    NARCIS (Netherlands)

    Sebastian, R.

    2006-01-01

    This paper evaluates the findings of prior research on managing collaborative design in the conceptual design phase of a building project. The prior research was explorative. It used several building projects in the Netherlands as case studies - De Resident in The Hague, Nieuw Stadshart in Almere,

  14. A conceptual design of the ITER upper port plug structure and its cooling channels

    International Nuclear Information System (INIS)

    Pak, S.I.; Lee, H.G.; Jung, K.J.; Walker, C.I.; Kim, D.G.; Choi, K.S.

    2008-01-01

    A study is conducted on the conceptual design of the structure and cooling channels of the upper port plug of International Thermonuclear Experimental Reactor (ITER). Modification of the earlier port plug design is made and a simple fabrication method is proposed. It is shown that the newly designed port plug can accommodate the installation of both diagnostic and electron cyclotron heating (ECH) devices. Design assessment is carried out through structural and thermo-hydraulic analyses. Results of the analyses show that the port plug structure is stable against one of the most severe plasma events and the total pressure drop of the coolant is within the allowable level

  15. Design Methods in Practice

    DEFF Research Database (Denmark)

    Jensen, Torben Elgaard; Andreasen, Mogens Myrup

    2010-01-01

    The paper challenges the dominant and widespread view that a good design method will guarantee a systematic approach as well as certain results. First, it explores the substantial differences between on the one hand the conception of methods implied in Pahl & Beitz’s widely recognized text book...... on engineering design, and on the other hand the understanding of method use, which has emerged from micro-sociological studies of practice (ethnomethodology). Second, it reviews a number of case studies conducted by engineering students, who were instructed to investigate the actual use of design methods...... in Danish companies. The paper concludes that design methods in practice deviate substantially from Pahl & Beitz’s description of method use: The object and problems, which are the starting points for method use, are more contested and less given than generally assumed; The steps of methods are often...

  16. A strategic approach to the conceptual design of complex radwaste facilities

    International Nuclear Information System (INIS)

    Mackay, Stewart; Scott Dam, A.; Holmes, Robert G.G.

    1992-01-01

    The design of radwaste treatment facilities is often complicated by the variety of waste types being treated. Further uncertainties over their composition and final waste form specifications can make the normal conceptual design phase difficult and unreliable. This paper describes the strategic planning necessary to define the facility functions and the process to prepare a Functional Design Criteria. The paper shows clearly, that for complex waste management problems, it is vital to consider and resolve uncertainties by means of a strategic plan before embarking on conceptual design. The paper shows an approach to preparation of design criteria using functional analysis. The paper provides examples where these methods were and are being used, both in the U.K. and the U.S. Strategic plans and functional criteria can be used as a basis for conceptual design which then provides a more meaningful basis for detailed technology selection during the detailed design process. The paper discusses experiences and lessons learned in the planning process. This process is widely applicable to a number of complex waste treatment facilities being planned and developed to process wastes generated at government facilities. (author)

  17. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  18. Capturing and Reuse of Design Knowledge during the Conceptual Design Process: Illustrated with a Snap-Fit Joint

    DEFF Research Database (Denmark)

    Jensen, Thomas Aakjær; Hansen, Claus Thorp

    1998-01-01

    In this paper a concept for a computer based system, a Designer’s Workbench (DWB), is presented, for supporting a designer during the conceptual design process. The DWB is based on design units, which are a clustering of design knowledge related to the conceptual design phase. It is shown, how th...

  19. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae

    2017-04-01

    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  20. Embodied Design Ideation methods

    DEFF Research Database (Denmark)

    Wilde, Danielle; Vallgårda, Anna; Tomico, Oscar

    2017-01-01

    Embodied design ideation practices work with relationships between body, material and context to enliven design and research potential. Methods are often idiosyncratic and – due to their physical nature – not easily transferred. This presents challenges for designers wishing to develop and share...... techniques or contribute to research. We present a framework that enables designers to understand, describe and contextualise their embodied design ideation practices in ways that can be understood by peers, as well as those new to embodied ideation. Our framework – developed over two conference workshops...... – provides a frame for discussion of embodied design actions that leverage the power of estrangement. We apply our framework to eight embodied design ideation methods. Our contribution is thus twofold: (1) a framework to understand and leverage the power of estrangement in embodied design ideation, and (2...

  1. Conceptual design of interim storage facility for CNAI

    International Nuclear Information System (INIS)

    Fuenzalida Troyano, Carlos S.; Bergallo, Juan E.; Nassini, Horacio E.P.; Blanco, Anibal; Delmastro, Dario F.

    2007-01-01

    The reduced storage capacity available in the two spent fuel pools of argentine PHWR Atucha-1 power plant, the current plans for extending the reactor operation beyond its design lifetime, and the government decision on Atucha-2 NPP construction ending, have motivated the evaluation of a dry storage option for the interim management of spent fuel assemblies. Two different designs are presently being analyzed by an expert working group, from both technical and economical points of views. Authors are proposing a modular system consisting of an arrangement of reinforced concrete structures into which welded metallic canisters loaded with 37 spent fuel assemblies each stored in horizontal position. The reinforced concrete module is designed to provide the necessary physical protection and biological shielding to the loaded canisters during long-term storage, as well as passive means to remove the spent fuel decay heat by a combination of radiation, conduction and natural air convection. In this works are presented advances in the conceptual designs for a spent nuclear fuel system to Atucha I nuclear power plant. (author) [es

  2. SP-100 power system conceptual design for lunar base applications

    International Nuclear Information System (INIS)

    Mason, L.S.; Bloomfield, H.S.; Hainley, D.C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design

  3. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  4. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  5. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  6. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  7. Conceptual design of high power Ka-band radar transmitter

    Science.gov (United States)

    Bhanji, Alaudin; Hoppe, Daniel; Gillis, Peter

    1986-01-01

    A proposed conceptual design of a 400-kW CW Ka-band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter-wave tube, the gyroklystron, is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission-line components consisting of signal-monitoring devices, mode converter, and an overmoded corrugated feed are discussed. Finally, an assessment of the state-of-the-art technology to meet the system requirements is given, and possible areas of difficulty are summarized.

  8. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    Science.gov (United States)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  9. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  10. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  11. Conceptual Design of the NISS onboard NEXTSat-1

    Directory of Open Access Journals (Sweden)

    Woong-Seob Jeong

    2014-03-01

    Full Text Available The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI. For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view (2 × 2 deg and a wide wavelength range from 0.95 to 3.8 μm by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.

  12. Conceptual design of economic compact reversed shear Tokamak (CRST)

    International Nuclear Information System (INIS)

    Okano, Kunihiko

    1998-01-01

    Two indices of performance for economic analysis of Tokamak are defined as toroidal β value: β t (%)=(plasma pressure)/(pressure of magnetic field) and Troyon coefficient β N . The pressure of magnetic field is defined as β t 2 /2μ 0 (Bt: strength of toroidal magnetic field and μ 0 : permeability). β N is determined in order to make possible compare β t between other devices. To increase β N is very important on the economic viewpoint. ITER is designed as 2.2 β N , 1 MW/m 2 average neutron wall load, 8.14 m large radius and 2.8 m small radius, but the above values of CRST are 5.5, 4.5 MW/m 2 , 5.4 m and 1.59 m, respectively. Development of industrial and physical technologies makes possible to minimize economic Tokamak. After ITER, we expect that economic fusion reactor is obtained by minimization. CRST satisfies the conditions of economic fusion reactor conduced by the economic analysis. CRST is designed as 5.4 m main radius and 116x10 4 kW electric output. Fundamental physics and technologies, conceptual and industrial design of CRST are explained. (S.Y.)

  13. Design of A Sustainable Building: A Conceptual Framework for Implementing Sustainability in the Building Sector

    Directory of Open Access Journals (Sweden)

    Paul O. Olomolaiye

    2012-05-01

    Full Text Available This paper presents a conceptual framework aimed at implementing sustainability principles in the building industry. The proposed framework based on the sustainable triple bottom line principle, includes resource conservation, cost efficiency and design for human adaptation. Following a thorough literature review, each principle involving strategies and methods to be applied during the life cycle of building projects is explained and a few case studies are presented for clarity on the methods. The framework will allow design teams to have an appropriate balance between economic, social and environmental issues, changing the way construction practitioners think about the information they use when assessing building projects, thereby facilitating the sustainability of building industry.

  14. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina

    2015-01-01

    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  15. The effect of requirements prioritization on avionics system conceptual design

    Science.gov (United States)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  16. Utilizing Uncertainty Multidisciplinary Design Optimization for Conceptual Design of Space Systems

    NARCIS (Netherlands)

    Yao, W.; Guo, J.; Chen, X.; Van Tooren, M.

    2010-01-01

    With progress of space technology and increase of space mission demand, requirements for robustness and reliability of space systems are ever-increasing. For the whole space mission life cycle, the most important decisions are made in the conceptual design phase, so it is very crucial to take

  17. Status of TRR-II project: Conceptual design

    International Nuclear Information System (INIS)

    Chou, Y.C.; Hsia, D.Y.; Chen, S.H.

    1999-01-01

    The Taiwan Research Reactor (TRR) operated by the Institute of Nuclear Energy Research (INER) went critical in 1973 but was permanently shut down in 1988. In order to reconstruct the original TRR into a new multi-purpose and state-of-the-art research reactor, a 'TRR System Improvement and Utilization Promotion' (TRR-II) project was proposed by INER since 1989. After a long series of review and modification processes, the TRR-II project finally got a green light from the government in October 1998. The major tasks of the project include removing the old reactor vessel from its original location, dismantling the old core internals, constructing a new open pool type reactor, installing various modern experimental facilities, and training personnel necessary for operation and utilization of the new reactor as well. Most of the conceptual design of these tasks have been completed by the TRR-II project team and reviewed by a team of international experts. This paper describes the major characteristics of TRR, the way of handling the original TRR reactor vessel, the design concepts of the new reactor and the experimental facilities associated with it. Finally, the strategy as well as the approach to promoting the utilization of the new reactor will also be outlined. (author)

  18. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  19. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  20. The effects of classic and web-designed conceptual change texts on the subject of water chemistry

    Directory of Open Access Journals (Sweden)

    Erol Taş

    2015-03-01

    Full Text Available The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with pre–test and post-test groups. With the three-stage conceptual success test developed by the researchers, a pilot scheme was conducted with 103 participants (9th graders. As a result of this scheme, the test’s validity and reliability was completed and traditional conceptual change texts based on the determinated conceptual errors were prepared. In addition, this test was applied to students as pre-test at the beginning of the study. Classical conceptual change texts that were prepared were taught with traditional methods in control group’s lessons. On the other hand, traditional conceptual change texts were prepared web-assisted and the experimental group was taught by using web-assisted conceptual change texts. At the end of the study, three-stage conceptual success test was conducted on the sample again as post-test. The data collected was analyzed by using SPSS and Microsoft Office Excel 2007 package program. As a result of the study, it was found that conceptual change texts caused a decrease in the conceptual errors of students on the subject of water chemistry. This improvement was 65% for the experimental group and 14% for the control group. In addition, even after three months, this rate was 61% for the experimental group and 3,8 % for the control group. Web-assisted conceptual change texts were found to be more effective in the permanence of what is learned

  1. Conceptual design of 500 to 3000 hp Stirling engines for stationary power generation

    Science.gov (United States)

    Toscano, W. M.; Chandrasehkar, R.; Harvey, A. C.; Lee, K.

    Both near term and far term conceptual designs of a 373 kW (500 hp) to 2237 kW (3000 hp) Stirling engine for stationary power generation have been prepared. The recommended near term conceptual design is modular, consisting of a basic Stirling engine cylinder of 100 kW that is easily adaptable to any type of heat input or machine output. The engine output configuration selected is the single crank, narrow V, multicylinder arrangement in which any number of cylinders, in groups of four or five, provide the desired power rating. For clean fuel combustion, the prevaporized, premixed, combustion method with exhaust gas recirculation is employed. For coal combustion a Wormser Grate two-stage atmospheric fluidized bed combustion system with a high pressure gas circulation loop system is recommended. The predicted overall fuel to electrical energy conversion efficiency varied between 25 and 34 percent, depending on the system configuration.

  2. Performance Assessment Strategies: A computational framework for conceptual design of large roofs

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-01-01

    Full Text Available Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies

  3. Conceptual designs for a long term 238PuO2 storage vessel

    International Nuclear Information System (INIS)

    Kwon, D.M.; Replogle, W.C.

    1996-08-01

    This is a report on conceptual designs for a long term, 250 years, storage container for plutonium oxide ([sup 238]PuO[sub 2]). These conceptual designs are based on the use of a quartz filter to release the helium generated during the plutonium decay. In this report a review of filter material selection, design concepts, thermal modeling, and filter performance are discussed

  4. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  5. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  6. Empirical pillar design methods review report: Final report

    International Nuclear Information System (INIS)

    1988-02-01

    This report summarizes and evaluates empirical pillar design methods that may be of use during the conceptual design of a high-level nuclear waste repository in salt. The methods are discussed according to category (i.e, main, submain, and panel pillars; barrier pillars; and shaft pillars). Of the 21 identified for main, submain, and panel pillars, one method, the Confined Core Method, is evaluated as being most appropriate for conceptual design. Five methods are considered potentially applicable. Of six methods identified for barrier pillars, one method based on the Load Transfer Distance concept is considered most appropriate for design. Based on the evaluation of 25 methods identified for shaft pillars, an approximate sizing criterion is proposed for use in conceptual design. Aspects of pillar performance relating to creep, ground deformation, interaction with roof and floor rock, and response to high temperature environments are not adequately addressed by existing empirical design methods. 152 refs., 22 figs., 14 tabs

  7. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. Basically, these subsystems would consist of the deuterium-tritium fuel cycle and associated environmental control systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s (1385 ACFM) and will achieve an overall decontamination factor of 10 6 for tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to operational status within 24 h without a significant release of tritium to the environment. The basic process will include compression of the air to 0.35 MPa (3.5 atm) in a reciprocating compressor followed by oxidation of the tritium to T 2 O in a catalytic reactor. The air will be cooled to 275 K (350 0 F) to remove most of the moisture, including T 2 O, as a condensate. The remaining moisture will be removed by molecular sieve dryer beds that incorporate a water-swamping step between beds, allowing greater T 2 O removal. A portion of the detritiated air will be recirculated to the cell; the remainder will be exhausted to the building ventilation stack to maintain a slight negative pressure in the cell. The ETC will be designed for maximum flexibility so that studies can be performed that involve various aspects of room air detritiation

  8. Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer; Zhen Fan

    2005-09-01

    {sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was

  9. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  10. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  11. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    International Nuclear Information System (INIS)

    1995-01-01

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project

  12. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  13. A Systematic Approach for Conceptual and Sustainable Process Design: Production of Methylamines From Methanol and Ammonia

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran Bin; Almoor, Karim

    2012-01-01

    and environmentally acceptable plant for producing mono-methylamines, di-methylamines and tri-methylamines from methanol and ammonia. The systematic method divides the process design work into 12 sequential tasks that covers all stages of conceptual design, starting from the consideration of qualitative aspects...... of the process flow sheet and preliminary calculations to the detailed process simulations, equipment sizing, costing, an economic evaluation, and sustainability of the designed process. At the end of task-9, the base case design is obtained, which is then further refined and improved with respect to heat...... and LCA measures such as sustainability metrics for environment, economic and social; carbon footprint; safety index and many more. In addition, PRO/II is used for process simulation (for verification of design), ICAS for property prediction and analysis of design options; ECON for cost and economic...

  14. Conceptual design of EAST multi-purpose maintenance deployer system

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hongtao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); He, Kaihui, E-mail: hekh@iterchina.cn [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China); Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); Yang, Yang [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Villedieu, Eric [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France); Shi, Shanshuang; Yang, Songzhu [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China)

    2017-05-15

    Highlights: • A redundant 11-DOF articulated robot for EAST in-vessel maintenance is presented. • A new modular joint developed to optimize the yaw joint actuator for the robot is described. • A 3-DOF gripper integrated with cameras and torque sensor is developed. - Abstract: EAST multi-purpose maintenance deployer (EMMD) system, being collaboratively developed by ASIPP and CEA-IRFM, is built as upgrades for EAMA. Updated kinematics parameters such as DOF distribution and joint angle for EMMD robot are performed and verified in a simulation platform. A new modular joint has been developed to optimize the yaw joint actuator for easy assembly and flexibility reduction. A 3-DOF gripper with cameras and torque sensor has been designed to provide inspection and dexterous handling of small fragments inside the EAST chamber. A conceptual upgrade for EAMA-CASK has been developed for the purpose of protecting the end-effector's sensors which do not have temperature-resistant qualification. The high temperature and vacuum compatible solutions and validation experiments have been presented in this paper.

  15. Conceptual Design of a Small Hybrid Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Umberto Papa

    2017-01-01

    Full Text Available UAS (Unmanned Aircraft System technologies are today extremely required in various fields of interest, from military to civil (search and rescue, environmental surveillance and monitoring, and entertainment. Besides safety and legislative issues, the main obstacle to civilian applications of UAS systems is the short time of flight (endurance, which depends on the equipped power system (battery pack and the flight mission (low/high speed or altitude. Long flight duration is fundamental, especially with tasks that require hovering capability (e.g., river flow monitoring, earthquakes, devastated areas, city traffic monitoring, and archeological sites inspection. This work presents the conceptual design of a Hybrid Unmanned Aircraft System (HUAS, merging a commercial off-the-shelf quadrotor and a balloon in order to obtain a good compromise between endurance and weight. The mathematical models for weights estimation and balloon static performance analysis are presented, together with experimental results in different testing scenarios and complex environments, which show 50% improvement of the flight duration.

  16. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  17. Tokamak experimental power reactor conceptual design. Volume I

    International Nuclear Information System (INIS)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters

  18. Conceptual design of a compact positron tomograph for prostateimaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Derenzo, S.E.; Qi, J.; Moses, W.W.; Huesman, R.H.; Budinger, T.F.

    2000-11-04

    We present a conceptual design of a compact positron tomograph for prostate imaging using a pair of external curved detector banks, one placed above and one below the patient. The lower detector bank is fixed below the patient bed, and the top bank adjusts vertically for maximum sensitivity and patient access. Each bank is composed of 40conventional block detectors, forming two arcs (44 cm minor, 60 cm major axis) that are tilted to minimize attenuation and positioned as close as possible to the patient to improve sensitivity. The individual detectors are angled to point towards the prostate to minimize resolution degradation in that region. Inter-plane septa extend 5 cm beyond the scintillator crystals to reduce random and scatter backgrounds. A patient is not fully encircled by detector rings in order to minimize cost,causing incomplete sampling due to the side gaps. Monte Carlo simulation (including random and scatter) demonstrates the feasibility of detecting a spherical tumor of 2.5 cm diameter with a tumor to background ratio of2:1, utilizing the number of events that should be achievable with a6-minute scan after a 10 mCi injection (e.g., carbon-11 choline or fluorine-18 fluorocholine).

  19. Next Linear Collider Test Accelerator conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This document presents the scientific justification and the conceptual design for the {open_quotes}Next Linear Collider Test Accelerator{close_quotes} (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the {open_quotes}dark current{close_quotes} generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m.

  20. Conceptual Design of a Nano-Networking Device

    Science.gov (United States)

    Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-01-01

    Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated. PMID:27973430

  1. Selection of the variant solution of forest road alignment conceptual design using multicriteria optimisation

    Directory of Open Access Journals (Sweden)

    Stefanović Bogdan

    2009-01-01

    Full Text Available One of the three studied variant solutions of forest road conceptual design was selected based on the linear distribution of criteria, as the method of multicriteria optimization. The selection was performed with 25 parameters classified as economic, technical, production and social criteria. The parameters of technical criteria were grouped into design, construction and building parameters. Based on calculated nominal values of parameters by the given criteria, their ranking, comparison, point rating and scoring, the selected most favorable solution was variant 1.

  2. Conceptual design study of normal conducting quadrupoles for the CERN PS2

    CERN Document Server

    Borgnolutti, F

    2010-01-01

    One option in the scenario of upgrades of the LHC accelerator complex is to replace the existing CERN Proton Synchrotron (PS) by a new and larger synchrotron (PS2). Since the launch of the PS2 study project in 2003, specifications on the magnet lattice have continuously evolved. We propose here, according to the latest lattice configuration, a conceptual design for the four types of normal-conducting and iron-dominated main quadrupoles for the PS2. Three of them have the same cross-section but differ in magnetic length. The method we used to search for optimal designs is also presented.

  3. Conceptual design study of the normal conducting dipole for the CERN PS2

    CERN Document Server

    Borgnolutti, F

    2010-01-01

    One option in the scenario of upgrades of the LHC accelerator complex is to replace the existing CERN Proton Synchrotron (PS) by a new and larger synchrotron (PS2). Since the launch of the PS2 study project in 2003, specifications on the magnet lattice have continuously evolved. We propose here, according to the latest lattice configuration, a conceptual design for the normal-conducting and iron-dominated PS2 main dipole. The method we used to search for the optimal design is also presented.

  4. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    Science.gov (United States)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  5. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    The development of a divertor concept for post-ITER fusion power plants is deemed to be an urgent task to meet the EU Fast Track scenario. Developing a divertor is particularly challenging due to the wide range of requirements to be met including the high incident peak heat flux, the blanket design with which the divertor has to be integrated, sputtering erosion of the plasma-facing material caused by the incident a particles, radiation effects on the properties of structural materials, and efficient recovery and conversion of the divertor thermal power (∝15% of the total fusion thermal power) by maximizing the coolant operating temperature while minimizing the pumping power. In the course of the EU PPCS, three near-term (A, B and AB) and two advanced power plant models (C, D) were investigated. Model A utilizes a water-cooled lead-lithium (WCLL) blanket and a water-cooled divertor with a peak heat flux of 15 MW/m 2 . Model B uses a He-cooled ceramics/beryllium pebble bed (HCPB) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model AB uses a He-cooled lithium-lead (HCLL) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model C is based on a dual-coolant (DC) blanket (lead/lithium self-cooled bulk and He-cooled structures) and a He-cooled divertor (10 MW/m 2 ). Model D employs a self-cooled lead/lithium (SCLL) blanket and lead-lithiumcooled divertor (5 MW/m 2 ). The values in parenthesis correspond to the maximum peak heat fluxes required. It can be noted that the helium-cooled divertor is used in most of the EU plant models; it has also been proposed for the US ARIES-CS reactor study. Since 2002, it has been investigated extensively in Europe under the PPCS with the goal of reaching a maximum heat flux of at least 10 MW/m2. Work has covered many areas including conceptual design, analysis, material and fabrication issues, and experiments. Generally, the helium-cooled divertor is considered to be a suitable solution for fusion power plants, as it

  6. Culture, Interface Design, and Design Methods for Mobile Devices

    Science.gov (United States)

    Lee, Kun-Pyo

    Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.

  7. State on the art of computational tools for conceptual structural design

    NARCIS (Netherlands)

    Rolvink, A.; Coenders, J.L.; Mueller, C.

    2014-01-01

    This paper presents a review of existing research, projects, developments and applications in the domain of design tools for conceptual structural engineering. The availability of these tools and research into software for conceptual structural design stages has shown a number of interesting

  8. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  9. The challenge of conceptual stretching in multi-method research

    OpenAIRE

    Ahram, Ariel

    2009-01-01

    Multi-method research (MMR) has gained enthusiastic support among political scientists in recent years. Much of the impetus for MMR has been based on the seemingly intuitive logic of convergent triangulation: two tests are better than one, since a hypothesis that had survived a series of tests with different methods would be regarded as more valid than a hypothesis tested only a single method. In their seminal Design-ing Social Inquiry, King, Keohane, and Verba (1994) argue that combining qu...

  10. Whole-arm obstacle avoidance system conceptual design

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER ampersand WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER ampersand WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor ''bracelets,'' which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control

  11. Evidence-Based Design and Research-Informed Design: What's the Difference? Conceptual Definitions and Comparative Analysis.

    Science.gov (United States)

    Peavey, Erin; Vander Wyst, Kiley B

    2017-10-01

    This article provides critical examination and comparison of the conceptual meaning and underlying assumptions of the concepts evidence-based design (EBD) and research-informed design (RID) in order to facilitate practical use and theoretical development. In recent years, EBD has experienced broad adoption, yet it has been simultaneously critiqued for rigidity and misapplication. Many practitioners are gravitating to the term RID to describe their method of integrating knowledge into the design process. However, the term RID lacks a clear definition and the blurring of terms has the potential to weaken advances made integrating research into practice. Concept analysis methods from Walker and Avant were used to define the concepts for comparison. Conceptual definitions, process descriptions, examples (i.e., model cases), and methods of evaluation are offered for EBD and RID. Although EBD and RID share similarities in meaning, the two terms are distinct. When comparing evidence based (EB) and research informed, EB is a broad base of information types (evidence) that are narrowly applied (based), while the latter references a narrow slice of information (research) that is broadly applied (informed) to create an end product of design. Much of the confusion between the use of the concepts EBD and RID arises out of differing perspectives between the way practitioners and academics understand the underlying terms. The authors hope this article serves to generate thoughtful dialogue, which is essential to the development of a discipline, and look forward to the contribution of the readership.

  12. Discrete Adjoint-Based Simultaneous Analysis and Design Approach for Conceptual Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Oliviu SUGAR-GABOR

    2017-09-01

    Full Text Available In this paper, a simultaneous analysis and design method is derived and applied for a non-linear constrained aerodynamic optimization problem. The method is based on the approach of defining a Lagrange functional based on the objective function and the aerodynamic model’s equations, using two sets of multipliers. A fully-coupled, non-linear system of equations is derived by requiring that the Gateaux variation of the Lagrange functional vanishes for arbitrary variations of the aerodynamic model’s dependent variables and design parameters. The optimization problem is approached using a one-shot technique, by solving the non-linear system in which all sensitivities and problem constraints are included. The computational efficiency of the method is compared against a gradient-based optimization algorithm using adjoint-provided gradient. A conceptual-stage aerodynamic optimization problem is solved, based on a non-linear numerical lifting-line method with viscous corrections.

  13. CONCEPTUAL DESIGN REPORT FOR A FAST MUON TRIGGER

    Energy Technology Data Exchange (ETDEWEB)

    OBRIEN,E.; BASYE, A.; ISENHOWER, D.; JUMPER, D.; SPARKS, N.; TOWELL, R.; WATTS, C.; WOOD, J.; WRIGHT, R.; HAGGERTY, J.; LYNCH, D.; BARISH, K.; EYSER, K.O.; SETO, R.; HU, S.; LI, X.; ZHOU, S.; GLENN, A.; KINNEY, E.; KIRILUK, K.; NAGLE, J.; CHI, C.Y.; SIPPACH, W.; ZAJC. W.; BUTLER, C.; HE, X.; OAKLEY, C.; YING, J.; BLACKBURN, J.; CHIU, M.; PERDEKAMP, M.G.; KIM, Y.J.; KOSTER, J.; LAYTON, D.; MAKINS, N.; MEREDITH, B.; NORTHACKER, D.; PENG, J.-C.; SEIDL, R.; THORSLAND, E.; WADHAMS, S.; WILLIAMSON, S.; YANG, R.; HILL, J.; KEMPEL, T.; LAJOIE, J.; SLEEGE, G.; VALE, C.; WEI, F.; SAITO, N.; HONG, B.; KIM, B.; LEE, K.; LEE, K.S.; PARK, S.; SIM, K.-S.; AOKI, K.; DAIRAKU, S.; IMAI, K.; KARATSU, K.; MURAKAMI, T.; SATO, A.; SENZAKA, K.; SHOJI, K.; TANIDA, K.; BROOKS, M.; LEITCH, M.; ADAMS, J.; CARINGI, A.; FADEM, B.; IDE, J.; LICHTENWALNER, P.; FIELDS, D.; MAO, Y.; HAN, R.; BUNCE, G.; XIE, W.; FUKAO, Y.; TAKETANI, A.; KURITA, K.; MURATA, J.; (PHENIX COLLABORATION)

    2007-08-01

    This document is a Conceptual Design Report for a fast muon trigger for the PHENIX experiment that will enable the study of flavor separated quark and anti-quark spin polarizations in the proton. A powerful way of measuring these polarizations is via single spin asymmetries for W boson production in polarized proton-proton reactions. The measurement is done by tagging W{sup +} and W{sup -} via their decay into high transverse momentum leptons in the forward directions. The PHENIX experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample the rare leptons fromW decay at the highest luminosities at the Relativistic Heavy Ion Collider (RHIC). This Report details the goals, design, R&D, and schedule for building new detectors and trigger electronics to use the full RHIC luminosity to make this critical measurement. The idea for W boson measurements in polarized proton-proton collisions at RHIC was first suggested by Jacques Soffer and Claude Bourrely in 1995. This prompted the RIKEN institute in Japan to supply funds to build a second muon arm for PHENIX (south muon arm). The existence of both a north and south muon arm makes it possible to utilize a Z{sup 0} sample to study and control systematic uncertainties which arise in the reconstruction of high momentum muons. This document has its origins in recommendations made by a NSAC Subcommittee that reviewed the U.S. Heavy Ion Physics Program in June 2004. Part of their Recommendation 1 was to 'Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR'. In Recommendation 2 the subcommittee stated '- detector improvements proceed at a rate that allows a timely determination of the flavor dependence of the quark-antiquark sea polarization through W-asymmetry measurements' as we are proposing here. On September 13, 2004 DOE requested from BNL a report articulating a research plan for

  14. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  15. Surface feature characterization test plan: Conceptual design of a high level nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-06-01

    This report presents the Surface Feature Characterization Test Plan for conceptual design. The Test Plan is part of the surface feature characterization program for conceptual design which will obtain information on site topography, hydrology, stratigraphy, and soil and rock engineering properties. The information will be obtained by the Geologic Project Manager (GPM). This Test Plan provides guidance to the GPM as to (1) the kinds of data to be collected, (2) anticipated methods, (3) the level of detail required, (4) interpretation to be made, and (5) the format for presentation. Based on this Test Plan and on conditions at the site that is selected, the GPM will develop an Activity Plan describing the methods to be used in obtaining the needed information. For each item of information, the Test Plan describes those facilities which require it for their design. The GPM can then determine the appropriate methods and level of effort for obtaining the information, taking into account its use and conditions at the selected site. 7 figs., 3 tabs

  16. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  17. Conceptual design of a water treatment system to support a manned Mars colony

    Science.gov (United States)

    1988-01-01

    The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.

  18. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield

  19. Designing gardens for people with dementia: literature review and evidence-based design conceptual frame.

    Science.gov (United States)

    Charras, Kevin; Laulier, Véronique; Varcin, Armelle; Aquino, Jean-Pierre

    2017-12-01

    More and more dwelling facilities for people with dementia invest gardens as convivial, resourceful, and relational places. However, there is a demand for scientific evidence of such statements. The aims of this literature review are to enlighten scientific evidence concerning uses and therapeutic virtues of garden for people with dementia, and to contribute to an evidence-based design approach by identifying key dimension of garden design. Twenty two articles were selected for this literature review and six clusters were identified. These clusters are discussed in a conceptual frame and discussed in an environment-behaviour approach.

  20. "The impossible made possible": A method for measuring change in conceptual understanding in undergraduate science students

    Science.gov (United States)

    Himangshu, Sumitra

    This study examined change in conceptual knowledge of scientific concepts at the undergraduate level by using concept mapping to assess student understanding. Recent reports from science educators and researchers indicate an acute need to enhance student conceptual understanding in science. This suggests that faculty need to investigate whether actual student learning matches their goals for enhancing conceptual understanding. The study design incorporated the use of both qualitative and quantitative methods to analyze change in student conceptual understanding. The sample population consisted of a total of 61 students, 47 science majors and 14 non-majors from ten different classrooms at seven separate institutions of higher education across the United States. Student concept maps were constructed, by the researcher, from the transcripts of structured interviews with the student participants. Analysis of the concept maps was correlated with other quantitative data, such as course grades and the Learning and Studying Questionnaire (LSQ). The LSQ is a well-established survey instrument that measures student learning based on the use of rote and/or conceptual learning techniques. Results indicate that concept maps provide more information than grades alone because they represented individual understanding, in terms of depth of understanding, relationships between concepts, quality of knowledge organization and identification of misconceptions. Thus, differences in student comprehension of course material, with respect to critical concepts, could be analyzed. The greatest determinant of increased conceptual understanding over the course of a semester was the student's self-report of approaches to learning and studying. The quality of the student maps, in turn, was reflective of differences in student approaches to learning. Concomitantly, the concept maps reflected student gains in content and depth over a semester with respect to an expert map. The results also

  1. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  2. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  3. Conceptual design of shaft seals for a nuclear waste disposal vault

    International Nuclear Information System (INIS)

    1993-04-01

    The concept of a disposal vault in the Canadian Shield for the effective isolation of nuclear fuel wastes is being assessed as part of the Canadian Nuclear Fuel Waste Management Program. The vault would be accessed from the surface by a number of shafts, which would likely penetrate the vault environment and intersect significant rock fractures and thereby form preferential pathways for the migration of radionuclides from the disposal area to the biosphere. Golder Associates were retained to conduct a conceptual design study of sealing and backfilling the shafts. The first volume of this report reviews current shaft sinking and lining technologies, and recommends the preferred construction methods for the shafts. Factors that could affect the design of a shaft seal system are reviewed, and a conceptual shaft seal is proposed. The second volume addresses the performance assessment of a shaft seal system. While there are no specific performance criteria against which to compare the anticipated containment characteristics of the shaft seal system proposed, the methodology developed for the performance assessment of the reference design should enable the design to be modified to meet performance criteria as they are developed. The report estimates that it will cost $133.7 million in 1986 Canadian dollars to seal three reference shafts, including $18 million for labour and equipment, $103.4 million for backfill and sealing materials, $9.5 million for project indirect costs, and $2.8 million project management. (author). 53 refs., 36 tabs., 43 figs

  4. Three Roles of Conceptual Models in Information System Design and Use

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Falkenberg, Eckhard D.; Lindgreen, Paul

    1989-01-01

    This paper attempts to draw together results from information systems research, linguistic theory, and methodology in order to present a unified framework in which to understand conceptual models. Three different roles of conceptual models (CM's) in the design and use of information systems (IS's)

  5. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  6. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  8. Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents.

    Science.gov (United States)

    Mekid, Samir; Bashmal, Salem; Ouakad, Hassen M

    2016-01-01

    Nanomanipulation techniques have gone through several phases to be used in scientific explorations not only to reveal more characteristics of nano, micro and mesoscopic phenomena but also to build functional nano-devices useful for specific applications. The nano-manipulator becomes a key instrument for technology bridging between sub-nano and mesoscale. The recent patents have exhibited integration of various functions in the nano-devices requiring sub-nanometer precision and highly stable manipulator with substantial pulling/pushing forces. This work reviews patents and works on conceptual designs of existing nanomanipulators with specific features. This includes design analysis leading to ultra-precision motion and stability with discussion of enabling technology. A novel integrated and numerically controlled instrument for nanomanipulation, visualization and inspection/characterization of materials at sub-nanoscale will be presented with a feature to keep the same datum for all operation and hence improve accuracy of samples. This paper has undertaken a review search in a structured examination of bibliographic databases for published and issued patents using a focused review keyword of nano-manipulation. The quality of selected patents was appraised using standard tools. The characteristics of screened patents were described, and a deductive qualitative content analysis methodology was applied to understand the modeling and testing of nanomachining process, the exact construction of nanostructure arrays and the inspection of devices with complex features. The paper encompassed forty patents. Fourteen patents exhibited the manipulation at the micro scale (MEMS manipulations), others outlined systems with sub-micron resolution and workspace range in mesoscale. Standard scale manipulation were described in 13 patents assuming only systems comprising positioning stages, arms and end-effectors where positioners are a few centimeters in size with workspace higher

  9. Conceptual design tool development for a Pb-Bi cooled reactor

    International Nuclear Information System (INIS)

    Lee, K. G.; Chang, S. H.; No, H. C.; Chunm, M. H.

    2000-01-01

    Conceptual design is generally ill-structured and mysterious problem solving. This leads the experienced experts to be still responsible for the most of synthesis and analysis task, which are not amenable to logical formulations in design problems. Especially because a novel reactor such as a Pb-Bi cooled reactor is going on a conceptual design stage, it will be very meaningful to develop the conceptual design tool. This tool consists of system design module with artificial intelligence, scaling module, and validation module. System design decides the optimal structure and the layout of a Pb-Bi cooled reactor, using design synthesis part and design analysis part. The designed system is scaled to be optimal with desired power level, and then the design basis accidents (Dbase) are analyzed in validation module. Design synthesis part contains the specific data for reactor components and the general data for a Pb-Bi cooled reactor. Design analysis part contains several design constraints for formulation and solution of a design problem. In addition, designer's intention may be externalized through emphasis on design requirements. For the purpose of demonstration, the conceptual design tool is applied to a Pb-Bi cooled reactor with 125 M Wth of power level. The Pb-Bi cooled reactor is a novel reactor concept in which the fission-generated heat is transferred from the primary coolant to the secondary coolant through a reactor vessel wall of a novel design. The Pb-Bi cooled reactor is to deliver 125 M Wth per module for 15 effective full power years without any on-site fuel handling. The conceptual design tool investigated the feasibility of a Pb-Bi cooled reactor. Application of the conceptual design tool will be, in detail, presented in the full paper. (author)

  10. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1998-01-01

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design

  11. INVESTIGATING PECTORAL SHAPES AND LOCOMOTIVE STRATEGIES FOR CONCEPTUAL DESIGNING BIO-INSPIRED ROBOTIC FISH

    Directory of Open Access Journals (Sweden)

    A. I. MAINONG

    2017-01-01

    Full Text Available This paper describes the performance analysis of a conceptual bio-inspired robotic fish design, which is based on the morphology similar to the boxfish (Ostracion melagris. The robotic fish prototype is driven by three micro servos; two on the pectoral fins, and one on the caudal fin. Two electronic rapid prototyping boards were employed; one for the movement of robotic fish, and one for the force sensors measurements. The robotic fish were built using fused deposition modeling (FDM, more popularly known as the 3D printing method. Several designs of pectoral fins (rectangular, triangular and quarter-ellipse with unchanging the value of aspect ratio (AR employed to measure the performance of the prototype robotic fish in terms of hydrodynamics, thrust and maneuvering characteristics. The analysis of the unmanned robotic system performance is made experimentally and the results show that the proposed bioinspired robotic prototype opens up the possibility of design optimization research for future work.

  12. Formulation and Design of a CO2 Utilization Network Detailed Through a Conceptual Example

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Gani, Rafiqul

    information is available to describe the network mathematically, the most promising paths based on known technologies are designed and analyzed first. This makes the stages iterative rather than purely sequential. As part of this, the network is analyzed in the conceptual example of methanol synthesis via CO2...... for economic feasibility and environmental sustainability. Using computer-aided methods, the feasibility and sustainability of CO2 conversion is shown through the design and optimization of a methanol synthesis process....... involves three stages: a process synthesis stage, a design stage and an innovation stage. Following a superstructure based approach, a network of conversion processes is created. This network links CO2 and products through various processing blocks. The network also links carbon capture to ensure...

  13. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  14. Conceptual design on uranium recovery plant from seawater

    International Nuclear Information System (INIS)

    Kato, Toshiaki; Okugawa, Katsumi; Sugihara, Yutaka; Matsumura, Tsuyoshi

    1999-01-01

    Uranium containing in seawater is extremely low concentration, which is about 3 mg (3 ppb) per 1 ton of seawater. Recently, a report on development of a more effective collector of uranium in seawater (a radiation graft polymerization product of amidoxime onto polyethylene fiber) was issued by Japan Atomic Energy Research Institute. In this paper, an outline design of a uranium recovery plant from seawater was conducted on a base of the collector. As a result of cost estimation, the collection cost of seawater uranium using this method was much higher than that of uranium mine on land and described in the Red Book for mineral uranium cost. In order to make the seawater uranium cost comparable to the on-land uranium cost, it is necessary to establish comprehensive efforts in future technical development, such as development in absorption property of uranium with the collector, resolution method using less HCl, and so forth. (G.K.)

  15. Conceptual design study of 1985 commercial tilt rotor transports. Volume 3. STOL design summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sambell, K.W.

    1976-04-01

    A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability. (GRA)

  16. Conceptual process design for uranium recovery from sea water

    International Nuclear Information System (INIS)

    Suzuki, Motoyuki; Chihara, Kazuyuki; Fujimoto, Masahiko; Yagi, Hiroshi; Wada, Akihiko.

    1985-01-01

    Based on design of uranium recovery process from sea water, total cost for uranium production was estimated. Production scale of 1,000 ton-uranium per year was supposed, because of the big demand for uranium in the second age, i.e., fast breeder reactor age. The process is described as follows: Fluidized bed of hydrous titanium oxide (diameter is 0.1 mm, saturated adsorption capacity is 510 μg-U/g-Ad, adsorption capacity for ten days is 150 μg-U/g-Ad) is supposed, as an example, to be utilized as the primarily concentration unit. Fine adsorbent particles can be transferred as slurry in all of the steps of adsorption, washing, desorption, washing, regeneration. As an example, ammonium carbonate is applied to desorb the adsorbed uranium from titanium oxide. Then, stripping method is adopted for desorbent recovery. As for the secondary concentration, strong basic anion exchange method is supposed. The first step of process design is to determine the mass balance of each component through the whole process system by using the signal diagram. Then, the scale of each unit process, with which the mass balances are satisfied, is estimated by detailed chemical engineering calculation. Also, driving cost of each unit operation is estimated. As a result, minimum total cost of 160,000 yen/kg-U is obtained. Adsorption process cost is 80 to 90 % of the total cost. Capital cost and driving cost are fifty-fifty in the adsorption process cost. Pump driving cost forms a big part of the driving cost. Further concentrated study should be necessary on the adsorption process design. It might be important to make an effort on direct utilization of ocean current for saving the pump driving cost. (author)

  17. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  18. Conceptual Design and Feasibility Analyses of a Robotic System for Automated Exterior Wall Painting

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2008-11-01

    Full Text Available There are approximately 6,677,000 apartment housing units in South Korea. Exterior wall painting for such multi-dwelling apartment housings in South Korea represents a typical area to which construction automation technology can be applied for improvement in safety, productivity, quality, and cost over the conventional method. The conventional exterior wall painting is costly and labor-intensive, and it especially exposes workers to significant health and safety risks. The primary objective of this study is to design a conceptual model of an exterior wall painting robot which is applicable to apartment housing construction and maintenance, and to conduct its technical?economical feasibility analyses. In this study, a design concept using a high ladder truck is proposed as the best alternative for automation of the exterior wall painting. Conclusions made in this study show that the proposed exterior wall painting robot is technically and economically feasible, and can greatly enhance safety, productivity, and quality compared to the conventional method. Finally, it is expected that the conceptual model of the exterior wall painting robot would be efficiently used in various applications in exterior wall finishing and maintenance of other architectural and civil structures such as commercial buildings, towers, and high-rise storage tanks.

  19. Cost analysis of a commercial pyroprocess facility on the basis of a conceptual design in Korea

    International Nuclear Information System (INIS)

    Kim, S.K.; Ko, W.I.; Youn, S.R.; Gao, Ruxing

    2015-01-01

    Highlights: • Pyroprocess facility’s direct cost was calculated based on the conceptual design. • The unit cost of pyroprocess was calculated as $781/kgHM. • The unit cost was increased by 3%, considering labor allocation standards. • The operating and maintenance cost was identified as a main cost driver. - Abstract: This study postulated a commercial pyroprocess facility (KAPF+: Korea Advanced Pyroprocess Facility Plus) with a processing capacity of 400 tons/year as a cost object, and utilized an engineering cost estimation method based on a conceptual design to present the results of the total cost and unit cost estimation. According to the calculation results, the total cost and unit cost were calculated with k$779,386 and $781/kgHM, respectively. Moreover, the key cost driver was manifested as the operating and maintenance costs. In particular, equipment replacement cost was identified as an important cost driver. In addition, for an increasingly accurate cost estimation, the calculation results and allocation method of the indirect cost were reanalyzed. Finally the pyroprocess unit cost increased $5 when calculated the indirect cost using the labor time as the allocation standard. Meanwhile, the pyroprocess unit cost increased $22 as a result of allocating the indirect cost using the uniform labor cost as the cost allocation standard. Accordingly, an indirect cost allocation standard was manifested as the factor that exerts a significant effect on the pyroprocess unit cost

  20. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health

  1. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    Science.gov (United States)

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  2. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  3. High-Order Aeromechanics Model Support for Rotorcraft Conceptual Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conceptual design tools for rotorcraft are used to size vehicles for intended flight operations, as well as reveal trends on the relative benefits certain...

  4. Physics-based MDAO tool for CMC blades and vanes conceptual design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will develop a reliability analysis tool consistent with conceptual-level design for ceramic matrix composite (CMC) turbine blades and vanes. The...

  5. Conceptual design of the Purdue compact torus/passive liner fusion reactor

    International Nuclear Information System (INIS)

    Terry, W.K.

    1981-01-01

    This proposal describes a program for the conceptual development of a novel fusion reactor design, the Purdue Compact Torus/Passive Liner Reactor. The key features of the concept are described and a comparison is made with a conventional tokamak

  6. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  7. LMFBR safety testing needs and the conceptual design of a new safety research experiment facility

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Matlock, R.G.; Goldman, A.J.

    1975-09-01

    Experiment needs for the LMFBR safety program are reviewed. The screening of reactor concepts which would meet the needs is described and a conceptual design for a new safety research experiment facility is presented

  8. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  9. A Conceptual Framework for the Indirect Method of Reporting Net Cash Flow from Operating Activities

    Science.gov (United States)

    Wang, Ting J.

    2010-01-01

    This paper describes the fundamental concept of the reconciliation behind the indirect method of the statement of cash flows. A conceptual framework is presented to demonstrate how accrual and cash-basis accounting methods relate to each other and to illustrate the concept of reconciling these two accounting methods. The conceptual framework…

  10. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  11. Conceptual framework for the design and conception of an electronic trade platform in agribusiness

    OpenAIRE

    Hausen, Tobias; Helbig, Ralf; Schiefer, Gerhard

    2002-01-01

    This article gives an overview of a conceptual framework for the designing and implementation of an electronic trade platform. The trade platform prototype is the basis of a general conception for the design and implementation of internet-based trade platforms in agribusiness. The main platform focus related to the concept are to convert traditional business relationships and transactions into an electronic system. The conceptual framework provides clarification with regard to the benefit of ...

  12. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  13. Conceptual design of a conveyor system for the Philippine multipurpose cobalt-60 gamma irradiation facility

    International Nuclear Information System (INIS)

    Borras, A.M.

    1992-01-01

    The Multipurpose Cobalt-60 Gamma Irradiation Facility at the PNRI presently utilizes the batch irradiation method using turntables to rotate the product boxes. The target materials or products are being carried manually or with the use of pushcart through the personnel maze. This paper presents a conceptual design for the best suitable product-handling or conveyor system for the Philippine Multipurpose Cobalt-60 Gamma Irradiation Facility. The main irradiation conveyor line shall be a 55 cm x 200 cm slat-type conveyor made of SUS 304 material that could be operated in a semi-batch continuous flow and/or shuffle-dwell method with a tact-time range of 10 min to 7 h. The products can be irradiated in a single direction, two-pass, two-sided method. (auth.). 11 refs.; 4 figs.; 2 tabs

  14. Status of Astrid Architecture and Pre-Conceptual Design

    International Nuclear Information System (INIS)

    Alphonse, Philippe; Perrin, Jean-Lou; Gama, Philippe

    2013-01-01

    After this first third party of pre-conceptual studies, 2 ASTRID models are still in the box: - steam model, with steam genarators (water/sodium exchangers..) and ‘classical’ steam turbine...; - gas model, with sodium/gas exchangers and pioneering gas turbine / compressor system. For the two models, the reactor would be the same but we select differents options to have one configuration for one model ..and we draw 2 differents layout from reactor to alternator. • With CAO soft use also for EDF EPR reactor (PDMS). • In a more simple version to make data and layouts parts exchanges easier in this project’s beginning

  15. Designing courses for the Internet. A conceptual approach.

    Science.gov (United States)

    Carlton, K H; Ryan, M E; Siktberg, L L

    1998-01-01

    One current higher education paradigm shift is the movement from traditional classroom settings and interactive television satellite transmission to course and program delivery via the World Wide Web (WWW). The authors describe the experiences of faculty in reconceptualizing and redesigning course and program delivery via the Internet. An electronic "template" has been collaboratively developed by multidisciplinary university partners to facilitate this work. The template incorporates an advanced nursing practice conceptual framework based on American Association of Colleges of Nursing (AACN) core educational essentials for advanced practice combined with a continuum of electronic course tools. Strategies, tools, and applications are discussed.

  16. Postmodern Software Design with NYAM: Not Yet Another Method

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Broy, M.; Rumpe, B.

    1998-01-01

    This paper presents a conceptual toolbox for software specification and design that contains techniques from structured and object-oriented specification and design methods. The toolbox is called TRADE (Toolkit for Requirements and Design Engineering). The TRADE tools are used in teaching

  17. Conceptualization of Design Safety Aspect and Seismic Qualification to Structure, System and Nuclear Power Plant Components

    International Nuclear Information System (INIS)

    Akhmad Muktaf Haifani

    2009-01-01

    Conceptualization of Design Safety Aspect and Seismic Qualification To Structure, System and Nuclear Power Plant Components. This paper discuss about earthquake base design that is classified based on level of probability occurrences to be seismic level 1 (SL-1) related with operation requirement and seismic level 2 (SL-2) related with the most strict requirement. Such recommendation should be given to classify structure, system and component of nuclear power plant into four categories based on functional requirements of safety during and after earthquake, load combination, as well as code design in order to define seismic characteristics. Seismic categorization of structure, system and component will differ between PWR and BWR based on type of cooling system and also level of theirs safety. Analysis method suggested in this paper use direct method (dynamic time history, dynamic spectrum response analysis, static equivalent analysis, and table and graphic analysis) and in direct method (comparison between the same qualifications). By implementing this design concept, earthquake with design concept on site will not endanger the safety of nuclear power plant installation. (author)

  18. Conceptual design of technical security systems for Russian nuclear facilities physical protection

    International Nuclear Information System (INIS)

    Izmailov, A.V.

    1995-01-01

    Conceptual design of technical security systems (TSS) used in the early stages of physical protection systems (PPS) design for Russia nuclear facilities is discussed. The importance of work carried out in the early stages was noted since the main design solutions are being made within this period (i.e. selection of a structure of TSS and its components). The methods of analysis and synthesis of TSS developed by ''Eleron'' (MINATOM of Russia) which take into account the specific conditions of Russian nuclear facilities and a scope of equipment available are described in the review. TSS effectiveness assessment is based on a probability theory and a simulation. The design procedure provides for a purposeful choice of TSS competitive options including a ''cost-benefit'' criterion and taking into account a prechosen list of design basis threats to be used for a particular facility. The attention is paid to a practical aspect of the methods application as well as to the bilateral Russian-American scientific and technical co-operation in the PPS design field

  19. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  20. Conceptual Model for the Design of a Serious Video Game Promoting Self-Management among Youth with Type 1 Diabetes

    OpenAIRE

    Thompson, Debbe; Baranowski, Tom; Buday, Richard

    2010-01-01

    Video games are a popular form of entertainment. Serious video games for health attempt to use entertainment to promote health behavior change. When designed within a framework informed by behavioral science and supported by commercial game-design principles, serious video games for health have the potential to be an effective method for promoting self-management behaviors among youth with diabetes. This article presents a conceptual model of how this may be achieved. It concludes by identify...

  1. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    Science.gov (United States)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  2. Conceptual design study for the demonstration reactor of JSFR. (3) Safety design and evaluation

    International Nuclear Information System (INIS)

    Tani, Akihiro; Shimakawa, Yoshio; Kubo, Shigenobu; Fujimura, Ken; Yamano, Hidemasa

    2011-01-01

    This paper describes the result of conceptual safety design and evaluation for the demonstration plant of Japan sodium-cooled fast reactor (JSFR), which was preliminarily conducted for providing information necessary to decide the plant specification for further design study. The plant major specifications except for output power and safety design concept are almost the same as those of the commercial JSFR. A set of safety evaluation for typical design basis events (DBEs) is mainly focused here, which was conducted for the 750 MWe design. Safety analyses for DBEs evaluation were performed on the basis of conservative assumptions using a one-dimensional flow network code with point kinetics. For representative DBEs, transient over power type events and loss of flow type events were analyzed. The long-term loss-of-offsite power event was also calculated to evaluate the natural circulation decay heat removal system. All analytical results showed to meet tentative safety criteria, thus it was confirmed that the safety design concept of JSFR is feasible against DBEs. (author)

  3. Ontologies and Formation Spaces for Conceptual ReDesign of Systems

    Directory of Open Access Journals (Sweden)

    J. Bíla

    2005-01-01

    Full Text Available This paper discusses ontologies, methods for developing them and languages for representing them. A special ontology for computational support of the Conceptual ReDesign Process (CRDP is introduced with a simple illustrative example of an application. The ontology denoted as Global context (GLB combines features of general semantic networks and features of UML language. The ontology is task-oriented and domain-oriented, and contains three basic strata – GLBExpl(stratum of Explanation, GLBFAct (stratum of Fields of Activities and GLBEnv (stratum of Environment, with their sub-strata. The ontology has been developed to represent functions of systems and their components in CRDP. The main difference between this ontology and ontologies which have been developed to identify functions (the semantic details in those ontologies must be as deep as possible is in the style of the description of the functions. In the proposed ontology, Formation Spaces were used as lower semantic categories the semantic deepness of which is variable and depends on the actual solution approach of a specialised Conceptual Designer.

  4. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  5. Method card design dimensions

    DEFF Research Database (Denmark)

    Wölfel, Christiane; Merritt, T.

    2013-01-01

    There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers. T...

  6. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2

    Science.gov (United States)

    Magee, J. P.; Clark, R.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.

  7. A knowledge management methodology for the integrated assessment of WWTP configurations during conceptual design.

    Science.gov (United States)

    Garrido-Baserba, M; Reif, R; Rodriguez-Roda, I; Poch, M

    2012-01-01

    The current complexity involved in wastewater management projects is arising as the XXI century sets new challenges leading towards a more integrated plant design. In this context, the growing number of innovative technologies, stricter legislation and the development of new methodological approaches make it difficult to design appropriate flow schemes for new wastewater projects. Thus, new tools are needed for the wastewater treatment plant (WWTP) conceptual design using integrated assessment methods in order to include different types of objectives at the same time i.e. environmental, economical, technical, and legal. Previous experiences used the decision support system (DSS) methodology to handle the specific issues related to wastewater management, for example, the design of treatment facilities for small communities. However, tools developed for addressing the whole treatment process independently of the plant size, capable of integrating knowledge from many different areas, including both conventional and innovative technologies are not available. Therefore, the aim of this paper is to present and describe an innovative knowledge-based methodology that handles the conceptual design of WWTP process flow-diagrams (PFDs), satisfying a vast number of different criteria. This global approach is based on a hierarchy of decisions that uses the information contained in knowledge bases (KBs) with the aim of automating the generation of suitable WWTP configurations for a specific scenario. Expert interviews, legislation, specialized literature and engineering experience have been integrated within the different KBs, which indeed constitute one of the main highlights of this work. Therefore, the methodology is presented as a valuable tool which provides customized PFD for each specific case, taking into account process unit interactions and the user specified requirements and objectives.

  8. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  9. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  10. Real-time measurement of perceptual qualities in conceptual design

    NARCIS (Netherlands)

    Bittermann, M.; Ciftcioglu, O.

    2006-01-01

    Implications of design decisions are hard to oversee for designers. This is the case in particular with respect to decisions, which influence perception related qualities of designs. Such qualities are for example visual openness, visual privacy, and spatial intimacy. They are difficult to measure

  11. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    1988-05-01

    The design study of Fusion Experimental Reactor(FER) which has been proposed to be the next step fusion device has been conducted by JAERI Reactor System Laboratory since 1982 and by FER design team since 1984. This is the final report of the FER design team program and describes the results obtained in FY1987 (partially in FY1986) activities. The contents of this report consist of the reference design which is based on the guideline in FY1986 by the Subcomitees set up in Nuclear Fusion Council of Atomic Energy Commission of Japan, the Low-Physics-Risk reactor design for achieving physics mission more reliably and the system study of FER design candidates including above two designs. (author)

  12. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  13. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  14. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  15. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  16. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  17. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  18. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Volume I. Conceptual design report

    International Nuclear Information System (INIS)

    1978-12-01

    In February 1976, the Energy Research and Development Administration (ERDA), now the Department of Energy (DOE), established a National Waste Terminal Storage (NWTS) program. As a part of this program, two parallel conceptual design efforts were initiated in January 1977. One was for deep geologic storage, in domed salt, of high level waste resulting from the reprocessing of spent fuel. The other was for deep geologic storage of unreprocessed spent fuel in bedded salt. These two concepts are identified as NWTS Repository 1 and Repository 2, respectively. Repository 2 (NWTSR2) is the concept which is covered by this Conceptual Design Report. Volume I of the conceptual design report contains the following information: physical description of the report; project purpose and justification; principal safety, fire, and health hazards; environmental impact considerations; quality assurance considerations; assessment of operational interfaces; assessment of research and development interfaces; project schedule; proposed method of accomplishment; summary cost estimate; and outline specifications. The conceptual design for Repository 2 was developed in sufficient detail to permit determination of scope, engineering feasibility, schedule, and cost estimates, all of which are necessary for planning and budgeting the project

  19. The Primary Experiments of an Analysis of Pareto Solutions for Conceptual Design Optimization Problem of Hybrid Rocket Engine

    Science.gov (United States)

    Kudo, Fumiya; Yoshikawa, Tomohiro; Furuhashi, Takeshi

    Recentry, Multi-objective Genetic Algorithm, which is the application of Genetic Algorithm to Multi-objective Optimization Problems is focused on in the engineering design field. In this field, the analysis of design variables in the acquired Pareto solutions, which gives the designers useful knowledge in the applied problem, is important as well as the acquisition of advanced solutions. This paper proposes a new visualization method using Isomap which visualizes the geometric distances of solutions in the design variable space considering their distances in the objective space. The proposed method enables a user to analyze the design variables of the acquired solutions considering their relationship in the objective space. This paper applies the proposed method to the conceptual design optimization problem of hybrid rocket engine and studies the effectiveness of the proposed method.

  20. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  1. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  2. Conceptual Design and Simulation of a Miniature Plasma Focus

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.; Amrollahi, R.

    2012-01-01

    Design and construction of a miniature plasma focus device with 3.6 J of energy bank is reported. In design the device, some of very important parameters of designing such as plasma energy density and derive parameter was used. Regarding to the electrical and geometrical parameters of the device, a simulation is carried out by MATLAB software. Simulation results showed that the formation of the pinch have occurred at the moment of the peak discharge current.

  3. Conceptual design of the INTOR first-wall system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described.

  4. Conceptual design of the INTOR first-wall system

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described

  5. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    International Nuclear Information System (INIS)

    Doyle, R.E.

    1989-01-01

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems

  6. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  7. Conceptual design of a device to measure hand swelling in a micro-gravity environment

    Science.gov (United States)

    Hysinger, Christopher L.

    1993-01-01

    In the design of pressurized suits for use by astronauts in space, proper fit is an important consideration. One particularly difficult aspect of the suit design is the design of the gloves. If the gloves of the suit do not fit properly, the grip strength of the astronaut can be decreased by as much as fifty percent. These gloves are designed using an iterative process and can cost over 1.5 million dollars. Glove design is further complicated by the way the body behaves in a micro-gravity environment. In a micro-gravity setting, fluid from the lower body tends to move into the upper body. Some of this fluid collects in the hands and causes the hands to swell. Therefore, a pair of gloves that fit well on earth may not fit well when they are used in space. The conceptual design process for a device which can measure the swelling that occurs in the hands in a micro-gravity environment is described. This process involves developing a specifications list and function structure for the device and generating solution variants for each of the sub functions. The solution variants are then filtered, with the variants that violate any of the specifications being discarded. After acceptable solution variants are obtained, they are combined to form design concepts. These design concepts are evaluated against a set of criteria and the design concepts are ranked in order of preference. Through this process, the two most plausible design concepts were an ultrasonic imaging technique and a laser mapping technique. Both of these methods create a three dimensional model of the hand, from which the amount of swelling can be determined. In order to determine which of the two solutions will actually work best, a further analysis will need to be performed.

  8. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  9. ITER hydrogen isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1990-01-01

    This paper presents integrated hydrogen Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar with the only major difference being the requirement for an additional large water distillation column for ALSB water detritiation. The extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600 g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180 g, which is less than the ITER single-failure release limit of 200 g. Further design optimization and isolation of components is expected to reduce the inventory further. (orig.)

  10. Conceptual design of a radio-frequency driven compact tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Ludwig, G.O.; Montes, A.; Ueda, M.; Goes, L.C.S.

    1987-09-01

    Preliminary results of the design of a small compact tokamak are presented. The design incorporates advanced concepts as start-up and current drive by electron-cyclotron and lower-hybrid waves; plasma heating by intense ion beams; and achievement of high-β by decreasing the aspect ratio. (author) [pt

  11. EnergyFacade - Operational energy optimisation for conceptual facade design

    NARCIS (Netherlands)

    Heidegger, V.; Coenders, J.L.; Rolvink, A.

    2014-01-01

    This paper presents the results of the investigation into the possibilities for the implementation of a Building Performance Simulation design toolbox during the early stages of façade design, based on the sustainability-open framework [2]. The background and development of the EnergyFacade toolbox

  12. Conceptual design of a telecommunications equipment container for humanitarian logistics

    Directory of Open Access Journals (Sweden)

    Stella Parisi

    2017-05-01

    Full Text Available Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication centre in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

  13. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    Science.gov (United States)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  14. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  15. A Traceability-based Method to Support Conceptual Model Evolution

    OpenAIRE

    Ruiz Carmona, Luz Marcela

    2014-01-01

    Renewing software systems is one of the most cost-effective ways to protect software investment, which saves time, money and ensures uninter- rupted access to technical support and product upgrades. There are several mo- tivations to promote investment and scientific effort for specifying systems by means of conceptual models and supporting its evolution. As an example, the software engineering community is addressing solutions for supporting model traceability, continuous improvement of busi...

  16. Conceptual design by analysis of KALIMER seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are (1) the establishment of seismic design basis, (2) the development of seismic analysis model of KALIMER, (3) the modal analysis, (4) seismic time history analysis, (5) the evaluations of seismic isolation performance and seismic design margins, and (6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new.

  17. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    Science.gov (United States)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating

  18. Conceptual design of a manned orbital transfer vehicle

    Science.gov (United States)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  19. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  20. New industrial park energy supply (NIPES) conceptual design: executive summary

    International Nuclear Information System (INIS)

    1984-01-01

    The NIPES concept was originally envisioned as an energy supply source for new industrial plants in new industrial parks. However, the concept is readily adaptable to a combination of new and existing industrial plants. The concept is intended to minimize the problems associated with the use of coal in industrial applications as well as to improve the efficiency of energy utilization. Information is presented concerning a description of the NIPES concept; application of NIPES concept to Lake Charles, Louisiana; coal-fired plant design; nuclear plant design; thermal transmission system design; financial analysis; capital cost estimates; and results of financial analysis

  1. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.E.

    1989-10-20

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems. (LSP)

  2. Organic, bionics & blob design - conceptual and methodological clarification

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl

    2015-01-01

    Industrial design is a young field of science that works together with many disciplines, borrows concepts and constructs metaphors for product characterization and phenomenon description. The meaning of the penetrative or constructed concepts is crystallized over time through academic writings...

  3. Connecting Practice, Theory and Method: Supporting Professional Doctoral Students in Developing Conceptual Frameworks

    Science.gov (United States)

    Kumar, Swapna; Antonenko, Pavlo

    2014-01-01

    From an instrumental view, conceptual frameworks that are carefully assembled from existing literature in Educational Technology and related disciplines can help students structure all aspects of inquiry. In this article we detail how the development of a conceptual framework that connects theory, practice and method is scaffolded and facilitated…

  4. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  5. Conceptual design report of hot cell modification and process for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report.

  6. Conceptual design report of hot cell modification and process for fission Mo-99 production

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C.

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report

  7. Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Ewing, J.J.; Center, R.E.; Mumola, P.; Olson, T.

    1981-01-01

    The results of a conceptual design for an angular multiplexed 50 kJ KrF amplifier for ICF are presented. Optical designs, amplifier scaling with a KrF kinetics code and limitations imposed by pulsed power technology are described

  8. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis of...

  9. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  10. Central repository for low- and intermediate-level waste (ALMA) conceptual design, siting and safety study

    International Nuclear Information System (INIS)

    Kjellbert, N.; Haeggblom, H.; Cederstroem, M.; Lundgren, T.

    1980-07-01

    A generic design, siting and safety study of a proposed repository for low- and intermediate-level waste has been made. Special emphasis has been placed on safety characterostics. The conceptual design and the generic site, on which the study is based, are realistically chosen in accordance with present construction techniques and the existing geohydrological conditions in Sweden. (Auth.)

  11. Development of a System Level Tool for Conceptual Design of Small Satellites

    NARCIS (Netherlands)

    Aas, C.L.O.; Zandbergen, B.T.C.; Hamann, R.J.; Gill, E.K.A.

    2009-01-01

    The process of developing a tool aiming for conceptual design of nano- and microsatellites is described. The various challenges and derived solutions are discussed. The final product offers systems engineers a fast way to analyze the feasibility of a particular design concept. The tool differs from

  12. Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Norajitra, Prachai E-mail: prachai.norajitra@imf.fzk.dc; Buehler, Leo; Fischer, Ulrich; Gordeev, Serguei; Malang, Siegfried; Reimann, Gunter

    2003-09-01

    The dual-coolant (DC) blanket--characterised by its simple construction, simple function, and high thermal efficiency--is one of the EU advanced blanket concepts to be investigated in the frame of the long-term power plant conceptual study (PPCS). Its basic concept is based on the use of helium-cooled ferritic steel structure, the self-cooled Pb-17Li breeding zone, and SiC/SiC flow channel inserts, serving as electrical and thermal insulators. The present work on PPCS is drawn extensively on the preparatory study on plant availability carried out in 1999 with an objective to perform the conceptual design of the DC blanket concept where some details are to be selected in accordance with the overall strategy, which allows an extrapolation of the present knowledge between the near-term solutions (helium-cooled pebble bed (HCPB), water-cooled lead-lithium (WCLL) blanket concepts), and the very advanced self-cooled Pb-17Li SiC/SiC (SCLL) blanket concept. In the PPCS the reactor power is adapted to a typical size of commercial reactors of 1500 MWe which requires iterative calculations between the blanket layout and the system code analysis. The results of the first iteration are reported. This work is under the coordination of FZK in co-operation with CEA, EFET, IBERTEF, UKAEA, VTT Processes and VR.

  13. Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study

    International Nuclear Information System (INIS)

    Norajitra, Prachai; Buehler, Leo; Fischer, Ulrich; Gordeev, Serguei; Malang, Siegfried; Reimann, Gunter

    2003-01-01

    The dual-coolant (DC) blanket--characterised by its simple construction, simple function, and high thermal efficiency--is one of the EU advanced blanket concepts to be investigated in the frame of the long-term power plant conceptual study (PPCS). Its basic concept is based on the use of helium-cooled ferritic steel structure, the self-cooled Pb-17Li breeding zone, and SiC/SiC flow channel inserts, serving as electrical and thermal insulators. The present work on PPCS is drawn extensively on the preparatory study on plant availability carried out in 1999 with an objective to perform the conceptual design of the DC blanket concept where some details are to be selected in accordance with the overall strategy, which allows an extrapolation of the present knowledge between the near-term solutions (helium-cooled pebble bed (HCPB), water-cooled lead-lithium (WCLL) blanket concepts), and the very advanced self-cooled Pb-17Li SiC/SiC (SCLL) blanket concept. In the PPCS the reactor power is adapted to a typical size of commercial reactors of 1500 MWe which requires iterative calculations between the blanket layout and the system code analysis. The results of the first iteration are reported. This work is under the coordination of FZK in co-operation with CEA, EFET, IBERTEF, UKAEA, VTT Processes and VR

  14. Capturing Design : Improving conceptual ship design through the capture of design rationale

    NARCIS (Netherlands)

    DeNucci, T.W.

    2012-01-01

    As the complexity of ship design increases, the knowledge used to resolve these complexities is decreasing due to a loss of intellectual resources. In order to remedy these losses, Naval Architects must capitalize on the knowledge available in design teams. The solution to this quandary involves the

  15. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1990-06-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitious -- and challenging -- application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winner in an early technical showdown that occupied the fledgling SSC project. However, some of its gross features can be traced back to three path-breaking superconducting accelerator initiatives under way a decade earlier -- on the East Coast, on the West Coast, and in the Midwest. Other features have a still earlier legacy. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG

  16. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1992-05-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete

  17. Production of C(3)/C(4) Olefins from n-Hexane: Conceptual design of a catalytic oxidative cracking process and comparison to steam cracking

    NARCIS (Netherlands)

    Boyadjian, C.A.; Seshan, Kulathuiyer; Lefferts, Leonardus; van der Ham, Aloysius G.J.; van den Berg, Henderikus

    2011-01-01

    A conceptual design of the catalytic oxidative cracking (COC) of hexane as a model compound of naphtha is reported. The design is based on experimental data which are elaborated through a structural design method to a process flow sheet. The potential of COC as an alternative to steam cracking (SC)

  18. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  19. Parametric study of a canard-configured transport using conceptual design optimization

    Science.gov (United States)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  20. Parametric study of critical constraints for a canard configured medium range transport using conceptual design optimization

    Science.gov (United States)

    Arbuckle, P. D.; Sliwa, S. M.

    1983-01-01

    Constrained parameter optimization was used to perform optimal conceptual design of both canard and conventional configurations of a medium range transport. A number of design constants and design constraints were systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main landing gear location and horizontal stabilizer high-lift performance were identified as critical design parameters for a statically stable, subsonic canard transport.