WorldWideScience

Sample records for concept design studies

  1. Design study of prestressed rotor spar concept

    Science.gov (United States)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  2. Engineering study for ISSTRS design concept

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  3. Proximity operations concept design study, task 6

    Science.gov (United States)

    Williams, A. N.

    1990-01-01

    The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.

  4. Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.

  5. KALIMER design concept report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sub, Sim Yoon; Kim, Yeon Sik; Whan, Wim Myung; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon

    1997-07-01

    KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs.

  6. KALIMER design concept report

    International Nuclear Information System (INIS)

    Park, Chang Kyu; Kim, Young Cheol; Kim, Young In; Kim, Young Gyun; Kim, Eui Kwang; Song, Hoon; Chung, Hyun Tai; Hwang, Woan; Nam, Cheol; Sim Yoon Sub; Kim, Yeon Sik; Wim Myung Whan; Min, Byung Tae; Yoo, Bong; Lee, Jae Han; Lee, Hyeong Yeon; Kim, Jong Bum; Koo, Gyeong Hoi; Ham, Chang Shik; Kwon, Kee Choon; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Lee, Yong Hee; Kim, Chang Hwoi; Sim, Bong Shick; Hahn, Do Hee; Choi, Jong Hyeun; Kwon, Sang Woon.

    1997-07-01

    KAERI is working for the development of KALIMER and work is being done for methodology development, experimental facility set up and design concept development. The development target of KALIMER has been set as to make KALIMER safer, more economic, more resistant to nuclear proliferation, and yield less impact on the environment. To achieve the target, study has been made for setting up the design concept of KALIMER including the assessment of various possible design alternatives. This report is the results of the study for the KALIMER concept study and describes the design concept of KALIMER. The developed design concept study and describes the design concept of KALIMER. The developed design concept is to be used as the starting point of the next development phase of conceptual design and the concept will be refined and modified in the conceptual design phase. The scope of the work has been set as the NSSS and essential BOP systems. For systems, NSSS and functionally related major BOP are covered. Sizing and specifying conceptual structure are covered for major equipment. Equipment and piping are arranged for the parts where the arrangement is critical in fulfilling the foresaid intention of setting up the KALIMER design concept. This report consists of 10 chapters. Chapter 2 is for the top level design requirements of KALIMER and it serves as the basis of KALIMER design concept development. Chapter 3 summarizes the KALIMER concept and describes the general design features. The remaining chapters are for specific systems. (author). 29 tabs., 37 figs

  7. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  8. Study of the reactor relevance of the NET design concept

    International Nuclear Information System (INIS)

    Reynolds, P.; Worraker, W.J.

    1987-08-01

    The objective of the study was to explore the reactor relevance of NET, i.e. whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration power reactor (DEMO). The main areas of study were those near to the plasma, namely the divertor, first wall and tritium breeding blanket. Other aspects which were investigated were tritium permeation and recovery, reactor maintenance, afterheat and effects of disruptions. The principal results of the study are briefly presented; the details of the work are given in fourteen appendices. These appendices were selected for INIS and indexed separately. The overall conclusion of the study is that the NET design is only partly relevant to the design requirements of a DEMO reactor. (U.K.)

  9. Concept Study for Military Port Design Using Natural Processes.

    Science.gov (United States)

    1982-06-15

    concept, which he called pressure retarded osmosis. In his system "the volume-enhanced brine would be subsequently depressurized through a hydroturbine ...pressure gradient, i.e. the flux is "uphill". The subsequent depressurization of the permeate through a hydroturbine -generator set would produce

  10. Subseabed radionuclide migration studies and preliminary repository design concepts

    International Nuclear Information System (INIS)

    Brush, L.H.

    1982-01-01

    Geochemical research carried out by the US Subseabed Disposal Program is described. Data from studies of high-temperature interactions between sediments and pore water (seawater) and from studies of sorption and diffusion of radionuclides in oxidized, deep-sea sediments are used, along with results from heat transfer studies, to predict migration rates of raionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging. Fission products with moderate K/sub D/ values (10 2 to 10 5 ml/g) and actinides with high K/sub D/ values (10 3 to 10 6 ml/g) would not migrate significant distances before decaying to innocuous concentrations. Among this group are 137 Cs, 90 Sr, and 239 Pu. The results for anionic species in oxidized sediments are less encouraging. Planning for field verification of these laboratory and modeling studies is currently under way. Conceptual repository designs and emplacement options are also described. 33 references, 15 figures, 1 table

  11. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  12. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    Science.gov (United States)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; hide

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  13. New Approach to Concept Feasibility and Design Studies for Astrophysics Missions

    Science.gov (United States)

    Deutsch, M. J.; McLaughlin, W.; Nichols, J.

    1998-01-01

    JPL has assembled a team of multidisciplinary experts with corporate knowledge of space mission and instrument development. The advanced Concept Design Team, known as Team X, provides interactive design trades including cost as a design parameter, and advanced visualization for pre-Phase A Studies.

  14. Design and performance study of the helium-cooled T-tube divertor concept

    International Nuclear Information System (INIS)

    Ihli, T.; Raffray, A.R.; Abdel-Khalik, S.I.; Shin, S.

    2007-01-01

    The ARIES-CS study has been launched with the goal of developing through physics and engineering optimization an attractive power plant concept based on a compact stellarator configuration. The study included an effort to characterize the divertor location and corresponding heat load distribution, and to develop a He-cooled divertor concept that could accommodate a heat flux of at least 10 MW/m 2 , and that would integrate well with the other power core components. This paper describes the design study of this divertor concept, which, although developed for a compact stellarator, is well suited for a tokamak configuration also

  15. The Seismographic Design Concept

    DEFF Research Database (Denmark)

    Salamon, Karen Lisa; Engholm, Ida

    2015-01-01

    This article gives an overview of the theoretical development of the design concept through two centuries in Europe and North America. Drawing on the academic disciplines of design history and anthropology, the authors present seminal moments in the theorization of “design”. Historically formativ...... argues for a more historically reflective glance on theory’s influence on the moulding of practice from ideology also in the context of design, and presents itself as a step in this self reflective direction....

  16. A concept study of a carbon spar cap design for a 80m wind turbine blade

    International Nuclear Information System (INIS)

    Rosemeier, M; Bätge, M

    2014-01-01

    The buckling resistance is a key design driver for large wind turbine blades with a significant influence on the material costs. During the structural design process the choice was made for carbon spar caps and two shear webs, which were set relatively far apart in order to stabilize the panels. This design presented a major challenge for the stability of the spar caps. The topology of these spar caps has been modified with regard to stability, comparing a continuous spar cap with split spar cap concepts and considering both lay-ups with hybrid carbon glass spar caps or sandwich concepts. Within those concepts, parametric studies were conducted varying different geometrical parameters of the spar caps and its layups. In order to determine the buckling resistance of the spar cap, an analytical model considering a 2D cross section discretized blade model was utilized to select the basic concept, after which a 3D numerical finite element model taking the whole blade into account was used to evaluate the chosen design concepts. The stability limit state analysis was conducted according to the certification scheme of GL guideline 2012. The various concepts were evaluated based on the blade's mass, tip deflection and modal properties. The results of this design process of the spar caps and the evaluation of the used analysis tools are presented within the paper

  17. Divertor remote handling for DEMO: Concept design and preliminary FMECA studies

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2015-10-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.

  18. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  19. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  20. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  1. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    Science.gov (United States)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  2. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  3. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  4. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  5. A new mix design concept for earth-moist concrete: A theoretical and experimental study

    NARCIS (Netherlands)

    Hüsken, Götz; Brouwers, Jos

    2008-01-01

    This paper addresses experiments on earth-moist concrete (EMC) based on the ideas of a new mix design concept. First, a brief introduction into particle packing and relevant packing theories is given. Based on packing theories for geometric packing, a new concept for the mix design of earth-moist

  6. Conceptual study of advanced PWR systems. A study of passive and inherent safety design concepts for advanced light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; No, Hee Cheon; Baek, Won Pil; Jae, Shim Young; Lee, Goung Jin; Na, Man Gyun; Lee, Jae Young; Kim, Han Gon; Kang, Ki Sig; Moon, Sang Ki; Kim, Yun Il; Park, Jae Wook; Yang, Soo Hyung; Kim, Soo Hyung; Lee, Seong Wook; Kim, Hong Che; Park, Hyun Sik; Jeong, Ji Hwan; Lee, Sang Il; Jung, Hae Yong; Kim, Hyong Tae; Chae, Kyung Sun; Moon, Ki Hoon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The five thermal-hydraulic concepts chosen for advanced PWR have been studied as follows: (1) Critical Heat Flux: Review of previous works, analysis of parametric trends, analysis of transient CHF characteristics, extension of the CHF date bank, survey and assessment of correlations, design of a intermediate-pressure CHF test loop have been performed. (2) Passive Cooling Concepts for Concrete Containment system: Review of condensation phenomena with noncondensable gases, selection of a promising concept (i.e., use of external condensers), design of test loop according to scaling laws have been accomplished. and computer programs based on the control-volume approach, and the conceptual design of test loop have been accomplished. (4) Fluidic Diode Concepts: Review of previous applications of the concept, analysis major parameters affecting the performance, development of a computational code, and conceptual investigation of the verification test loop have been performed. (5) Wet Thermal Insulator: Review of previous works, selection of promising methods ( i.e. ceramic fiber in a steel case and mirror-type insulator), and conceptual design of the experimental loop have been performed. (author). 9 refs.

  7. Designing concepts and strategies

    DEFF Research Database (Denmark)

    Kiib, Hans

    2012-01-01

    , that new developments often employ very modest research on the subject and often very little has been done in order to challenge traditional concepts and to invent new sustainable concepts for redevelopment. In order to avoid mistakes in urban redevelopment we need to learn from research and evaluation...... of the best planning practice. But what might be just as important is to learn from concept development practice, which can give us a comprehensive understanding of our complex cities and make us develop a way of experiencing the unique qualities of the architectural typologies at the site. Finally...... and strategies are briefly described in the article, and the adaption by city planners and developers has been critical reviewed....

  8. Design of subjects training on reactor simulator and feasibility study - toward the empirical evaluation of interface design concept

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Furukawa, H.; Tanabe, F.

    1998-01-01

    On-going JAERI's project for empirical evaluation of the ecological interface design concept was first described. The empirical evaluation is planned to be proceeded through three consecutive steps; designing and actual implementation of the interface on reactor simulator, verification of the interface created, and the validation by the simulator experiment. For conducting the project, three different experimental resources are prerequisite, that are, data analysis method for identifying the operator's strategies, experimental facility including reactor simulator, and experimental subjects or subjects training method. Among the three experimental resources, subjects training method was recently designed and a simulator experiment was earned out in order to examine the feasibility of the designed training method. From the experiment and analysis of the experimental records, we could conclude that it is feasible that the experimental subjects having an appropriate technical basis can gain the sufficient competence for evaluation work of the interface design concept by using the training method designed. (author)

  9. Optimization design study of an innovative divertor concept for future experimental tokamak-type fusion reactors

    International Nuclear Information System (INIS)

    Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.

    1991-01-01

    The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction

  10. On the Design Concept in Engineering Ethics

    Science.gov (United States)

    Ohishi, Toshihiro

    The purpose of this study is to clarify the meaning of the trendy concept in engineering ethics education that ethical problems should be comprehended from the viewpoint of design. First, I present two objections against the concept and the content of it. Second, I examine the concept and show that the essence of it is pragmatic methods. That is, we should understand ethical problems and design problems pragmatically. Finally, I point out that the objections are not true of this pragmatic understanding.

  11. Design concept definition study for an improved shuttle waste collection subsystem

    Science.gov (United States)

    1984-01-01

    A no-risk approach for developing an Improved Waste Collection Subsystem (WCS) for the shuttle orbiter is described. The GE Improved WCS Concept builds on the experience of 14 Shuttle missions with over 400 man-days of service. This concept employs the methods of the existing flight-proven mature design, augmenting them to eliminate foreseen difficulties and to fully comply with the design requirements. The GE Improved WCS Concept includes separate storage for used wipes. Compaction of the wipes provides a solution to the capacity problem, fully satisfying the 210 man-day storage requirement. The added feature of in-flight serviceable storage space for the wipes creates a variable capacity feature which affords redundancy in the event of wipes compaction system failure. Addition of features permitting in-flight servicing of the feces storage tank creates a variable capacity WCS with easier post-flight servicing to support rapid turnaround of the Shuttle orbiter. When these features are combined with a vacuum pump to evacuate wipes and fecal storage tanks through replaceable odor/bacteria filters to the cabin, the GE Improved WCS satisfies the known requirements for Space Station use, including no venting to space.

  12. ETHICAL FASHION CONCEPT AND DESIGNERS

    Directory of Open Access Journals (Sweden)

    Pinar GOKLUBERK OZLU

    2015-01-01

    Full Text Available Some problems like rapidly developing industrialization, irregular population growth, environmental pollution and to feel the impact of global warming as seriously, has been giving significant damage to the earth. People has realized that, after polluting to clean is harder than polluting of the measures to be taken before. And again people showed the sensitivity to the environment through different reactions and sanctions, took measures and created the new concepts about the enviroment. "Ethical Fashion" concept was created by the conscious and responsible individuals in the last two decades. However, that are being implemented as a concept is noticeable. Textile and fashion industry cover "Ethical Fashion"; ecological product, working conditions, fair trade and sustainable product are all in that concept. "Ethical Fashion" appeared and developed especially in United Kingdom, the USA and the other European countries. Nowadays, we may see a lot of textile and fashion designers, fabric and clothing collections, fairs and some specific courses at the universities about "Ethical Fashion". In this research contains "Ethical Fashion" concept, it's development processes and fashion designers who is working for this concept at the present time, also the main target is in this research, semtinizing "Ethical Fashion" concept.

  13. A study on the design concepts of the PBMR and the GT-MHR

    International Nuclear Information System (INIS)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The major application of the nuclear power in the energy sector has been to produce the electricity. However, a growing concern on the environment and the expected shortage of the fossil energy resources is demanding the expansion of nuclear energy's role in the energy sectors. The High Temperature Gas cooled Reactor (HTGR) has been expected to expand the role of nuclear energy because of its high temperature capability. Especially, the interest on the HTGR has been sharply increased recently related with the production of the hydrogen. About 5 HTGRs had been operated by the end of 1980s. However, all of them had been terminated permanently at the end of 1980s because of their poor system economy and frequent technical troubles. A new concept called MHTGR (Modular High Temperature Gas cooled Reactor) emerged in early of 1990s. Two MHTGR concepts on commercial basis have been developed since then; one is the PBMR (Pebble Bed Modular Reactor) developed by Eskom in South Africa and another is GT-MHR (Gas Turbine Modular High-temperature Reactor) developed by both GA in USA and OKBM in Russia. In this report, the design concepts for the PBMR and GT-MHR were reviewed

  14. A study on the design concepts of the PBMR and the GT-MHR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The major application of the nuclear power in the energy sector has been to produce the electricity. However, a growing concern on the environment and the expected shortage of the fossil energy resources is demanding the expansion of nuclear energy's role in the energy sectors. The High Temperature Gas cooled Reactor (HTGR) has been expected to expand the role of nuclear energy because of its high temperature capability. Especially, the interest on the HTGR has been sharply increased recently related with the production of the hydrogen. About 5 HTGRs had been operated by the end of 1980s. However, all of them had been terminated permanently at the end of 1980s because of their poor system economy and frequent technical troubles. A new concept called MHTGR (Modular High Temperature Gas cooled Reactor) emerged in early of 1990s. Two MHTGR concepts on commercial basis have been developed since then; one is the PBMR (Pebble Bed Modular Reactor) developed by Eskom in South Africa and another is GT-MHR (Gas Turbine Modular High-temperature Reactor) developed by both GA in USA and OKBM in Russia. In this report, the design concepts for the PBMR and GT-MHR were reviewed.

  15. Prefocal station mechanical design concept study for the E-ELT

    Science.gov (United States)

    Jolley, Paul; Brunetto, Enzo; Frank, Christoph; Lewis, Steffan; Marchetti, Enrico

    2016-07-01

    The Nasmyth platforms of the E-ELT will contain one Prefocal Station (PFS) each. The main PFS functional requirements are to provide a focal plane to the three Nasmyth focal stations and the Coudé focus, optical sensing supporting telescope low order optimisation and seeing limited image quality, and optical sensing supporting characterising and phasing of M1 and other telescope subsystems. The PFS user requirements are used to derive the PFS technical requirements specification that will form the basis for design, development and production of the system. This specification process includes high-level architectural decisions and technical performance budget allocations. The mechanical design concepts reported here have been developed in order to validate key system specifications and associated technical budgets.

  16. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  17. Aerospace Engineering Space Mission Concept Feasibility Study: A Neptune Mission Design Example

    Science.gov (United States)

    Esper, Jaime

    2007-01-01

    This viewgraph document reviews the feasibility study of a mission to Neptune. Included are discussions of the science instruments, the design methodology, the trajectory, the spacecraft design, the alternative propulsion systems, (chemical, solar electric (SEP)), the communications systems, the power systems, the thermal system.

  18. IVVS probe mechanical concept design

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it; Neri, Carlo; De Collibus, Mario Ferri; Mugnaini, Giampiero; Pollastrone, Fabio; Crescenzi, Fabio

    2015-10-15

    Highlights: • ENEA designed, developed and tested a laser based In Vessel Viewing System (IVVS). • IVVS mechanical design has been revised from 2011 to 2013 to meet ITER requirements. • Main improvements are piezoceramic actuators and a step focus system. • Successful qualification activities validated the concept design for ITER environment. - Abstract: ENEA has been deeply involved in the design, development and testing of a laser based In Vessel Viewing System (IVVS) required for the inspection of ITER plasma-facing components. The IVVS probe shall be deployed into the vacuum vessel, providing high resolution images and metrology measurements to detect damages and possible erosion. ENEA already designed and manufactured an IVVS probe prototype based on a rad-hard concept and driven by commercial micro-step motors, which demonstrated satisfying viewing and metrology performances at room conditions. The probe sends a laser beam through a reflective rotating prism. By rotating the axes of the prism, the probe can scan all the environment points except those present in a shadow cone and the backscattered light signal is then processed to measure the intensity level (viewing) and the distance from the probe (metrology). During the last years, in order to meet all the ITER environmental conditions, such as high vacuum, gamma radiation lifetime dose up to 5 MGy, cumulative neutron fluence of about 2.3 × 10{sup 17} n/cm{sup 2}, temperature of 120 °C and magnetic field of 8 T, the probe mechanical design was significantly revised introducing a new actuating system based on piezo-ceramic actuators and improved with a new step focus system. The optical and mechanical schemes have been then modified and refined to meet also the geometrical constraints. The paper describes the mechanical concept design solutions adopted in order to fulfill IVVS probe functional performance requirements considering ITER working environment and geometrical constraints.

  19. Analysis of digester design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gas cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.

  20. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  1. Study on Ecological Design Concept of Buton Sultanate Cityscape Based on Local Culture

    Science.gov (United States)

    Mansyur, A.; Gunawan, A.; Munandar, A.

    2017-10-01

    Buton Sultanate Cityscape was constituted of man-made landscape constructed in the era of Buton Sultanate in 1322. It is one of the Indonesian heritage networks proposed to be the world heritage city. The Sultanate cityscape should have the concept of traditional city and refer to the ecological principles. This research was conducted to analyze elements and spatial patterns of Sultanate cityscape based on the ecological principles (eco-design). Descriptive method was utilized in the research by conducting in-depth interviews with the local custom figures and experts of the local culture, literature reviews, and field observations. The main elements of Buton Sultanate Cityscape consisted of palaces, city square, mosque, cemeteries, and settlements, while the supporting elements located outside the city border include mountains, valleys, rivers, and forests. City square is located in the city center surrounded by the palace, cemetery, and mosque. The main pattern of city circulation pattern has formed a simple figure of human body. Ecological principles can be examined from the housing layout paralleled to the road, direction of most city gates facing the east and forests, and the city wall pattern which is closely related to the religious matter.

  2. Evaluation of Standard Concepts Design of Library Interior Physical Environment (Case Study at University of Ma Chung

    Directory of Open Access Journals (Sweden)

    Debri Haryndia Putri

    2016-12-01

    Full Text Available Currently the function of a room is not only used as a shelter, the function of the room itself to be increased as a refreshing or relaxation area for users to follow the development of creativity and technology in the field of design. The comfortable factor becomes the main factor that indicates a successful process of creating a space. No exception library. The nature of library seemed stiff because of its function as a place to read, now can be developed and made into more dynamic with the special design concepts or color patterns used. Libraries can be created a special concept that suits the characteristics of the users themselves. Most users of the library, especially in college libraries are teenagers. Naturally, teenagers like to gather with their friends and we have to facilitate this activity in our library design concept. In addition we can also determine the needs of users through research by questionnaire method. The answers of users can be mapped and drawn conclusions. To explore the research, the author reviewed some literature about library interior design and observed the library of Ma Chung University as a case study. The combined results of the method can be concluded and the discovery of ideal standards of physical environment. So, the library can be made as a comfortable reading environment so as to increased interest in reading behavior and the frequent visits of students in the library.

  3. A study of some recent advances in the concept and design of MHD generators

    International Nuclear Information System (INIS)

    Vakilian, M.

    1976-02-01

    Direct conversion of energy and high temperature working fluid making Magnetohydrodynamics (MHD) power plants potentially much more efficient than steam power stations. The study indicates an overall efficiency of 50% to 60%. This compares with most modern fossil-fuel plants at 40% efficiency. Advances in design and construction of experimental and commercial MHD plants developed in various countries are presented. Environmental effects and advantages of the MHD power plants over the more conventional fossil and nuclear plants are discussed

  4. Concept design and simulation study on a "phantom" anvil for circular stapler.

    Science.gov (United States)

    Rulli, Francesco; Kartheuser, Alex; Amirhassankhani, Sasan; Mourad, Michel; Stefani, Mario; de Ferrá Aureli, Andrés; Sileri, Pierpaolo; Valentini, Pier Paolo

    2015-04-01

    Complications and challenges arising from the intraoperative double-stapling technique are seldom reported in colorectal surgery literature. Partial or full-thickness rectal injuries can occur during the introduction and the advancement of the circular stapler along the upper rectum. The aim of this study is to address some of these issues by designing and optimizing a "phantom" anvil manufactured to overcome difficulties throughout the rectal introduction and advancement of the circular stapler for the treatment of benign and malignant colon disease. The design of the "phantom" anvil has been performed using computer-aided modeling techniques, finite element investigations, and 2 essential keynotes in mind. The first one is the internal shape of the anvil, which is used for the connection to the gun. The second is the shape of the cap, which makes possible the insertion of the gun through the rectum. The "phantom" anvil has 2 functional requirements, which have been taken into account. The design has been optimized to avoid colorectal injuries, neoplastic dissemination (ie, mechanical seeding) and to reduce the fecal contamination. Numerical simulations show that a right combination of both top and bottom fillet radii of the shape of the anvil can reduce the stress for the considered anatomic configuration of >90%. Both the fillet radii at the top and the bottom of the device influence the local stress of the colon rectum. A dismountable device, which is used only for the insertion and advancement of the stapler, allows a dedicated design of its shape, keeping the remainder of the stapler unmodified. Computer-aided simulations are useful to perform numerical investigations to optimize the design of this auxiliary part for both the safety of the patient and the ease of the stapler advancement through the rectum.

  5. Explanatory Versus Pragmatic Trials: An Essential Concept in Study Design and Interpretation.

    Science.gov (United States)

    Merali, Zamir; Wilson, Jefferson R

    2017-11-01

    Randomized clinical trials often represent the highest level of clinical evidence available to evaluate the efficacy of an intervention in clinical medicine. Although the process of randomization serves to maximize internal validity, the external validity, or generalizability, of such studies depends on several factors determined at the design phase of the trial including eligibility criteria, study setting, and outcomes of interest. In general, explanatory trials are optimized to demonstrate the efficacy of an intervention in a highly selected patient group; however, findings from these studies may not be generalizable to the larger clinical problem. In contrast, pragmatic trials attempt to understand the real-world benefit of an intervention by incorporating design elements that allow for greater generalizability and clinical applicability of study results. In this article we describe the explanatory-pragmatic continuum for clinical trials in greater detail. Further, a well-accepted tool for grading trials on this continuum is described, and applied, to 2 recently published trials pertaining to the surgical management of lumbar degenerative spondylolisthesis.

  6. An optioneering and concept design study for the Astrid sodium-gas heat exchanger matrix

    International Nuclear Information System (INIS)

    Hattrell, T.; Lopez-Ramirez, S.; Pilatis, N.

    2014-01-01

    The ASTRID generation IV sodium cooled fast reactor design being developed by the CEA requires a component to transfer heat from the core to the power cycle. One of the ASTRID configurations currently being developed by the CEA uses a sodium to gas heat exchanger (SGHE) to fulfil this function. The design of the SGHE is challenging because of the high temperature of the sodium coolant and the significant pressure differential between the sodium and gas sides of the heat exchanger. This paper presents a study of the options examined for the ASTRID SGHE. A compact, superplastic formed diffusion bonded (SPF-DB) heat exchanger matrix (e.g. SGHE core) is proposed, based on the aerospace technology used by Rolls-Royce to manufacture light and strong wide chord fan blades for gas turbines. The in-house code CHESS is used to examine a number of feasible configurations for the matrix of the heat exchanger component and an optimisation study to maximise the thermal and mechanical performance of the most promising configurations is reported. The optimal matrix geometry identified by the study has a power density for the heat transfer region 157%1 greater than the baseline geometry (authors)

  7. Study on concept of web-based reactor piping design data platform

    International Nuclear Information System (INIS)

    Wang Yu; Zhou Yu; Dong Jianling; Meng Yang

    2005-01-01

    For solving the piping design problems such as design data deficiency, designer communication inconvenience and design project inconsistence, Reactor Piping Design Database Platform, which is the main part of the Integrated Nuclear Project Research Platform, is proposed by analyzing the nuclear piping designs in detail. The functions and system structures of the platform are described in the paper for the sake of the realization of the Reactor Piping Design Database Platform. The platform is constituted by web-based management interface, AutoPlant selected as CAD software, and relation database management system (DBMS). (authors)

  8. The impact of analogies on creative concept generation: lessons from an in vivo study in engineering design.

    Science.gov (United States)

    Chan, Joel; Schunn, Christian

    2015-01-01

    Research on innovation often highlights analogies from sources outside the current problem domain as a major source of novel concepts; however, the mechanisms underlying this relationship are not well understood. We analyzed the temporal interplay between far analogy use and creative concept generation in a professional design team's brainstorming conversations, investigating the hypothesis that far analogies lead directly to very novel concepts via large steps in conceptual spaces (jumps). Surprisingly, we found that concepts were more similar to their preceding concepts after far analogy use compared to baseline situations (i.e., without far analogy use). Yet far analogies increased the team's concept generation rate compared to baseline conditions. Overall, these results challenge the view that far analogies primarily lead to novel concepts via jumps in conceptual spaces and suggest alternative pathways from far analogies to novel concepts (e.g., iterative, deep exploration within a functional space). Copyright © 2014 Cognitive Science Society, Inc.

  9. Environmental concepts in rural Honduras: A case study of their range and application within environmental education design

    Science.gov (United States)

    Bradford, Robert Sanders

    1998-12-01

    The rate of environmental degradation in the Third World continues to present residents of countries like Honduras with conditions that threaten the quality of life and ecological systems. How people conceptualize their environment could be a point of entry into a greater understanding of environmental problems. Through individual interviews and focus group discussions, this study comprises a qualitative examination of the environmental concepts of a sample of 75 rural Hondurans. Analysis of their concepts was used to construct a tentative interpretation of the rural Honduran worldview characteristics of Self, Other, Relationship, Classification, Causality, Time, and Space. The findings of this investigation indicated that rural Hondurans conceptualize their environment through the worldview lenses of survival and poverty, leading to a sense of fatalism when confronting the complex and multifaceted problems associated with quality of life and environmental quality. Analysis of concepts and worldview also indicated that rural Hondurans generally do not believe their environmental problems are solvable, nor do they appear to understand that these problems are also cultural problems whose solutions will most likely require some revision of their current worldview. An educational approach that fosters the integration of compatible environmental concepts into the rural Honduran worldview is recommended through the application of design strategies for a prospective environmental education process.

  10. Design of Concept Libraries for C++

    KAUST Repository

    Sutton, Andrew; Stroustrup, Bjarne

    2012-01-01

    algorithms and data structures and to gain insights into how best to support such concepts within C++. We start with the design of concepts rather than the design of supporting language features; the language design must be made to fit the concepts, rather

  11. Clinical pharmacokinetic study for the effect of glimepiride matrix tablets developed by quality by design concept.

    Science.gov (United States)

    Ahmed, Tarek A; Suhail, Mohammad A A; Hosny, Khaled M; Abd-Allah, Fathy I

    2018-01-01

    Implementation of a new pharmaceutical technique to improve aqueous solubility and thus dissolution, enhancement of drug permeation, and finally formulation of a controlled release tablet loaded with glimepiride (GLMP). Improve GLMP bioavailability and pharmacokinetics in type II diabetic patients. Different polymers were used to enhance aqueous GLMP solubility of which a saturated polymeric drug solution was prepared and physically adsorbed onto silica. An experimental design was employed to optimize the formulation parameters affecting the preparation of GLMP matrix tablets. A compatibility study was conducted to study components interactions. Scanning electron microscope (SEM) was performed before and after the tablets were placed in the dissolution medium. An in vivo study in human volunteers was performed with the optimized GLMP tablets, which were compared to pure and marketed drug products. Enhancement of GLMP aqueous solubility, using the polymeric drug solution technique, by more than 6-7 times when compared with the binary system. All the studied formulation factors significantly affected the studied variables. No significant interaction was detected among components. SEM illustrated the surface and inner tablet structure, and confirmed the drug release which was attributed to diffusion mechanism. The volunteer group administered the optimized GLMP tablet exhibited higher drug plasma concentration (147.4 ng/mL), longer time to reach maximum plasma concentration (4 h) and longer t 1/2 (7.236 h) compared to other groups. Matrix tablet loaded with a physically modified drug form could represent a key solution for drugs with inconsistent dissolution and absorption profiles.

  12. Design studies of Laminar Flow Control (LFC) wing concepts using superplastics forming and diffusion bonding (SPF/DB)

    Science.gov (United States)

    Wilson, V. E.

    1980-01-01

    Alternate concepts and design approaches were developed for suction panels and techniques were defined for integrating these panel designs into a complete LFC 200R wing. The design concepts and approaches were analyzed to assure that they would meet the strength, stability, and internal volume requirements. Cost and weight comparisions of the concepts were also made. Problems of integrating the concepts into a complete aircraft system were addressed. Methods for making splices both chordwise and spanwise, fuel light joints, and internal duct installations were developed. Manufacturing problems such as slot aligment, tapered slot spacing, production methods, and repair techniques were addressed. An assessment of the program was used to developed recommendations for additional research in the development of SPF/DB for LFC structure.

  13. Concept Car Design and Ability Training

    Science.gov (United States)

    Lv, Jiefeng; Lu, Hairong

    The concept design as a symbol of creative design thinking, reflecting on the future design of exploratory and prospective, as a vehicle to explore the notion of future car design, design inspiration and creativity is not only a bold display, more through demonstrate the concept, reflects the company's technological strength and technological progress, and thus enhance their brand image. Present Chinese automobile design also has a very big disparity with world level, through cultivating students' concept design ability, to establish native design features and self-reliant brand image is practical and effective ways, also be necessary and pressing.

  14. Mechatronic Systems Design Methods, Models, Concepts

    CERN Document Server

    Janschek, Klaus

    2012-01-01

    In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of th...

  15. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  16. Experimental study on design verification of new concept for integral reactor safety system

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Choi, Ki Yong; Park, Hyun Sik; Cho, Seok; Park, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa

    2004-01-01

    The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the Steam Generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant

  17. Design and test of a biosensor-based multisensorial system: a proof of concept study.

    Science.gov (United States)

    Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano

    2013-12-04

    Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection

  18. Design and Test of a Biosensor-Based Multisensorial System: A Proof of Concept Study

    Directory of Open Access Journals (Sweden)

    Marco Santonico

    2013-12-01

    Full Text Available Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs. The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes. The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a the characterization of the optical properties of the tested materials; (b the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol

  19. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  20. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  1. ENabling Reduction of Low-grade Inflammation in SEniors Pilot Study: Concept, Rationale, and Design.

    Science.gov (United States)

    Manini, Todd M; Anton, Stephen D; Beavers, Daniel P; Cauley, Jane A; Espeland, Mark A; Fielding, Roger A; Kritchevsky, Stephen B; Leeuwenburgh, Christiaan; Lewis, Kristina H; Liu, Christine; McDermott, Mary M; Miller, Michael E; Tracy, Russell P; Walston, Jeremy D; Radziszewska, Barbara; Lu, Jane; Stowe, Cindy; Wu, Samuel; Newman, Anne B; Ambrosius, Walter T; Pahor, Marco

    2017-09-01

    To test two interventions to reduce interleukin (IL)-6 levels, an indicator of low-grade chronic inflammation and an independent risk factor for impaired mobility and slow walking speed in older adults. The ENabling Reduction of low-Grade Inflammation in SEniors (ENRGISE) Pilot Study was a multicenter, double-blind, placebo-controlled randomized pilot trial of two interventions to reduce IL-6 levels. Five university-based research centers. Target enrollment was 300 men and women aged 70 and older with an average plasma IL-6 level between 2.5 and 30 pg/mL measured twice at least 1 week apart. Participants had low to moderate physical function, defined as self-reported difficulty walking one-quarter of a mile or climbing a flight of stairs and usual walk speed of less than 1 m/s on a 4-m usual-pace walk. Participants were randomized to losartan, omega-3 fish oil (ω-3), combined losartan and ω-3, or placebo. Randomization was stratified depending on eligibility for each group. A titration schedule was implemented to reach a dose that was safe and effective for IL-6 reduction. Maximal doses were 100 mg/d for losartan and 2.8 g/d for ω-3. IL-6, walking speed over 400 m, physical function (Short Physical Performance Battery), other inflammatory markers, safety, tolerability, frailty domains, and maximal leg strength were measured. Results from the ENRGISE Pilot Study will provide recruitment yields, feasibility, medication tolerance and adherence, and preliminary data to help justify a sample size for a more definitive randomized trial. The ENRGISE Pilot Study will inform a larger subsequent trial that is expected to have important clinical and public health implications for the growing population of older adults with low-grade chronic inflammation and mobility limitations. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  2. Comparative design of structures concepts and methodologies

    CERN Document Server

    Lin, Shaopei

    2016-01-01

    This book presents comparative design as an approach to the conceptual design of structures. Primarily focusing on reasonable structural performance, sustainable development and architectural aesthetics, it features detailed studies of structural performance through the composition and de-composition of these elements for a variety of structures, such as high-rise buildings, long-span crossings and spatial structures. The latter part of the book addresses the theoretical basis and practical implementation of knowledge engineering in structural design, and a case-based fuzzy reasoning method is introduced to illustrate the concept and method of intelligent design. The book is intended for civil engineers, structural designers and architects, as well as senior undergraduate and graduate students in civil engineering and architecture. Shaopei Lin and Zhen Huang are both Professors at the Department of Civil Engineering, Shanghai Jiao Tong University, China.

  3. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study.

    Science.gov (United States)

    Adamovich, Sergei V; Fluet, Gerard G; Mathai, Abraham; Qiu, Qinyin; Lewis, Jeffrey; Merians, Alma S

    2009-07-17

    Current neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory. This paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a) the safety and feasibility of this system and b) the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function. None of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time. The system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis. It features a flexible design that allows for the use and further

  4. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  5. ETHICAL FASHION CONCEPT AND DESIGNERS

    OpenAIRE

    Pinar GOKLUBERK OZLU; Kenan SAATCIOGLU

    2015-01-01

    Some problems like rapidly developing industrialization, irregular population growth, environmental pollution and to feel the impact of global warming as seriously, has been giving significant damage to the earth. People has realized that, after polluting to clean is harder than polluting of the measures to be taken before. And again people showed the sensitivity to the environment through different reactions and sanctions, took measures and created the new concepts about the enviroment. "Eth...

  6. The workspace design concept: A new framework of participatory ergonomics

    OpenAIRE

    Broberg, Ole

    2007-01-01

    The concept of Workspace Design is presented as a potential new approach for ergonomists and consultants in the occupational health service. The concept is aimed as an intervention and facilitation strategy in the early stages of design processes leading to new workplaces. Preliminary results from a case study demonstrate how Workspace Design can contribute to a technical change process.

  7. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  8. An engineering study and concept design of the Supervisory Control and Data Acquisition (SCADA) for conventional systems

    International Nuclear Information System (INIS)

    Norman, L.S.

    1993-05-01

    The study objective was to evaluate several conventional equipment SCADA system architectural concepts and to recommend an approach for development. Each of the concepts given consideration had to satisfy the Superconducting Super Collider (SSC) conventional equipment SCADA application requirements and the evaluation process determined which approach represented the best technical and most cost effective solution to the system requirements. Based on the results of the concept evaluation process, a personal computer based approach was recommended for the SSC conventional equipment SCADA application. Block diagrams and budgetary cost estimate for this approach were developed with specific recommendations with respect to the conventional equipment SCADA system architecture and development process

  9. Heavy ion driven LMF design concept

    International Nuclear Information System (INIS)

    Lee, E.P.

    1991-08-01

    The USA Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report

  10. Design of Concept Libraries for C++

    KAUST Repository

    Sutton, Andrew

    2012-01-01

    We present a set of concepts (requirements on template arguments) for a large subset of the ISO C++ standard library. The goal of our work is twofold: to identify a minimal and useful set of concepts required to constrain the library\\'s generic algorithms and data structures and to gain insights into how best to support such concepts within C++. We start with the design of concepts rather than the design of supporting language features; the language design must be made to fit the concepts, rather than the other way around. A direct result of the experiment is the realization that to simply and elegantly support generic programming we need two kinds of abstractions: constraints are predicates on static properties of a type, and concepts are abstract specifications of an algorithm\\'s syntactic and semantic requirements. Constraints are necessary building blocks of concepts. Semantic properties are represented as axioms. We summarize our approach: concepts = constraints + axioms. This insight is leveraged to develop a library containing only 14 concepts that encompassing the functional, iterator, and algorithm components of the C++ Standard Library (the STL). The concepts are implemented as constraint classes and evaluated using Clang\\'s and GCC\\'s Standard Library test suites. © 2012 Springer-Verlag.

  11. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study

    Directory of Open Access Journals (Sweden)

    Qiu Qinyin

    2009-07-01

    Full Text Available Abstract Background Current neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory. Methods This paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a the safety and feasibility of this system and b the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function. Results None of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time. Conclusion The system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis

  12. ISABELLE control system: design concepts

    International Nuclear Information System (INIS)

    Humphrey, J.W.

    1979-01-01

    ISABELLE is a Department of Energy funded proton accelerator/storage ring being built at Brookhaven National Laboratory (Upton, Long Island, New York). It is large (3.8 km circumference) and complicated (approx. 30,000 monitor and control variables). It is based on superconducting technology. Following the example of previous accelerators, ISABELLE will be operated from a single control center. The control system will be distributed and will incorporate a local computer network. An overview of the conceptual design of the ISABELLE control system will be presented

  13. Design concept of KALIMER-600

    International Nuclear Information System (INIS)

    Hahn, Dohee; Kim, Yeong-Il; Kim, Seong-O; Lee, Jae-Han; Lee, Yong-Bum

    2005-01-01

    KALIMER-600 is a pool-type sodium-cooled reactor loaded with U-TRU-10%Zr metal fuels generating the net electricity output of 600 MWe. In order to enhance the proliferation resistance, no blanket assemblies are loaded in the core. To suppress the high power peaking factor, some of the fuel rods are replaced with B 4 C rods and dummy rods. The heat transport system is comprised of two independent loops of IHTS and SGS and the safety-grade residual heat removal system, PDRC, is a completely passive system. Main features of the mechanical structure design of KALIMER-600 are the seismically isolated reactor building, the reduced total pipe length of the IHTS, the simplified reactor support, and the compact reactor internal structures. From the safety analyses, the KALIMER-600 design is verified to be capable of accommodating all the analyzed ATWS events. This self-regulation capability of the KALIMER-600 is mainly due to the inherent reactivity feedback mechanisms and completely passive PDRC system. (author)

  14. Application of green concept in mechanical design and manufacture

    Science.gov (United States)

    Liu, Xing ping

    2017-11-01

    With the development of productive forces, the relationship between human and nature is becoming tight increasingly, especially environmental pollution and resource consumption that comes from equipment manufacturing industry mainly. Green development concept is a new concept which can solve the current ecological environment. The philosophical foundation and theoretical basis of green idea are expounded through the study of scientific development and green concept. The difference between the traditional design and the green design is analyzed; the meaning and content of the mechanical design for green concept are discussed. And the evaluation method of green design is discussed too. The significance of green development concept in the mechanical design and manufacturing science is pinpointed clearly. The results show that the implementation of green design under the mechanical design, from the source of pollution control to achieve green manufacturing, is the only way to achieve sustainable development.

  15. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  16. Design Principles of Open Innovation Concept – Universal Design Viewpoint

    OpenAIRE

    Mustaquim, Moyen; Nyström, Tobias

    2013-01-01

    The concept of open innovation is becoming an increasingly popular topic of interest and seems to promise a lot in organizational development. However, to date there are no certain design principles that can be followed by organizations on how to use open innovation successfully. In this paper seven design principles of open innovation concept have been proposed. The derived principles are the outcome which is based on the principles of universal design. The open innovation design, based on t...

  17. Xenia Mission: Spacecraft Design Concept

    Science.gov (United States)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  18. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  19. Design Concepts. Teacher Edition. Marketing Education LAPs.

    Science.gov (United States)

    Hawley, Jana

    This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…

  20. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  1. Extending Sociotechnical Design to Project Conception

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    2011-01-01

    Project management processes offer specific sites for understanding the interplay of the social and the technical. This article focuses on the connection between knowledge and technology through knowledge communication processes, cultural & rhetorical contexts in projects, and the iterative process...... and the Aarhus School of Business, University of Aarhus, Denmark. The analysis demonstrates the potential of knowledge communication concepts for social technical design and highlights the cultural context of the designers as a key factor to consider in socio-technical design....

  2. Exploring Young Children's Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.

    2018-01-01

    This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…

  3. Design of the Growth hormone deficiency and Efficacy of Treatment (GET) score and non-interventional proof of concept study.

    Science.gov (United States)

    Kann, Peter H; Bergmann, Simona; Bidlingmaier, Martin; Dimopoulou, Christina; Pedersen, Birgitte T; Stalla, Günter K; Weber, Matthias M; Meckes-Ferber, Stefanie

    2018-02-13

    The adverse effects of growth hormone (GH) deficiency (GHD) in adults (AGHD) on metabolism and health-related quality of life (HRQoL) can be improved with GH substitution. This investigation aimed to design a score summarising the features of GHD and evaluate its ability to measure the effect of GH substitution in AGHD. The Growth hormone deficiency and Efficacy of Treatment (GET) score (0-100 points) assessed (weighting): HRQoL (40%), disease-related days off work (10%), bone mineral density (20%), waist circumference (10%), low-density lipoprotein cholesterol (10%) and body fat mass (10%). A prospective, non-interventional, multicentre proof-of-concept study investigated whether the score could distinguish between untreated and GH-treated patients with AGHD. A 10-point difference in GET score during a 2-year study period was expected based on pre-existing knowledge of the effect of GH substitution in AGHD. Of 106 patients eligible for analysis, 22 were untreated GHD controls (9 females, mean ± SD age 52 ± 17 years; 13 males, 57 ± 13 years) and 84 were GH-treated (31 females, age 45 ± 13 years, GH dose 0.30 ± 0.16 mg/day; 53 males, age 49 ± 15 years, GH dose 0.25 ± 0.10 mg/day). Follow-up was 706 ± 258 days in females and 653 ± 242 days in males. The GET score differed between the untreated control and treated groups with a least squares mean difference of + 10.01 ± 4.01 (p = 0.0145). The GET score appeared to be a suitable integrative instrument to summarise the clinical features of GHD and measure the effects of GH substitution in adults. Exercise capacity and muscle strength/body muscle mass could be included in the GET score. NCT number: NCT00934063 . Date of registration: 02 July 2009.

  4. Main engineering features driving design concept and engineering design constraints

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kobayashi, Takeshi; Yamada, Masao

    1987-09-01

    Major engineering design philosophies are described, which are essential bases for an engineering design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, engineering design drivers and engineering design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as coil system, a mechanical configuration, a tritium breeding scenario, etc.. The design constraints may follow a natural law or engineering limit, such as material strength, coil current density, and so on. (author)

  5. Main physics features driving design concept and physics design constraints

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Sugihara, Masayoshi; Yamamoto, Shin

    1987-07-01

    Major physics design philosophies are described, which are essential bases for a plasma design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, physics design drivers and physics design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as ignition, a pulse length, an operation scenario, etc.. The design constraints may follow a physical law, such as plasma confinement, β-limit, density limit, and so on. (author)

  6. SAFARI optical system architecture and design concept

    Science.gov (United States)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  7. Level design concept, theory, and practice

    CERN Document Server

    Kremers, Rudolf

    2009-01-01

    Good or bad level design can make or break any game, so it is surprising how little reference material exists for level designers. Beginning level designers have a limited understanding of the tools and techniques they can use to achieve their goals, or even define them. This book is the first to use a conceptual and theoretical foundation to build such a set of practical tools and techniques. It is tied to no particular technology or genre, so it will be a useful reference for many years to come. Kremers covers many concepts universal to level design, such as interactivity, world building, im

  8. Crashworthy airframe design concepts: Fabrication and testing

    Science.gov (United States)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  9. Educational Videogames: Concept, Design And Evaluation

    Science.gov (United States)

    Rohrlick, D.; Yang, A.; Kilb, D. L.; Ma, L.; Ruzic, R.; Peach, C. L.; Layman, C. C.

    2013-12-01

    Videogames have historically gained popularity thanks to their entertainment rather than their educational value. This may be due, in part, to the fact that many educational videogames present academic concepts in dry, quiz-like ways, without the visual experiences, interactivity, and excitement of non-educational games. The increasing availability of tools that allow designers to easily create rich experiences for players now makes it simpler than ever for educational game designers to generate the visual experiences, interactivity, and excitement that gamers have grown to expect. Based on data from our work, when designed effectively, educational games can engage players, teach concepts, and tear down the stereotype of the stuffy, boring educational game. Our team has been experimenting with different ways to present scientific and mathematical concepts to middle and high school students through engaging, interactive games. When designing a gameplay concept, we focus on what we want the player to learn and experience as well as how to maintain a learning environment that is fun and engaging. Techniques that we have found successful include the use of a series of fast-paced 'minigames,' and the use of a 'simulator' learning method that allows a player to learn by completing objectives similar to those completed by today's scientists. Formative evaluations of our games over the past year have revealed both design strengths and weaknesses. Based on findings from a systematic evaluation of game play with diverse groups, with data collected through in-person observations of game play, knowledge assessments, focus groups, interviews with players, and computer tracking of students' game play behavior, we have found that players are uniformly enthusiastic about the educational tools. At the same time, we find there is more work to be done to make our tools fully intuitive, and to effectively present complex mathematical and scientific concepts to learners from a wide

  10. Design concepts of nuclear desalination plants

    International Nuclear Information System (INIS)

    2002-11-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an inter regional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States. It is aimed at planners, designers and potential end-users in those Member States interested in further assessment of nuclear desalination. Interested readers are also referred to two related and recent IAEA publications, which contain useful information in this area: Introduction of Nuclear Desalination: A Guidebook, Technical Report Series No. 400 (2000) and Safety Aspects of Nuclear Plants Coupled with Seawater Desalination Units, IAEA-TECDOC-1235 (2001)

  11. Development of MMIS design concepts for the KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ku, In Su; Heo, Seop; Jeong, Chel Hwan; Lee, Hyun Chol; Park, Hui Yun; Lee, Chol Gwon; So, Yong Suk; Kim, Dong Hun; Jang, Gwi Sook; Lee, Ki Yonug; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The design goals of MMIS for the next generation nuclear power plant are to improve plant safety and the cost effectiveness of nuclear power plants, and to meet with regulatory requirements. For the optimized design of MMIS, conceptual design bases are required for the optimization of MMIS design to establish the design concepts for NGR MMIS. The conceptual design bases are also required for performing the basic design, and verifying the design. The objectives of this study are establishment of MMIS design bases and the development of next generation MMIS configuration concepts. The MMIS design bases for by adopting MMIS requirements developed in the previous study on next generation reactor evaluation techniques and advanced MMIS technologies. The next generation MMIS design requirements are to be developed based on the device obsolescence problems by applying modern digital technology. This report describes the design concepts for the next generation MMIS. In order to develop the design concepts, new technologies were analyzed, and the characteristics of new advanced MMIS designs were reviewed. In addition, reviewing the advanced design features (ADF) resulted from the 3 rd stage of standardization project, the strategy for the application of the results from these activities are prepared. This report includes the comparison results of the design characteristics of next generation MMIS with those of existing plants, YGN 3 and 4, UCN 3 and 4, and NUPLEX 80+. This report also describes the conceptual MMIS configuration of next generation control room, based on the results from the comparison. The results of this study will be an input for the detailed design guidelines and a regulatory requirements review report for the next generation MMIS design, and provide basis for the basis and detailed design of MMI and I and C for main control room. 1 fig., 1 tab., 46 refs. (Author) .new.

  12. Development of MMIS design concepts for the KNGR

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ku, In Su; Heo, Seop; Jeong, Chel Hwan; Lee, Hyun Chol; Park, Hui Yun; Lee, Chol Gwon; So, Yong Suk; Kim, Dong Hun; Jang, Gwi Sook; Lee, Ki Yonug; Lee, Jun; Kim, Young In

    1995-12-01

    The design goals of MMIS for the next generation nuclear power plant are to improve plant safety and the cost effectiveness of nuclear power plants, and to meet with regulatory requirements. For the optimized design of MMIS, conceptual design bases are required for the optimization of MMIS design to establish the design concepts for NGR MMIS. The conceptual design bases are also required for performing the basic design, and verifying the design. The objectives of this study are establishment of MMIS design bases and the development of next generation MMIS configuration concepts. The MMIS design bases for by adopting MMIS requirements developed in the previous study on next generation reactor evaluation techniques and advanced MMIS technologies. The next generation MMIS design requirements are to be developed based on the device obsolescence problems by applying modern digital technology. This report describes the design concepts for the next generation MMIS. In order to develop the design concepts, new technologies were analyzed, and the characteristics of new advanced MMIS designs were reviewed. In addition, reviewing the advanced design features (ADF) resulted from the 3 rd stage of standardization project, the strategy for the application of the results from these activities are prepared. This report includes the comparison results of the design characteristics of next generation MMIS with those of existing plants, YGN 3 and 4, UCN 3 and 4, and NUPLEX 80+. This report also describes the conceptual MMIS configuration of next generation control room, based on the results from the comparison. The results of this study will be an input for the detailed design guidelines and a regulatory requirements review report for the next generation MMIS design, and provide basis for the basis and detailed design of MMI and I and C for main control room. 1 fig., 1 tab., 46 refs. (Author) .new

  13. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    Science.gov (United States)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  14. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  15. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  16. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  17. Preliminary ALARA design concept for SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs

  18. Trajectory Design for a Single-String Impactor Concept

    Science.gov (United States)

    Dono Perez, Andres; Burton, Roland; Stupl, Jan; Mauro, David

    2017-01-01

    This paper introduces a trajectory design for a secondary spacecraft concept to augment science return in interplanetary missions. The concept consist of a single-string probe with a kinetic impactor on board that generates an artificial plume to perform in-situ sampling. The trajectory design was applied to a particular case study that samples ejecta particles from the Jovian moon Europa. Results were validated using statistical analysis. Details regarding the navigation, targeting and disposal challenges related to this concept are presented herein.

  19. Submersible Aircraft Concept Design Study - Amendment 1. Additional Assessment of Design Risks & Sensitivities within the Original Study, and an Initial Assessment of Key Control Aspects

    Science.gov (United States)

    2011-02-01

    http://www.redhammer.se/tornado/index.html (3) Aircraft Design: A Conceptual Approach, Daniel P. Raymer , AIAA, 1992 (4) (5) Moran, J., Computational...Fluid Dynamics, Wiley & Sons, 1984. Notes on the Stability and Control of Tailless Airplanes, Robert T. Jones, NACA Technical Note No.837, December

  20. Extending Sociotechnical design to project conception

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    between knowledge and technology through knowledge communication processes, cultural and rhetorical contexts. This connection is examined from a process point of view through the development of project goals and objectives to situate technology. The data comes from a Project Management course in which...... the students were asked to design and plan projects to situate a mobile phone game in the social context around a museum in Helsinki or their online course management system.   The paper traces the evolution of students' project goals and objectives with respect to knowledge communication theory, demonstrating...... the potential of knowledge communication concepts for socio-technical design processes, as well as the implications of socio-technical design processes in extending our understanding of knowledge communication. Keywords: Knowledge Communication, Knowledge Management, Socio-Technical Design, Project Management....

  1. Applying and incorporating user driven innovation when designing concepts

    DEFF Research Database (Denmark)

    Thorp Hansen, Claus; Brønnum, Louise

    This paper addresses the difficulties seen when working within the user driven innovation [UDI] paradigm. We examine some of the circumstances that often make it difficult to work with user insights in concept design. UDI has become a recognized design approach, but has not yet accommodated...... a design practice explicitly considering the type of user insights this approach implies. For that reason UDI has yet to prove itself and its potential effect; a study of Danish initiative “program for user driven innovation” has shown little effect in this regard. However it has shown that radical new...... insights have been produced but at the same time to abstract when integrated in the design process. We will discuss and propose a framework for working with user insights in concept design, based on existing concept frameworks but actively addressing and incorporating user insights as a new type of input...

  2. Retrievable storage concept designs. Final report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1979-01-01

    Three tasks related to the reference design of retrievable storage canisters for radioactive waste have been completed. The three tasks consist of the reference design itself, the definition of failure modes most appropriate for structural integrity determinations for the reference canister, and the development of a failure methodology for the structural integrity of the containers. The reference design is a sealed storage canister concept based upon the waste isolation pilot plant (WIPP) design, with slight modifications. The modifications consist of an alternate lifting yoke arrangement for the top head and a revised bottom head design for absorption of impact energy. Welded closures provide the seal at each end. Overpacking is considered as a possibility, but is not included in the preliminary reference design. The four failure modes that are deemed the most appropriate for the design of the reference canister are: (i) a loss of functional capability; (ii) ductile rupture of the canister; (iii) buckling of the structural members; and (iv) stress corrosion cracking. Failure scenarios are provided for each of the relevant failure modes. In addition, a failure methodology based upon the distribution of demand and the distribution of capacity for the structural members, with respect to each failure mode, is proffered

  3. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    NARCIS (Netherlands)

    Quartel, Dick

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an

  4. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  5. Assessment of LMFBR spent fuel shipping cask concepts for the CRBRP and the US conceptual design study

    International Nuclear Information System (INIS)

    Pope, R.B.; Ortman, J.M.; Eakes, R.G.; Leisher, W.B.; Dupree, S.A.

    1980-01-01

    Study of conceptual shipping systems for CRBRP and CDS spent fuel has shown that systems significantly different from those used for LWR spent fuel will be required. In the conceptual design, liquid sodium was assumed to be the coolant in canisters containing the spent fuel assemblies, and multiple levels of containment were provided by canisters, an inner cask lid and an outer cask lid. Cask cooling at the reactor site during loading, and cooldown at the receiving site prior to unloading are significant but tractable problems

  6. New Design Concept for Universal CCD Controller

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    1994-06-01

    Full Text Available Currently, the CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However according to the recent technical advances, new large format CCDs are rapidly developed which have better performances with higher quantum efficiency and sensitivity. In many cases, some microprocessors have been adopted to deal with necessary digital logic for a CCD imaging system. This could often lack the flexibility of a system for a user to upgrade with new devices, especially of it is a commercial product. A new design concept has been explored which could provide the opportunity to deal with any format of devices from ant manufactures effectively for astronomical purposes. Recently available PLD (Programmable Logic Devices technology makes it possible to develop such digital circuit design, which can be integrated into a single component, instead of using microprocessors. The design concept could dramatically increase the efficiency and flexibility of a CCD imaging system, particularly when new or large format devices are available and to upgrade the performance of a system. Some variable system control parameters can be selected by a user with a wider range of choice. The software can support such functional requirements very conveniently. This approach can be applied not only to astronomical purpose, but also to some related fields, such as remote sensing and industrial applications.

  7. Project Design Concept - Primary Ventilation System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements

  8. Multimedia foundations core concepts for digital design

    CERN Document Server

    Costello, Vic; Youngblood, Susan

    2012-01-01

    Understand the core concepts and skills of multimedia production and digital storytelling using text, graphics, photographs, sound, motion, and video. Then, put it all together using the skills that you have developed for effective project planning, collaboration, visual communication, and graphic design. Presented in full color with hundreds of vibrant illustrations, Multimedia Foundations trains you in the principles and skill sets common to all forms of digital media production, enabling you to create successful, engaging content, no matter what tools you are using. Companion website

  9. Identifying and Overcoming Threshold Concepts and Conceptions: Introducing a Conception-Focused Curriculum to Course Design

    Science.gov (United States)

    Burch, Gerald F.; Burch, Jana J.; Bradley, Thomas P.; Heller, Nathan A.

    2015-01-01

    Educators have been challenged to identify threshold concepts and develop transformed students. This stands in stark contrast to many curriculum design and delivery models that currently view students as repositories of knowledge. In this article, we argue that educators can reach both goals, identify stumbling blocks and transforming students,…

  10. Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

    Science.gov (United States)

    Nay, M-A; Auvet, A; Mankikian, J; Herve, V; Dequin, P-F; Guillon, A

    2017-06-01

    Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  11. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  12. NASA's Gravitational - Wave Mission Concept Study

    Science.gov (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  13. Building Integrated Design Practice under the Concept of Sustainable Development

    Science.gov (United States)

    Liu, Xuexin

    2018-03-01

    With the continuous development of social economy, people are more demanding for architecture. Some advanced design concepts are gradually applied to the design of buildings. Under the concept of sustainable development, building integration design has also been widely used to promote the rapid development of architectural design. Integrated design concepts and sustainable development concepts play an important role to meet people’s requirements. This article will explore the concept of sustainable development under the concept of integrated architectural design and practice analysis, propose appropriate measures.

  14. Long-term plutonium storage: Design concepts

    International Nuclear Information System (INIS)

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-01-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs

  15. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  16. Quality By Design: Concept To Applications.

    Science.gov (United States)

    Swain, Suryakanta; Padhy, Rabinarayan; Jena, Bikash Ranjan; Babu, Sitty Manohar

    2018-03-08

    Quality by Design is associated to the modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also leads to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify desire and required product performance report such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality attributes (CQA). This review highlighted about the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected and consistently manufacture the required product. Risk assessment tools and design of experiments are its prime components. This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. This article provides a complete data as well as the road map for universal implementation and application of QbD for pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Principles and concepts in designing tropical-shore settlement in estuary ecosystem, case study: Weriagar District, Bintuni Bay

    Science.gov (United States)

    Firmansyah; Nidia Kusuma, Bintang; Prayuni, Ira; Fernando, Aldo

    2017-12-01

    Weriagar District is located in estuary area and is prone to land loss, due to river and coastal erosion. This paper will describe about tropical-shore settlement design and house design in estuary area. The results from analysis phase shows that it's necessary to design a house and settlement that can fulfil the needs of indigenous people, both functionally and aesthetically. Functionally, the house is designed to provide spaces for both private and public needs of the family. It can be used either as a family private space or as a public gathering space between family and their neighbours. Aesthetically, house’ architectural form is designed into that identifies the locality of Weriagar District. The houses’ design feature highlighted in using local material, rainwater harvesting system, high pitched roof feature as response to hot-humid climate, and elevated-floor feature as response to tidal condition in estuary area. The houses design also considered daily activity pattern and community culture, including appropriate structure, construction, and material availability. The expected result was that the settlement improvement and house design would meet suitable standards and needs of inhabitants in Weriagar District.

  18. The Triton: Design concepts and methods

    Science.gov (United States)

    Meholic, Greg; Singer, Michael; Vanryn, Percy; Brown, Rhonda; Tella, Gustavo; Harvey, Bob

    1992-01-01

    During the design of the C & P Aerospace Triton, a few problems were encountered that necessitated changes in the configuration. After the initial concept phase, the aspect ratio was increased from 7 to 7.6 to produce a greater lift to drag ratio (L/D = 13) which satisfied the horsepower requirements (118 hp using the Lycoming O-235 engine). The initial concept had a wing planform area of 134 sq. ft. Detailed wing sizing analysis enlarged the planform area to 150 sq. ft., without changing its layout or location. The most significant changes, however, were made just prior to inboard profile design. The fuselage external diameter was reduced from 54 to 50 inches to reduce drag to meet the desired cruise speed of 120 knots. Also, the nose was extended 6 inches to accommodate landing gear placement. Without the extension, the nosewheel received an unacceptable percentage (25 percent) of the landing weight. The final change in the configuration was made in accordance with the stability and control analysis. In order to reduce the static margin from 20 to 13 percent, the horizontal tail area was reduced from 32.02 to 25.0 sq. ft. The Triton meets all the specifications set forth in the design criteria. If time permitted another iteration of the calculations, two significant changes would be made. The vertical stabilizer area would be reduced to decrease the aircraft lateral stability slope since the current value was too high in relation to the directional stability slope. Also, the aileron size would be decreased to reduce the roll rate below the current 106 deg/second. Doing so would allow greater flap area (increasing CL(sub max)) and thus reduce the overall wing area. C & P would also recalculate the horsepower and drag values to further validate the 120 knot cruising speed.

  19. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  20. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  1. Deep Space Habitat ECLSS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  2. Deep Space Habitat ECLS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  3. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    OpenAIRE

    Quartel, Dick

    1998-01-01

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an abstract behaviour by a more concrete behaviour, such that the concrete behaviour conforms to the abstract behaviour. An important idea underlying this thesis is that an effective design methodology s...

  4. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  5. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  6. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  7. Development of a new test for the easy characterization of the adhesion at the interface of bilayer tablets: proof-of-concept study by experimental design.

    Science.gov (United States)

    Busignies, Virginie; Mazel, Vincent; Diarra, Harona; Tchoreloff, Pierre

    2014-12-30

    Although, adhesion at the interface of bilayer tablets is critical for their design it is difficult to characterize this adhesion between layers. In view of this, a new test with an easy implementation was proposed for the characterization of the interface of bilayer tablets. This work is presented as a proof-of-concept study to investigate the reliability of this new test with regard to the effects of some critical process parameters (e.g., compaction pressure applied on each layer) and material attributes (e.g., elasticity of the layered materials) on the interfacial adhesion of bilayer tablets. This was investigated using a design of experiment approach and the results obtained were in good accordance with those obtained with other tests and thus, confirms the potential of such a method for the measurement of the interfacial adhesion of bilayer tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ergonomic approach for pillow concept design.

    Science.gov (United States)

    Cai, Dengchuan; Chen, Hsiao-Lin

    2016-01-01

    Sleep quality is an essential factor to human beings for health. The current paper conducted four studies to provide a suitable pillow for promoting sleep quality. Study 1 investigated the natural positions of 40 subjects during sleep to derive key-points for a pillow design. The results suggested that the supine and lateral positions were alternatively 24 times a night, and the current pillows were too high for the supine position and too low for lateral positions. Study 2 measured body dimensions related to pillow design of 40 subjects to determine pillow sizes. The results suggested that the pillow height were quite different in supine position and lateral position and needed to take into consideration for a pillow design. Study 3 created a pillow design based on the results of above studies. The pillow was a U-form in the front of view in which the pillow height in the middle area was lower for the supine position, and both sides were higher for the lateral positions. Study 4 assessed sleep quality of 6 subjects by using the proposed pillows and the current pillows. The results showed that the newly designed pillow led to significantly higher sleep quality, and the new design received an innovation patent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Aerobrake concepts for NTP systems study

    Science.gov (United States)

    Cruz, Manuel I.

    1992-01-01

    Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.

  10. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Song, Yuntao; Liu, Xufeng; Li, Jiangang; Wan, Yuanxi; Wan, Baonian; Ye, Minyou; Wu, Huan

    2015-01-01

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb 3 Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  11. Design for All in Scandinavia - a strong concept.

    Science.gov (United States)

    Bendixen, Karin; Benktzon, Maria

    2015-01-01

    Design for All is more than an appealing point of view. It is a concept that offers a set of challenges capable of generating innovation and giving design added value and weight. In the Scandinavian tradition, the concept has developed from a purely social dimension to a design topic that is discussed both in terms of its business potential and in relation to Corporate Social Responsibility, CSR. This article gives a State of the Art of the development of Design for All in the Scandinavian countries: Denmark, Norway, Sweden and Finland during the past 15 years, beginning with a common review and joint Scandinavian projects, followed by an overall review country by country which include selected case studies over the past 15 years. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  13. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  14. Mathematical concepts for mechanical engineering design

    CERN Document Server

    Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli

    2013-01-01

    PrefaceIntroductionHeat Flow: From Theory to PracticeDispersed Fluid and Ideal Fluid MechanicsModeling for Pressure Wave into Water PipelineHeat Transfer and Vapor BubbleMathematical Concepts and Computational Approaches on Hydrodynamics InstabilityMathematical Concepts and Dynamic ModelingModeling for Predictions of Air Entrance into Water PipelineIndex

  15. Remote metrology system (RMS) design concept

    International Nuclear Information System (INIS)

    1995-01-01

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR's fiber optic implementation allows a 3D scanner to operate remotely from the RMS system's vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm 2 density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner

  16. Remote metrology system (RMS) design concept

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  17. Advances in architectural concepts to support distributed systems design

    NARCIS (Netherlands)

    Ferreira Pires, Luis; Vissers, C.A.; van Sinderen, Marten J.

    1993-01-01

    This paper presents and discusses some architectural concepts for distributed systems design. These concepts are derived from an analysis of limitations of some currently available standard design languages. We conclude that language design should be based upon the careful consideration of

  18. In Vitro Capture of Small Ferrous Particles with a Magnetic Filtration Device Designed for Intravascular Use with Intraarterial Chemotherapy: Proof-of-Concept Study.

    Science.gov (United States)

    Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W

    2016-03-01

    To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  19. Capturing design knowledge in formal concept definitions

    NARCIS (Netherlands)

    Leeuwen, van J.P.; Vries, de B.; Timmermans, H.J.P.; Vries, de B.

    2000-01-01

    For support of creativity in architectural design, design systems must be provided with information models that are flexible enough to follow the dynamic way of designers in handling early design information. This paper discusses a framework for information modelling using Features that answers this

  20. Evaluation of Standard Concepts Design of Library Interior Physical Environment

    Directory of Open Access Journals (Sweden)

    Debri Harindya Putri

    2018-01-01

    Full Text Available Currently the function of a room is not only used as a shelter, the function of the room itself to be increased as a refreshing or relaxation area for users to follow the development of creativity and technology in the field of design. The comfortable factor becomes the main factor that indicates a successful process of creating a space. No exception library. The nature of library seemed stiff because of its function as a place to read, now can be developed and made into more dynamic with the special design concepts or color patterns used. Libraries can be created a special concept that suits the characteristics of the users themselves. Most users of the library, especially in college libraries are teenagers. Naturally, teenagers like to gather with their friends and we have to facilitate this activity in our library design concept. In addition we can also determine the needs of users through research by questionnaire method. The answers of users can be mapped and drawn conclusions. To explore the research, the author reviewed some literature about library interior design and observed the library of Ma Chung University as a case study. The combined results of the method can be concluded and the discovery of ideal standards of physical environment. So, the library can be made as a comfortable reading environment so as to increased interest in reading behavior and the frequent visits of students in the library

  1. Comparison of Design Concepts for SFR under Development

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Namduk; Choi, Yongwon; Bae, Moohoon; Shin, Andong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The goal of ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) with a capacity of 600 MWe is to study the technical demonstration that can be scaled up to commercial reactor. It was expected that the success of ASTRID project could eventually lead to operation of industrial reactor around 2040. On 2012, ASTRID designer has submitted the DOrS (Dossier d’Orientations de Sûreté, Safety Orientation Document) for ASTRID to IRSN and IRSN has issued a report after reviewing the DOrS. The report DOrS itself is not available publicly, intellectual property might be the reason, but the review document of IRSN is open to public, so we can understand the basic concept of ASTRID by IRSN report. The DOrS of ASTRID and the TTR for PGSFR have not the same format and also the same purpose, so it is not easy to compare the two design concepts directly. But, still, we think the concepts could be compared in a very general way. Thus, in this paper we have presented the very short comparison results of the two SFR design. Our opinion after first reviewing the TTR is that the PGSFR needs to be designed in a more systematic way. The requirements are coming basically from the previous document used for SMART licensing and do not show prototype reactor specific characters.

  2. Operational resilience: concepts, design and analysis

    Science.gov (United States)

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.

  3. Concept Generation for Design Creativity A Systematized Theory and Methodology

    CERN Document Server

    Taura, Toshiharu

    2013-01-01

    The concept generation process seems like an intuitional thought: difficult to capture and perform, although everyone is capable of it. It is not an analytical process but a synthetic process which has yet to be clarified. Furthermore, new research methods for investigating the concept generation process—a very difficult task since the concept generation process is driven by inner feelings deeply etched in the mind—are necessary to establish its theory and methodology.  Concept Generation for Design Creativity—A Systematized Theory and Methodology presents the concept generation process both theoretically and methodologically. Theoretically, the concept generation process is discussed by comparing metaphor, abduction, and General Design Theory from the perspective of similarities and dissimilarities. Property mapping, concept blending, and concept integration in thematic relation have been explained methodologically. So far, these theories and methods have been discussed independently, and the relation...

  4. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  5. Project Design Concept for Monitoring and Control System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations

  6. Generic repository design concepts and thermal analysis (FY11)

    International Nuclear Information System (INIS)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-01-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R and D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of

  7. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  8. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gulnur

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non-expert-like thinking in students and to evaluate the…

  9. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    Science.gov (United States)

    2017-11-03

    1 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) Submitted to the National Institute of Aerospace (NIA) on...Research Report 20161001 - 20161030 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) W911NF-16-2-0229 8504Cedric Justin, Youngjun

  10. The workspace design concept: A new framework of participatory ergonomics

    DEFF Research Database (Denmark)

    Broberg, Ole

    2007-01-01

    The concept of Workspace Design is presented as a potential new approach for ergonomists and consultants in the occupational health service. The concept is aimed as an intervention and facilitation strategy in the early stages of design processes leading to new workplaces. Preliminary results fro...

  11. Application Design Library With gamification concept

    Directory of Open Access Journals (Sweden)

    Nisaul Barokati

    2017-03-01

    Full Text Available The library is an effort to maintain and improve the efficiency and effectiveness of the learning process. Various means have been used to enhance the library's role in community development. One way is to develop a concept and a different orientation in the management system or the library. The concept in question is gamification. Gamification is a process with the aim of changing jobs or activities that usually go tedious and less enjoyable to be more interesting and fun to do. One approach taken is to reward both virtual and non-virtual that can increase people's motivation to do something, in this case, is to visit and take advantage of the functions and library facilities. This research resulted in a model that features a library application with the concept of gamification. The model can be implemented into an application that will increase visits and activities at the library. Thus the function and the main purpose of the library be met..

  12. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Zaleski, C.P. [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les

  13. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G; Zaleski, C P [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les projets de reacteurs futurs

  14. Design Concept Evaluation Using System Throughput Model

    International Nuclear Information System (INIS)

    Sequeira, G.; Nutt, W. M.

    2004-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently developing the technical bases to support the submittal of a license application for construction of a geologic repository at Yucca Mountain, Nevada to the U.S. Nuclear Regulatory Commission. The Office of Repository Development (ORD) is responsible for developing the design of the proposed repository surface facilities for the handling of spent nuclear fuel and high level nuclear waste. Preliminary design activities are underway to sufficiently develop the repository surface facilities design for inclusion in the license application. The design continues to evolve to meet mission needs and to satisfy both regulatory and program requirements. A system engineering approach is being used in the design process since the proposed repository facilities are dynamically linked by a series of sub-systems and complex operations. In addition, the proposed repository facility is a major system element of the overall waste management process being developed by the OCRWM. Such an approach includes iterative probabilistic dynamic simulation as an integral part of the design evolution process. A dynamic simulation tool helps to determine if: (1) the mission and design requirements are complete, robust, and well integrated; (2) the design solutions under development meet the design requirements and mission goals; (3) opportunities exist where the system can be improved and/or optimized; and (4) proposed changes to the mission, and design requirements have a positive or negative impact on overall system performance and if design changes may be necessary to satisfy these changes. This paper will discuss the type of simulation employed to model the waste handling operations. It will then discuss the process being used to develop the Yucca Mountain surface facilities model. The latest simulation model and the results of the simulation and how the data were used in the design

  15. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  16. Thermal design trades for SAFIR architecture concepts

    Science.gov (United States)

    Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles

    2004-01-01

    SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.

  17. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  18. Reactor design concepts for radiation processing

    International Nuclear Information System (INIS)

    Berejka, A.J.

    2004-01-01

    During the formative years of irradiation processing, the 1950s and 1960s, there was laboratory and academic interest in the use of this form of energy transfer to initiate polymerization for the manufacture of plastics and in other chemical processes. Studies were often based on low-dose-rate Cobalt-60 systems. The electron beam (EB) accelerator technology of the time was not as yet at the robust and industrially reliable state that it is now at the beginning of the twenty-first century. A series of reactor designs illustrate how an electron beam can be incorporated into reactor vessels for initiating gas and liquid phase polymerizations on a continuous basis. Development of such approaches, which would rely upon contemporary, high current electron beams to initiate polymerization, would help the chemical processing industry alleviate its problems of catalyst disposal and its related environmental concerns. Systems for treating materials in bulk at low doses, such as those typically used for grain disinfection, at high through-put rates, are also illustrated. Simplified shielding is envisioned in each proposed process system

  19. Design concepts to enhance nuclear power plant protection

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.; Varnado, G.B.

    1980-01-01

    Using a modern design for a nuclear power plant as a point of departure, this study examines the enhancement of protection which may be achieved by changes to the design. These changes include concepts such as complete physical separation of redundant trains of safety equipment, hardened enclosures for water storage tanks, and hardened shutdown heat removal systems. The degree of enhancement (value) is examined in terms such as the potential reduction in the number of vital areas and the increase in probability of adversary sequence interruption. The impacts considered include constraints imposed upon operations and maintenance personnel and increased capital and operating costs. The study concludes that structural design changes alone do not provide significant increases in protection

  20. Pharmacology Goes Concept-Based: Course Design, Implementation, and Evaluation.

    Science.gov (United States)

    Lanz, Amelia; Davis, Rebecca G

    Although concept-based curricula are frequently discussed in the nursing education literature, little information exists to guide the development of a concept-based pharmacology course. Traditionally, nursing pharmacology courses are taught with an emphasis on drug class where a prototype drug serves as an exemplar. When transitioning pharmacology to a concept-based course, special considerations are in order. How can educators successfully integrate essential pharmacological content into a curriculum structured around nursing concepts? This article presents one approach to the design and implementation of a concept-based undergraduate pharmacology course. Planning methods, supportive teaching strategies, and course evaluation procedures are discussed.

  1. Concept and design of super junction devices

    Science.gov (United States)

    Zhang, Bo; Zhang, Wentong; Qiao, Ming; Zhan, Zhenya; Li, Zhaoji

    2018-02-01

    The super junction (SJ) has been recognized as the " milestone” of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer (VSL). The basic structure of the SJ is a typical junction-type VSL (J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL (R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the J-VSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional " silicon limit” relationship of R on∝V B 2.5, showing a quasi-linear relationship of R on∝V B 1.03.

  2. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari

    2013-01-01

    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  3. A concept ideation framework for medical device design.

    Science.gov (United States)

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  5. Development and Study the Usage of Blended Learning Environment Model Using Engineering Design Concept Learning Activities to Computer Programming Courses for Undergraduate Students of Rajabhat Universities

    Directory of Open Access Journals (Sweden)

    Kasame Tritrakan

    2017-06-01

    Full Text Available The objectives of this research were to study and Synthesise the components, to develop, and to study the usage of blended learning environment model using engineering design concept learning activities to computer programming courses for undergraduate students of Rajabhat universities. The research methodology was divided into 3 phases. Phase I: surveying presents, needs and problems in teaching computer programming of 52 lecturers by using in-depth interview from 5 experienced lecturers. The model’s elements were evaluated by 5 experts. The tools were questionnaire, interview form, and model’s elements assessment form. Phase II: developing the model of blended learning environment and learning activities based on engineering design processes and confirming model by 8 experts. The tools were the draft of learning environment, courseware, and assessment forms. Phase III evaluating the effects of using the implemented environment. The samples were students which formed into 2 groups, 25 people in the experiment group and 27 people in the control group by cluster random sampling. The tools were learning environment, courseware, and assessment tools. The statistics used in this research were means, standard deviation, t-test dependent, and one-way MANOVA. The results found that: 1 Lecturers quite agreed with the physical, mental, social, and information learning environment, learning processes, and assessments. There were all needs in high level. However there were physical environment problems in high level yet quite low in other aspects. 2 The developed learning environment had 4 components which were a 4 types of environments b the inputs included blended learning environment, learning motivation factors, and computer programming content c the processes were analysis of state objectives, design learning environment and activities, developing learning environment and testing materials, implement, ation evaluation and evaluate, 4 the outputs

  6. The content and nature of a design concept

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2002-01-01

    According to the design methodology literature "conceptual design" and "concepts" increase the effectiveness and efficiency of the early phases of a product development project, because conceptual thinking allows the engineering designer to identify or synthesise new unique solutions and allows him...... to focus his attention on the relatively few characteristics concerning the product´s functionality, and thereby makes it easier for the engineering designer to create several solution alternatives. In this paper we argue the following: 1. A conceptual design, i.e. the concept for a new product, may...... be seen from two sides, a need/market-oriented and a design/realisation-oriented. The need/market-oriented side explains the conceptual new way the design solves its task. The design/realisation side explains how the concept creates the necessary functionality and structural realisation for doing so. 2...

  7. Use of the Human Centered Design concept when designing ergonomic NPP control rooms

    International Nuclear Information System (INIS)

    Skrehot, Petr A.; Houser, Frantisek; Riha, Radek; Tuma, Zdenek

    2015-01-01

    Human-Centered Design is a concept aimed at reconciling human needs on the one hand and limitations posed by the design disposition of the room being designed on the other hand. This paper describes the main aspects of application of the Human-Centered Design concept to the design of nuclear power plant control rooms. (orig.)

  8. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  9. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  11. A concept for global optimization of topology design problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...

  12. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  13. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  14. UTN's gamma irradiation facility: design and concept

    International Nuclear Information System (INIS)

    Mohamad Noor Mohamad Yunus

    1986-01-01

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  15. New concept of microprocessor protective devices design

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2010-01-01

    Full Text Available Transition from electromechanical to digital protective relays is accompanied with serious technical problems. The author offers a new approach in designing the digital relays capable of solving these problems. It is proposed to construct digital relays in the form of standard modules from which it would be possible to assemble the digital relay in the same way as now a personal computer.

  16. High field dipole magnet design concepts

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1988-12-01

    High field dipole magnets will play a crucial role in the development of future accelerators whether at Fermilab or elsewhere. This paper presents conceptual designs for two such dipoles; 6.6 and 8.8 Tesla, with special focus on their suitability for upgrades to the Fermilab Tevatron. Descriptions and cross-sectional views will be presented as will preliminary estimates of heat loads and costs. 3 refs., 2 figs., 2 tabs

  17. Some concept for the TRIGA core design

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1994-01-01

    There is the research reactor called TRIGA Mark-2 of 100 kW in Atomic Energy Research Laboratory, Musashi Institute of Technology. Recently, while the various calculations on the core were carried out, the author became aware of that this TRIGA core was designed at that time with excellent consideration. The reason for that is, although fuel is arranged in simple concentric circular state at a glance, it was known that in reality, this is the modification of the hexagonal core of triangular lattice. In the examination of square lattice fuel arrangement, the reactivity was calculated by using the gap between fuel rods as the parameter and by using ENDF/B-4 library and Monte Carlo code Keno-5. It is known that the design of the lattice with maximum reactivity cannot be done by the square lattice. The similar examination was carried out on triangular lattice, and it was found that the gap between fuel rods of 4 mm is the optimal design. The average neutron energy spectra in the fuel rods of the TRIGA Mark-2 core agreed considerably well with the energy spectra at 4.16 cm fuel rod pitch in triangular hexagonal core. In the reactor of about 100 kW, even if the gap between fuel rods is less than 4 mm, heat removal is sufficiently possible. (K.I.)

  18. Analysis and Multipoint Design of the TCA Concept

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Buning, Pieter G.

    1999-01-01

    The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.

  19. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future

  20. Core design with respect to the safety concept

    International Nuclear Information System (INIS)

    Kollmar, W.

    1981-01-01

    In the present paper the following topics are dealt with: Principles of reactor core design and optimization, fuel management and safety concept for higher cycles and results of risk analyses (e.g. rod ejection, steam line break etc.) (RW)

  1. Structural Design and Sizing of a Metallic Cryotank Concept

    Science.gov (United States)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  2. Using a systems engineering process to develop engineered barrier system design concepts

    International Nuclear Information System (INIS)

    Jardine, L.J.; Short, D.W.

    1991-05-01

    The methodology used to develop conceptual designs of the engineered barrier system and waste packages for a geologic repository is based on an iterative systems engineering process. The process establishes a set of general mission requirements and then conducts detailed requirements analyses using functional analyses, system concept syntheses, and trade studies identifications to develop preliminary system concept descriptions. The feasible concept descriptions are ranked based on selection factors and criteria and a set of preferred concept descriptions is then selected for further development. For each of the selected concept descriptions, a specific set of requirements, including constraints, is written to provide design guidance for the next and more detailed phase of design. The process documents all relevant waste management system requirements so that the basis and source for the specific design requirements are traceable and clearly established. Successive iterations performed during design development help to insure that workable concepts are generated to satisfy the requirements. 4 refs., 2 figs

  3. Fractal design concepts for stretchable electronics.

    Science.gov (United States)

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  4. Fractal design concepts for stretchable electronics

    Science.gov (United States)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  5. FUSRAP equipment concept development study

    International Nuclear Information System (INIS)

    Hinerman, K.B.; Smith, R.E.

    1981-01-01

    Under DOE contract, Dalton-Dalton-Newport, Inc. is performing an engineering evaluation of three selected FUSRAP sites in an effort to generate equipment concepts to perform remedial action for retrieval, packaging, storing, and transporting contaminated soil and other debris. Along with this engineering evaluation, an analysis of state and Federal regulations was made which had significant impact on the selected equipment and costs for each remedial action concept

  6. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  7. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  8. SAFARI optical system architecture and design concept

    NARCIS (Netherlands)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, P.

    2016-01-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class

  9. Designing organizational memories: Concept and method

    NARCIS (Netherlands)

    Wijnhoven, Alphonsus B.J.M.

    1998-01-01

    Organizational memory, has become a popular theme in management studies, leading to theoretically valuable conceptualizations, which, however, often fail in their practical usability. Recently, organizational memory has also become a topic in the field of information systems. This article tries to

  10. The Role of Design Concepts in the Development of Industrial Services

    DEFF Research Database (Denmark)

    Pekkala, Janne; Ylirisku, Salu

    2017-01-01

    B-to-B industrial manufacturing organisations are moving focus from designing products to services. This transition challenges the management of innovating, which is increasingly collaborative and networked. Organisations need to be able to tackle the related uncertainty in order to prepare, secure......-to-B industrial manufacturing. Eight roles for design concepts are identified in the 11-month study, and these are presented as stories concretising how design concepts functioned. Design concepts were utilised in 1) anticipating future, 2) implementing design, 3) training, 4) engaging in dialogue, 5) setting...... goals, 6) establishing vocabulary in organisation, 7) planning and securing resources, and 8) linking projects....

  11. A solar vehicle based on sustainable design concept

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Sah, J.M.; Passarella, R.; Ghazilla, R.A.R.; Ahmad, N.; Jen, Y.H.; Khai, T.T.; Kassim, Z.; Hasanuddin, I.; Yunus, M. [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering, Centre for Product Design and Manufacture

    2009-07-01

    This paper described a newly constructed solar vehicle that was built specifically for the 2009 World Solar Challenge (WSC) using off-the-shelf parts. Researchers at the Centre for Product Design and Manufacture at the University of Malaya designed and built the solar car which uses solar energy to charge its batteries. Although the total investment for this sustainable product concept is small compared to other solar vehicles, the car's performance has met expectations. Most of the electrical and mechanical parts can be recycled and reused after the WSC event. The photovoltaic (PV) and maximum power point trackers (MPPT) can be re-used for home applications. The DC motor and the controller can be attached to a bicycle and the aluminium parts which make-up the main body structure can be recycled. The design will result in nearly zero waste. The study showed that the process of combining mechanical and electrical components is not an easy task, particularly at the design stage because of the specific characteristics and functions of the individual parts. This paper described how readily available, off-the-shelf mechanical and electrical components were integrated for the solar vehicle. The conceptual design and the performance of the prototype were also presented. 11 refs., 5 tabs., 11 figs.

  12. Concept-Based Curricula: A National Study of Critical Concepts.

    Science.gov (United States)

    Brussow, Jennifer A; Roberts, Karin; Scaruto, Matthew; Sommer, Sheryl; Mills, Christine

    2018-02-22

    As nursing education struggles to address a rapidly changing health care system, overcrowded curricula, and an increased focus on clinical reasoning skills, many programs have adopted or transitioned to concept-based curricula (CBCs), which are structured around key concepts and exemplars. Despite CBC's promised benefits, the process of developing a CBC framework may pose a challenge to programs. To address this barrier, a national study was conducted to develop a representative list of concepts and exemplars. This initiative expands on prior work by suggesting a leveled approach to positioning exemplars within a curricular sequence.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  13. Design flood estimation in ungauged basins: probabilistic extension of the design-storm concept

    Science.gov (United States)

    Berk, Mario; Špačková, Olga; Straub, Daniel

    2016-04-01

    Design flood estimation in ungauged basins is an important hydrological task, which is in engineering practice typically solved with the design storm concept. However, neglecting the uncertainty in the hydrological response of the catchment through the assumption of average-recurrence-interval (ARI) neutrality between rainfall and runoff can lead to flawed design flood estimates. Additionally, selecting a single critical rainfall duration neglects the contribution of other rainfall durations on the probability of extreme flood events. In this study, the design flood problem is approached with concepts from structural reliability that enable a consistent treatment of multiple uncertainties in estimating the design flood. The uncertainty of key model parameters are represented probabilistically and the First-Order Reliability Method (FORM) is used to compute the flood exceedance probability. As an important by-product, the FORM analysis provides the most likely parameter combination to lead to a flood with a certain exceedance probability; i.e. it enables one to find representative scenarios for e.g., a 100 year or a 1000 year flood. Possible different rainfall durations are incorporated by formulating the event of a given design flood as a series system. The method is directly applicable in practice, since for the description of the rainfall depth-duration characteristics, the same inputs as for the classical design storm methods are needed, which are commonly provided by meteorological services. The proposed methodology is applied to a case study of Trauchgauer Ach catchment in Bavaria, SCS Curve Number (CN) and Unit hydrograph models are used for modeling the hydrological process. The results indicate, in accordance with past experience, that the traditional design storm concept underestimates design floods.

  14. The EXIST Mission Concept Study

    Science.gov (United States)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  15. Design and Evaluation of Nextgen Aircraft Separation Assurance Concepts

    Science.gov (United States)

    Johnson, Walter; Ho, Nhut; Arutyunov, Vladimir; Laue, John-Luke; Wilmoth, Ian

    2012-01-01

    To support the development and evaluation of future function allocation concepts for separation assurance systems for the Next Generation Air Transportation System, this paper presents the design and human-in-the-loop evaluation of three feasible function allocation concepts that allocate primary aircraft separation assurance responsibilities and workload to: 1) pilots; 2) air traffic controllers (ATC); and 3) automation. The design of these concepts also included rules of the road, separation assurance burdens for aircraft of different equipage levels, and utilization of advanced weather displays paired with advanced conflict detection and resolution automation. Results of the human-in-the-loop simulation show that: a) all the concepts are robust with respect to weather perturbation; b) concept 1 (pilots) had highest throughput, closest to assigned spacing, and fewest violations of speed and altitude restrictions; c) the energy of the aircraft during the descent phase was better managed in concepts 1 and 2 (pilots and ATC) than in concept 3 (automation), in which the situation awareness of pilots and controllers was lowest, and workload of pilots was highest. The paper also discusses further development of these concepts and their augmentation and integration with future air traffic management tools and systems that are being considered for NextGen.

  16. Design concept for α-hydrogen-substituted nitroxides.

    Science.gov (United States)

    Amar, Michal; Bar, Sukanta; Iron, Mark A; Toledo, Hila; Tumanskii, Boris; Shimon, Linda J W; Botoshansky, Mark; Fridman, Natalia; Szpilman, Alex M

    2015-02-06

    Stable nitroxides (nitroxyl radicals) have many essential and unique applications in chemistry, biology and medicine. However, the factors influencing their stability are still under investigation, and this hinders the design and development of new nitroxides. Nitroxides with tertiary alkyl groups are generally stable but obviously highly encumbered. In contrast, α-hydrogen-substituted nitroxides are generally inherently unstable and rapidly decompose. Herein, a novel, concept for the design of stable cyclic α-hydrogen nitroxides is described, and a proof-of-concept in the form of the facile synthesis and characterization of two diverse series of stable α-hydrogen nitroxides is presented. The stability of these unique α-hydrogen nitroxides is attributed to a combination of steric and stereoelectronic effects by which disproportionation is kinetically precluded. These stabilizing effects are achieved by the use of a nitroxide co-planar substituent in the γ-position of the backbone of the nitroxide. This premise is supported by a computational study, which provides insight into the disproportionation pathways of α-hydrogen nitroxides.

  17. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  18. Investigating the Act of Design in Discharge Concept Using PMRI

    Science.gov (United States)

    Lestariningsih; Anwar, Muhammad; Setiawan, Agus Mulyanto

    2015-01-01

    The goal of this research is to investigate the act of design in discharge concept using Pendidikan Matematika Realistik Indonesia (PMRI) approach with Lapindo's Mud phenomenon as a context. Design research was chosen as the method used in this research that consists of three phases, namely preparing for the experiment, teaching experiment, and…

  19. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  20. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  1. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts...

  2. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  3. New concepts for controlled fusion reactor blanket design

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Avci, H.; El-Maghrabi, M.

    1975-01-01

    Several new concepts for fusion reactor blanket design based on the idea of shifting, or tailoring, the neutron spectrum incident on the first structural wall are presented. The spectral shifter is a nonstructural element which can be made of graphite, silicon carbide, or three dimensionally woven carbon fibers (and containing other materials as appropriate) placed between the neutron source and the first structural wall. The softened neutron spectrum incident on the structural components leads to lower gas production and atom displacement rates than in more standard fusion blanket designs. In turn, this results in longer anticipated lifetimes for the structural materials and can significantly reduce radioactivity and afterheat levels. In addition, the neutron spectrum in the first structural wall can be made to approach the flux shape in fast breeder reactors. Such spectral softening means that existing radiation facilities may be more profitably used to provide relevant materials radiation damage data for the structural materials in these fusion blanket designs. This general class of blanket concepts are referred to as internal spectral shifter and energy converter, or ISSEC concepts. These specific design concepts fall into three main categories: ISSEC/EB concepts based on utilizing existing designs which breed tritium behind the first structural wall; ISSEC/IB concepts based on breeding tritium inside the first vacuum wall; and ISSEC/Bu concepts based on using boron, carbon, and perhaps, beryllium to obtain an energy multiplier and converter design that does not attempt to breed tritium or utilize lithium. The detailed analyses relate specifically to the nuclear performance of ISSEC systems and to a discussion of materials radiation damage problems in the structural material.(U.S.)

  4. Information management for nuclear power stations: System Design Concept

    International Nuclear Information System (INIS)

    Halpin, D.W.

    1978-03-01

    A study of the information management structure required to support nuclear power plant construction was performed by a joint university-industry group under the sponsorship of the Department of Energy (DOE), formerly the Energy Research and Development Administration (ERDA). The purpose of this study was (1) to study methods for the control of information during the construction and start-up of nuclear power plants, and (2) identify those data elements intrinsic to nuclear power plants which must be maintained in a structured format for quick access and retrieval. Maintenance of the massive amount of data needed for control of a nuclear project during design, procurement, construction, start-up/testing, and operational phases requires a structuring which allows immediate update and retrieval based on a wide variety of access criteria. The objective of the research described has been to identify design concepts which support the development of an information control system responsive to these requirements. A conceptual design of a Management Information Data Base System which can meet the project control and information exchange needs of today's large nuclear power plant construction projects has been completed and an approach recommended for development and implementation of a complete operational system

  5. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  6. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  7. CELSS experiment model and design concept of gas recycle system

    Science.gov (United States)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  8. Study on defensive security concepts and policies

    International Nuclear Information System (INIS)

    1993-01-01

    The report begins by describing the background against which the proposal for the study emerged-the welcome developments brought about by the end of the cold war but also the emergence of new threats and the reappearance of long-standing problems. The study proceeds to examine current trends in the international security environment and how they may influence the peaceful settlement of dispute and the effecting of restraint and a defensive orientation in the development, maintenance and use of armed forces. A discussion of the substance and main features of defensive security concepts and policies follows. Existing studies and models designed to eliminate the offensive character of military force postures by effecting a defensive orientation of capabilities are surveyed. In addition, the study discusses political and military aspects of defensive security, pointing out how defensive security differs from those existing models

  9. Concept design on RH maintenance of CFETR Tokamak reactor

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Songtao; Wan, Yuanxi; Li, Jiangang; Ye, Minyou; Zheng, Jinxing; Cheng, Yong; Zhao, Wenlong; Wei, Jianghua

    2014-01-01

    Highlights: •We discussed the concept design of the RH maintenance system based on the main design work of the key components for CFETR. •The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. •The technical problems encountered in the design process were discussed. •The present concept design of remote maintenance system in this paper can meet the physical and engineering requirement of CFETR. -- Abstract: CFETR which stands for Chinese Fusion Engineering Testing Reactor is a superconducting Tokamak device. The concept design on RH maintenance of CFETR has been done in the past year. It is known that, the RH maintenance is one of the most important parts for Tokamak reactor. The fusion power was designed as 50–200 MW and its duty cycle time (or burning time) was estimated as 30–50%. The center magnetic field strength on the TF magnet is 5.0 T, the maximum capacity of the volt seconds provided by center solenoid winding will be about 160 VS. The plasma current will be 10 MA and its major radius and minor radius is 5.7 m and 1.6 m respectively. All the components of CFETR which provide their basic functions must be maintained and inspected during the reactor lifetime. Thus, the remote handling (RH) maintenance system should be a key component, which must be detailedly designed during the concept design processing of CFETR, for the operation of reactor. The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. What is more, the technical problems encountered in the design process will also be discussed

  10. Human-centered incubator: beyond a design concept

    OpenAIRE

    Goossens, R H M; Willemsen, H

    2013-01-01

    We read with interest the paper by Ferris and Shepley1 on a human-centered design project with university students on neonatal incubators. It is interesting to see that in the design solutions and concepts as presented by Ferris and Shepley,1 human-centered design played an important role. In 2005, a master thesis project was carried out in the Delft University of Technology, following a similar human-centered design approach.2, 3 In that design project we also addressed the noise level insid...

  11. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    Science.gov (United States)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  12. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  13. CONTEMPORARY DESIGN CONCEPTS IN CAMOUFLAGE: UNIVERSAL VERSUS SPECIALIZED

    Directory of Open Access Journals (Sweden)

    TACHEV Momchil

    2015-06-01

    Full Text Available In present days there is a strong influence of the concept incorporating increased use of low intensive colours and small “digitalized” form structures for modern army camouflage designs. It was proclaimed as a revolutionary “universal” design line. It was supposed to be superior to others patterns designs and to be optimal for most types of environment. Meanwhile, some arm forces insist on developing more limited as terrain range camouflage design but with better efficiency and specialization. These two concepts in design reflect the political and the military philosophies of the countries they represent. However, at the end for the soldiers at the battlefield it is a matter of survival.

  14. Teaching strategies to promote concept learning by design challenges

    Science.gov (United States)

    Van Breukelen, Dave; Van Meel, Adrianus; De Vries, Marc

    2017-07-01

    Background: This study is the second study of a design-based research, organised around four studies, that aims to improve student learning, teaching skills and teacher training concerning the design-based learning approach called Learning by Design (LBD).

  15. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    Science.gov (United States)

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  17. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  18. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    Science.gov (United States)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  19. From corporate control concept to ERP system design

    NARCIS (Netherlands)

    Kerssens-van Drongelen, I.C.

    2003-01-01

    As Goold and Campbell (2002) rightly observed in their recent article, currently not many organizations have purposefully designed their organization set-up and the other elements of their corporate control concept such as the management style, the responsibility structure, and the format and use of

  20. An integral design concept for ecological self-compacting concrete

    NARCIS (Netherlands)

    Hunger, M.

    2010-01-01

    This Thesis addresses an alternative design concept for Self-Compacting Concrete (SCC). SCC is a special type of concrete with superior workability, which flows and compacts in all corners of a formwork just by the influence of gravity. Introduced to the concrete world in the late 1980s, SCC has

  1. The Concept of Design: Are We off Track?

    Science.gov (United States)

    2012-06-15

    Andrews, Henry Mintzberg, Ludwig von Bertalanffy, Thomas Kuhn, Horst Rittel, Melvin Webber, Dietrich Dörner, and Peter Senge listed below cement a...perspective. The terms, concepts, and intellectual accessories presented in this chapter cement a deeper appreciation and understanding of design as a...thinking. Creative thinking involves generating something new or original. It involves the skills of flexibility, originality, fluency , elaboration

  2. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    Science.gov (United States)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  3. Periodic Virtual Cell Manufacturing (P-VCM) - Concept, Design and Operation

    NARCIS (Netherlands)

    Slomp, Jannes; Krushinsky, Dimitry; Caprihan, Rahul

    2011-01-01

    This paper presents and discusses the concept of Periodic Virtual Cell Manufacturing (P-VCM). After giving an illustrative example of the operation and design complexity of a P-VCM system, we present an industrial case to study the applicability of the concept. The illustrative example and the

  4. The Conceptions about Teamwork Questionnaire: Design, Reliability and Validity with Secondary Students

    Science.gov (United States)

    Martinez-Fernandez, J. Reinaldo; Corcelles, Mariona; Cerrato-Lara, Maria

    2011-01-01

    In this study, we present the conceptions about teamwork questionnaire designed to evaluate the conceptions that secondary students have about teamwork. Participants were 309 students aged 15-16 from eight secondary schools, seven from Barcelona and one from Girona (Spain). The original 27-item questionnaire was reduced according to expert…

  5. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  6. Research on green building design based on ecological concept

    Directory of Open Access Journals (Sweden)

    Zhang Ping Qing

    2016-01-01

    Full Text Available At present, the protection of the ecological environment and the promotion of green building has been recognized and widely promoted.With the rapid development of the construction industry, Architecture design will inevitably require the resentation of its unique form and charm to reflect the ecological concept and ecological culture, because of the unique nature of the art and the particularity of the environment. To establish the ecological concept of green building design and vigorously develop the green green building has a complementary role to alleviate the pressure on resources,and to speed up the eco city planning design, and to realize the sustainable development of the city, and to protect the urban ecological environmental.

  7. Design concept of HYPER (HYbrid Power Extraction Reactor)

    International Nuclear Information System (INIS)

    Park, Won S.; Song, Tae Y.; Yu, Dong H.; Kim, Chang H.

    1999-01-01

    Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development called HYPER for the transmutation of nuclear waste and energy production through the transmutation process. Some major design features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Pb-Bi is adopted as a coolant and spallation target material. 1 GeV 13 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MWth power. The support ratio of HYPER for LWR units producing the same power is believed to be 5 to 6. (author)

  8. Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2017-10-01

    Full Text Available Abstract Background It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA, a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC trial for a follow-on compound using the lessons learnt from the lead compound. Methods The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid “S” shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response. Results It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response

  9. Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity.

    Science.gov (United States)

    Liu, Feng; Walters, Stephen J; Julious, Steven A

    2017-10-02

    It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA), a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC) trial for a follow-on compound using the lessons learnt from the lead compound. The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid "S" shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM) is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response. It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response follows a placebo like curve, an Emax like curve, or log

  10. Teaching Strategies to Promote Concept Learning by Design Challenges

    Science.gov (United States)

    Van Breukelen, Dave; Van Meel, Adrianus; De Vries, Marc

    2017-01-01

    Background: This study is the second study of a design-based research, organised around four studies, that aims to improve student learning, teaching skills and teacher training concerning the design-based learning approach called Learning by Design (LBD). Purpose: LBD uses the context of design challenges to learn, among other things, science.…

  11. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  12. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  13. Concept Maps as Instructional Tools for Improving Learning of Phase Transitions in Object-Oriented Analysis and Design

    Science.gov (United States)

    Shin, Shin-Shing

    2016-01-01

    Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…

  14. Design and Analysis of a Stiffened Composite Structure Repair Concept

    Science.gov (United States)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  15. Automatic Voltage Control (AVC) of Danish Transmission System - Concept design

    DEFF Research Database (Denmark)

    Qin, Nan; Abildgaard, Hans; Lund, P.

    2014-01-01

    For more than 20 years it has been a consistent plan by all Danish governments to turn the Danish power production away from fossil fuels towards renewable energy. The result today is that 37% of the total Danish power consumption was covered by mainly wind energy in 2013 aiming at 50% by 2020......, objectives, constraints, algorithms for optimal power flow and some special functions in particular systems, which inspires the concept design of a Danish AVC system to address the future challenges of voltage control. In the concept, the Danish AVC design is based on a centralized control scheme. All...... the substation loses the telecommunications to the control center. RPCs will be integrated to the AVC system as normative regulators in the later stage. Distributed generation units can be organized as virtual power plants and participate in voltage control at transmission level. Energinet.dk as the Danish TSO...

  16. Mercury Lander Mission Concept Study Summary

    Science.gov (United States)

    Eng, D. A.

    2018-05-01

    Provides a summary of the Mercury Lander Mission Concept Study performed as part of the last Planetary Decadal Survey. The presentation will focus on engineering trades and the challenges of developing a Mercury lander mission.

  17. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  18. Fuel transfer cask concept design for reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Phongsakorn Prak; Tonny Lanyau; Mohd Fazli Zakaria

    2010-01-01

    Reactor Triga PUSPATI (RTP) has been operated since 1982 till now. For such long period, the organization feels the need to upgrade the power from 1 MW to 3 MW which involved changing new fuels. Spent fuels will be stored in a Spent Fuel Pool. The process of transferring spent fuels into Spent Fuels Pool required a fuel transfer cask. This paper discussed the design concept for the fuel transfer cast which is essential equipment for reactor upgrading mission. (author)

  19. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  20. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  1. Automating expert role to determine design concept in Kansei Engineering

    Science.gov (United States)

    Lokman, Anitawati Mohd; Haron, Mohammad Bakri Che; Abidin, Siti Zaleha Zainal; Khalid, Noor Elaiza Abd

    2016-02-01

    Affect has become imperative in product quality. In affective design field, Kansei Engineering (KE) has been recognized as a technology that enables discovery of consumer's emotion and formulation of guide to design products that win consumers in the competitive market. Albeit powerful technology, there is no rule of thumb in its analysis and interpretation process. KE expertise is required to determine sets of related Kansei and the significant concept of emotion. Many research endeavors become handicapped with the limited number of available and accessible KE experts. This work is performed to simulate the role of experts with the use of Natphoric algorithm thus providing sound solution to the complexity and flexibility in KE. The algorithm is designed to learn the process by implementing training datasets taken from previous KE research works. A framework for automated KE is then designed to realize the development of automated KE system. A comparative analysis is performed to determine feasibility of the developed prototype to automate the process. The result shows that the significant Kansei is determined by manual KE implementation and the automated process is highly similar. KE research advocates will benefit this system to automatically determine significant design concepts.

  2. Sub-mSV breast XACT scanner: concept and design

    Science.gov (United States)

    Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong

    2016-04-01

    Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.

  3. The Core Journal Concept in Black Studies

    Science.gov (United States)

    Weissinger, Thomas

    2010-01-01

    Black Studies scholars have shown interest in the core journal concept. Indeed, the idea of core journals for the study of the Black experience has changed several times since 1940. While Black Studies scholars are citing Black Studies journals with frequency, they also cite traditional disciplinary journals a great deal of the time. However,…

  4. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    Science.gov (United States)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  5. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  6. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  7. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  8. Design concept of the HPLWR moderator flow path

    International Nuclear Information System (INIS)

    Koehly, Christina; Schulenberg, Thomas; Starflinger, Joerg

    2009-01-01

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280degC reactor inlet temperature to 500degC core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. Prior to entering the first fuel assemblies, the coolant is used as moderator in water rods inside assemblies, in the gap volume between assembly boxes, as well as in the surrounding axial or radial reflectors. Even though assembly boxes and moderator rods are designed with a certain thermal insulation, heat is generated in the moderator water or transferred to it from the superheated steam inside assemblies, causing concern of natural convection phenomena with uncontrolled neutronic feedback on the core power distribution. Moreover, bypass flows of the moderator water need to be minimized at any thermal expansion of the reactor internal structures to avoid an unpredictable moderator mass flow. The design concept of the moderator flow path described in this paper is trying to overcome these problems. Downward flow of moderator water is limited to sub-cooled conditions, well below the pseudo-critical point of supercritical water. Dedicated orifices are foreseen to allow later correction of the mass flow split. The sealing concept accounts for larger thermal expansions of reactor components by using C-rings or bellows. A welded construction is preferred wherever possible to minimize leakage. The removable steam plenum is aligned at the extractable steam pipes to minimize thermal displacements at the sealing positions. The paper is showing several design details to illustrate the technical solutions. (author)

  9. The NASA X-Ray Mission Concepts Study

    Science.gov (United States)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  10. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of)

    2016-10-15

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger.

  11. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik; Lee, Hee Joon

    2016-01-01

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger

  12. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  13. Viewing the Reviewing: An Observational Study of the Use of an Interactive Digital Video To Help Teach the Concepts of Design Inspection Reviews.

    Science.gov (United States)

    Love, Matthew

    "Design Inspection Reviews" are structured meetings in which participants follow certain rules of procedure and behavior when conducting detailed readings of design plans to identify errors and misunderstandings. The technique is widely used in the software engineering industry, where it is demonstrably more effective than testing at…

  14. Effectiveness of Adaptive Concept Maps for Promoting Conceptual Understanding: Findings from a Design-Based Case Study of a Learner-Centered Tool

    Science.gov (United States)

    Moore, Jacob; Williams, Christopher B.; North, Christopher; Johri, Aditya; Paretti, Marie

    2015-01-01

    Traditional instructional materials such as textbooks contain significant educational content, but the navigational mechanisms to access that content are limited and, more importantly, not designed with learning in mind. To address this gap, we present the Adaptive Map, a novel organization and navigation tool designed to help students better…

  15. Living closer to the environment: Housing design concept

    Directory of Open Access Journals (Sweden)

    Kosorić Vesna

    2011-01-01

    Full Text Available The main idea of this design concept is to strengthen the relationship and understanding between a man - resident and his environment. Residents are separated from the outdoor environment by glazing, which enables constant observation of environment from nearly all points of indoor space, encouraging positive feelings towards external world and understanding of the fragility of biosphere. Care for the environment should become a part of a man's nature and way of living, and it is the people who are expected to become the driving force of positive global changes towards sustainable development. The semisphere-like single family house of 14m in diameter has a multifunctional, multi-layer 'active' facade envelope. The envelope ensures constant visual contact of residents with the whole surroundings, while still providing comfort. The living space of the house reflects natural shapes which are organic rather than rectangular. Such indoor space becomes a part of the environment, rather than being protected, distanced and isolated from it. The house is designed to use solar energy 'passively' by absorption through insulated glazed envelope and 'actively' by outer skin layer on the first floor, made of stripes of flat semi-transparent polycrystalline photovoltaic (PV panels. In addition to its constructive role, the concrete core of the house acts as thermal mass and enables absorption and accumulation of thermal energy. The developed housing concept is applicable in different urban-design units and sets.

  16. Evolution of design concepts for remotely maintainable equipment racks

    International Nuclear Information System (INIS)

    Peishel, F.L.; Mouring, R.W.; Schrock, S.L.

    1986-01-01

    Equipment racks have been used to support process equipment in radioactive facilities for many years. Improvements in the design of these racks have evolved relatively slowly primarily as a result of limitations in the capabilities of maintenance equipment; that is, tasks could only be approached from above using bridge cranes with viewing primarily through periscopes. In recent years, however, technological advances have been made by the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) in bridge-mounted servomanipulators with onboard auxiliary hoists and television viewing systems. These advances permit full cell coverage by the manipulator arms which, in turn, allow maintenance tasks to be approached horizontally as well as from above. Maintainable equipment items can be stacked vertically on a rack because total overhead access is less important and maintenance tasks that would not have been attempted in the past can now be performed. These advances permit greater flexibility in the design and cell layout of the racks and lead to concepts that could significantly increase the availability of a facility. The evolution of rack design and a description of the alternative concepts based on present maintenance systems capabilities are presented in this paper. 13 refs., 11 figs

  17. Mars power system concept definition study. Volume 1: Study results

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  18. The Role of Design Concepts in the Development of Industrial Services

    DEFF Research Database (Denmark)

    Pekkala, Janne; Ylirisku, Salu

    2017-01-01

    B-to-B industrial manufacturing organisations are moving focus from designing products to services. This transition challenges the management of innovating, which is increasingly collaborative and networked. Organisations need to be able to tackle the related uncertainty in order to prepare, secure......, and plan their use of resources. Design concepts are known to have various beneficial roles in product and service development in various development contexts. In this article we study how design concepts were utilised within, and between, three development projects in a Finnish company in the context of B...

  19. The EPR-a comprehensive design concept against external events

    International Nuclear Information System (INIS)

    Waas, U.; Stoll, U.

    2005-01-01

    The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissible affected. In the design of the EPR particular attention was paid to the following external hazards: Earthquake, Airplane crash, Explosion pressure wave. The design concept for these events is discussed below. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The Basic Design was developed for the seismic loads given in the European Utility Requirements with a horizontal free field Peak Ground Acceleration (PGA) for all site conditions of 0.25 g. The seismic protection is based on a deterministic design approach, with the intention of ensuring the safety functions in case of SSE. The loads for the design basis airplane crash and - if required - for the design extension airplane crash are defined depending on site specific requirements. For the design basis airplane crash as defined in Finland the safety goals are fulfilled for postulated single failure and preventive maintenance as well as for specific unlikely scenarios with local impacts where one redundant train is assumed to be lost. For the design extension airplane crash no single failure and preventive maintenance are assumed. Reactor building (RB), fuel building (FB), safeguard building (SB) 2 and 3 are protected by design against airplane crash. The common base mat of the RB, FB and SBs ensures global stability. To avoid penetration the wall thickness of the outer building structures of RB, FB and SB2/3 is set at 1.80 m (result of an optimization process). To rule out major induced vibrations due to airplane crash the inner building structures are decoupled from the outer walls. The SB 1 and SB4, the main steam and feedwater valve compartments, the diesel buildings and the service water pump buildings are protected against

  20. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  1. Study of workplace: concept and practical application

    International Nuclear Information System (INIS)

    Varin, J.C.; Casanova, P.; Benjamin, P.; Rey, M.

    2006-01-01

    The order in council published in March 2003 deals with the radiation protection of workers. It completes the French regulation of risks prevention. In this text appears a new item called 'study of workplace'. This new concept does not deal only with radiation risks: in a risks management organization, this concept must be a complementary disposition of the existing procedures. In the La Hague plant, a risks management policy has been developed for many years in respect with OHSAS 18001 referential. This risks management system involves all the departments which work in the risks prevention field: safety department, radiation protection department, health department. Many procedures and quality assurance tools have been crated which comply with the concept of 'work place study'. (author)

  2. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    International Nuclear Information System (INIS)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO 2 fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject

  3. A Dissipative Connector for CLT Buildings: Concept, Design and Testing

    Science.gov (United States)

    Scotta, Roberto; Marchi, Luca; Trutalli, Davide; Pozza, Luca

    2016-01-01

    This paper deals with the conception and characterization of an innovative connection for cross-laminated timber (CLT) panels. The connection is designed to provide an adequate level of dissipative capacity to CLT structures also when realized with large horizontal panels and therefore prone to fragile shear sliding failure. The connector, named X-bracket, has been theorized and designed by means of numerical parametric analyses. Furthermore, its cyclic behavior has been verified with experimental tests and compared to that of traditional connectors. Numerical simulations of cyclic tests of different CLT walls anchored to the foundation with X-brackets were also performed to assess their improved seismic performances. Finally, the analysis of the response of a 6 m × 3 m squat wall demonstrates that the developed connection provides good ductility and dissipation capacities also to shear walls realized with a single CLT panel. PMID:28773265

  4. Implementing Firm Dynamic Capabilities Through the Concept Design Process

    DEFF Research Database (Denmark)

    Nedergaard, Nicky; Jones, Richard

    2011-01-01

    It is well understood that firms operating in highly dynamic and fluid markets need to possess strong dynamic capabilities of sensing (market trajectories), seizing (to capitalise on these trajectories), and transformation (in order to implement sustainable strategies). Less understood is how firms...... actually implement these capabilities. A conceptual model showing how managing concept design processes can help firms systematically develop dynamic capabilities and help bridge the gap between the market-oriented and resource-focused strategic perspectives is presented. By placing this model in a design......-driven innovation perspective three theoretical propositions is derived explicating both the paper’s implementation approach to dynamic capabilities as well as new ways of understanding these capabilities. Concluding remarks are made discussing both the paper’s contribution to the strategic marketing literature...

  5. Safety design concept and analysis for the upgrading JRR-3

    International Nuclear Information System (INIS)

    Onishi, N.; Isshiki, M.; Takahashi, H.; Takayanagi, M.

    1990-01-01

    The Research Reactor No.3 (JRR-3) is under reconstruction for upgrading. This paper describes the safety design concepts of the architectural and engineering design, anticipated operational transients and accident conditions which are the postulated initiating events for the safety evaluation, and the safety criteria of the upgraded JRR-3. The safety criteria are defined taking into account those of Light Water Reactors and the characteristics of the research reactor. Using the example of the safety analysis, this paper describes analytical results of a reactivity insertion by removal of in-core irradiation samples, a pipeline break at the primary coolant loop and flow blockage to a coolant channel, which are the severest postulated initiating events of the JRR-3

  6. A Dissipative Connector for CLT Buildings: Concept, Design and Testing.

    Science.gov (United States)

    Scotta, Roberto; Marchi, Luca; Trutalli, Davide; Pozza, Luca

    2016-02-26

    This paper deals with the conception and characterization of an innovative connection for cross-laminated timber (CLT) panels. The connection is designed to provide an adequate level of dissipative capacity to CLT structures also when realized with large horizontal panels and therefore prone to fragile shear sliding failure. The connector, named X-bracket, has been theorized and designed by means of numerical parametric analyses. Furthermore, its cyclic behavior has been verified with experimental tests and compared to that of traditional connectors. Numerical simulations of cyclic tests of different CLT walls anchored to the foundation with X-brackets were also performed to assess their improved seismic performances. Finally, the analysis of the response of a 6 m × 3 m squat wall demonstrates that the developed connection provides good ductility and dissipation capacities also to shear walls realized with a single CLT panel.

  7. Origins Space Telescope Concept 2: Trades, Decisions, and Study Status

    Science.gov (United States)

    Leisawitz, David; DiPirro, Michael; Carter, Ruth; Origins Space Telescope Decadal Mission Concept Study Team

    2018-01-01

    The Origins Space Telescope (OST) will trace the history of our cosmic origins from the time dust and heavy elements began to alter the astrophysical processes that shaped galaxies and enabled planets to form, culminating at least once in the development of a life-bearing planet. But how did the universe evolve in response to its changing ingredients, and how common are planets that support life? The OST, an advancing concept for the Far-Infrared Surveyor mission described in the NASA Astrophysics roadmap, is being designed to answer these questions. As envisaged in the Roadmap, Enduring Quests/Daring Visions, OST will offer sensitivity and spectroscopic capabilities that vastly exceed those found in any preceding far-IR observatory. The spectral range of OST was extended down to 6 microns to allow measurements of key biomarkers in transiting exoplanet spectra. Thus, OST is a mid- and far-IR mission. OST Concept 2 will inform the Science and Technology Definition Team’s understanding of the “solution space,” enabling a recommendation to the 2020 Decadal Survey which, while not fully optimized, will be scientifically compelling, executable, and intended to maximize the science return per dollar. OST Concept 1, described in a companion paper, would satisfy virtually all of the STDT’s science objectives in under 5 years. Concept 2 is intentionally less ambitious than Concept 1, but it still includes a 4 K telescope, enabling exquisitely sensitive far-IR measurements. This paper will summarize the architecture options considered for OST Concept 2 and describe the factors that led to the chosen design concept. Lessons from the Concept 1 study influenced our choices. We report progress on the Concept 2 study to date.

  8. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle) concept into architectural design

    OpenAIRE

    Kong Seng Yeap; Sreenivasaiah Purushothama Rao

    2012-01-01

    The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle) into the physical environment. As a res...

  9. Sound-proof Sandwich Panel Design via Metamaterial Concept

    Science.gov (United States)

    Sui, Ni

    Sandwich panels consisting of hollow core cells and two face-sheets bonded on both sides have been widely used as lightweight and strong structures in practical engineering applications, but with poor acoustic performance especially at low frequency regime. Basic sound-proof methods for the sandwich panel design are spontaneously categorized as sound insulation and sound absorption. Motivated by metamaterial concept, this dissertation presents two sandwich panel designs without sacrificing weight or size penalty: A lightweight yet sound-proof honeycomb acoustic metamateiral can be used as core material for honeycomb sandwich panels to block sound and break the mass law to realize minimum sound transmission; the other sandwich panel design is based on coupled Helmholtz resonators and can achieve perfect sound absorption without sound reflection. Based on the honeycomb sandwich panel, the mechanical properties of the honeycomb core structure were studied first. By incorporating a thin membrane on top of each honeycomb core, the traditional honeycomb core turns into honeycomb acoustic metamaterial. The basic theory for such kind of membrane-type acoustic metamaterial is demonstrated by a lumped model with infinite periodic oscillator system, and the negative dynamic effective mass density for clamped membrane is analyzed under the membrane resonance condition. Evanescent wave mode caused by negative dynamic effective mass density and impedance methods are utilized to interpret the physical phenomenon of honeycomb acoustic metamaterials at resonance. The honeycomb metamaterials can extraordinarily improve low-frequency sound transmission loss below the first resonant frequency of the membrane. The property of the membrane, the tension of the membrane and the numbers of attached membranes can impact the sound transmission loss, which are observed by numerical simulations and validated by experiments. The sandwich panel which incorporates the honeycomb metamateiral as

  10. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Science.gov (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    800 nanometers with three additional discrete near infrared (NIR) and shortwave infrared (SWIR) ocean aerosol correction bands. Also, to avoid drift in sensor sensitivity from being interpreted as environmental change, climate change research requires rigorous monitoring of sensor stability. For SeaWiFS, monthly lunar imaging accurately tracked stability at an accuracy of approximately 0.1% that allowed the data to be used for climate studies [2]. It is now acknowledged by the international community that future missions and sensor designs need to accommodate lunar calibrations. An overview of ocean color remote sensing and a review of the progress made in ocean color remote sensing and the variety of research applications derived from global satellite ocean color data are provided. The purpose of this chapter is to discuss the design options for ocean color satellite radiometers, performance and testing criteria, and sensor components (optics, detectors, electronics, etc.) that must be integrated into an instrument concept. These ultimately dictate the quality and quantity of data that can be delivered as a trade against mission cost. Historically, science and sensor technology have advanced in a "leap-frog" manner in that sensor design requirements for a mission are defined many years before a sensor is launched and by the end of the mission, perhaps 15-20 years later, science applications and requirements are well beyond the capabilities of the sensor. Section 3 provides a summary of historical mission science objectives and sensor requirements. This progression is expected to continue in the future as long as sensor costs can be constrained to affordable levels and still allow the incorporation of new technologies without incurring unacceptable risk to mission success. The IOCCG Report Number 13 discusses future ocean biology mission Level-1 requirements in depth.

  11. Improving concept design of divertor support system for FAST tokamak using TRIZ theory and AHP approach

    International Nuclear Information System (INIS)

    Di Gironimo, G.; Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A.; Siuko, M.

    2013-01-01

    Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)

  12. Improving concept design of divertor support system for FAST tokamak using TRIZ theory and AHP approach

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Carfora, D.; Esposito, G.; Labate, C.; Mozzillo, R.; Renno, F.; Lanzotti, A. [Association Euratom/ENEA/CREATE, Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Siuko, M. [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland)

    2013-11-15

    Highlights: • Optimization of the RH system for the FAST divertor using TRIZ. • Participative design approach using virtual reality. • Comparison of product alternatives in an immersive virtual reality environment. • Prioritization of concept alternatives based on AHP. -- Abstract: The paper focuses on the application of the Theory of Inventive Problem Solving (TRIZ) to divertor Remote Handling (RH) issues in Fusion Advanced Studies Torus (FAST), a satellite tokamak acting as a test bed for the study and the development of innovative technologies oriented to ITER and DEMO programs. The objective of this study consists in generating concepts or solutions able to overcome design and technical weak points in the current maintenance procedure. Two different concepts are designed with the help of a parametric CAD software, CATIA V5, using a top-down modeling approach; kinematic simulations of the remote handling system are performed using Digital Mock-Up (DMU) capabilities of the software. The evaluation of the concepts is carried out involving a group of experts in a participative design approach using virtual reality, classifying the concepts with the help of the Analytical Hierarchy Process (AHP)

  13. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  14. Optimum study designs.

    Science.gov (United States)

    Gu, C; Rao, D C

    2001-01-01

    Because simplistic designs will lead to prohibitively large sample sizes, the optimization of genetic study designs is critical for successfully mapping genes for complex diseases. Creative designs are necessary for detecting and amplifying the usually weak signals for complex traits. Two important outcomes of a study design--power and resolution--are implicitly tied together by the principle of uncertainty. Overemphasis on either one may lead to suboptimal designs. To achieve optimality for a particular study, therefore, practical measures such as cost-effectiveness must be used to strike a balance between power and resolution. In this light, the myriad of factors involved in study design can be checked for their effects on the ultimate outcomes, and the popular existing designs can be sorted into building blocks that may be useful for particular situations. It is hoped that imaginative construction of novel designs using such building blocks will lead to enhanced efficiency in finding genes for complex human traits.

  15. A Hierarchical Biology Concept Framework: A Tool for Course Design

    OpenAIRE

    Khodor, Julia; Halme, Dina Gould; Walker, Graham C.

    2004-01-01

    A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult ...

  16. Materials and design concepts for space-resilient structures

    Science.gov (United States)

    Naser, Mohannad Z.; Chehab, Alaa I.

    2018-04-01

    Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, that technological advancements with regard to space exploration are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. This paper presents a state-of-the-art literature review on recent developments of "space-native" construction materials, and highlights evolutionary design concepts for "space-resilient" structures (i.e., colonies and habitats). This paper also details effects of harsh (and unique) space environments on various terrestrial and extraterrestrial construction materials, as well as on space infrastructure and structural systems. The feasibility of exploiting available space resources in terms of "in-situ resource utilization" and "harvesting of elements and compounds", as well as emergence of enabling technologies such as "cultured (lab-grown)" space construction materials are discussed. Towards the end of the present review, number of limitations and challenges facing Lunar and Martian exploration, and venues in-need for urgent research are identified and examined.

  17. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F; Thirstrup Petersen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  18. A solar powered wireless computer mouse: industrial design concepts

    NARCIS (Netherlands)

    Reich, N.H.; Veefkind, M.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C.; Silvester, S.

    2009-01-01

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared

  19. Facilitating the Concept of Universal Design Among Design Students - Changes in Teaching in the Last Decade.

    Science.gov (United States)

    Vavik, Tom

    2016-01-01

    This short paper describes and reflects on how the teaching of the concept of Universal Design (UD) has developed in the last decade at the Institute of Design at the Oslo School of Architecture and Design (AHO). Four main changes are described. Firstly, the curriculum has evolved from teaching guidelines and principles to focusing on design processes. Secondly, an increased emphasis is put on cognitive accessibility. Thirdly, non-stigmatizing aesthetics expressions and solutions that communicate through different senses have become more important subjects. Fourthly the teaching of UD has moved from the second to the first year curriculum.

  20. Design Concepts and Design Practices in Policy-Making and Public Management

    DEFF Research Database (Denmark)

    Junginger, Sabine

    2012-01-01

    National governments around the globe are actively seeking new ways to engage in social innovation and are investing in innovation labs and innovation centers where methods and principles of design are now being explored and applied to problems of transforming and innovating the public sector (cf...... governments but they also pose new challenges for policy-makers and public administrators who are not yet familiar with design concepts, principles and methods beyond problem-solving. Despite the many linkages between and among design, designing, policy-making and policy implementation, we have yet to clarify...

  1. Concept design of robotic modules for needlescopic surgery.

    Science.gov (United States)

    Sen, Shin; Harada, Kanako; Hewitt, Zackary; Susilo, Ekawahyu; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-08-01

    Many minimally invasive surgical procedures and assisting robotic systems have been developed to further minimize the number and size of incisions in the body surface. This paper presents a new idea combining the advantages of modular robotic surgery, single incision laparoscopic surgery and needlescopic surgery. In the proposed concept, modules carrying therapeutic or diagnostic tools are inserted in the abdominal cavity from the navel as in single incision laparoscopic surgery and assembled to 3-mm needle shafts penetrating the abdominal wall. A three degree-of-freedom robotic module measuring 16 mm in diameter and 51 mm in length was designed and prototyped. The performance of the three connected robotic modules was evaluated. A new idea of modular robotic surgery was proposed, and demonstrated by prototyping a 3-DOF robotic module. The performance of the connected robotic modules was evaluated, and the challenges and future work were summarized.

  2. New concepts of control centre design and development

    International Nuclear Information System (INIS)

    Dittmar, E.; Kiersch, J.J.; Schmudlach, U.; Weihrauch, J.

    1977-02-01

    The concept of modern control centre technology is shown, its realization at project including the supervision of an electric power distribution system is described. A modern control centre is characterized by the fact that the conventional control elements are more and more replaced by elements of computer technology, i.e. computer and displays. The different functions implemented by hard- and software set new standards relative to flexibility, adaptability, dimensioning. The communication interface man/process is defined and designed in a new way allowing dynamic and more efficent supervisionstrategy of technical processes via display in different operation modes. Special attention is paid to adjustments and extensions of process elements and their integration into the supervised network. (orig./WB) [de

  3. The ARAMIS project: a concept robot and technical design.

    Science.gov (United States)

    Colizzi, Lucio; Lidonnici, Antonio; Pignolo, Loris

    2009-11-01

    To describe the ARAMIS (Automatic Recovery Arm Motility Integrated System) project, a concept robot applicable in the neuro-rehabilitation of the paretic upper limb after stroke. Methods, results and conclusion: The rationale and engineering of a state-of-the-art, hardware/software integrated robot system, its mechanics, ergonomics, electric/electronics features providing control, safety and suitability of use are described. An ARAMIS prototype has been built and is now available for clinical tests. It allows the therapist to design neuro-rehabilitative (synchronous or asynchronous) training protocols in which sample exercises are generated by a single exoskeleton (operated by the patient's unaffected arm or by the therapist's arm) and mirrored in real-time or offline by the exoskeleton supporting the paretic arm.

  4. Applying Quality by Design Concepts to Pharmacy Compounding.

    Science.gov (United States)

    Timko, Robert J

    2015-01-01

    Compounding of medications is an important part of the practice of the pharmacy profession. Because compounded medications do not have U.S. Food and Drug Administration approval, a pharmacist has the responsibility to ensure that compounded medications are of suitable quality, safety, and efficacy. The Federal Government and numerous states have updated their laws and regulations regarding pharmacy compounding as a result of recent quality issues. Compounding pharmacists are expected to follow good preparation prodecures in their compounding practices in much the same way pharmaceutical manufacturers are required to follow Current Good Manufacturing Procedures as detailed in the United States Code of Federal Regulations. Application of Quality by Design concepts to the preparation process for a compounded medication can help in understanding the potential pitfalls and the means to mitigate their impact. The goal is to build quality into the compounding process to ensure that the resultant compounded prescription meets the human or animal patients' requirements.

  5. Feasability Study of Electronic Load Sensing Concept

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben O.; Pedersen, Henrik C.

    2006-01-01

    to traditional LS-systems, in terms of better control and system utilization possibilities, combined with the increased acceptance and use of electronic sensors in mobile hydraulic machinery. The current work is to evaluate the suitability of an ELS concepts applied to a Sauer Danfoss Series 45 H-frame open...... circuit axial piston pump. Emphasis is on performance robustness with respect to both variations in internal physical parameters of the pump as well as the type of application dependant load that the pump is expected to drive.The research reflect mechatronics as an integrated design process, while...... a synergistic combination of mechanical engineering, electronic engineering, and control engineering are needed in order to get a successful ELS design....

  6. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    International Nuclear Information System (INIS)

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-01-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations

  7. Proof of Concept Study for the Design, Manufacturing, and Testing of a Patient-Specific Shape Memory Device for Treatment of Unicoronal Craniosynostosis.

    Science.gov (United States)

    Borghi, Alessandro; Rodgers, Will; Schievano, Silvia; Ponniah, Allan; Jeelani, Owase; Dunaway, David

    2018-01-01

    Treatment of unicoronal craniosynostosis is a surgically challenging problem, due to the involvement of coronal suture and cranial base, with complex asymmetries of the calvarium and orbit. Several techniques for correction have been described, including surgical bony remodeling, early strip craniotomy with orthotic helmet remodeling and distraction. Current distraction devices provide unidirectional forces and have had very limited success. Nitinol is a shape memory alloy that can be programmed to the shape of a patient-specific anatomy by means of thermal treatment.In this work, a methodology to produce a nitinol patient-specific distractor is presented: computer tomography images of a 16-month-old patient with unicoronal craniosynostosis were processed to create a 3-dimensional model of his skull and define the ideal shape postsurgery. A mesh was produced from a nitinol sheet, formed to the ideal skull shape and heat treated to be malleable at room temperature. The mesh was afterward deformed to be attached to a rapid prototyped plastic skull, replica of the patient initial anatomy. The mesh/skull construct was placed in hot water to activate the mesh shape memory property: the deformed plastic skull was computed tomography scanned for comparison of its shape with the initial anatomy and with the desired shape, showing that the nitinol mesh had been able to distract the plastic skull to a shape close to the desired one.The shape-memory properties of nitinol allow for the design and production of patient-specific devices able to deliver complex, preprogrammable shape changes.

  8. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    Van Breukelen, D.H.J.; De Vries, M.J.; Schure, F.A.

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning,

  9. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    MEd Dave van Breukelen; Prof. Dr. Marc de Vries; MEd Frank Schure

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research (NWO), that aims to improve student learning,

  10. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    van Breukelen, D.H.J.; de Vries, M.J.; Schure, Frank A.

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning,

  11. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    International Nuclear Information System (INIS)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept

  12. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  13. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  14. Wind turbine design : with emphasis on Darrieus concept

    Energy Technology Data Exchange (ETDEWEB)

    Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada)

    2002-07-01

    This book described software applications designed to model the aerodynamic performance of the Darrieus vertical-axis wind turbine. The book also provided a comprehensive review of current vertical-axis wind turbine (VAWT) technology, and discussed recent advances in understanding the physics of flow associated with the Darrieus type of turbine. The principal theories and aerodynamic models for calculating the performance of the turbines were presented, as well as results from experimental data derived from prototypes as well as laboratory measurements. The book was divided into 10 chapters: (1) wind definition and characteristics; (2) a review of the Madaras rotor concept along with an introduction to vortex modelling; (3) an introduction to the geometry of the Darrieus rotor; (4) a single streamtube model; (5) dynamic-stall phenomenon and numerical simulations; (6) double actuator risk theory; (7) details of water channel experiments; (8) modelling of turbine components; (9) wind turbine design parameters; and (10) issues related to socio-economic and environmental impacts. refs., tabs., figs.

  15. Concept Design and Development Model of Underground Villas

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2015-08-01

    Full Text Available With the rapid development of society, modern buildings have been consuming excessive amount of energy and resources. Eco-friendly building is going to be the leading style of architecture in the future. Underground villa, as a type of energy efficient architecture, has widely drawn humans’ attention. However, Chinese are still at an exploratory stage in terms of the development of underground construction. This paper describes several typical underground villas in western developed countries; briefly states the advantages and shortcomings of underground villas; discusses the design of style-planning, inner-space design, lighting and ventilation, and waterproof and fireproof of underground villas; also puts forward how to improve the living environment of underground villas. Besides, the paper suggests an innovative concept of underground living that best suits China’s market based on the merits of underground villas and the analysis upon China’s traditional cave-house. In addition, it roughly analyzes the prospect of this innovate style of dwelling in China.

  16. Design concept of cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-01-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H 2 gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H 2 gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top

  17. Requirements and design concept for a facility mapping system

    International Nuclear Information System (INIS)

    Barry, R.E.; Burks, B.L.; Little, C.Q.

    1995-01-01

    The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D ampersand D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D ampersand D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, open-quotes the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculableclose quotes. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program

  18. Water chemistry of Atucha II PHWVR. Design concepts and evolution

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Rodriguez, Ivanna; Duca, Jorge; Fernandez, Ricardo; Rico, Jorge

    2007-01-01

    Full text: Atucha II is a pressurized heavy water vessel reactor designed by Siemens-KWU, currently part of AREVA NP, of 745 MWe and similar to Atucha I, which has been in operation over 25 years. The primary heat transport system (PHTS) is composed by vertical channels (277-313 C degrees) that allocate the fuel elements while the moderator circuit is composed by a partially separated circuit (142-173 C degrees). The moderation power is transferred to the feedwater through the moderator heat exchangers (HX). These HXs operate as the last, high pressure water-steam cycle heaters as well. Materials (with exception of fuel channels and fuel sheaths which are made of zirconium alloys) are all austenitic steels while cobalt containing alloys have been all replaced at the design stage. Steam generator and moderator HX tubing are Alloy 800 made. The core is operated without boron except with the first fresh nucleus. The secondary circuit or Balance of plant (BOP) is similar in conception to that of a PWR but the moderator HXs. It is entirely built of ferrous alloys, has a feedwater-deaerator tank and moisture separator. The energy sink is the Rio de la Plata River. The Reactors Chemistry Department, Chemistry Division, National Atomic Energy Commission, in its character of R and D institution has been committed by CNA II-N.A.S.A Project to prepare the water chemistry specifications, water chemistry engineering and manuals, considering the type of reactor, design and construction aspects and operation characteristics, taking into account the current state-of-the art and worldwide standards. This includes conceptual aspects and implementation and operative aspects as well. This documentation will be released after a designer's review as it has been stated in the respective agreement. Respecting the confidentiality agreement between CNEA and NASA and the confidentiality regarding handling original documentation provided by the designer, it is considered illustrative to

  19. A Summary of Environmentally Friendly Turbine Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Odeh, Mufeed [United States Geological Survey - BRD, Turners Falls, MA (United States)

    1999-07-01

    The Advanced Hydropower Turbine System Program (AHTS) was created in 1994 by the U.S. Department of Energy, Electric Power Research Institute, and the Hydropower Research Foundation. The Program’s main goal is to develop “environmentally friendly” hydropower turbines. The Program’s first accomplishment was the development of conceptual designs of new environmentally friendly turbines. In order to do so, two contractors were competitively selected. The ARL/NREC team of engineers and biologists provided a conceptual design for a new turbine runner*. The new runner has the potential to generate hydroelectricity at close to 90% efficiency. The Voith team produced new fish-friendly design criteria for Kaplan and Francis turbines that can be incorporated in units during rehabilitation projects or in new hydroelectric facilities**. These include the use of advanced plant operation, minimum gap runners, placement of wicket gates behind stay vanes, among others. The Voith team will also provide design criteria on aerating Francis turbines to increase dissolved oxygen content. Detailed reviews of the available literature on fish mortality studies, causation of injuries to fish, and available biological design criteria that would assist in the design of fish-friendly turbines were performed. This review identified a need for more biological studies in order to develop performance criteria to assist turbine manufacturers in designing a more fish-friendly turbine.

  20. Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for (19)F magnetic resonance: a proof-of-concept study.

    Science.gov (United States)

    Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M

    2010-01-04

    The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.

  1. Oil-points - Designers means to evaluate sustainability of concepts

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker

    1998-01-01

    Designers have an essential influence on product design and are therefore one target group for environmental evaluation methods. This implies, that such evaluation methods have to meet designers requirements. Evaluation of sustainability of products is often done using formal Life Cycle Assessment....... This is investigated by means of three case studies where environmental impact is estimated using the EDIP method, the Eco-indicator 95 method, and the Oil Point method proposed by the authors. It is found that the results obtained using Oil Points are in acceptable conformity with the results obtained with more...

  2. Preliminary concept design of the divertor remote handling system for DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Di Gironimo, G. [ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2014-11-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor Mover: Hydraulic telescopic boom concept design. An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • Transportation cask conceptual studies and logistic. - Abstract: This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes. This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.

  3. Optical telescope refocussing mechanism concept design on remote sensing satellite

    Science.gov (United States)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  4. Designing satisfaction studies

    DEFF Research Database (Denmark)

    Kristensen, Kai; Eskildsen, Jacob Kjær

    2007-01-01

    In the effect sampling method, presentation of researcher, the intro text, the order of questions in the questionnaire along with the number of categories in the rating scale is tested in relation to the design of satisfaction studies. Based on the analyses specific recommendations for designing...... satisfaction studies are given....

  5. Design of Concept of Sustainable Marketing Communication Strategy for a Ideal Industrial Enterprise and Practical Applications of this Concept

    Science.gov (United States)

    Šujaková, Monika; Golejová, Simona; Sakál, Peter

    2017-09-01

    In the contribution the authors deal with the design and use of a sustainable marketing communication strategy of an ideal industrial enterprise in the Slovak Republic. The concept of an ideal enterprise is designed to increase the enterprise's sustainable competitiveness through the formation of a corporate image. In the framework of the research, the practical application of the draft concept was realized through a semi-structured interview in the form of propositional logic.

  6. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  7. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    Science.gov (United States)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  8. Identifying Threshold Concepts for Information Literacy: A Delphi Study

    Directory of Open Access Journals (Sweden)

    Lori Townsend

    2016-06-01

    Full Text Available This study used the Delphi method to engage expert practitioners on the topic of threshold concepts for information literacy. A panel of experts considered two questions. First, is the threshold concept approach useful for information literacy instruction? The panel unanimously agreed that the threshold concept approach holds potential for information literacy instruction. Second, what are the threshold concepts for information literacy instruction? The panel proposed and discussed over fifty potential threshold concepts, finally settling on six information literacy threshold concepts.

  9. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  10. SunRISE Mission Concept Step 2 Study Status

    Science.gov (United States)

    Alibay, F.; Kasper, J. C.; Lazio, J.; Neilsen, T. L.

    2017-12-01

    We present an update on the Sun Radio Interferometer Space Experiment (SunRISE) mission concept, which was selected for a Step 2 study as part of the Small Explorer (SMEX) Mission of Opportunity (MoO) call. SunRISE is space-based sparse array, composed of six 6U CubeSats, designed to localize the radio emission associated with coronal mass ejections (CMEs) from the Sun. Radio emission from CMEs is a direct tracer of the particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Furthermore, CME radio emission is quite strong such that only a relatively small number of antennas is required, and a small mission would make a fundamental advancement. Indeed, the state-of-the-art for tracking CME radio emission is defined by single antennas (Wind/WAVES, Stereo/SWAVES) in which the tracking is accomplished by assuming a frequency-to-density mapping. This type of Heliophysics mission would be inherently cost prohibitive in a traditional spacecraft paradigm. However, the use of CubeSats, accompanied by the miniaturization of subsystem components, enables the development of this concept at lower cost than ever before. We present the most recent updates on this mission concept, starting from the concept's performance as compared to the required science and driving technical requirements. We then focus on the SunRISE mission concept of operations, which consists of six 6U CubeSats placed in a GEO graveyard orbit for 6 months to achieve the aforementioned science goals. The spacecraft fly in a passive formation, which allows them to form an interferometer while minimizing the impact on operations complexity. We also present details of the engineering design and the key trades being performed as part of the Step 2 concept study.

  11. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  12. Concept design of CFETR superconducting magnet system based on different maintenance ports

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Liu, Xufeng; Song, Yuntao; Wan, Yuanxi; Li, Jiangang; Wu, Sontao; Wan, Baonian; Ye, Minyou; Wei, Jianghua; Xu, Weiwei; Liu, Sumei; Weng, Peide; Lu, Kun; Luo, Zhengping

    2013-01-01

    Highlights: • This article discussed the concept design of the magnet system of CFETR based on different maintenance port cases. • The major and minor radius of plasma is 5.7 m and 1.6 m, and the central magnetic field was designed as 4.5/5.0 T. • The different maintenance ports design have little impact on the design of TF and CS coils’ design, but have certain impact on the PF coils’ design. -- Abstract: CFETR which stands for “China Fusion Engineering Test Reactor” is a new tokamak device. Its magnet system includes the Toroidal Field (TF) winding, Center solenoid winding (CS) and Poloidal Field (PF) winding. The main goal of the project is to build a fusion engineering Tokamak reactor with its fusion power is 50–200 MW and should be self-sufficiency by blanket. In order to ensure the maintenance ports design and maintenance method, this article discussed the concept design of the magnet system based on different maintenance port cases. The paper detailed studied the magnet system of CFETR including the electromagnetic analysis and parameters for TF (CS)PF. Besides, the volt-seconds of ohmic field are presented as detailed as possible in this paper. In addition, the calculations and optimizations of equilibrium field which should guarantee the plasma discharge of single null shape is carried out. The design work reported here illustrates that the present maintenance ports will not have a great impact on the design of the magnet system. The concept design of the magnet system can meet the requirement of the physical target

  13. Japanese contributions to IAEA INTOR workshop, phase two A, part 2, chapter XI: concept evolution, chapter XII: design concept, and chapter XIII: operation and test programme

    International Nuclear Information System (INIS)

    Tomabechi, Ken; Fujisawa, Noboru; Iida, Hiromasa

    1985-07-01

    This report corresponds to Chapters XI, XII, and XIII of Japanese contribution report to IAEA INTOR Workship, Phase Two A, Part 2. In the phase Two A, Part 2 workshop, we have studied critical technical issues and have also assessed scientific and technical data bases. Based on those results, the INTOR design have been modified to upgrade the design concept. The major modification items are related to plasma beta value, plasma operation scenario, reactor size reduction, neutron fluence, tritium producing blanket, and implementation of active control coils. In those chapters, the concept evolution for the design modification and main results are described. (author)

  14. Design concepts for a Global Telemetered Seismograph Network

    Science.gov (United States)

    Peterson, Jon; Orsini, Nicholas A.

    1982-01-01

    This study represents a first step in developing an integrated, real-time global seismic data acquisition system a Global Telemetered Seismograph Network (GTSN). The principal objective of the GTSN will be to acquire reliable, high-quality, real-time seismic data for rapid location and analysis of seismic events. A secondary, but important, objective of the GTSN is to augment the existing off-line seismic data base available for research. The deployment of the GTSN will involve a variety of interrelated activities development of the data acquisition and receiving equipment, establishment of satellite and terrestrial communication links, site selection and preparation, training of station personnel, equipment installation, and establishment of support facilities. It is a complex program and the development of a sound management plan will be essential. The purpose of this study is not to fix design goals or dictate avenues of approach but to develop working concepts that may be used as a framework for program planning.The international exchange of seismic data has been an important factor in the progress that has been made during the past two decades in our understanding of earthquakes and global tectonics. The seismic data base available for analysis and research is derived principally from the Global Seismograph Network (GSN), which is funded and managed by the U.S. Geological Survey (USGS). The GSN comprises some 120 seismograph stations located in more than 60 countries of the world. Established during the 1960 s with the installation of the World-Wide Standardized Seismograph Network (WWSSN) , the GSN has been augmented in recent years by the installation of more advanced data systems, such as the Seismic Research Observatories (SRO), the modified High-Gain LongPeriod (ASRO) seismographs, and the digital WWSSN (DWWSSN). The SRO, ASRO, and DWWSSN stations have the common, distinctive feature of digital data recording, so they are known collectively as the Global

  15. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  16. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    Science.gov (United States)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  17. Recontextualising Cellular Respiration : Designing an learning-and-teaching strategy for developing biological concepts as flexible tools

    NARCIS (Netherlands)

    Wierdsma, M.D.M.

    2012-01-01

    This thesis reports on a design-research study on recontextualising biological concepts. The term ‘recontextualising’ is based in socio-cultural activity theory and was proposed by van Oers in 1998 as a change of perspective on the idea of knowledge-transfer. Within this view concepts are tools to

  18. Re-design of ITER Glow Discharge Cleaning system based on a fixed electrode concept

    International Nuclear Information System (INIS)

    Yang, Y.; Maruyama, S.; Kiss, G.; O’Connor, M.; Zhang, Y.; Pitts, R.A.; Shimada, M.; Fang, T.; Wang, Y.; Wang, M.; Pan, Y.; Li, B.; Li, L.

    2014-01-01

    Highlights: •This paper summarizes the approved new design of ITER GDC. •It is based on the fixed electrode design instead of the previous movable concept. •Estimates were made on the glow current density. •R and D topics on initiation, steady state and heat load were presented. •Other relevant considerations were listed in an exhaustive manner. -- Abstract: A new design of ITER Glow Discharge Cleaning (GDC) system based on a fixed electrode concept replaces the previous design which was based on a movable electrode integrated with the ITER In-Vessel-Viewing-System. Recently the conceptual design of the GDC system was reviewed successfully on the functions, safety, operation and maintenance. The design proposed was checked against the requirements and found to be feasible. This paper gives an overall description of the requirements from physics and operation viewpoints and introduces the design at the conceptual level. Main R and D activities are listed and summarized. Further detailed studies are to be performed in the following design stage

  19. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  20. SPFC bus design studies

    Energy Technology Data Exchange (ETDEWEB)

    Potter, L.; Reinkingh, J.

    1999-07-01

    This report presents the results of a study assessing the design options for a solid polymer fuel cell bus. Commercial and operation requirements, environmental and market drivers, and fuel processor modeling are examined. Power train specifications and detailed system design are investigated covering fuel cell system dynamic response, hybrid system size, fuel cell system start-up time, system specifications, and hybrid bus component dimensions and costs. (UK)

  1. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  2. Concepts and tools for the design of semantical databases

    CERN Document Server

    Meersman, Robert A

    1991-01-01

    The design and implementation of modern more "semantical" databases involves the use of high-level conceptual abstraction mechanisms and methodologies. An illustration of this process is given using the NIAM method and notation (lecture 1), its transformation into relational database with triggers (e.g. using SYBASE0 (lecture 2) and a study of the requirements for suitable tools (RIDL*) and their extension and applicability for e.g. object-oriented databases. A case study defined by a complex database for document handling will be used as example (lecture 3).

  3. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  4. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  5. Designing a Language Study.

    Science.gov (United States)

    Brown, James Dean

    Some issues in the design of classroom research on second language teaching are discussed, with the intention of helping the researcher avoid conceptual pitfalls that may cripple the study later in the process. This begins with an examination of concerns in sampling, including definition of a population to be studied, alternative sampling…

  6. Design Thinking and Organizational Development: twin concepts enabling a reintroduction of democratic values in organizational change

    OpenAIRE

    Eneberg, Magnus; Svengren Holm, Lisbeth

    2013-01-01

    Design Thinking is a rather new concept for increasing innovation capabilities in organizations. Organizational Development is a concept from the 1950s aiming at modernizing organizations through participatory methods. As organizations struggle with constant change and to become more innovative we will compare and discuss design thinking and organizational development and explore what we can learn from these concepts that have many similar aspects. Design is argued to be moving into new te...

  7. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  8. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  9. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  10. Control system design concepts for improving bilateral characteristics of master-slave manipulators

    International Nuclear Information System (INIS)

    Hewitt, J.E.; Siva, K.V.

    1986-01-01

    The paper concerns control system design concepts for improving bilateral characteristics of master-slave manipulators. In particular, the article concentrates on the identification of the remote manipulative process itself from studying direct manipulation with hand tools. Bilateral servo loop systems in operator controlled manipular systems are discussed, as well as Bond Graph modelling techniques. The performance of different kinds of bilateral servos are compared. (U.K.)

  11. Understanding context in knowledge translation: a concept analysis study protocol.

    Science.gov (United States)

    Squires, Janet E; Graham, Ian D; Hutchinson, Alison M; Linklater, Stefanie; Brehaut, Jamie C; Curran, Janet; Ivers, Noah; Lavis, John N; Michie, Susan; Sales, Anne E; Fiander, Michelle; Fenton, Shannon; Noseworthy, Thomas; Vine, Jocelyn; Grimshaw, Jeremy M

    2015-05-01

    To conduct a concept analysis of clinical practice contexts (work environments) that facilitate or militate against the uptake of research evidence by healthcare professionals in clinical practice. This will involve developing a clear definition of context by describing its features, domains and defining characteristics. The context where clinical care is delivered influences that care. While research shows that context is important to knowledge translation (implementation), we lack conceptual clarity on what is context, which contextual factors probably modify the effect of knowledge translation interventions (and hence should be considered when designing interventions) and which contextual factors themselves could be targeted as part of a knowledge translation intervention (context modification). Concept analysis. The Walker and Avant concept analysis method, comprised of eight systematic steps, will be used: (1) concept selection; (2) determination of aims; (3) identification of uses of context; (4) determination of defining attributes of context; (5) identification/construction of a model case of context; (6) identification/construction of additional cases of context; (7) identification/construction of antecedents and consequences of context; and (8) definition of empirical referents of context. This study is funded by the Canadian Institutes of Health Research (January 2014). This study will result in a much needed framework of context for knowledge translation, which identifies specific elements that, if assessed and used to tailor knowledge translation activities, will result in increased research use by nurses and other healthcare professionals in clinical practice, ultimately leading to better patient care. © 2014 John Wiley & Sons Ltd.

  12. Improved Design Concept for ensuring the Passive Decay Heat Removal Performance of an SFR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Lee, Tae Ho; Han, Ji Woong; Kim, Seong O

    2011-01-01

    In order to enhance the operational reliability of a purely passive decay heat removal system in KALIMER, which is named as PDRC, three design options to prevent a sodium freezing in an intermediate decay heat removal circuit were proposed, and their feasibilities was quantitatively evaluated. For all the options, more specific design considerations were made to confirm their feasibility to properly materialize their concepts in a practical system design procedure, and the general definitions for a purely passive concept and its design features have been discussed. A numerical study to evaluate the coastdown flow effect of the primary pump was performed to figure out the early stage DHR capability inside reactor pool during a loss of normal heat sink accident. The thermal-hydraulic calculations have been made by using the COMMIX-1AR/P code, and it was found that the initiation of heat removal by DHX could be accelerated by the increase of the coastdown time but it needs a large-sized flywheel. For the demonstration of the innovative concept, a large scale sodium thermal-hydraulic test facility is currently being designed. It is very difficult to reproduce both a hydrodynamic and a thermodynamic similarity to the prototype plant if the thermal driving head is determined by structure-to-fluid heat transfer under natural circulation flow. Hence the similitude requirements for the sodium thermal-hydraulic test facility employing natural convection heat transfer were developed, and the preliminary design data of the test facility by implementing proper scaling methodologies was produced. The design restrictions imposed on the test facility and the scaling distortions of the design data to the full-scale system were also discussed

  13. An experimental school prototype: Integrating 3rs (reduce, reuse & recycle concept into architectural design

    Directory of Open Access Journals (Sweden)

    Kong Seng Yeap

    2012-06-01

    Full Text Available The authors conducted a design project to examine the use of school as an ecological learning hub for children. Specifically, this study explores the ecological innovations that transform physical environment into three-dimensional textbooks for environmental education. A series of design workshops were carried out to gain interdisciplinary input for ecological school design. The findings suggest to integrate the concept of 3Rs (Reduce, Reuse & Recycle into the physical environment. As a result, an experimental school prototype is developed. It represents a series of recommendations that are rendered by novel ideas through the amalgamation of architecture, ecology and education. These findings promote the development of sustainable and interactive learning spaces through cross-disciplinary investigations in school architecture. Designers and practitioners interested in educational facilities design would find this article useful.

  14. Multivariable feedback design: concepts for a classical/modern synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, J C; Stein, G

    1980-01-01

    A practical design perspective on multivariable feedback control problems is presented. The basic issue - feedback design in the face of uncertainites - is reviewed and known SISO statements and constraints of the design problem to MIMO cases are generalized. Two major MIMO design approaches are then evaluated in the context of these results.

  15. Conceptional design and some application for ISI systems of 'Monju'

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Rindo, Hiroshi; Ara, Kuniaki; Kamimura, Takeo; Tsuzuki, Satoshi; Morimoto, Kazuo; Nagaoka, Etsuo; Ikeda, Naoaki.

    1987-01-01

    In order to fit the Monju system for inspection during use of the (prototype FBR) ''Monju'' plant, a system concept necessary for this plant has been established and part of the machinery has been tested, on the basis of ISI light water reactor and thermal plant technology. Electromagnetic acoustic testing equipment (EMAT), which is drawing attention for the volumetric examination without contact, and also a wall-to-wall four-wheel self-propelled vehicle, as an ISI tool for R/V of FBR, are both being developed. Contents are the following: basic concept and development of ISI system - reactor vessel proper and inlet piping ISI system, and concept of steam generator evaporator heat exchanger tube ISI system; development of ISI systems - experimental self-propelled four-wheel tool, and EMAT signal processing unit. (Mori, K.)

  16. Automated a complex computer aided design concept generated using macros programming

    Science.gov (United States)

    Rizal Ramly, Mohammad; Asrokin, Azharrudin; Abd Rahman, Safura; Zulkifly, Nurul Ain Md

    2013-12-01

    Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes.

  17. Automated a complex computer aided design concept generated using macros programming

    International Nuclear Information System (INIS)

    Ramly, Mohammad Rizal; Asrokin, Azharrudin; Rahman, Safura Abd; Zulkifly, Nurul Ain Md

    2013-01-01

    Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes

  18. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1987-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (author)

  19. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1988-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (orig.)

  20. Selection and Analysis of Social Studies Concepts for Inclusion in Tests of Concept Attainment.

    Science.gov (United States)

    Tabachnick, B. Robert; And Others

    Major social studies concepts taught to fourth graders in Madison, Wisconsin, were identified by examining the school district course of study and social studies textbooks and by consulting central office supervisors and teachers. The concepts identified in this manner fell into three major categories: Geographic Region, Man and Society, and Map…

  1. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  2. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  3. DESIGN AND ANALYTICAL ANALYIS OF AN ANISOGRID PREPREG STRUCTURE CONCEPT

    OpenAIRE

    Niemann, Steffen; Wagner, Ronald; Hühne, Christian

    2014-01-01

    For the weight saving potential analysis, a novel anisogrid structure concept and an orthogrid structure, both with load bearing skin, are sized and compared for different pure and combined load cases with the same sizing criteria including panel stiffness, strength criteria, local skin and stiffener stability and global panel stability.

  4. A Control Systems Concept Inventory Test Design and Assessment

    Science.gov (United States)

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  5. Upgrading accuracy of designed seismic vibration on concept of the land conditions

    International Nuclear Information System (INIS)

    Tamura, Keichi; Kaneko, Masahiro; Honda, Toshiki; Chiba, Hikaru

    1998-01-01

    In this study, some investigations on design procedure of designed seismic vibration were conducted on concept of amplification of the seismic vibration and nonlinearity of the system at the place largely changing topographic and land conditions. In this fiscal year, after collecting and arranging the topographic and land conditions at settling place of the nuclear facilities and their circumferences, some investigations on effect of the seismic vibration amplified at surface layer of grounds on behavior of nonlinear system as well as arrangement of relationship between the topographic and land conditions and seismic vibration amplifying properties at the surface layer of grounds were conducted. (G.K.)

  6. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  7. The Conceptional Design of the Shielding Layout and Beam Absorber at the PXIE

    Energy Technology Data Exchange (ETDEWEB)

    Eidelman, Yu.; Kerby, J.; Lebedev, V.; Leibfritz, J.; Leveling, T.; Nagaisev, S.; Stanek, R.; /Fermilab

    2012-05-14

    Project X is a high intensity proton facility conceived to support a world-leading physics program at Fermilab. Project X will provide high intensity beams for neutrino, kaon, muon, and nuclei based experiments and for studies supporting energy applications. The Project X Injector Experiment (PIXIE) is a prototype of the Project X front end. A 30 MeV 50 kW beam will be used to validate the design concept of the Project X. This paper discusses a design of the accelerator enclosure radiation shielding and the beam dump.

  8. Surfacing the Structures of Patriarchy: Teaching and Learning Threshold Concepts in Women's Studies

    Science.gov (United States)

    Hassel, Holly; Reddinger, Amy; van Slooten, Jessica

    2011-01-01

    Patriarchy is a threshold concept in women's studies--a significant, defining concept that transforms students' understanding of the discipline. This article reviews our design, implementation, and findings of a lesson study crafted to teach women's studies students the complex idea of patriarchy as a social system. We analyze the lesson using…

  9. 3D Printing as a Didactic Tool for Teaching some Engineering and Design Concepts

    Directory of Open Access Journals (Sweden)

    Edwin Blasnilo Rua Ramirez

    2018-01-01

    Full Text Available Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs. Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme. Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms. Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.

  10. Canister design concepts for disposal of spent fuel and high level waste

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E. [TWI Ltd, Cambridge, (United Kingdom); Asano, R. [Hitachi Zosen Corporation, Osaka (Japan); King, S. [Integrity Corrosion Consulting Ltd, Calgary, Alberta (Canada)

    2012-10-15

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  11. Canister design concepts for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E.; Asano, R.; King, S.

    2012-10-01

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  12. Computer control of large accelerators design concepts and methods

    International Nuclear Information System (INIS)

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references

  13. Computer control of large accelerators design concepts and methods

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  14. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  15. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  16. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  17. Embracing Wicked Problems: The Turn to Design in Composition Studies

    Science.gov (United States)

    Marback, Richard

    2009-01-01

    Recent appeal to the concept of design in composition studies benefits teaching writing in digital media. Yet the concept of design has not been developed enough to fully benefit composition instruction. This article develops an understanding of design as a matter of resolving wicked problems and makes a case for the advantages of this…

  18. Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel

    Science.gov (United States)

    Przekop, Adam

    2012-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.

  19. Agent And Component Object Framework For Concept Design Modeling Of Mobile Cyber Physical Systems

    Science.gov (United States)

    2018-03-01

    base design, service-oriented architecture (SOA) and enterprise architecture , brought a new emphasis on business processes and business organization...there are some useful concepts that can be leveraged into an MIGVS architecture . The concept of modeling operational or business behavior logic as...Design 1. Explicit meta model for architecture concepts and relationships 2. Support business or operational modeling and associated events 3

  20. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  1. The concept of care complexity: a qualitative study

    Directory of Open Access Journals (Sweden)

    Milena Guarinoni

    2015-12-01

    Full Text Available Background: Hospital organisations based on the level of care intensity have clearly revealed a concept, that of care complexity, which has been widely used for decades in the healthcare field. Despite its wide use, this concept is still poorly defined and it is often confused with and replaced by similar concepts such as care intensity or workload. This study aims to describe the meaning of care complexity as perceived by nurses in their day-to-day experience of hospital clinical care, rehabilitation, home care, and organisation. Design and methods: Fifteen interviews were conducted with nurses belonging to clinical-care areas and to heterogeneous organisational areas. The interview was of an unstructured type. The participants were selected using a propositional methodology. Colaizzi’s descriptive phenomenological method was chosen for the analysis of the interviews. Results: The nurses who were interviewed predominantly perceive the definition of care complexity as coinciding with that of workload. Nevertheless, the managerial perspective does not appear to be exclusive, as from the in-depth interviews three fundamental themes emerge that are associated with the concept of care complexity: the patient, the nurse and the organisation. Conclusions: The study highlights that care complexity consists of both quantitative and qualitative aspects that do not refer only to the organisational dimension. The use of the terminology employed today should be reconsidered: it appears to be inappropriate to talk of measurement of care complexity, as this concept also consists of qualitative – thus not entirely quantifiable – aspects referring to the person being cared for. In this sense, reference should instead be made to the evaluation of care complexity, which would also constitute a better and more complete basis for defining the nursing skills required in professional nursing practice.

  2. Polarized phase shift mask: concept, design, and potential advantages to photolithography process and physical design

    Science.gov (United States)

    Wang, Ruoping; Grobman, Warren D.; Reich, Alfred J.; Thompson, Matthew A.

    2002-03-01

    In this paper we introduce the concept and design of a novel phase shift mask technology, Polarized Phase Shift Mask (P:PSM). The P:PSM technology utilizes non-interference between orthogonally polarized light sources to avoid undesired destructive interference seen in conventional two-phase shift mask technology. Hence P:PSM solves the well-known 'phase edge' or 'phase conflict' problem. By obviating the 2nd exposure and 2nd mask in current Complementary Phase Shift Mask (C:PSM) technology, this single mask/single exposure technology offers significant advantages towards photolithography process as well as pattern design. We use examples of typical design and process difficulties associated with the C:PSM technology to illustrate the advantages of the P:PSM technology. We present preliminary aerial image simulation results that support the potential of this new reticle technology for enhanced design flexibility. We also propose possible mask structures and manufacturing methods for building a P:PSM.

  3. Role based access control design using Triadic concept analysis

    Institute of Scientific and Technical Information of China (English)

    Ch Aswani Kumar; S Chandra Mouliswaran; LI Jin-hai; C Chandrasekar

    2016-01-01

    Role based access control is one of the widely used access control models. There are investigations in the literature that use knowledge representation mechanisms such as formal concept analysis (FCA), description logics, and Ontology for representing access control mechanism. However, while using FCA, investigations reported in the literature so far work on the logic that transforms the three dimensional access control matrix into dyadic formal contexts. This transformation is mainly to derive the formal concepts, lattice structure and implications to represent role hierarchy and constraints of RBAC. In this work, we propose a methodology that models RBAC using triadic FCA without transforming the triadic access control matrix into dyadic formal contexts. Our discussion is on two lines of inquiry. We present how triadic FCA can provide a suitable representation of RBAC policy and we demonstrate how this representation follows role hierarchy and constraints of RBAC on sample healthcare network available in the literature.

  4. Novel silicon stripixel detector: concept, simulation, design, and fabrication

    International Nuclear Information System (INIS)

    Li, Z.

    2004-01-01

    A novel detector concept has been developed in this work that has the necessary properties to provide two-dimensional (2-D) position sensitivity with a moderate number of readout electronic channels and single-sided detector fabrication process. The concept is based on interleaved pixel electrodes arranged in a projective X-Y readout, which makes possible position encoding with minimum number of channels. In further discussions, we refer to this concept as 'stripixel' detector, as it combines the 2-D position resolution of a pixel electrode geometry with the simplicity of the projective readout of a double-sided strip detector. For DC coupled detectors with large pitches (>20 μm), individual pixels are divided into X- and Y-cell that can be interleaved by many different schemes that ensure the charge sharing between them. This type of stripixel detectors is called interleaved stripixel detectors. When the detector pitch goes down (<20 μm), the X and Y-pixel may not have to be interleaved, and they can be connected in an alternating way to X-Y strip readout. This type of stripixel detectors is called alternating stripixel detectors (ASD). For ASD, a position resolution better than 1 μm in two dimensions can be achieved by determining the centroid of the charge collected on pixel electrodes with a granularity in the range of 5-6 μm. For AC coupled detectors, no interleaving scheme may be needed, and there may be no limit on the pitch size, i.e. it may go from pitches in the order of microns, to hundreds of microns or even mm's. This electrode granularity does not pose difficult demands on the lithography and the fabrication technology. This novel detector concept can be applied to any semiconductor detectors/sensors, such as Si, Ge, GaAs, SiC, diamond, etc

  5. Trajectory Design for the Europa Clipper Mission Concept

    Science.gov (United States)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  6. Parameter Optimization for Feature and Hit Generation in a General Unknown Screening Method-Proof of Concept Study Using a Design of Experiment Approach for a High Resolution Mass Spectrometry Procedure after Data Independent Acquisition.

    Science.gov (United States)

    Elmiger, Marco P; Poetzsch, Michael; Steuer, Andrea E; Kraemer, Thomas

    2018-03-06

    High resolution mass spectrometry and modern data independent acquisition (DIA) methods enable the creation of general unknown screening (GUS) procedures. However, even when DIA is used, its potential is far from being exploited, because often, the untargeted acquisition is followed by a targeted search. Applying an actual GUS (including untargeted screening) produces an immense amount of data that must be dealt with. An optimization of the parameters regulating the feature detection and hit generation algorithms of the data processing software could significantly reduce the amount of unnecessary data and thereby the workload. Design of experiment (DoE) approaches allow a simultaneous optimization of multiple parameters. In a first step, parameters are evaluated (crucial or noncrucial). Second, crucial parameters are optimized. The aim in this study was to reduce the number of hits, without missing analytes. The obtained parameter settings from the optimization were compared to the standard settings by analyzing a test set of blood samples spiked with 22 relevant analytes as well as 62 authentic forensic cases. The optimization lead to a marked reduction of workload (12.3 to 1.1% and 3.8 to 1.1% hits for the test set and the authentic cases, respectively) while simultaneously increasing the identification rate (68.2 to 86.4% and 68.8 to 88.1%, respectively). This proof of concept study emphasizes the great potential of DoE approaches to master the data overload resulting from modern data independent acquisition methods used for general unknown screening procedures by optimizing software parameters.

  7. Course Reader: Food Concept Design, mapping strategic and service-oriented possibilities within food businesses

    DEFF Research Database (Denmark)

    Olsen, Tenna Doktor

    This course reader is a guide to the content of the last series of FOOD DESIGN lectures and design workshops given with the course: ‘Food Concept Design: Mapping Strategic and Service‐Oriented possibilities within Food Businesses', offered at the Masters education 'Integrated Food Studies......' at Aalborg University in Copenhagen. The course reader first of all guide the students through the overall purpose and content of the course, but also give a short introduction to the various literature used in the course, as well as the demands for the final assignment and evaluation criteria...... for the individual exams. Together with the course programmes provided at the two previous semesters, this course reader is thus attempts to begin develop af theoratical framework for teaching Food Design Thinking....

  8. An adaptive two-stage dose-response design method for establishing proof of concept.

    Science.gov (United States)

    Franchetti, Yoko; Anderson, Stewart J; Sampson, Allan R

    2013-01-01

    We propose an adaptive two-stage dose-response design where a prespecified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish "global" PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs.

  9. Design Concept of Superconducting Multipole Wiggler with Variably Polarized X-Ray

    International Nuclear Information System (INIS)

    Hwang, C.S.; Chang, C.H.; Li, W.P.; Lin, F.Y.

    2004-01-01

    In response to the growing demand for X-ray research, and to satisfy future needs for generating circularly polarized synchrotron radiation in the X-ray region, a 3.5 T superconducting multipole with a periodic length of 6 cm was designed to produce horizontal linearly polarized, and circularly polarized light on a 1.5 GeV electron storage ring. Differently arranged excitation current loop for the same coil design switched between the operation of symmetric and asymmetric modes to creat the linearly and circularly polarized light, respectively. This study elucidates the design concepts of the superconducting multipole wiggler with symmetric and asymmetric operation modes. The design of the magnetic circuit and the field calculation are also discussed. Meanwhile, the spectra characteristics of the symmetric and asymmetric modes are calculated and presented in this article

  10. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    International Nuclear Information System (INIS)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.

    2003-01-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses

  11. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  12. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  13. The EPR-a comprehensive design concept against external events

    International Nuclear Information System (INIS)

    Stoll, U.; Waas, U.

    2006-01-01

    The main objective of design provisions against external hazards is to ensure that the safety functions required to bring the plant to safe shutdown are not inadmissibly affected by any external hazards that might be postulated for the intended site of the plant. In the design of the European Pressurized Water Reactor (EPR) particular attention was paid to external hazards such as earthquake, airplane crash, and explosion pressure wave. The standard EPR covers a large range of possible site conditions, the design earthquake enveloping safe shutdown earthquakes (SSE) to be expected for potential sites. The loads for the design basis airplane crash and - if required - for the design extension airplane crash as well as for external Explosion Pressure Wave are defined depending on site specific requirements. Protection against other external load cases such as extreme winds and external flooding is also included in the standard design

  14. Research by Design - a Research and Teaching Concept

    DEFF Research Database (Denmark)

    Hauberg, Jørgen; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    Abstract. Interweaving research and design-based architectural education is an important effort in most architect schools. All good design is informed by some kind of research – research-based design. And all architect schools involve research in their teaching – research based education. Research...... by design. The paper asks how “the new” in architectural production emerges and aims to find similarities between the tradition of practice based proposals and theorisation, and our own research and teaching practice. Grounded in this practice the paper investigates how research by design contributes...... to the construction of knowledge and student’s learning outcomes through research led workshops. The paper presents research inquiries, results and methodologies of two parallel research workshops and discusses the format by which this research tool is developed. Keywords: Research by Design, practice-based research...

  15. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  16. The 'retro-design' concept for novel kinase inhibitors.

    Science.gov (United States)

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  17. Strategic Mobility 21: Integrated Tracking System Analysis and Concept Design

    National Research Council Canada - National Science Library

    Mallon, Lawrence G; Savacool, Edwin

    2007-01-01

    ... (ITS). This ITS design document identifies the technical and functional requirements for developing, procuring, and integrating components of an ITS capable of supporting an inland regional port, multi...

  18. Intermediality in early cinema studies: An interrogation of a widely used concept for research practice

    NARCIS (Netherlands)

    Dellmann, S.; Ruppin, D.; de Zwaan, K.

    2012-01-01

    The authors discuss the concept of intermediality for research in early cinema. After a general introduction to intermediality as research problem in media studies, the question is raised whether the concept of intermediality can be used in diachronic research designs and for media studies that deal

  19. A design concept of underground facilities for the deep geologic disposal of spent fuel

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Soo

    2005-01-01

    Spent nuclear fuel from nuclear power plants can be disposed in the underground repository. In this paper, a concept of Korean Reference HLW disposal System (KRS-1) design is presented. Though no site for the underground repository has been specified in Korea, but a generic site with granitic rock is considered for reference spent fuel repository design. To implement the concept, design requirements such as spent fuel characteristics and capacity of the repository and design principles were established. Then, based on these requirements and principles, a concept of the disposal process, the facilities and the layout of the repository was developed

  20. A concept for a usability focused design method

    NARCIS (Netherlands)

    Hoolhorst, F.W.B.; van der Voort, Mascha C.

    2009-01-01

    Many user-centered design methods (UCDM) have been developed within the last decades. However, industry increasingly demands for a new-generation UCDM since only few of the existing UCDM seem to be applicable to the daily design practice. This paper first discusses the main criteria regarding such

  1. Principles and Concepts for Information and Communication Technology Design.

    Science.gov (United States)

    Adams, Ray; Langdon, Patrick

    2003-01-01

    This article presents a theory for evaluating information and communication technology design for individuals with disabilities. Simplex 1 evaluates designs in five zones: sensory and input zone; output zone; abstract working memory; long-term memory; and central executive functioning. Simplex 2 evaluates feedback, emotional responses, cognitive…

  2. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  3. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    Science.gov (United States)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  4. Concept Design and Risk Assessment of Nuclear Propulsion Ship

    International Nuclear Information System (INIS)

    Gil, Youngmi; Yoo, Seongjin; Kim, Yeontae; Oh, June; Byun, Yoonchul; Woo, Ilguk; Kim, Jiho; Choi, Suhn

    2014-01-01

    The nuclear propulsion ships (hereinafter referred to as 'nuclear ships') have been considered as an eco-friendly ship. There have historically been warship and submarine with the source of nuclear power. The use of nuclear ships has been recently extending to the icebreaker, the deep-water exploration ship, and the floating nuclear power plant. Prior to developing the new ship, we evaluated the economics of various types of ships and concluded that the container ship could be appropriate for the nuclear propulsion. In order to verify its safety, we performed the ship calculation based on the optimal arrangement of the nuclear reactor. Finally, we verified its safety by the HAZID. In the former research, we confirmed the applicability of the nuclear propulsion system for the large container ship. In this study, we verified the safety of the nuclear ships according to the HAZID analysis. We expect that this research will lead to safe design of the nuclear ships

  5. Concept Design and Risk Assessment of Nuclear Propulsion Ship

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Youngmi; Yoo, Seongjin; Kim, Yeontae; Oh, June; Byun, Yoonchul; Woo, Ilguk [Daewoo Shipbuilding and Marine Engineering Co. Ltd., Seoul (Korea, Republic of); Kim, Jiho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear propulsion ships (hereinafter referred to as 'nuclear ships') have been considered as an eco-friendly ship. There have historically been warship and submarine with the source of nuclear power. The use of nuclear ships has been recently extending to the icebreaker, the deep-water exploration ship, and the floating nuclear power plant. Prior to developing the new ship, we evaluated the economics of various types of ships and concluded that the container ship could be appropriate for the nuclear propulsion. In order to verify its safety, we performed the ship calculation based on the optimal arrangement of the nuclear reactor. Finally, we verified its safety by the HAZID. In the former research, we confirmed the applicability of the nuclear propulsion system for the large container ship. In this study, we verified the safety of the nuclear ships according to the HAZID analysis. We expect that this research will lead to safe design of the nuclear ships.

  6. A carbon-carbon panel design concept for the inboard limiter of the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Mantz, H.C.; Bowers, D.A.; Williams, F.R.; Witten, M.A.

    1989-01-01

    The inboard limiter of the Compact Ignition Tokamak (CIT) must protect the vacuum vessel from the plasma energy. This limiter region must withstand nominal heat fluxes in excess of 10 MW/m 2 and in addition it must be designed to be remotely maintained. Carbon-carbon composite material was selected over bulk graphite materials for the limiter design because of its ability to meet the thermal and structural requirements. The structural design concept consists of carbon-carbon composite panels attached to the vacuum vessel by a hinged rod/retainer concept. Results of the preliminary design study to define this inboard limiter are presented. The design concept is described along with the analyses of the thermal and structural response during nominal plasma operation and during plasma disruption events. 2 refs., 8 figs

  7. Identifying Threshold Concepts for Information Literacy: A Delphi Study

    OpenAIRE

    Lori Townsend; Amy R. Hofer; Silvia Lin Hanick; Korey Brunetti

    2016-01-01

    This study used the Delphi method to engage expert practitioners on the topic of threshold concepts for information literacy. A panel of experts considered two questions. First, is the threshold concept approach useful for information literacy instruction? The panel unanimously agreed that the threshold concept approach holds potential for information literacy instruction. Second, what are the threshold concepts for information literacy instruction? The panel proposed and discussed over fift...

  8. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  9. Critical study on conventional concept of entropy

    International Nuclear Information System (INIS)

    Afridi, M.K.; Nizami, S.

    2006-01-01

    The concept of increase in entropy or disorder as a result of all natural processes has been critically reviewed on the basis of experimental facts and ongoing phenomena on our Globe. Similarly, order-disorder statements have also been judged under new and fresh look. In fact, these are not absolute but depend upon defining specific purpose and considering that whether that purpose is being served or not. The new concept has been elaborated by considering natural biological processes, spontaneous mixing of four different gases, distribution of four points in space and assembling of a packaged electronic gadget. Actually, this order-disorder dilemma is the result of not defining the specific purpose of a process which leads to so-called concept that disorder is increasing day by day in our universe. The traditional concept of entropy has been finally tested under heat exchange and probability considerations, which also yield no information to discern it as a measure of disorder. Consequently, increase of entropy translating into increase of disorder could not be applied to all natural processes especially the natural biological systems. (author)

  10. The KBS concepts - General outline, present study

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-01-01

    The Swedish KBS 2 concept, which concerns spent, unreprocessed reactor fuel, implies the use of an 'engineered' barrier of highly compacted Na bentonite for isolating metal canisters with the wastes from the surrounding rock. The isolating power of a barrier of this kind will be so great that it will probably be suggested for other radioactive wastes as well

  11. Seal design alternatives study

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Luo, D.D.; Lin, M.S.; Ostrowski, W.; Oyenuga, D.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information

  12. Design Concept for the Microwave Interrogation Structure in PARCS

    National Research Council Canada - National Science Library

    Dick, G. J; Klipstein, W. M; Heavner, T. P; Jefferts, S. R

    2002-01-01

    In this paper we will describe key aspects of the conceptual design of the microwave interrogation structure in the laser-cooled cesium frequency standard that is part of the Primary Atomic Reference Clock in Space (PARCS) experiment...

  13. Strategic Mobility 21: Integrated Tracking System Analysis and Concept Design

    National Research Council Canada - National Science Library

    Mallon, Lawrence G; Savacool, Edwin

    2007-01-01

    .... This design document supports the SM21 efforts in developing a dual-use multi-modal node at the Southern California Logistics Airport in Victorville, CA that will be supported by an Integrated Tracking System...

  14. Concepts on high temperature design analysis for SNR 300

    International Nuclear Information System (INIS)

    Bieniussa, K.; Zolti, E.

    1976-01-01

    The paper briefly describes the evolution, the present situation and the next activities on the design of high temperature components of the DEBENELUX prototype fast breeder reactor SNR-300 with particular regard to the design criteria. Elastic structural analyses are performed for the basic design of the components and are supplied by the manufacturer. In agreement with the Safety Experts simplified and/or detailed inelastic analyses of the critical areas are supplied by the prime contractor of the plant. The elastic computations are evaluated on the basis of a set of design rules derived from ASME Code Case Interpretation 1331-4 but with more conservative limits, and the inelastic ones on the basis of the ASME Code Case Interpretation 1592

  15. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  16. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  17. Landslide Economics: Concepts and Case Studies

    Science.gov (United States)

    Klose, Martin; Damm, Bodo

    2015-04-01

    ) disaster financing and budgetary burdens, and (iii) economic risk balancing in urban planning. The results of the conducted case studies are discussed with regard to method development for integrated assessment of landslide risk. References Crovelli, R.A., Coe, J.A., 2009. Probabilistic estimation of numbers and costs of future landslides in the San Francisco Bay region. Georisk 3, 206-223. Klose, M., Highland, L., Damm, B., Terhorst, B., 2014a. Estimation of direct landslide costs in industrialized countries: challenges, concepts, and case study. In: Sassa, K., Canuti, P., Yin, Y. (Eds.), Landslide Science for a Safer Geoenvironment. Volume 2: Methods of Landslide Studies. Springer, Berlin, pp. 661-667. Klose, M., Damm, B., Terhorst, B., 2014b. Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides, DOI 10.1007/s10346-014-0481-1. Wills, C., Perez, F., Branum, D., 2014. New Method for Estimating Landslide Losses from Major Winter Storms in California and Application to the ARkStorm Scenario. Natural Hazards Review, DOI 10.1061/(ASCE)NH.1527-6996.0000142.

  18. Integrated logistic support concept in the design of nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Onraet, M.; Degrave, C.; Meuwisse, C.

    1996-01-01

    Considering its plant operating experience, the analysis of foreign practice and the development of new design approaches and tools, Electricite de France (EDF) is convinced that it is possible to improve new plant design, operation and maintenance without increasing too much investment costs. To remain competitive it is necessary to maintain the kWh production cost of the future unit at a level close to those of the latest unit under construction (N4 series), while raising the Safety level. To minimize the kWh cost EDF has decided to implement the CIDEM project (French acronym for Design Integrating Availability, Operating Experience and Maintenance), an analytic and systematic process for studying new projects, aiming at a design optimization including investment, maintenance, availability and radiation exposure objectives. This approach aims at a single goal: to minimize the kWh production cost incorporating investment operation and fuel cost, based on experience from French and foreign units. This process, already widely practiced in other industries or services (aerospace, defense, ...), uses concepts known by the acronyms RAM (Reliability, Availability, Maintainability) RCM (Reliability, Centered Maintenance) and ILS (Integrated Logistic Support). The first CIDEM application is centered on the future French nuclear unit construction program, known as the REP 2000 program but the approach could be applied to other Reactor type or fossil-fired units in particular for its methodological aspect. The purpose of this paper is to introduce the EDF ILS concept

  19. Concept design of the DEMO divertor cassette-to-vacuum vessel locking system adopting a systems engineering approach

    International Nuclear Information System (INIS)

    Di Gironimo, G.; Carfora, D.; Esposito, G.; Lanzotti, A.; Marzullo, D.; Siuko, M.

    2015-01-01

    Highlights: • An iterative and incremental design process for cassette-to-VV locking system of DEMO divertor is presented. • Three different concepts have been developed with a systematic design approach. • The final concept has been selected with Fuzzy-Analytic Hierarchy Process in virtual reality. - Abstract: This paper deals with pre-concept studies of DEMO divertor cassette-to-vacuum vessel locking system under the work program WP13-DAS-07-T06: Divertor Remote Maintenance System pre-concept study. An iterative design process, consistent with Systems Engineering guidelines and named Iterative and Participative Axiomatic Design Process (IPADeP), is used in this paper to propose new innovative solutions for divertor locking system, which can overcome the difficulties in applying the ITER principles to DEMO. The solutions conceived have been analysed from the structural point of view using the software Ansys and, eventually, evaluated using the methodology known as Fuzzy-Analytic Hierarchy Process. Due to the lack and the uncertainty of the requirements in this early conceptual design stage, the aim is to cover a first iteration of an iterative and incremental process to propose an innovative design concept to be developed in more details as the information will be completed

  20. Concept design of the DEMO divertor cassette-to-vacuum vessel locking system adopting a systems engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Di Gironimo, G., E-mail: giuseppe.digironimo@unina.it [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Carfora, D. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland); Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Esposito, G.; Lanzotti, A.; Marzullo, D. [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Industriale, Piazzale Tecchio 80, 80135 Napoli (Italy); Siuko, M. [VTT Technical Research Centre of Finland, Tekniikankatu 1, PO Box 1300, FI-33101 Tampere (Finland)

    2015-05-15

    Highlights: • An iterative and incremental design process for cassette-to-VV locking system of DEMO divertor is presented. • Three different concepts have been developed with a systematic design approach. • The final concept has been selected with Fuzzy-Analytic Hierarchy Process in virtual reality. - Abstract: This paper deals with pre-concept studies of DEMO divertor cassette-to-vacuum vessel locking system under the work program WP13-DAS-07-T06: Divertor Remote Maintenance System pre-concept study. An iterative design process, consistent with Systems Engineering guidelines and named Iterative and Participative Axiomatic Design Process (IPADeP), is used in this paper to propose new innovative solutions for divertor locking system, which can overcome the difficulties in applying the ITER principles to DEMO. The solutions conceived have been analysed from the structural point of view using the software Ansys and, eventually, evaluated using the methodology known as Fuzzy-Analytic Hierarchy Process. Due to the lack and the uncertainty of the requirements in this early conceptual design stage, the aim is to cover a first iteration of an iterative and incremental process to propose an innovative design concept to be developed in more details as the information will be completed.

  1. Technology Development and Design of a Hybrid Mars Ascent Vehicle Concept

    Science.gov (United States)

    Karp, Ashley C.; Redmond, Matt; Nakazono, Barry; Vaughan, David; Shotwell, Robert; Story, George; Jackson, Dale; Young, David

    2016-01-01

    Hybrid propulsion has been investigated as an enhancing technology for a Mars Ascent Vehicle (MAV) concept as part of potential Mars Sample Return (MSR) because of its high specific impulse, restartability, and the ability to operate and survive at extremely low temperatures. A new wax-based hybrid fuel formulation has been developed that could withstand the harsh and variable Mars environment protected solely by a minimal layer of passive insulation. This formulation could provide substantial energy savings for a notional lander and is critical for rover mobility. Preliminary thermal cycle testing has determined that the formulation can survive the expected temperature extremes and lifetime thermal testing is currently underway. A complete preliminary design using this new fuel formulation combined with a low temperature oxidizer such as Mixed Oxides of Nitrogen (MON30) is presented. Several key features associated with a complete hybrid MAV concept are investigated to determine their mission suitability (e.g. Thrust Vector Control and restartable ignition options). Potential challenges along a path towards developing such a system are outlined and future work is suggested as a means of technology maturation. The hybrid design presented here was the lowest Gross Lift Off Mass (GLOM) result of a 2015 Jet Propulsion Laboratory (JPL) led MAV concept study.

  2. SLS launched missions concept studies for LUVOIR mission

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  3. SLS Launched Missions Concept Studies for LUVOIR Mission

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-01-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-meter Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-meter class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-meter class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  4. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  5. Design concepts for solar heating in a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berger, X; Bourdeau, L; Jaffrin, A; Sylvain, J D

    1977-01-01

    Solar heating is often designed in a similar way to classical central heating. The consequence is a very high cost which can only be reduced by using a calorific fluid at a lower temperature than is customary, improved architectural design and a further research into new passive heating methods. The collection area and storage volume necessary to obtain good solar efficiency were computed in a Mediterranean climate. Emphasis is put on large thermal inertia which is best achieved by using the latent heat of materials. The result of an experiment performed with salt hydrates is most promising but many problems of time instability have still to be solved.

  6. Design concepts for a continuously rotating active magnetic regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2011-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows....... Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....

  7. Architectural design and energy performance; Conception architecturale et performance energetique

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, (ADEME), 06 - Valbonne (France); Pouget, A. [Bureau Etude Thermique, 75 - Paris (France); Sesolis, B. [TRIBU, 75 - Paris (France)] [and others

    2000-07-01

    This day was organized around the energy performance of the architecture in three parts. A first time dealt with the design of new buildings and private houses. Simulation tools for the energy optimization and practice of design are discussed. The second part was devoted to the new 2000 regulation with an open discussion on the regulatory costs. The last part forecasted the evolution until 2015 taking into account the french program of fight against the greenhouse effect, the limitation of the air conditioning consumption and the definition of a quality label concerning the energy performances. (A.L.B.)

  8. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  9. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  10. Designing sustainable energy landscapes : concepts, principles and procedures

    NARCIS (Netherlands)

    Stremke, S.

    2010-01-01

    The depletion of fossil fuels, in combination with climate change, necessitates a transition to sustainable energy systems. Such systems are characterized by a decreased energy demand and an increase in the use of renewables. The objective of this dissertation is to advance the planning and design

  11. Integral Building Design workshops : a concept to structure communication

    NARCIS (Netherlands)

    Savanovic, P.; Zeiler, W.; Tzou, H.S.; Jalili, N.

    2007-01-01

    Following the developments in (Dutch) building practice, where besides specialist skills a design approach is increasingly being asked, the Building Services chair of the Faculty of Architecture, Building and Planning of Technische Universiteit Eindhoven (TU/e) initiated in academic year 2005/06 a

  12. An alternative design concept in reverse osmosis desalination

    International Nuclear Information System (INIS)

    Boeddeker, K.W.; Hilgendorff, W.; Kaschemekat, J.

    1976-01-01

    A highly adaptable plate system for reverse osmosis and ultrafiltration with easily accessible flat membranes is introduced, employing a straight-channel construction of plastic components, designed to tolerate comparatively bold operations conditions at the calculated expense of membrane service life. Pilot installations are illustrated. (orig.) [de

  13. A new design concept for nodule mining system

    Digital Repository Service at National Institute of Oceanography (India)

    Janakiraman, G.; Venkatesan, R.; Rajaraman, V.S.

    An overview is presented on the hazards associated with various types of equipment to be used for the commercial mining of nodules from the seabed. The design of a suitable mining collector and the various options available are discussed. A novel...

  14. Designing concept on lightning protection of overhead power distribution line

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shigeru [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)], E-mail: yokoyama@criepi.denken.or.jp

    2007-07-01

    The principle is shown for lightning protection of power distribution lines taking the effects of surge arresters, overhead ground wires and their combined use into consideration. Moreover an outline of a rational design method targeting direct lightning hits, induced over voltages and back flow currents from high structures. (author)

  15. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperatu...

  16. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  17. Swedish Nursing Students' Perceptions of the Concept of Health: A Phenomenographic Study

    Science.gov (United States)

    Skär, Lisa; Söderberg, Siv

    2016-01-01

    Objectives: Health is a central and important concept in nursing and nursing education, and has been theorised about in both positive and negative terms. The purpose of this study was to explore Swedish nursing students' perceptions of the concept of health. Design: A phenomenographic research approach was used to understand how nursing students…

  18. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  19. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  20. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  1. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  2. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  3. Improving fuel utilization in SmAHTR with spectral shift control design: Proof of concept

    International Nuclear Information System (INIS)

    Kotlyar, D.; Lindley, B.A.; Mohamed, H.

    2017-01-01

    Highlights: • Improving the fuel utilization in a graphite moderated reactor by adopting the ‘spectral shift’ concept. • The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor. • At BOL, the reactor is under-moderated, with excess neutrons being primarily breeding 239 Pu. • Graphite is continuously inserted thermalizing the neutron spectrum and increasing reactivity. • The extra 239 Pu bred during the cycle is then burned, allowing the cycle to be extended. - Abstract: This paper presents a spectral shift design based approach to improve the fuel utilization factor or alternatively to increase the cycle length in a graphite moderated reactor. The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor (SmAHTR). This is a small sized Fluoride-salt-cooled high-temperature reactor (FHR) that uses tri-isotropic (TRISO)-coated particle fuels and graphite moderator materials. A major benefit of the TRISO particles is the ability to mitigate fission product release in the case of an accident. However, the fabrication costs associated with TRISO particles are expected to be significantly higher than the traditional UO 2 fuel. The preliminary studies presented in the paper are focused on extending the achievable irradiation period without increasing the value of the enrichment. In order to increase the discharge burnup, the design includes graphite structures that are initially removed from the core. This imposes a harder spectrum, which enhances the breeding of 239 Pu. Then, the graphite structures are gradually and continuously inserted into the core to sustain criticality. This procedure shifts the hard spectrum into a more thermal one and enables a more efficient utilization of 239 Pu. The preliminary results indicate that this design achieves considerably longer irradiation periods and hence lower fuel cycle costs than the reference design.

  4. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    Science.gov (United States)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  5. BWID System Design Study

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-01-01

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness

  6. Application of Sensitivity Analysis in Design of Integrated Building Concepts

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Hesselholt, Allan Tind

    2007-01-01

    analysis makes it possible to identify the most important parameters in relation to building performance and to focus design and optimization of integrated building concepts on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage...... the design requirements and objectives. In the design of integrated building concepts it is beneficial to identify the most important design parameters in order to more efficiently develop alternative design solutions or more efficiently perform an optimization of the building performance. The sensitivity...

  7. Design of nuclear desalination concentrate plant by using zero discharge desalination concept for Bangka Island

    International Nuclear Information System (INIS)

    Erlan Dewita, Siti Alimah

    2015-01-01

    Nuclear desalination is a process to separate salt of seawater by using nuclear energy. Desalination concentrate is a problem in nuclear desalination. Desalination concentrate is sometimes discharged directly into the seawater, therefore it can affects the water quality of beach and rise negative effects on the biota in the vicinity of the output. ZDD (Zero Discharge Desalination) concept can be applied to minimized environment impact. This study is conducted by using PWR type NPP as nuclear heat source and using ZDD concept to process desalination waste. ZDD is a concept for processing of desalination concentrate into salt and chemical products which have economic values. Objectives of this study is to design nuclear desalination concentrate processing plant in Bangka Island. The methodology is literature assessment and calculation with excel programme. The results of this study shows that the main the products are NaCl (pharmaceutical salt) and cakes BaSO4, Mg(OH)2BaCO3 as by products. (author)

  8. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  9. Radiotherapy facilities: Master planning and concept design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals.

  10. Radiotherapy Facilities: Master Planning and Concept Design Considerations (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology and a typical project work plan, and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  11. Radiotherapy facilities: Master planning and concept design considerations

    International Nuclear Information System (INIS)

    2014-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  12. Reuse of ideas and concepts for creative stimuli in engineering design

    DEFF Research Database (Denmark)

    Howard, Thomas J.; Culley, Steve J.; Dekoninck, Elies A.

    2011-01-01

    Creative idea generation is essential to novel concept development and ultimately innovation. The following paper describes an extensive industry-based study investigating the use of creative stimuli during a brainstorming session at the conceptual stages of design.A new approach to retrieving...... real, industrially-based experiment regarding brainstorming. The results and observations suggest that having a guided approach to sourcing creative stimuli is very beneficial. The use of the TRIZ contradiction matrix and inventive principles is also shown to be a good example of a guided approach...

  13. Sustainable Design and Renewable Energy Concepts in Practice

    Science.gov (United States)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  14. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    Science.gov (United States)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and

  15. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    Science.gov (United States)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  16. Can Fire and Rescue Services and the National Health Service work together to improve the safety and wellbeing of vulnerable older people? Design of a proof of concept study

    Directory of Open Access Journals (Sweden)

    Whiting David G

    2010-12-01

    Full Text Available Abstract Background Older adults are at increased risk both of falling and of experiencing accidental domestic fire. In addition to advanced age, these adverse events share the risk factors of balance or mobility problems, cognitive impairment and socioeconomic deprivation. For both events, the consequences include significant injury and death, and considerable socioeconomic costs for the individual and informal carers, as well as for emergency services, health and social care agencies. Secondary prevention services for older people who have fallen or who are identifiable as being at high risk of falling include NHS Falls clinics, where a multidisciplinary team offers an individualised multifactorial targeted intervention including strength and balance exercise programmes, medication changes and home hazard modification. A similar preventative approach is employed by most Fire and Rescue Services who conduct Home Fire Safety Visits to assess and, if necessary, remedy domestic fire risk, fit free smoke alarms with instruction for use and maintenance, and plan an escape route. We propose that the similarity of population at risk, location, specific risk factors and the commonality of preventative approaches employed could offer net gains in terms of feasibility, effectiveness and acceptability if activities within these two preventative approaches were to be combined. Methods/Design This prospective proof of concept study, currently being conducted in two London boroughs, (Southwark and Lambeth aims to reduce the incidence of both fires and falls in community-dwelling older adults. It comprises two concurrent 12-month interventions: the integration of 1 fall risk assessments into the Brigade's Home Fire Safety Visit and 2 fire risk assessments into Falls services by inviting older clinic attendees to book a Visit. Our primary objective is to examine the feasibility and effectiveness of these interventions. Furthermore, we are evaluating their

  17. Concept and designs of new-generation fast reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.

    1993-01-01

    This article discusses the general safety requirements and characteristics for future nuclear power plants. It examines various designs - loop, block, and integrated layouts for reactors. Specifically, the article focuses an integrated design for sodium-cooled fast reactors noting that the BN-600 reactor has operated accident-free over the past 12 years. An obvious advantage of this scheme is that the coolant of the primary loop is localized in one volume (in a vessel), there are no short connections and large-diameter pipes, which of course sharply reduces the probability in coolant leaks. With an integrated scheme the problem of embrittlement of the reactor vessel by neutron irradiation is obviated. The neutron fluence for the vessels of the AST-500 and VPBER-600 reactors, built with an integrated scheme, is less than 10 17 cm -2 . Such a fluence does not cause any appreciable change in the mechanical properties of the vessel steel. The integrated layout of the reactor makes it possible to build a containment vessel. In this case it is possible to eliminate the danger of the reactor core drying out and thus cooling of the reactor in emergency situations can be simplified substantially. In an integrated layout, however, access is more difficult to the equipment inside the reactor, thus limiting or complicating maintenance work. The integrated layout, therefore, requires the use of highly reliable equipment built according to designs that have been proven in operation and have been passed representative service-life tests under laboratory conditions. The integrated layout considerably increases the mass and size characteristics of the reactor. New solutions thus are needed for the organization of work on reactor fabrication and assembly. In the case of the BN-600 and Superphenix reactors the welding of the reactor vessels and the assembly work were done on the building site

  18. PLAY HANDS PROTECTIVE GLOVES: TECHNICAL NOTE ON DESIGN AND CONCEPT.

    Science.gov (United States)

    Houston-Hicks, Michele; Lura, Derek J; Highsmith, M Jason

    2016-09-01

    Cerebral Palsy (CP) is the leading cause of childhood motor disability, with a global incidence of 1.6 to 2.5/1,000 live births. Approximately 23% of children with CP are dependent upon assistive technologies. Some children with developmental disabilities have self-injurious behaviors such as finger biting but also have therapeutic needs. The purpose of this technical note is to describe design considerations for a protective glove and finger covering that maintains finger dexterity for children who exhibit finger and hand chewing (dermatophagia) and require therapeutic range of motion and may benefit from sensory stimulation resulting from constant contact between glove and skin. Protecting Little and Adolescent Youth (PLAY) Hands are protective gloves for children with developmental disorders such as CP who injure themselves by biting their hands due to pain or sensory issues. PLAY Hands will be cosmetically appealing gloves that provide therapeutic warmth, tactile sensory feedback, range of motion for donning/ doffing, and protection to maximize function and quality of life for families of children with developmental disorders. The technology is either a per-finger protective orthosis or an entire glove solution designed from durable 3D-printed biodegradable/bioabsorbable materials such as thermoplastics. PLAY Hands represent a series of protective hand wear interventions in the areas of self-mutilating behavior, kinematics, and sensation. They will be made available in a range of protective iterations from single- or multi-digit finger orthoses to a basic glove design to a more structurally robust and protective iteration. To improve the quality of life for patients and caregivers, they are conceptualized to be cosmetically appealing, protective, and therapeutic.

  19. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  20. Advanced High and Low Fidelity HPC Simulations of FCS Concept Designs for Dynamic Systems

    National Research Council Canada - National Science Library

    Sandhu, S. S; Kanapady, R; Tamma, K. K

    2004-01-01

    ...) resources of many Army initiatives. In this paper we present a new and advanced HPC based rigid and flexible modeling and simulation technology capable of adaptive high/low fidelity modeling that is useful in the initial design concept...

  1. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  2. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this multi-phase project is to explore, develop, integrate, and test several innovative structural design concepts and new material...

  3. User Acceptability of Design Concepts for a Life Sign Detection System

    National Research Council Canada - National Science Library

    Beidleman, Beth

    2003-01-01

    .... Over the next four days of testing (Days 2-5), each soldier wore each of the four design concepts for 24 h and completed a user acceptability survey containing yes/no and 9-point hedonic scale questions...

  4. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 1. Technical report

    National Research Council Canada - National Science Library

    Clyman, Milton

    1980-01-01

    .... The search addressed the technologies necessary to support next generation (IOC 1990+) air vehicle design and operation concepts that will reduce the requirement for natural petroleum-derived energy...

  5. Interval-valued intuitionistic fuzzy multi-criteria model for design concept selection

    Directory of Open Access Journals (Sweden)

    Daniel Osezua Aikhuele

    2017-09-01

    Full Text Available This paper presents a new approach for design concept selection by using an integrated Fuzzy Analytical Hierarchy Process (FAHP and an Interval-valued intuitionistic fuzzy modified TOP-SIS (IVIF-modified TOPSIS model. The integrated model which uses the improved score func-tion and a weighted normalized Euclidean distance method for the calculation of the separation measures of alternatives from the positive and negative intuitionistic ideal solutions provides a new approach for the computation of intuitionistic fuzzy ideal solutions. The results of the two approaches are integrated using a reflection defuzzification integration formula. To ensure the feasibility and the rationality of the integrated model, the method is successfully applied for eval-uating and selecting some design related problems including a real-life case study for the selec-tion of the best concept design for a new printed-circuit-board (PCB and for a hypothetical ex-ample. The model which provides a novel alternative, has been compared with similar computa-tional methods in the literature.

  6. Design of the breeder units in the new HCPB modular blanket concept and material requirements

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Hermsmeyer, S.; Reimann, J.; Xu, Z.; Koehly, C.

    2004-01-01

    A major revision of the DEMO HCPB blanket concept took place in 2002-2003 as consequence of the results of the EU Power Plant Conceptual Study. In particular, it was decided to give up the previous maintenance schema based on segments in favour of a large module concept extrapolated from ITER. The adaptation of the HCPB concept to these modules (typical dimension at the FW of 2.0 x 2.0 m) required a complete revision of the box. The coolant flow scheme is based on a radial He flow (at 8 MPa) in order to have the entire manifold system in the rear part of the box. Furthermore, the requirement of a box capable of withstanding the coolant pressure of 8 MPa in case of an in-box LOCA led to a design of modules with an internal stiffening grid in toroidal and poloidal direction This grid results in cells open in the rear radial direction with toroidal-poloidal dimensions of about 20 cm x 20 cm that accommodate the breeder units. These units contain the ceramic breeder (CB) and the Beryllium in form of pebble beds and have to assure the main functions of the blanket, namely, a tritium breeding ratio significantly above one, heat removal with a temperature control in the beds and in the structure, mechanical stability of the beds and extraction of the produced tritium. Due to the relatively high quantity of steel necessary to assure the mechanical stability of the box, a strong requirement for the design of these units is to minimise the amount of steel to improve the neutronic performance. A satisfactory design has been achieved with a radial-toroidal bed configuration similar to the old DEMO design reaching the Tritium self-sufficiency with a radial depth of 47 cm, using monosized Beryllium and CB beds and, using Li 4 SiO 4 , a 6 Li enrichment of about 40%. This design allows a satisfactory control of the maximum acceptable temperatures in the CB and Be beds and the steel structure. The design of the breeder units has not been yet analysed thermo-mechanically in detail

  7. From Concept to Realization: Designing Miniature Humanoids for Running

    Directory of Open Access Journals (Sweden)

    Youngbum Jun

    2010-02-01

    Full Text Available Humanoid robots present exciting research possibilities such as human gaits, social interaction, and even creativity. Full-size humanoid designs have shown impressive capabilities, yet are custom-built and expensive. Cost and sophistication barriers make reproducing and verifying results very difficult. The recent proliferation of mini-humanoids presents an affordable alternative, in that smaller robots are cheaper to own and simpler to operate. At less than 2000 USD, these robots are capable of human-like motion, yet lack precision sensors and processing power. The authors' goal is to produce a miniature humanoid robot that is both small and affordable, while capable of advanced dynamic walking and running. This requires sensing of the robot's inertia and velocity, the forces on its feet, and the ability to generate and modify motion commands in real time. The presented design uses commercial parts and simple machining methods to minimize cost. A power-efficient mobile x86 computer on-board leverages existing operating systems and simplifies software development. Preliminary results demonstrate controlled walking and feedback control.

  8. Software Design Concepts for Archiving and Retrieving Control System Data

    International Nuclear Information System (INIS)

    Christopher Larrieu; Matt Bickley

    2001-01-01

    To develop and operate the control system effectively at the Thomas Jefferson National Accelerator Facility, users require the ability to diagnose its behavior not only in real-time, but also in retrospect. The new Jefferson Lab data logging system provides an acquisition and storage component capable of archiving enough data to provide suitable context for such analyses. In addition, it provides an extraction and presentation-facility which efficiently fulfills requests for both raw and processed data. This paper discusses several technologies and design methodologies which contribute to the system's overall utility. The Application Programming Interface (API) which developers use to access the data derives from a view of the storage system as a specialized relational database. An object-oriented and compartmental design contributes to its portability at several levels, and the use of CORBA facilitates interaction between distributed components in an industry-standard fashion. This work was supported by the U.S. DOE contract No. DE-AC05-84ER40150

  9. JSFR: Japan's challenge towards the competitive SFR design concept with innovative technologies

    International Nuclear Information System (INIS)

    Mihara, T.; Kotake, S.

    2006-01-01

    JSFR is a sodium-cooled, MOX(or metal) fuelled, advanced loop type fast reactor design concept conducting by Japan Atomic Energy Agency(JAEA) through the Feasibility Study on commercialized Fast Reactor(FR) Cycle Systems with participation of all parties concerned in Japan since 1999. The economic competitiveness is one of the crucial points and has been emphasized in the design study of JSFR. One of the ways for less construction cost is the compact NSSS design by introducing the following innovative technologies; Shortening the piping length, simplified configuration with the inverse L-shaped-pipes and a two-loop system even for a l,500MWe power plant, by adopting high chromium steel with lower thermal expansion and higher strength, Upgrading of the structural design standards at elevated temperature for sodium-cooled FR system, and Development of an integrated intermediate heat exchanger (IHX) with a mechanical pump. The other way is introducing passive decay heat removal system with natural circulation. The elimination of active components such as pony motors and blowers leads to reduction of the capacity of the BOP system such as electricity supply system, emergency DGs, HVAC system and component cooling water system. In order to attain lower power generation cost, not only less construction cost but also less operational cost including fuel cycle cost is crucial. Therefore higher burn-up of the averaged core, more than 150GWd/t, has been applied by introducing ODS steel cladding material. As a result, it is confirmed that the JSFR design concept is well suited to the development target equivalent to l,000USD/kWe (as NOAK, overnight cost), while ensuring safety. The most of the cost reduction comes from the innovative technologies. The R and D plan of these technologies was summarized as a roadmap and the R and D efforts are on going for establishing a technical scheme of FR cycle systems by around 2015

  10. Conceptual framework for the design and conception of an electronic trade platform in agribusiness

    OpenAIRE

    Hausen, Tobias; Helbig, Ralf; Schiefer, Gerhard

    2002-01-01

    This article gives an overview of a conceptual framework for the designing and implementation of an electronic trade platform. The trade platform prototype is the basis of a general conception for the design and implementation of internet-based trade platforms in agribusiness. The main platform focus related to the concept are to convert traditional business relationships and transactions into an electronic system. The conceptual framework provides clarification with regard to the benefit of ...

  11. Experimental concept and design of DarkLight, a search for a heavy photon

    International Nuclear Information System (INIS)

    Cowan, Ray F.

    2013-01-01

    This talk gives an overview of the DarkLight experimental concept: a search for a heavy photon A′ in the 10-90 MeV/c 2 mass range. After briefly describing the theoretical motivation, the talk focuses on the experimental concept and design. Topics include operation using a half-megawatt, 100 MeV electron beam at the Jefferson Lab FEL, detector design and performance, and expected backgrounds estimated from beam tests and Monte Carlo simulations

  12. The concept and principles of sustainable architectural design for national parks in Serbia

    OpenAIRE

    Milošević Predrag

    2004-01-01

    The paper elaborates the concept of sustainable architectural design that has come to the forefront in the last 20 years, and in the light of the National Park. This concept recognizes that human civilization is an integral part of the natural world and that nature must be preserved and perpetuated if the human community itself is to survive. Sustainable design articulates this idea through developments that exemplify the principles of conservation and encourage the application of those princ...

  13. Design concepts and safety concerns of the small and medium size reactors (SMR)

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Lee, Jae Hun; Kim, Hho Jung

    1998-01-01

    The small and medium size reactors (SMR) and interface facilities such as desalination plant are expected to be located near the population area because of restrictions in transporting the plant products such as fresh water to long distance area. To protect the public around the plant facility from the possible release of radioactive materials, the design development of the SMR is focusing on an enhancement of the safety and reliability as well as the economics. In this study, the major safety concepts of the SMR designs significantly different from the current PWR designs are investigated and the safety concerns applicable to the integrated SMR design of Korea (called SMART), were identified. Those safety issues include the use of proven technology, application of strengthening defense in depth, event categorization and selection, simplification of emergency planning, determination of accident source terms and so on. The efforts to resolve the safety concerns in the design stage will provide an improvement of the safety of the SMART design

  14. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  15. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  16. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  17. The optical design concept of SPICA-SAFARI

    Science.gov (United States)

    Jellema, Willem; Kruizinga, Bob; Visser, Huib; van den Dool, Teun; Pastor Santos, Carmen; Torres Redondo, Josefina; Eggens, Martin; Ferlet, Marc; Swinyard, Bruce; Dohlen, Kjetil; Griffin, Doug; Gonzalez Fernandez, Luis Miguel; Belenguer, Tomas; Matsuhara, Hideo; Kawada, Mitsunobu; Doi, Yasuo

    2012-09-01

    The Safari instrument on the Japanese SPICA mission is a zodiacal background limited imaging spectrometer offering a photometric imaging (R ≍ 2), and a low (R = 100) and medium spectral resolution (R = 2000 at 100 μm) spectroscopy mode in three photometric bands covering the 34-210 μm wavelength range. The instrument utilizes Nyquist sampled filled arrays of very sensitive TES detectors providing a 2’x2’ instantaneous field of view. The all-reflective optical system of Safari is highly modular and consists of an input optics module containing the entrance shutter, a calibration source and a pair of filter wheels, followed by an interferometer and finally the camera bay optics accommodating the focal-plane arrays. The optical design is largely driven and constrained by volume inviting for a compact three-dimensional arrangement of the interferometer and camera bay optics without compromising the optical performance requirements associated with a diffraction- and background-limited spectroscopic imaging instrument. Central to the optics we present a flexible and compact non-polarizing Mach-Zehnder interferometer layout, with dual input and output ports, employing a novel FTS scan mechanism based on magnetic bearings and a linear motor. In this paper we discuss the conceptual design of the focal-plane optics and describe how we implement the optical instrument functions, define the photometric bands, deal with straylight control, diffraction and thermal emission in the long-wavelength limit and interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end.

  18. Designing the Self: The Transformation of the Relational Self-Concept through Social Encounters in a Virtual Immersive Environment

    Science.gov (United States)

    Knutzen, K. Brant; Kennedy, David M.

    2012-01-01

    This article describes the findings of a 3-month study on how social encounters mediated by an online Virtual Immersive Environment (VIE) impacted on the relational self-concept of adolescents. The study gathered data from two groups of students as they took an Introduction to Design and Programming class. Students in group 1 undertook course…

  19. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution.

    Science.gov (United States)

    Phadnis, Milind A; Wetmore, James B; Mayo, Matthew S

    2017-11-20

    Traditional methods of sample size and power calculations in clinical trials with a time-to-event end point are based on the logrank test (and its variations), Cox proportional hazards (PH) assumption, or comparison of means of 2 exponential distributions. Of these, sample size calculation based on PH assumption is likely the most common and allows adjusting for the effect of one or more covariates. However, when designing a trial, there are situations when the assumption of PH may not be appropriate. Additionally, when it is known that there is a rapid decline in the survival curve for a control group, such as from previously conducted observational studies, a design based on the PH assumption may confer only a minor statistical improvement for the treatment group that is neither clinically nor practically meaningful. For such scenarios, a clinical trial design that focuses on improvement in patient longevity is proposed, based on the concept of proportional time using the generalized gamma ratio distribution. Simulations are conducted to evaluate the performance of the proportional time method and to identify the situations in which such a design will be beneficial as compared to the standard design using a PH assumption, piecewise exponential hazards assumption, and specific cases of a cure rate model. A practical example in which hemorrhagic stroke patients are randomized to 1 of 2 arms in a putative clinical trial demonstrates the usefulness of this approach by drastically reducing the number of patients needed for study enrollment. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Design concepts and status of the Korean next generation reactor (KNGR)

    International Nuclear Information System (INIS)

    Cho, Sung Jae; Kim, Han Gon

    1999-01-01

    The national project to develop KNGR, a 4000 MWth evolutionary advanced light water reactor (ALWR), has been organized in three phases according to the development status in 1992. During the first phase, the top-tier design requirements and the design concepts to meet the requirements had been established. The project is currently in the second phase of which the major objective is to complete the basic design sufficient to confirm the plant safety. This paper describes the overall design concepts and status of the KNGR briefly which developed and/or being developed through the project. (author)

  1. Recent advances and design options of the aseismic bearing pad concept for reduction of seismic loading

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Musacchio, J.M.; Rizzo, P.C.

    1985-01-01

    The intent of this paper is to: briefly review the developed concepts from a mechanics standpoint; summarize the results of recent testing and applications; discuss the complexities and subtleties of differences between concepts, and highlight the effectiveness of each within selected frequency ranges. On this basis, the paper will provide a forum for application of each concept within the nuclear design community. The potential licensing implications of incorporating the ABP concept into nuclear plant design are be discussed in light of actual experience extrapolated to several dominant regulatory processes; namely the French, German, Japanese, Canadian and American. The intent is to identify potential licensing issues, spur additional research and development in these areas, and continue to bring the concept to the attention of the nuclear community to facilitate acceptance and application. (orig./HP)

  2. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  3. The concept of risk in the design basis threat

    International Nuclear Information System (INIS)

    Reynolds, J.M.

    2001-01-01

    Full text: Mathematically defined, risk is a product of one or more probability factors and one or more consequences. Actuarial analysis of risk requires the creation of a numeric algorithm that reflects the interaction of different probability factors, where probability data usually draws on direct measurements of incidence. For physical protection purposes, the algorithms take the general form: Risk = Probability of successful attack x Consequence where the overall probability of a successful attack will be determined by the product of, amongst other things, the probability of there being sufficient intent, the probability of there being available hostile resources, the probability of deterrence, and the probability that a hostile act will be detected and prevented. Deliberate, malevolent acts against nuclear facilities are rare. In so far as it is possible to make an actuarial type of judgement, the probability of malevolent activity against a nuclear facility is almost zero. This creates a problem for a numerical assessment of risk for nuclear facilities where the value (consequence) term could be almost infinite. As can be seen from the general equation above, a numerical algorithm of risk of malevolent activity affecting nuclear facilities could only yield a zero or infinite result. In such circumstances, intelligence-based threat assessments are sometimes thought of as a substitute for historic data in the determination of probability. However, if the paucity of historic data reflects the actual threat - which by and large it should - no amount of intelligence is likely to yield a substantially different conclusion. This mathematical approach to analysing risk appears to lead us either to no risk and no protection or to an infinite risk demanding every conceivable protective measure. The Design Basis Threat (DBT) approach offers a way out of the dilemma. Firstly, it allows us to eliminate from further consideration all zero or near zero probabilities

  4. Study on the applicability of the desk displacement ventilation concept

    NARCIS (Netherlands)

    Loomans, Marcel G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displacement ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  5. Study on the applicability of the desk replacement ventilation concept

    NARCIS (Netherlands)

    Loomans, M.G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displace-ment ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  6. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  7. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    Science.gov (United States)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  8. Design in the natural stone transformation sector: evaluating a new concept

    Directory of Open Access Journals (Sweden)

    Susana Paixão-Barradas

    2012-09-01

    Full Text Available The European natural stone sector is declining; sales and imports are decreasing, owing to growing competition from Asiatic countries concerning the diversity of low-cost materials and European cultural and historical traditions demanding a commitment to invest in the best equipment and technology available. Design plays an important role in a company regarding the development, innovation and creation of competitive products. The present research involved a questionnaire being given to Portuguese and Spanish companies working in the natural stone sector to ascertain the companies’ characteristics, identifying those working with internal departments specialising in innovation for developing new products and studying the feasibility of working with a new concept by studying the relationship between these companies and the importance they attach to the sensation of well-being which a natural stone product offers. The results showed that companies recognised most feelings presented here as being ‘important’, mainly those referring to social factors. It could be concluded that a company working with an internal design department for product development appreciates such concepts and adds more value to them.

  9. Studies in Interior Design

    Science.gov (United States)

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  10. Photovoltaic systems concept study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The work performed in the conceptual design and systems analysis of three sizes of photovoltaic solar electric power systems is contained in five volumes consisting of nine sections plus appendices. Separate abstracts were prepared for the two sections in this volume. (MHR)

  11. Concepts for operational period panel seal design at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Lin, M.S.; Van Sambeek, L.L.

    1993-07-01

    Concepts for underground panel or drift seals at the Waste Isolation Pilot Plant are developed to satisfy sealing requirements of the operational period. The concepts are divided into two groups. In the ''NOW'' group, design concepts are considered in which a sleeve structure is installed in the panel access immediately after excavation and before waste is emplaced. In the ''LATER'' group, no special measures are taken during excavation or before waste emplacement; the seal is installed at a later date, perhaps up to 35 years after the drift is excavated. Three concepts are presented in both the NOW and LATER groups. A rigid sleeve, a yielding sleeve, and steel rings with inflatable tubes are proposed as NOW concepts. One steel ring concept and two concrete monoliths are proposed for seals emplaced in older drifts. Advantages and disadvantages are listed for each concept. Based on the available information, it appears most feasible to recommend a LATER concept using a concrete monolith as a preferred seal for the operational period. Each concept includes the potential of remedial grout and/or construction of a chamber that could be used for monitoring leakage from a closed panel during the operational period. Supporting in situ demonstrations of elements of the concepts are recommended

  12. Advanced limiter test (ALT-I) in the TEXTOR tokamak - concept and experimental design

    International Nuclear Information System (INIS)

    Conn, R.W.; Grotz, S.P.; Prinja, A.K.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm 2 . The head is made of TiC-coated graphite containing a variable aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 2x10 4 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer. (author)

  13. Magnetic filter field for ELISE––Concepts and design

    International Nuclear Information System (INIS)

    Fröschle, M.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Schiesko, L.; Wünderlich, D.

    2013-01-01

    Highlights: ► ELISE is an important intermediate step toward the full size ITER injector ion source ► It is one of the first ion sources equipped with a magnetic filter field formed by a PG current. ► The magnetic filter field is responsible for the performance of the source ► It controls the currents of extracted negative ions and co-extracted electrons ► The ELISE magnetic filter field meets all actual scientific findings ► It has a vast variability for future investigations and optimizations. -- Abstract: Negative ion neutral beam injection heating systems as planned for ITER need efficient precautions in the plasma source to minimize the co-extraction of electrons and destruction of negative ions. One solution is to apply a magnetic filter field of several mT, which reduces the electron temperature and the amount of electrons in the extraction region in front of the plasma grid. For the small IPP prototype sources it has been found, that both, the absolute value of the magnetic flux density in the extraction region as well as its integral along the distance from plasma driver to plasma grid has an important influence on the performance of the source. In the ITER ion sources, a strong current of several kA driven through the plasma grid is used to create the transversal magnetic field. The test bed ELISE (Extraction from a Large Ion Source Experiment) at IPP Garching houses the first negative ion source with the full width of the ITER source, with a similar aperture arrangement of the extraction system and with a magnetic filter field formed by a plasma grid current. One issue of the research at this test facility will be to explore and optimize the magnetic filter field. The paper summarizes experiences and results of previous filter field test campaigns and presents the magnetic filter field design for ELISE

  14. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-01-01

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  15. Designing Low-Income Housing Using Local Architectural Concepts

    Science.gov (United States)

    Trumansyahjaya, K.; Tatura, L. S.

    2018-02-01

    The provision of houses for low-income people who do not have a home worthy of being one of the major problems in the city of Gorontalo, because the community in establishing the house only pay attention to their wants and needs in creating a healthy environment, the beauty of the city and the planning of the home environment in accordance with the culture of the people of Gorontalo. In relation to the condition, the focus of this research is the design of housing based on local architecture as residential house so that it can be reached by a group of low income people with house and environment form determined based on family development, social and economic development of society and environment which take into account the local culture. Stages of this research includes five (5) stages, including the identification phase characteristics Gorontalo people of low income, the characteristics of the identification phase house inhabited by low-income people, the stage of identification preference low-income households, the phase formation house prototype and the environment, as well as the stage of formation model home for low-income people. Analysis of the model homes for low-income people using descriptive analysis, Hierarchical Cluster Analysis, and discrimination analysis to produce a prototype of the house and its surroundings. The prototype is then reanalyzed to obtain the model home for low-income people in the city of Gorontalo. The shape of a model home can be used as a reference for developers of housing intended for low-income people so that housing is provided to achieve the goals and the desired target group.

  16. Preliminary systems design study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept

  17. From conception to evaluation of mobile services for people with head injury: A participatory design perspective.

    Science.gov (United States)

    Groussard, Pierre-Yves; Pigot, Hélène; Giroux, Sylvain

    2018-07-01

    Adults with cognitive impairments lack the means to organise their daily life, plan their appointments, cope with fatigue, and manage their budget. They manifest interest in using new technologies to be part of society. Unfortunately, the applications offered on smart phones are often beyond their cognitive abilities. The goal of this study was to design a mobile cognitive assistant to enhance autonomy of people living with acquired traumatic brain injury. Participatory design methodologies guided this research by involving adults with cognitive impairments (CI) and their caregivers in the early stages of the design process. The population of the study is composed of four male adults who present cognitive impairments (three with head injury and one with stroke) and three caregivers. The first phase of this research was to design the Services Assistance Mobile and Intelligent (SAMI) application based on the needs expressed by the participants. During three focus groups, needs emerged concerning planning, health monitoring and money management and led to the implementation of assistive solutions on an Android mobile phone. During the second phase, the participants evaluated the mobile assistant SAMI at home for eight weeks. The results demonstrate that the participants were able to participate actively in the conception of SAMI and to use it successfully. People with CI showed a slight improvement in their life satisfaction. Due to the small number of participants, these promising results need to be confirmed by a larger-scale study.

  18. Early Synthetic Prototyping: Exploring Designs and Concepts Within Games

    Science.gov (United States)

    2014-12-01

    tactical airdrop and a coded spot laser . The conduct of the pilot and larger study will follow the general framework used in our study but will be...easily shot. Once the avatar found a “safe” spot , the APDs were killed and re-spawned before control could be established. Turned in a “spray and...Map chip” able to see where your peers are like Blue Force Tracker . Concerned over fratricide and knowing where your friends are. Would like to

  19. Status of subseabed repository design concepts and radionuclide

    International Nuclear Information System (INIS)

    Brush, L.H.

    1980-01-01

    Various projects underway in support of the marine disposal of radioactive wastes are described. These include: geochemical studies on sediments; canister-related research and development activities; radionuclide transport studies through smectitic sediments; seawater-sediment interactions under near-field conditions; effects of a radiation field on high temperature, seawater-sediment interactions; sorption of fission products and actinides by deep-sea sediments under far-field (below 100 0 C) conditions; sorption experiments using column diffusion; development of a computer code, IONMIG, to model the migration of radionuclides through undisturbed deep-sea sediments; and planning for a field test of the laboratory measurements and computer models of radionuclide transport

  20. Electromagnetic compatibility design and cabling system rules; Regles de conception et de cablage des systemes electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Raimbourg, J.

    2009-07-01

    This report is devoted to establish EMC (Electromagnetic Compatibility) design and cabling system rules. It is intended for hardware designers in charge of designing electronic maps or integrating existing materials into a comprehensive system. It is a practical guide. The rules described in this document do not require enhanced knowledge of advanced mathematical or physical concepts. The key point is to understand phenomena with a pragmatic approach to highlight the design and protection rules. (author)

  1. ePortfolio as Pedagogy: Threshold Concepts for Curriculum Design

    Science.gov (United States)

    Lewis, Lyn

    2017-01-01

    The ePortfolio has been used in initial teacher education for its storage and presentation functions; however, its use as a pedagogic tool to enhance learning outcomes is less common. This study explored students' perceptions of ePortfolio and their learning in a Bachelor of Education (primary) programme at a New Zealand university. The research…

  2. Using control systems analysis and design concepts to understand ...

    African Journals Online (AJOL)

    This paper is a combination of some of our past and current works on the application of control theory to the study of HIV/AIDS. The paper aims to show how control theoretic analytical tools can be and have been applied to HIV/AIDS mathematical models in order to gain insights into HIV/AIDS infection dynamics. The paper ...

  3. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    . Climate-responsive design restores the context of local climate and environment as a design parameter. Many spatial, functional and comfort-related boundary conditions that have an effect on the energy design concept have been distinguished. There are many low-graded energy sources that can be put to use in the built environment, with local climate as the primary component. When exploring the potential of local climate, urban context needs to be taken into account since it heavily affects the actual potential. Since buildings are typically build to last for decades, consideration of changing climate and its expected effect on the energy potential is an important factor in the strategy to follow. The study of the energy potential of local climate resulted in a set of climate-related and context-related boundary conditions. The principles of climate-responsive design - the conceptual relations between energy source, energy treatment and comfort demand - can be translated into various design solutions, the contextual, architectural and technical implementation of these principles into an actual design. The design solutions can be divided into six categories- site planning, building form and layout, skin, structure, finish and (integratedbuilding service - that cover various dimensions in planning and construction. In this thesis a non-exhaustive list of design principles and solutions is presented using different matrices. In order to design using climate-responsive design principles the architect should be given an overview of the comfort contribution and energy performance of design solutions. Furthermore, the identification of collaborations and conflicts when using multiple design principles together is essential. The generation of a satisfying design is more than just stacking solutions upon each other. It should also be made clear what a possible energy function of a building element is besides its primary function. This is where comfort and energy related design

  4. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... determinations for a transportation plan or TIP and are included in the project design concept and scope which is...

  5. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ''WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4)

  6. Innovative method by design-around concepts with integrating the algorithm for inventive problem solving

    International Nuclear Information System (INIS)

    Chen, Wang Chih; Chen Jahau Lewis

    2014-01-01

    The work proposes a new design tool that integrates design-around concepts with the algorithm for inventive problem solving (Russian acronym: ARIZ). ARIZ includes a complete procedure for analyzing problems and related resource, resolving conflicts and generating solutions. The combination of ARIZ and design-around concepts and understanding identified principles that govern patent infringements can prevent patent infringements whenever designers innovate, greatly reducing the cost and time associated with the product design stage. The presented tool is developed from an engineering perspective rather than a legal perspective, and so can help designers easily to prevent patent infringements and succeed in innovating by designing around. An example is used to demonstrate the proposed method.

  7. Design concept of K-DEMO for near-term implementation

    Science.gov (United States)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G.-S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.

    2015-05-01

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb3Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.

  8. School Leadership and Administration: Important Concepts, Case Studies and Simulations

    Science.gov (United States)

    Gorton, Richard; Alston, Judy; Snowden, Petra

    2006-01-01

    This text helps prospective and experienced principals, administrators, and supervisors increase their knowledge and skills through concepts, case-studies, and simulations. This book contains the following two parts and fifteen chapters. Part I presents important theoretical concepts and research findings that can improve educators'…

  9. Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A

    Science.gov (United States)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.

  10. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Science.gov (United States)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  11. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    Science.gov (United States)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  12. New "persona" concept helps site designers cater to target user segments' needs.

    Science.gov (United States)

    2004-09-01

    Using the relatively new "persona" design concept, Web strategists create a set of archetypical user characters, each one representing one of their site's primary audiences. Then, as their site is constructed or upgraded, they champion the personas, arguing on their behalf and forcing the design team to take each audience's needs and wants into account.

  13. Prototyping with your hands: the many roles of gesture in the communication of design concepts

    DEFF Research Database (Denmark)

    Cash, Philip; Maier, Anja

    2016-01-01

    There is an on-going focus exploring the use of gesture in design situations; however, there are still significant questions as to how this is related to the understanding and communication of design concepts. This work explores the use of gesture through observing and video-coding four teams of ...

  14. Solar Energy: Energy Conservation and Passive Design Concepts: Student Material. First Edition.

    Science.gov (United States)

    Younger, Charles; Orsak, Charles G., Jr.

    Designed for student use in "Energy Conservation and Passive Design Concepts," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, bibliographies, and illustrations for seven course modules. The manual, which corresponds to an instructor guide for the same course, covers the…

  15. Robotic Irradiated Sample Handling Concept Design in Reactor TRIGA PUSPATI using Simulation Software

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2015-01-01

    This paper introduces the concept design of an Robotic Irradiated Sample Handling Machine using graphical software application, designed as a general, flexible and open platform to work on robotics. Webots has proven to be a useful tool in many fields of robotics, such as manipulator programming, mobile robots control (wheeled, sub-aquatic and walking robots), distance computation, sensor simulation, collision detection, motion planning and so on. Webots is used as the common interface for all the applications. Some practical cases and application for this concept design are illustrated on the paper to present the possibilities of this simulation software. (author)

  16. Application of a concept development process to evaluate process layout designs using value stream mapping and simulation

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2011-07-01

    Full Text Available Purpose: We propose and demonstrate a concept development process (CDP as a framework to solve a value stream mapping (VSM related process layout design optimization problem.Design/methodology/approach: A case study approach was used to demonstrate the effectiveness of CDP framework in a portable fire extinguisher manufacturing company. To facilitate the CDP application, we proposed the system coupling level index (SCLI and simulation to evaluate the process layout design concepts.Findings: As part of the CDP framework application, three process layout design concepts - current layout (CL, express lane layout (ELL and independent zone layout (IZL - were generated. Then, the SCLI excluded CL and simulation selected IZL as the best concept. The simulation was also applied to optimize the performance of IZL in terms of the number of pallets. Based on this case study, we concluded that CDP framework worked well.Research limitations/implications: The process layout design optimization issue has not been well addressed in the VSM literature. We believe that this paper initiated the relevant discussion by showing the feasibility of CDP as a framework in this issue.Practical implications: The CDP and SCLI are very practice-oriented approaches in the sense that they do not require any complex analytical knowledge.Originality/value: We discussed a not well-addressed issue with a systematic framework. In addition, the SCLI presented was also unique.

  17. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    Directory of Open Access Journals (Sweden)

    J. Obedt Figueroa-Cavazos

    2016-01-01

    Full Text Available This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material. Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

  18. Blended Learning in Vocational Education: Teachers' Conceptions of Blended Learning and Their Approaches to Teaching and Design

    Science.gov (United States)

    Bliuc, Ana-Maria; Casey, Grant; Bachfischer, Agnieszka; Goodyear, Peter; Ellis, Robert A.

    2012-01-01

    This paper presents research exploring teachers' experiences of using blended learning in vocational education. Teachers involved in designing and teaching using blended learning from a major Australian vocational education provider participated in the study. They received open-ended questionnaires asking to describe their conceptions of blended…

  19. The next nuclear power station generation: Beyond-design accident concepts, methods, and action sequence

    International Nuclear Information System (INIS)

    Asmolov, V.G.; Khakh, O.Ya.; Shashkov, M.G.

    1993-01-01

    The problem of beyond-design accidents at nuclear stations will not be solved unless a safety culture becomes a basic characteristic of all lines of activity. Only then can the danger of accidents as an objective feature of nuclear stations be eliminated by purposive skilled and responsible activities of those implementing safety. Nuclear-station safety is provided by the following interacting and complementary lines of activity: (1) the design and construction of nuclear stations by properly qualified design and building organizations; (2) monitoring and supervision of safety by special state bodies; (3) control of the station by the exploiting organization; and (4) scientific examination of safety within the above framework and by independent organizations. The distribution of the responsibilities, powers, and right in these lines should be defined by a law on atomic energy, but there is not such law in Russian. The beyond-design accident problem is a key one in nuclear station safety, as it clear from the serious experience with accidents and numerous probabilistic studies. There are four features of the state of this topic in Russia that are of major significance for managing accidents: the lack of an atomic energy law, the inadequacy of the technical standards, the lack of a verified program package for nuclear-station designs in order to calculate the beyond-design accidents and analyze risks, and a lack of approach by designers to such accidents on the basis of international recommendations. This paper gives a brief description of three-forming points in the scientific activity: the general concept of nuclear-station safety, methods of analyzing and providing accident management, and the sequence of actions developed by specialists at this institute in recent years

  20. The concept and principles of sustainable architectural design for national parks in Serbia

    Directory of Open Access Journals (Sweden)

    Milošević Predrag

    2004-01-01

    Full Text Available The paper elaborates the concept of sustainable architectural design that has come to the forefront in the last 20 years, and in the light of the National Park. This concept recognizes that human civilization is an integral part of the natural world and that nature must be preserved and perpetuated if the human community itself is to survive. Sustainable design articulates this idea through developments that exemplify the principles of conservation and encourage the application of those principles in our daily lives. A corollary concept, and one that supports sustainable design, is that of bio-regionalism - the idea that all life is established and maintained on a functional community basis and that all of these distinctive communities (bio-regions have mutually supporting life systems that are generally self-sustaining. The concept of sustainable design holds that future technologies must function primarily within bioregional patterns and scales. They must maintain biological diversity and environmental integrity contribute to the health of air, water, and soils, incorporate design and construction that reflect bio-regional conditions, and reduce the impacts of human use. Sustainable design, sustainable development, design with nature environmentally sensitive design, holistic resource management - regardless of what it's called, "sustainability," the capability of natural and cultural systems being continued over time, is the key. Sustainable design must use an alternative approach to traditional design and the new design approach must recognize the impacts of every design choice on the natural and cultural resources of the local, regional, and global environments. Sustainable park and recreation development will succeed to the degree that it anticipates and manages human experiences. Interpretation provides the best single tool for shaping experiences and sharing values. By providing an awareness of the environment, values are taught that are