WorldWideScience

Sample records for concentrator cell development

  1. Concentrator-solar-cell development

    Science.gov (United States)

    Grenon, L.

    1982-07-01

    A program is described which is a continuation of earlier programs for the development of high-efficiency, low-cost, silicon concentrator solar cells. The base-line process steps and process sequences identified in these earlier contracts were evaluated and specific processes reviewed. In particular, emphasis on the use of Czochralski-grown silicon wafers rather than float-zone wafers were examined. Additionally, a study of the trade-offs between textured and nontextured cells was initiated, and the limits within which the low-cost plated nickel copper metallization can be used in concentrator solar cell applications was identified.

  2. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  3. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  4. A Microfluidic Cell Concentrator

    Science.gov (United States)

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  5. Variation in the excitability of developed D. discoideum cells as a function of agar concentration in the substrate

    Science.gov (United States)

    Oikawa, Noriko; Bae, Albert; Amselem, Gabriel; Bodenschatz, Eberhard

    2010-03-01

    In the absence of nutrients, Dictyostelium discoideum cells enter a developmental cycle--they signal each other, aggregate, and ultimately form fruiting bodies. During the signaling stage, the cells relay waves of cyclic adenosine 3',5' monophosphate (cAMP). We observed a transition from spiral to circular patterns in the signaling wave, depending on the agar concentration of the substrate. In this talk we will present the changes in the times for the onset of signaling and synchronization versus agar concentration, as measured by spectral entropy. We also will discuss the origin of these effects.

  6. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Concentrations: Recent Developments in Italy

    Directory of Open Access Journals (Sweden)

    Claudio Tesauro

    2015-10-01

    Full Text Available Recent Italian developments in antitrust concentrations was the topic I was assigned to address at the conference held on 23 April to celebrate the first anniversary of the Italian Antitrust Review. What is immediately clear is that far fewer concentrations have been notified over the last few years. This is probably due to the economic crisis, which caused a reduction in corporate transactions; but also the changes to the turnover thresholds for notification seem to have had a significant impact. Consequently, an interesting debate is underway regarding the need for further changes the threshold system. Moreover, the drastic market developments and the subsequent increased number of decisions to revise remedies should also be further examined. These two issues are the subject of this paper.

  8. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  9. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  10. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  11. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  12. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  13. A flexible cell concentrator using inertial focusing.

    Science.gov (United States)

    Tu, Chunglong; Zhou, Jian; Liang, Yitao; Huang, Bobo; Fang, Yifeng; Liang, Xiao; Ye, Xuesong

    2017-09-11

    Cell concentration adjustment is intensively implemented routinely both in research and clinical laboratories. Centrifuge is the most prevalent technique for tuning biosample concentration. But it suffers from a number of drawbacks, such as requirement of experienced operator, high cost, low resolution, variable reproducibility and induced damage to sample. Herein we report on a cost-efficient alternative using inertial microfluidics. While the majority of existing literatures concentrate on inertial focusing itself, we identify the substantial role of the outlet system played in the device performance that has long been underestimated. The resistances of the outlets virtually involve in defining the cutoff size of a given inertial filtration channel. Following the comprehensive exploration of the influence of outlet system, we designed an inertial device with selectable outlets. Using both commercial microparticles and cultured Hep G2 cells, we have successfully demonstrated the automated concentration modification and observed several key advantages of our device as compared with conventional centrifuge, such as significantly reduced cell loss (only 4.2% vs. ~40% of centrifuge), better preservation of cell viability and less processing time as well as the increased reproducibility due to absence of manual operation. Furthermore, our device shows high effectiveness for concentrated sample (e.g., 1.8 × 10 6 cells/ml) as well. We envision its promising applications in the circumstance where repetitive sample preparation is intensely employed.

  14. No Evidence of Increase in Calcitonin Concentrations or Development of C-Cell Malignancy in Response to Liraglutide for Up to 5 Years in the LEADER Trial

    DEFF Research Database (Denmark)

    Hegedüs, Laszlo; Sherman, Steven I; Tuttle, R Michael

    2018-01-01

    of increase in calcitonin concentrations in male (estimated treatment ratio [ETR] 1.03 [95% CI 1.00, 1.06]; P = 0.068) and female (ETR 1.00 [95% CI 0.97, 1.02]; P = 0.671) subgroups. There were no episodes of C-cell hyperplasia or medullary thyroid carcinoma in liraglutide-treated patients. CONCLUSIONS...

  15. Thermal regeneration of an electrochemical concentration cell

    Science.gov (United States)

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  16. Relations between fatty acid synthesis, pyruvate concentration and cell concentration of suspensions of isolated rat hepatocytes

    NARCIS (Netherlands)

    Beynen, A.C.; Geelen, M.J.H.

    1984-01-01

    1. 1. The cell concentration of suspensions of isolated rat hepatocytes affects both the rate of pyruvate accumulation in the incubation medium and the rate of fatty acid synthesis. 2. 2. At low cell concentrations pyruvate accumulation is directly related to the cell concentration but levels off

  17. Optimization of concentrator photovoltaic solar cell performance through photonic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James [Stanford Univ., CA (United States)

    2018-04-04

    The goal of this program was to incorporate two new and innovative design concepts into the design and production of CPV cells that have near zero added cost, yet significantly increase the operational efficiency of CPV modules. The program focused developing luminescent coupling effects and radiative cooling layers to increase efficiency and suppress CPV module power losses due to spectral variations and heating. The major results of the program were: 1) The optics of three commercial refractive (Fresnel) concentrators were characterized and prevent application of radiative cooling concepts due to strong mid-IR absorption (4-12µm) required to effectively radiate blackbody radiation from the cells and provide cooling. Investigation of alternative materials for the concentrator lenses produced only undesirable options—materials with reasonable mid-IR transmission for cooling only had about 30-40 visible transmission, thus reducing incident sunlight by >50%. While our investigation was somewhat limited, our work suggests that the only viable concentrator system that can incorporate radiative cooling utilizes reflective optics. 2) With limited ability to test high concentration CPV cells (requires outdoor testing), we acquired both semi-crystalline and crystalline Si cells and tested them in our outdoor facility and demonstrated 4°C cooling using a simple silica layer coating on the cells. 3) Characterizing Si cells in the IR associated with radiative cooling, we observed very significant near-IR absorption that increases the cell operating temperature by a similar amount, 4-5°C. By appropriate surface layer design, one can produce a layer that is highly reflective in the near-IR (1.5-4µm) and highly emissive in the mid-IR (5-15µm), thus reducing cell operational temperature by 10°C and increasing efficiency by ~1% absolute. The radiative cooling effect in c-Si solar cells might be further improved by providing a higher thermal conductive elastomer for

  18. Red cell concentrate storage and transport temperature.

    Science.gov (United States)

    Hancock, V; Cardigan, R; Thomas, S

    2011-10-01

    This study investigated the current U.K. guidelines for storage and transport of red cell concentrates (RCC) in saline, adenine, glucose and mannitol (SAGM). The guidelines stipulate storage at 2-6 °C but allow exposure to between 1-10 °C core temperature in a single occurrence of less than 5 h and a surface temperature of 2-10 °C for no more than 12 h during transportation. Twenty RCC units in SAGM were selected on the day of blood collection (day 0) and in vitro quality was tested pre- and post-temperature deviation at 10 °C and up to day 42 of storage. Each group of 10 RCC units was incubated for either 12 h or for both 5 and 12 h. Haemolysis was below the 0·8% U.K. limit at day 42 in all units, although there was an unexpected trend towards lower haemolysis in packs incubated for 5 and 12 h rather than just 12 h alone. Supernatant potassium was significantly higher than reference data on day 35 (P levels of adenosine triphosphate and, 2,3-diphosphoglycerate to reference data from previous studies, throughout storage. These results suggest that exposure to 10 °C for 12 h or for 5 and 12 h did not adversely affect in vitro red cell quality for the remainder of the components shelf life. © 2011 The Authors. Transfusion Medicine © 2011 British Blood Transfusion Society.

  19. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    KAUST Repository

    Burhan, Muhammad

    2016-03-09

    Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region. © 2016 Elsevier Ltd. All rights reserved.

  20. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    KAUST Repository

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region. © 2016 Elsevier Ltd. All rights reserved.

  1. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  2. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    International Nuclear Information System (INIS)

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    Highlights: • Novel multi-leg homogeniser concentrating assembly is developed for CPV system. • Single set of concentrator, concentrates sunlight on 4 MJCs with 1° acceptance angle. • The system performance is analyzed through experiment and ray tracing simulation. • Mini two axis solar tracker, with high tracking accuracy, is developed and tested. • Electrical rating analysis accurately estimates CPV system performance in any region. - Abstract: Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region.

  3. Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300x

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, A.

    2005-06-15

    In this work a rear contacted silicon concentrator cell was developed for an application in a two stage concentrator photovoltaic system. This system was developed at Fraunhofer ISE some years ago. The innovation of this one-axis tracked system is that it enables a high geometrical concentration of 300x in combination with a high optical efficiency (around 78%) and a large acceptance angle of {+-}23.5 all year through. For this, the system uses a parabolic mirror (40.4x) and a three dimensional second stage consisting of compound parabolic concentrators (CPCs, 7.7x). For the concentrator concept and particularly for an easy cell integration, the rear line contacted concentrator (RLCC) cells with a maximum efficiency of 25% were developed and a hybrid mounting concept for the RLCC cells is presented. The optical performance of different CPC materials was tested and analysed in this work. Finally, small modules consisting of six series interconnected RLCC cells and six CPCs were integrated into the concentrator system and tested outdoor. A system efficiency of 16.2% was reached at around 800 W/m2 direct irradiance under realistic outdoor conditions. (orig.)

  4. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  5. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  6. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    International Nuclear Information System (INIS)

    Kim, Sang Yub; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Lee, Sung Kuk; Kim, Taesung

    2010-01-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  7. Monitoring of yeast cell concentration using a micromachined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.

    2005-01-01

    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  8. Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); France, Ryan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McMahon, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-06

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  9. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  10. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  11. Development of the SEA Corporation Powergrid{trademark} photovoltaic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Kaminar, N.; Curchod, D.; Daroczi, S.; Walpert, M.; Sahagian, J.; Pepper, J. [Photovoltaics International, LLC, Sunnyvale, CA (United States)

    1998-03-01

    This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.

  12. Innovative developments in uranium separation and concentration technology abroad

    International Nuclear Information System (INIS)

    Liang Jinlong; Zhou Mingsheng; Fang Wei; Sun Yuxiang

    2014-01-01

    Significance of deeply study the innovative developments in Uranium separation and concentration technology abroad was discussed. Development history and innovativeness of eight species of key equipments for separation and concentration were summarized for the first time. Principle and application of seven Uranium separation and concentration technology were analyzed systematically. It is expounded in the paper that high parameter, intelligent and low carbon were three development trends of Uranium separation and concentration technology. (authors)

  13. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  14. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of application type novel-structure thin-film solar cell manufacturing technology - Development of static micro-concentrator solar cell manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (micro shukogata taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An acorn type concentrator is a 2-dimensional system and realizes relatively high magnification power, but it requires a special assembly process for modularization because the cells and the concentration system are quite small. Under the circumstances, studies are conducted on a prism array concentrator (PAC) which will demand a smaller burden for modularization. A PAC system is basically a 1-dimensional concentrator in terms of light collection performance. The cell to be attached to one plane in the longitudinal direction of the long triangular prism is so small as 5mm in width, yet it may be as long as 50-100mm, and the conventional flat plate assembly process may be made use of. A concentration efficiency of 82% and a conversion efficiency of 10.9% were obtained from a minimodule with a light intercepting area of 5cm times 4cm. Furthermore, a conversion efficiency of 19.7-21.4% was obtained when a small 5mm-wide cell applicable to a PAC type concentration was used. Since a prism type concentrator optical system will cost much for its molding and strengthening when it is built of glass, inexpensive EVA (ethylene-vinyl acetate copolymer) was utilized as an adhesive filler. (NEDO)

  15. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Science.gov (United States)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  16. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  17. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    . The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process......Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine...

  18. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  19. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards.The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites.The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the

  20. Concentration Impedance in Testing of Solid Oxide Cells Revisited

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard

    2017-01-01

    The concentration impedance originating from diffusion and reactant conversion impedance of the Ni-YSZ supported fuel electrode in solid oxide cell has been treated many times during the latest couple of decades. In spite of this, the separation of the diffusion impedance from the conversion...

  1. Refractive Secondary Solar Concentrator Being Designed and Developed

    Science.gov (United States)

    Macosko, Robert P.; Donovan, Richard M.

    1998-01-01

    As the need for achieving super high temperatures (2000 K and above) in solar heat receivers has developed so has the need for secondary concentrators. These concentrators refocus the already highly concentrated solar energy provided by a primary solar collector, thereby significantly reducing the light entrance aperture of the heat receiver and the resulting infrared radiation heat loss from the receiver cavity. Although a significant amount of research and development has been done on nonimaging hollow reflective concentrators, there has been no other research or development to date on solid, single crystal, refractive concentrators that can operate at temperatures above 2000 K. The NASA Lewis Research Center recently initiated the development of single-crystal, optically clear, refractive secondary concentrators that, combined with a flux extractor, offer a number of significant advantages over the more conventional, hollow, reflective concentrators at elevated temperatures. Such concentrators could potentially provide higher throughput (efficiency), require no special cooling device, block heat receiver material boiloff from the receiver cavity, provide for flux tailoring in the cavity via the extractor, and potentially reduce infrared heat loss via an infrared block coating.The many technical challenges of designing and fabricating high-temperature refractive secondary concentrators and flux extractors include identifying optical materials that can survive the environment (high-temperature, vacuum and/or hydrogen atmosphere), developing coatings for enhanced optical and thermal performance, and developing crystal joining techniques and hardware that can survive launch loads.

  2. Reversible degradation of inverted organic solar cells by concentrated sunlight

    International Nuclear Information System (INIS)

    Tromholt, Thomas; Krebs, Frederik C; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O 2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.

  3. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  4. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  5. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  6. Dish concentrators for solar thermal energy: Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  7. Bank concentration, country income and financial development in ...

    African Journals Online (AJOL)

    kirstam

    between bank concentration and financial development in the SADC region. ... 5The study findings suggest that bank assets in SADC are concentrated in ... a country's cities/administrative regions, or across countries within a regional ... sector emphasises the importance of local embeddedness, networks, ...... The Case of.

  8. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  9. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  10. Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochromocytoma (PC-12) cells

    International Nuclear Information System (INIS)

    Seegal, R.F.; Brosch, K.; Bush, B.; Ritz, M.; Shain, W.

    1990-01-01

    Pheochromocytoma (PC-12) cells synthesize, store, release and metabolize dopamine (DA) and norepinephrine (NE) in a manner analogous to that observed in the mammalian central nervous system. These cells were used to develop and validate an alternate method to animal testing to assess the effects of a complex environmental mixture of polychlorinated biphenyls (Aroclor 1254) on cellular catecholamine function. Aroclor 1254, at concentrations of 1 to 100 ppm, significantly decreased cellular catecholamine concentrations after 6 hrs. Exposure at 100 ppm for periods of less than an hr increased cellular catecholamine concentrations while longer exposure times (i.e., 1 to 24 hr) decreased cellular catecholamine concentrations. This in vitro depletion of catecholamines is similar to that seen in vivo. Thus, PC-12 cells may be useful for neurochemical evaluation of neurotoxicants with particular reference to effects on catecholaminergic systems

  11. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  12. Development of system on predicting uranium concentration from pregnant solution

    International Nuclear Information System (INIS)

    Yi Weiping

    2004-01-01

    Uranium concentration from pregnant solution is primary index of process for in-situ leaching of uranium, and the suitable method with which to predicate this index and effective means to solve it with were continuously studied hard. SPUC-system on predicting uranium concentration based on GM model of gray system theory is developed, and the mathematical model, constitution, function and theory foundation of this system are introduced. (authors)

  13. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  14. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  15. Technical Performance and Clinical Effectiveness of Drop Type With Adjustable Concentrator-Cell Free and Concentrated Ascites Reinfusion Therapy.

    Science.gov (United States)

    Yamada, Yosuke; Harada, Makoto; Yamaguchi, Akinori; Kobayashi, Yasuko; Chino, Takashi; Minowa, Takashi; Kosuge, Takashi; Tsukada, Wataru; Hashimoto, Koji; Kamijo, Yuji

    2017-12-01

    Cell-free and concentrated ascites reinfusion therapy (CART) is a very useful treatment method for refractory ascites but is difficult for many hospitals to employ due to its need for specialized equipment. We have therefore developed drop-type with adjustable concentrator CART (DC-CART) that uses a drop-type filtration mechanism and requires only a simple pump and pressure monitor for its concentration process. Easy adjustment of ascites concentration is possible through a recirculation loop, and filter membrane washing is aided by DC-CART's external pressure-type filtration to enable the processing of any quality or quantity of ascites. Moreover, the absence of a roller pump before filtration avoids inflammatory substance release from compressed cells. A total of 268 sessions of DC-CART using ascites from 98 patients were performed with good clinical results at our hospitals between January 2012 and June 2016. This report presents the detailed methods of DC-CART and summarizes its clinical effectiveness using patient ascites and blood data obtained from 59 sessions between March 2015 and February 2016. This novel technique successfully processed refractory ascites in numerous diseases with no serious adverse events. DC-CART could concentrate large amounts of ascites (from median weight: 4900 g [max: 20 200 g] to median weight: 695 g; median concentration ratio: 7.4), and a high amount of protein (median weight: 73 g [max: 294 g]) could be reinfused. Serum albumin levels were significantly increased (P = 0.010) and kidney function and systemic hemodynamics were well maintained in treated subjects. Additional concentration of ascites and adjustment of ascites volume were easily performed by recirculation (from median weight: 615 g to median weight: 360 g; median concentration ratio: 1.5). Time was needed during DC-CART for filter membrane cleaning, especially for viscous ascites. Overall, DC-CART represents a safe and useful treatment method for various forms

  16. Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression

    Directory of Open Access Journals (Sweden)

    Viera Bohacova

    2018-05-01

    Full Text Available The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family, represents a frequently observed molecular cause of multidrug resistance (MDR. This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl, tributyltin-bromide (TBT-Br, tributyltin-iodide (TBT-I and tributyltin-isothiocyanate (TBT-NCS or triphenyltin-chloride (TPT-Cl and triphenyltin-isothiocyanate (TPT-NCS—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.

  17. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  18. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    Science.gov (United States)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  19. Effect of Concentrated Language Encounter Method in Developing ...

    African Journals Online (AJOL)

    The paper examined the effect of concentrated language encounter method in developing sight word recognition skill in primary school pupils in cross river state. The purpose of the study was to find out the effect of Primary One pupils' reading level, English sight word recognition skill. It also examine the extent to which the ...

  20. Development of Thymic Epithelial Cells

    DEFF Research Database (Denmark)

    Ulyanchenko, Svetlana; Vaidya, Harsh J.; O'Neill, Kathy E.

    2016-01-01

    The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell-mediated imm......The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell......-mediated immunity to broad-spectrum autoimmune disease. Peak thymus size and output occurs early in life, after which the thymus undergoes a natural process of involution. This results in the progressive loss of functional thymus tissue and correspondingly in decreased production of new naïve T cells with age...... - contributing to the diminished capacity of the aged immune system to adequately respond to new antigenic challenge. Age-related thymic involutions, together with the thymic involutions associated with cytotoxic therapies (e.g., radio- or chemotherapy), have raised interest in development of clinically useful...

  1. Influence of food concentration, temperature and salinity on the larval development of Balanus amphitrite

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Kurian, J.

    Influence of food concentration (0.5, 1 and 2 x 10 sup(5) cell ml sup(-1) of Skeletonema costatum), temperature (20 and 30 degrees C) and salinity (15, 25 and 35 ppt) on the larval development of Balanus amphitrite (Cirripedia: Thoracica...

  2. Larval development and metamorphosis of Balanus albicostatus (Cirripedia: Thoracica); implications of temperature, food concentration and energetics

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, D.V.; Khandeparker, L.; Shirayama, Y.

    The influence of food concentrations (0.5, 1 and 2 x 105 cells ml sup(-1)) and temperatures (20 and 30 degrees C) on the survival, development, organic carbon and nitrogen content of Balanus albicostatus larvae was evaluated The effect of food...

  3. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  4. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  5. Development status of the PDC-1 Parabolic Dish Concentrator

    Science.gov (United States)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  6. Development of Fresnel-based Concentrated Photovoltaic (CPV System with Uniform Irradiance

    Directory of Open Access Journals (Sweden)

    Irfan Ullah

    2014-12-01

    Full Text Available Different designs have been presented to achieve high concentration and uniformity for the concentrated photovoltaic (CPV system. Most of the designs have issues of low efficiency in terms of irradiance uniformity. To this end, we present a design methodology to increase irradiance uniformity over solar cell. The system consists of an eight-fold Fresnel lens as a primary optical element (POE and an optical lens, which consists of eight parts, as a secondary optical element (SOE. Sunlight is focused through the POE and then light is spread over cell through the SOE. In the design, maximum sunlight is passed over cell by minimizing losses. Results have shown that the proposed CPV design gives good irradiance uniformity. The concentration module based on this novel design is a promising option for the development of a cost-effective photovoltaic solar energy generation.

  7. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  8. Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass

    Science.gov (United States)

    Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle

    2012-01-01

    Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further

  9. Development of drying and pelletizing system for concentrated waste

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Saito, Toru; Hirano, Mikio; Kikuchi, Makoto; Takamura, Yoshiyuki.

    1980-01-01

    Volume reduction is strongly required for the radioactive liquid waste generated in nuclear power plants because its storing space has increased with the operating years of the plants, though it has temporarily been stored in drum cans within the plant sites after concentrated by evaporation. The drying and pelletizing system developed by Hitachi, Ltd. in cooperation with Tokyo Electric Power Co. aims at the final disposal by solidifying stored waste after drying, pulverizing, and pelletizing concentrated liquid waste, and storing it in tanks to reduce its radioactivity for the predetermined period. The outstanding features of the system are to be capable of realizing drastic volume reduction and of storing waste as the stable solid in the form flexibly adaptable to any disposing method. The system, to which the new concepts of pulverizing by drying and pelletizing concentrated liquid waste were applied, has been subjected to various fundamental tests and the demonstration tests in a pilot plant during the research and development for 7-years, consequently it was confirmed that the system can be used practically, and the data for designing the equipment for practical use were collected. The items to be considered in designing the equipment for practical use are also mentioned. (Wakatsuki, Y.)

  10. Concentration Sensing by the Moving Nucleus in Cell Fate Determination: A Computational Analysis.

    Directory of Open Access Journals (Sweden)

    Varun Aggarwal

    Full Text Available During development of the vertebrate neuroepithelium, the nucleus in neural progenitor cells (NPCs moves from the apex toward the base and returns to the apex (called interkinetic nuclear migration at which point the cell divides. The fate of the resulting daughter cells is thought to depend on the sampling by the moving nucleus of a spatial concentration profile of the cytoplasmic Notch intracellular domain (NICD. However, the nucleus executes complex stochastic motions including random waiting and back and forth motions, which can expose the nucleus to randomly varying levels of cytoplasmic NICD. How nuclear position can determine daughter cell fate despite the stochastic nature of nuclear migration is not clear. Here we derived a mathematical model for reaction, diffusion, and nuclear accumulation of NICD in NPCs during interkinetic nuclear migration (INM. Using experimentally measured trajectory-dependent probabilities of nuclear turning, nuclear waiting times and average nuclear speeds in NPCs in the developing zebrafish retina, we performed stochastic simulations to compute the nuclear trajectory-dependent probabilities of NPC differentiation. Comparison with experimentally measured nuclear NICD concentrations and trajectory-dependent probabilities of differentiation allowed estimation of the NICD cytoplasmic gradient. Spatially polarized production of NICD, rapid NICD cytoplasmic consumption and the time-averaging effect of nuclear import/export kinetics are sufficient to explain the experimentally observed differentiation probabilities. Our computational studies lend quantitative support to the feasibility of the nuclear concentration-sensing mechanism for NPC fate determination in zebrafish retina.

  11. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  12. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  13. The effect of initial cell concentration on xylose fermentation by Pichia stipitis

    Science.gov (United States)

    Frank K. Agbogbo; Guillermo Coward-Kelly; Mads Torry-Smith; Kevin Wenger; Thomas W. Jeffries

    2007-01-01

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was...

  14. Performance analysis of solar cell arrays in concentrating light intensity

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  15. Quality control in the development of coagulation factor concentrates.

    Science.gov (United States)

    Snape, T J

    1987-01-01

    Limitation of process change is a major factor contributing to assurance of quality in pharmaceutical manufacturing. This is particularly true in the manufacture of coagulation factor concentrates, for which presumptive testing for poorly defined product characteristics is an integral feature of finished product quality control. The development of new or modified preparations requires that this comfortable position be abandoned, and that the effect on finished product characteristics of changes to individual process steps (and components) be assessed. The degree of confidence in the safety and efficacy of the new product will be determined by, amongst other things, the complexity of the process alteration and the extent to which the results of finished product tests can be considered predictive. The introduction of a heat-treatment step for inactivation of potential viral contaminants in coagulation factor concentrates presents a significant challenge in both respects, quite independent of any consideration of assessment of the effectiveness of the viral inactivation step. These interactions are illustrated by some of the problems encountered with terminal dry heat-treatment (72 h. at 80 degrees C) of factor VIII and prothrombin complex concentrates manufactured by the Blood Products Laboratory.

  16. Serum concentrations of mast cell tryptase are reduced in heavy drinkers

    DEFF Research Database (Denmark)

    Beceiro, Carmen; Campos, Joaquín; Valcarcel, Maria-Angeles

    2015-01-01

    BACKGROUND: Baseline serum tryptase concentrations are commonly used in clinical practice as a marker of the body's mast cell burden. This study aimed to investigate serum tryptase concentrations in heavy drinkers. METHODS: Serum tryptase concentrations were determined in 126 heavy drinkers (75...... test positivity) was not associated with serum tryptase concentrations in heavy drinkers. CONCLUSIONS: Serum concentrations of mast cell tryptase are lower in heavy drinkers than in healthy controls....

  17. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  18. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  19. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  1. THE STRUCTURE AND CONCENTRATION OF SOLIDS IN PHOTORECEPTOR CELLS STUDIED BY REFRACTOMETRY AND INTERFERENCE MICROSCOPY

    Science.gov (United States)

    Sidman, Richard L.

    1957-01-01

    Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted

  2. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA.

    Science.gov (United States)

    Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz

    2018-05-30

    Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.

  3. Continued Development of a Soft Gamma-Ray Concentrator

    Science.gov (United States)

    Bloser, Peter

    We propose to continue our development of a concept for a soft gamma-ray (E > 100 keV) concentrator using thin-film multilayer structures. Alternating layers of low- and high-density materials will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Under previous APRA funding we have been investigating methods for efficiently producing such multilayer structures and modeling their performance. We now propose to pursue magnetron sputtering (MS) techniques to quickly produce structures with the required smoothness and thickness, to measure their channeling efficiency and compare with calculations, and to design a "lens" with optimized bandpass and throughput and predict its scientific performance. If successful, this work will confirm that this innovative optics concept is suitable for a balloon-born soft gamma-ray telescope with unprecedented sensitivity.

  4. Effects of Nonuniform Incident Illumination on the Thermal Performance of a Concentrating Triple Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Fahad Al-Amri

    2014-01-01

    Full Text Available A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i adding new receiver plate with higher surface area or (ii using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution. Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.

  5. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  6. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  7. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    P Kasten

    2008-10-01

    Full Text Available In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM, clusters of differentiation (CD, proliferation and differentiation capacities of the MSC. A volume reduction protocol was compared to the traditional laboratory methods of isolation using a Ficoll gradient and native BM. Fifty millilitres of BM were obtained from haematologically healthy male Caucasians (n=10, age 8 to 49 years. The number of colony forming units-fibroblast (CFU-F/ml BM was highest in the centrifuge volume reduction protocol, followed by the native BM (not significant, the centrifuge Ficoll (p=0.042 and the manual Ficoll procedure (p=0.001. The MSC of all groups could differentiate into the mesenchymal lineages without significant differences between the groups. The CD pattern was identical for all groups: CD13+; CD 44+; CD73 +; CD90+; CD105+; HLA-A,B,C+; CD14-; CD34-; CD45-; CD271-; HLA-DR-. In a further clinical pilot study (n=5 with 297 ml BM (SD 18.6, the volume reduction protocol concentrated the MSC by a factor of 14: there were 1.08 x 102 MSC/ml BM (standard deviation (SD 1.02 x 102 before concentration, 14.8 x 102 MSC/ ml BM (SD 12.4 x 102 after concentration, and on average 296 x 102 MSC (SD 248.9 x 102, range 86.4-691.5 x 102 were available for MSC therapy. The volume reduction protocol of the closed centrifuge allows for the highest concentration of the MSC, and therefore, is a promising candidate for instant stem cell therapy.

  8. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    International Nuclear Information System (INIS)

    Akasaka, Tsukasa; Yokoyama, Atsuro; Matsuoka, Makoto; Hashimoto, Takeshi; Watari, Fumio

    2010-01-01

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  9. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  10. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-01-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  11. Effects of elevated glucose concentration on cultured bovine retinal endothelial (BRE) cells

    International Nuclear Information System (INIS)

    Capetandes, A.; Gerritsen, M.E.

    1986-01-01

    Salient clinical features of diabetic retinopathy include capillary microaneurysm and neovascularization, which progress with the severity of the disease. It has been suggested that exposure of the retinal vascular cells to high glucose concentrations may play a causative role in the retinopathy. In the present study, the effects of variant media glucose concentrations on BRE cell growth were determined. Normal growth curves were obtained with glucose concentrations of 100, 450 and 600 mg%, but the replication rate was decreased with 600 mg%. To determine if elevated glucose concentrations also altered DNA synthesis, BRE cells cultivated with 100 and 600 mg% glucose demonstrated increased thymidine uptake and total DNA content compared to the 100 mg% group. Furthermore, vacuolation and increased cell diameter occurred in BRE cells cultivated 600 mg% compared to 100 mg% glucose. In conclusion, increases in media glucose concentrations result in a decreased cellular replication rate, increased DNA synthesis and increased cell diameter during the log phase of growth

  12. Development of an on-line analyzer for organic phase uranium concentration in extraction process

    International Nuclear Information System (INIS)

    Dong Yanwu; Song Yufen; Zhu Yaokun; Cong Peiyuan; Cui Songru

    1998-10-01

    The working principle, constitution, performance of an on-line analyzer and the development characteristic of immersion sonde, data processing system and examination standard are reported. The performance of this instrument is reliable. For identical sample, the signal fluctuation in continuous monitoring for four months is less than +-1%. According to required measurement range by choosing appropriate length of sample cell the precision of measurement is better than 1% at uranium concentration 100 g/L. The detection limit is (50 +- 10) mg/L. The uranium concentration in process stream can be automatically displayed and printed out in real time and 4∼20 mA current signal being proportional to the uranium concentration can be presented. So the continuous control and computer management for the extraction process can be achieved

  13. Banking concentration and developments in FYROM: A country in transition

    Directory of Open Access Journals (Sweden)

    Nikolas Hourvouliades

    2014-12-01

    Full Text Available The Former Yugoslav Republic of Macedonia (FYROM belongs to the transition economies that have witnessed significant structural changes in their domestic markets during the 2000s. We examine the evolution of the banking competition from 2003 until 2011, covering the first period of economic growth followed by the acute financial crisis that still threatens European countries. We apply the Herfindahl–Hirschman index and the CR3 and CR5 indicators in order to estimate banking concentration on five industry variables. Our findings show that the market has been persistently operating under oligopolistic, if not monopolistic, conditions where the leading three or five institutions dominate the market. Foreign newcomers and legislative developments have not changed the situation during the past 10 years and bank customers seem to keep their preferences unaffected, staying loyal to their prior choices. We analyze the banking sector profitability since 2008 and during the economic crisis, as well as the operational performance and the future trends concerning this sector.

  14. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  15. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  16. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  17. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  18. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  19. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  20. Advances towards reliable identification and concentration determination of rare cells in peripheral blood

    Science.gov (United States)

    Alemany Server, R.; Martens, D.; Jans, K.; Bienstman, P.; Hill, D.

    2016-03-01

    Through further development, integration and validation of micro-nano-bio and biophotonics systems FP7 CanDo is developing an instrument that will permit highly reproducible and reliable identification and concentration determination of rare cells in peripheral blood for two key societal challenges, early and low cost anti-cancer drug efficacy determination and cancer diagnosis/monitoring. A cellular link between the primary malignant tumour and the peripheral metastases, responsible for 90% of cancerrelated deaths, has been established in the form of circulating tumour cells (CTCs) in peripheral blood. Furthermore, the relatively short survival time of CTCs in peripheral blood means that their detection is indicative of tumour progression thereby providing in addition to a prognostic value an evaluation of therapeutic efficacy and early recognition of tumour progression in theranostics. In cancer patients however blood concentrations are very low (=1 CTC/1E9 cells) and current detection strategies are too insensitive, limiting use to prognosis of only those with advanced metastatic cancer. Similarly, problems occur in therapeutics with anti-cancer drug development leading to lengthy and costly trials often preventing access to market. The novel cell separation/Raman analysis technologies plus nucleic acid based molecular characterization of the CanDo platform will provide an accurate CTC count with high throughput and high yield meeting both key societal challenges. Being beyond the state of art it will lead to substantial share gains not just in the high end markets of drug discovery and cancer diagnostics but due to modular technologies also in others. Here we present preliminary DNA hybridization sensing results.

  1. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  2. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  3. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  4. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  5. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  6. Develop generic equations to determine radon daughters concentrations in air

    International Nuclear Information System (INIS)

    Shweikani, R.; Jerby, B.

    2011-06-01

    Measurements of radon daughter concentrations in air are very important to determine the human dose from background radiation. Therefore, many studies tried to find measurements methods depending on many specific parameters such as measurement time, air pumping period and sample volume. In this study a general equations to determine radon daughter's concentrations in air was found using direct samples. The Equations results were closed to the results obtained from other well known methods. Many measurements with different places and various conditions were performed; the results showed that the new equations are able to be used with an error less than 10%, The relative error can be reduced by increasing the pumping rate or measuring high concentration cases.(author)

  7. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  8. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Hye; Joo, Sang-Woo [Department of Chemistry, Soongsil University, Seoul 156-743 (Korea, Republic of); Cho, Keunchang [Logos Biosystems, Incorporated, Anyang 431-070 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr, E-mail: sjoo@ssu.ac.kr [Laboratory of Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2011-06-10

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  9. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Joo, Sang-Woo; Cho, Keunchang; Lee, So Yeong

    2011-01-01

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  10. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  11. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells.

    Science.gov (United States)

    Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia

    2015-02-16

    Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37-1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.

  12. Dual Effects Exerted in Vitro by Micromolar Concentrations of Deoxynivalenol on Undifferentiated Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-02-01

    Full Text Available Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON, raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37–1.50 μM, relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.

  13. Development of concentric equipotential surfaces in bumpy torus plasma

    International Nuclear Information System (INIS)

    Takasugi, Keiichi; Iguchi, Harukazu; Fujiwara, Masami; Ikegami, Hideo

    1983-01-01

    Radial profiles of the plasma space potential are measured in Nagoya Bumpy Torus (NBT-1) by the use of a heavy ion beam probe. Asymmetric potential profiles owing to toroidal drift are observed in high pressure operation (C-mode). As the pressure is decreased, toroidal plasma is effectively heated (T-mode), poloidal precessional frequency overcomes the electron collision frequency and the equipotential surfaces becomes concentric inside the hot electron ring. (author)

  14. Induced Pluripotent Stem Cell-Derived Red Blood Cells and Platelet Concentrates: From Bench to Bedside.

    Science.gov (United States)

    Focosi, Daniele; Amabile, Giovanni

    2017-12-27

    Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.

  15. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.

    Science.gov (United States)

    Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil

    2015-07-24

    Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  16. Concentration characteristics and cell arrangement in luminescent concentrator PV modules; Keiko shukogata taiyo denchi module no cell haichi to shuko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, A [Science University of Tokyo, Tokyo (Japan); Sakuta, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    A luminescent concentrator PV module requires no tracking equipment and can use scattered light. A mini PV module was prepared from a luminescent plate of 100times100times3mm, and a single-crystalline PV cell of 100times20mm. Characteristics of various prototype modules with different PV cell areas and cell arrangements were also measured. Four kinds of edge reflecting materials with different reflectances by various white coating were applied to Al sashes for module frames, and each sash was fixed on one edge of the luminescent plate. In experiment, 3 other edges were covered with black tapes to reduce each reflectance to 0%. Although PV module output was affected by reflectance of edges, the output was satisfactory at 90% or more in reflectance showing no difference in output. A concentrating efficiency decreased with an increase in luminescent plate (concentrator) area, while it was improved by cell arrangement with short optical pass length, and cell arrangement hardly affected by edge reflection. 4 refs., 7 figs.

  17. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  18. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies

    OpenAIRE

    Stroncek, David F; Fellowes, Vicki; Pham, Chauha; Khuu, Hanh; Fowler, Daniel H; Wood, Lauren V; Sabatino, Marianna

    2014-01-01

    Introduction Peripheral blood mononuclear cells (PBMC) concentrates collected by apheresis are frequently used as starting material for cellular therapies, but the cell of interest must often be isolated prior to initiating manufacturing. Study design and methods The results of enriching 59 clinical PBMC concentrates for monocytes or lymphocytes from patients with solid tumors or multiple myeloma using a commercial closed system semi-automated counter-flow elutriation instrument (Elutra, Teru...

  19. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles

    NARCIS (Netherlands)

    Rank, A.; Nieuwland, R.; Liebhardt, S.; Iberer, M.; Grützner, S.; Toth, B.; Pihusch, R.

    2011-01-01

    Background and Objectives Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). Material and Methods MP were double

  20. Influence of variable oxygen concentration on the response of cells to heat or x irradiation

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Richards, B.; Jennings, M.

    1981-01-01

    The influence of oxygen concentration on the lethal response of cells exposed to 43 0 C hyperthermia was determined and compared to the response of cells exposed to radiation under equivalent culturing and environmental conditions. Chinese hamster ovary (CHO) cells were heated or irradiated 0.5 h after induction of hypoxia and then reoxygenated following treatment. The oxygen enhancement ratio (OER) for heat or radiation was determined at the 1% survival level from least-squares fit of survival curves. A maximum OER of 3.1 +- 0.2 was observed in the 20 to 95% oxygen concentration range. The OER for heat, however, was 1.0 +- 0.1 irrespective of the gas-phase oxygen concentration. These results show that the lethal effects of heat are not influenced by the oxygen concentration at the time of treatment in CHO cells exposed to 43 0 C hyperthermia

  1. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  2. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Dominguez, César, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe, E-mail: pablo.garcia-linares@cea.fr; Besson, Pierre, E-mail: pablo.garcia-linares@cea.fr; Baudrit, Mathieu, E-mail: pablo.garcia-linares@cea.fr [CEA-LITEN, LCPV, INES, Le Bourget du Lac (France)

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  3. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    International Nuclear Information System (INIS)

    Garcia-Linares, Pablo; Dominguez, César; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu

    2014-01-01

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling

  4. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    Science.gov (United States)

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  5. Application of the wavelet image analysis technique to monitor cell concentration in bioprocesses

    Directory of Open Access Journals (Sweden)

    G. J. R. Garófano

    2005-12-01

    Full Text Available The growth of cells of great practical interest, such as, the filamentous cells of bacterium Streptomyces clavuligerus, the yeast Saccharomyces cerevisiae and the insect Spodoptera frugiperda (Sf9 cell, cultivated in shaking flasks with complex media at appropriate temperatures and pHs, was quantified by the new wavelet transform technique. This image analysis tool was implemented using Matlab 5.2 software to process digital images acquired of samples taken of these three types of cells throughoot their cultivation. The values of the average wavelet coefficients (AWCs of simplified images were compared with experimental measurements of cell concentration and with computer-based densitometric measurements. AWCs were shown to be directly proportional to measurements of cell concentration and to densitometric measurements, making evident the great potential of the wavelet transform technique to quantitatively estimate the growth of several types of cells.

  6. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  7. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells.

    Science.gov (United States)

    Ravera, Silvia; Cossu, Vanessa; Tappino, Barbara; Nicchia, Elena; Dufour, Carlo; Cavani, Simona; Sciutto, Andrea; Bolognesi, Claudia; Columbaro, Marta; Degan, Paolo; Cappelli, Enrico

    2018-02-01

    Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting. © 2017 Wiley Periodicals, Inc.

  8. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration.

    Science.gov (United States)

    Cassano, Jennifer M; Kennedy, John G; Ross, Keir A; Fraser, Ethan J; Goodale, Margaret B; Fortier, Lisa A

    2018-01-01

    Bone marrow concentrate (BMC) and platelet-rich plasma (PRP) are used extensively in regenerative medicine. The aim of this study was to determine differences in the cellular composition and cytokine concentrations of BMC and PRP and to compare two commercial BMC systems in the same patient cohort. Patients (29) undergoing orthopaedic surgery were enrolled. Bone marrow aspirate (BMA) was processed to generate BMC from two commercial systems (BMC-A and BMC-B). Blood was obtained to make PRP utilizing the same system as BMC-A. Bone marrow-derived samples were cultured to measure colony-forming units, and flow cytometry was performed to assess mesenchymal stem cell (MSC) markers. Cellular concentrations were assessed for all samples. Catabolic cytokines and growth factors important for cartilage repair were measured using multiplex ELISA. Colony-forming units were increased in both BMCs compared to BMA (p BMC-A and PRP, but there were differences in leucocyte concentrations. TGF-β1 and PDGF were not different between BMC-A and PRP. IL-1ra concentrations were greater (p = 0.0018) in BMC-A samples (13,432 pg/mL) than in PRP (588 pg/mL). The IL-1ra/IL-1β ratio in all BMC samples was above the value reported to inhibit IL-1β. The bioactive factors examined in this study have differing clinical effects on musculoskeletal tissue. Differences in the cellular and cytokine composition between PRP and BMC and between BMC systems should be taken into consideration by the clinician when choosing a biologic for therapeutic application. Clinical, Level II.

  9. Development of a prototype lignin concentration sensor. Final report. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  10. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  11. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  12. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  13. Absolute choline concentration measured by quantitative proton MR spectroscopy correlates with cell density in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiang [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan)]|[West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China); Shibata, Yasushi; Kawamura, Hiraku; Matsumura, Akira [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan); Isobe, Tomonori [Kitasato University, Department of Medical Technology, School of Allied Health Sciences, Minato, Tokyo (Japan); Anno, Izumi [University of Tsukuba, Department of Radiology, Institute of Clinical Medicine, Tsukuba, Ibaraki (Japan); Gong, Qi-Yong [West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China)]|[University of Liverpool, Division of Medical Imaging, Faculty of Medicine, Liverpool (United Kingdom)

    2009-01-15

    This study was aimed to investigate the relationship between quantitative proton magnetic resonance spectroscopy (1H-MRS) and pathological changes in meningioma. Twenty-two meningioma cases underwent single voxel 1H-MRS (point-resolved spectroscopy sequence, repetition time/echo time = 2,000 ms/68, 136, 272 ms). Absolute choline (Cho) concentration was calculated using tissue water as the internal reference and corrected according to intra-voxel cystic/necrotic parts. Pathological specimens were stained with MIB-1 antibody to measure cell density and proliferation index. Correlation analysis was performed between absolute Cho concentration and cell density and MIB-1 labeled proliferation index. Average Cho concentration of all meningiomas before correction was 2.95 {+-} 0.86 mmol/kg wet weight. It was increased to 3.23 {+-} 1.15 mmol/kg wet weight after correction. Average cell density of all meningiomas was 333 {+-} 119 cells/HPF, and average proliferation index was 2.93 {+-} 5.72%. A linear, positive correlation between cell density and Cho concentration was observed (r = 0.650, P = 0.001). After correction of Cho concentration, the correlation became more significant (r = 0.737, P < 0.001). However, no significant correlation between Cho concentration and proliferation index was found. There seemed to be a positive correlation trend after correction of Cho concentration but did not reach significant level. Absolute Cho concentration, especially Cho concentration corrected according to intra-voxel cystic/necrotic parts, reflects cell density of meningioma. (orig.)

  14. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  15. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  16. Cell to cell signalling during vertebrate limb bud development

    NARCIS (Netherlands)

    Panman, Lia

    2004-01-01

    Communication between cells is essential during embryonic development. The vertebrate limb bud provides us a model to study signalling interactions between cells during patterning of embryonic tissues and organogenesis. In chapter 1 I give an introduction about limb bud development that is focussed

  17. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  18. KOH concentration effect on the cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.

  19. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    Science.gov (United States)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  20. Radiation performance of AlGaAs concentrator cells and expected performance of cascade structures

    International Nuclear Information System (INIS)

    Curtis, H.B.; Swartz, C.K.; Hart, R.E. Jr.

    1987-01-01

    Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1 MeV electrons and 37 MeV protons. These cells are candidates for individual cells in a cascade structure. Data is presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AMO. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series connected and separately connected structures are investigated

  1. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  2. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  3. [Effect of different oxygen concentrations on biological properties of bone marrow hematopoietic stem cells of mice].

    Science.gov (United States)

    Ma, Yi-Ran; Ren, Si-Hua; He, Yu-Xin; Wang, Lin-Lin; Jin, Li; Hao, Yi-Wen

    2012-10-01

    This study purposed to investigate the effects of different oxygen concentrations and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and their possible mechanisms through simulating oxygen environment to which the peripheral blood HSC are subjected in peripheral blood HSCT. The proliferation ability, cell cycle, directed differentiation ability, ROS level and hematopoietic reconstitution ability of Lin(-)c-kit(+)Sca-1(+) BMHSC were detected by using in vitro amplification test, directional differentiation test, cell cycle analysis, ROS assay and transplantation of Lin(-)c-kit(+)Sca-1(+) HSC from sublethally irradiated mice respectively. The results showed that oxygen concentrations lower than normal oxygen concentration, especially in hypoxic oxygen environment, could reduce ROS generation and amplify more primitive CD34(+)AC133(+) HSC and active CD34(+) HSC, and maintain more stem cells in the G(0)/G(1) phase, which is more helpful to the growth of CFU-S and viability of mice. At the same time, BMHSC exposed to normal oxygen level or inconstant and greatly changed oxygen concentrations could produce a high level of ROS, and the above-mentioned features and functional indicators are relatively low. It is concluded that ROS levels of HSC in BMHSCT are closely related with the oxygen concentration surrounding the cells and its stability. Low oxygen concentration and antioxidant intervention are helpful to transplantation of BMHSC.

  4. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Fujitake, Hideki; Okamoto, Yuruko; Okubo, Hiroshi; Miyanomae, Takeshi; Kumagai, Keiko; Mori, K.J.

    1981-01-01

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 10 7 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 10 6 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 10 7 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  5. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  6. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  7. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  8. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  9. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  10. KOH concentration effect on cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  11. Development and Prospect of Nanoarchitectured Solar Cells

    OpenAIRE

    Zhang, Bo; Xie, Wenxu; Xiang, Yong

    2015-01-01

    This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enab...

  12. Keeping the Rhythm : Cardiac Pacemaker Cell Development

    NARCIS (Netherlands)

    Burkhard, S.B.

    2017-01-01

    The heart is the first organ to form and function in the developing vertebrate embryo. Its proper morphogenesis and function is crucial for survival. Here we focus on the development and characterization of a highly specialized subset of cardiac cells, the pacemaker cells. In the mammalian heart,

  13. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  14. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sandra Mjoll Jonsdottir-Buch

    Full Text Available BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed. CONCLUSION/SIGNIFICANCE: Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets.

  15. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high...... flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so...... and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells...

  16. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  17. Ascorbate concentrations in vitro and in vivo, and their role in the radiation response of cells

    International Nuclear Information System (INIS)

    Stratford, M.R.L.; Hodgkiss, R.J.

    1985-01-01

    Hydrogen-atom or electron-transfer reactions of ascorbate are often invoked in discussing its potential role in radiobiology and free radical damage by cytotoxins, but detailed information on actual levels in experimental systems is lacking. A range of 0-250 μM ascorbate is present in several commonly used mammalian cell culture media. V79 379A Chinese hamster cells can concentrate ascorbate from medium containing 200 or 500 μM ascorbate but when ascorbate is absent in medium, cells do not appear to contain a significant amount. Tumour concentrations are approximately 1mM, similar to that of glutathione (GSH). There is much current interest in depleting cells of GSH to enhance radiosensitivity, and ascorbate is maintained by a GSH dependent enzyme, glutathione dehydrogenase. Data is presented on the effect of GSH depletion by buthionine sulphoximine on cell and tumour ascorbate levels, and the effect of ascorbate on in vitro radiosensitivity, and misonidazole sensitizing efficiency

  18. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  19. Diethyldithiocarbamate concentration effects and interactions with other cytotoxic agents on Chinese hamster cells (V79)

    International Nuclear Information System (INIS)

    Lin, P.S.; Quamo, S.; Ho, K.C.; Baur, K.

    1985-01-01

    A metal chelator, diethyldithiocarbamate (DDC) perturbs the chromosome condensation processes in dividing cells. The length of the metaphase chromosomes in Chinese hamster cells (V79) treated with 17.2 μg/ml of DDC for 2 hr is about half of that in untreated cells. However, concentrations of 1.7 μg or 172 μg/ml DDC apparently do not produce this effect. DDC at 17.2 μg/ml also disrupts spindle fibers. Bleomycin, but not mitomycin and cisplatin, added simultaneously with DDC can prevent the DDC effect on chromosomes. The cytotoxic effect of increasing concentrations of DDC can prevent the DDC effect on chromosomes. The cytotoxic effect of increasing concentrations of DDC to V79 cells incubated at 37 0 C exhibits a similar biphasic response. This concentration biphasic toxic effect is not altered when the cells are treated with DDC in combination with radiation, heat, or other cytotoxic drugs. These observations suggest that the different effects of DDC concentrations on chromosome condensation should be considered as one important modification factor for DDC related toxicity

  20. Performance of 500 m3 TankCell® at Kevitsa Cu-Ni-PGM concentrator

    Directory of Open Access Journals (Sweden)

    Mattsson Toni

    2016-01-01

    Full Text Available Outotec TankCell e500 flotation cell, with 500 m3 of efficient flotation volume, has been in operation since October 2014 at Kevitsa Cu-Ni-PGM concentrator as the first Cu rougher flotation cell. The 500 m3 flotation cell has proven to provide metallurgical superiority at very low specific power. On average the cell has recovered 71% of copper contained in the flotation feed. The cell has produced the concentrate with the Cu grade equal to 17% Cu. The typical specific power for the cell is around 0.4 kW/m3 (blower power not included. After the start-up of the cell the operating parameters have varied. The mixing speed have varied from 4.9 to 7.0 m/s and the superficial gas velocity from 0.3 to 1.5 cm/s. At various operating parameters the mixing, gas dispersion and metallurgical performance of the cell have been evaluated. In this paper a review of the hydrodynamic and metallurgical performance of the cell is presented. The paper focuses on the interactions of mixing intensity, bubble size and metallurgical performance in industrial application.

  1. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies.

    Science.gov (United States)

    Stroncek, David F; Fellowes, Vicki; Pham, Chauha; Khuu, Hanh; Fowler, Daniel H; Wood, Lauren V; Sabatino, Marianna

    2014-09-17

    Peripheral blood mononuclear cells (PBMC) concentrates collected by apheresis are frequently used as starting material for cellular therapies, but the cell of interest must often be isolated prior to initiating manufacturing. The results of enriching 59 clinical PBMC concentrates for monocytes or lymphocytes from patients with solid tumors or multiple myeloma using a commercial closed system semi-automated counter-flow elutriation instrument (Elutra, Terumo BCT) were evaluated for quality and consistency. Elutriated monocytes (n = 35) were used to manufacture autologous dendritic cells and elutriated lymphocytes (n = 24) were used manufacture autologous T cell therapies. Elutriated monocytes with >10% neutrophils were subjected to density gradient sedimentation to reduce neutrophil contamination and elutriated lymphocytes to RBC lysis. Elutriation separated the PBMC concentrates into 5 fractions. Almost all of the lymphocytes, platelets and red cells were found in fractions 1 and 2; in contrast, most of the monocytes, 88.6 ± 43.0%, and neutrophils, 74.8 ± 64.3%, were in fraction 5. In addition, elutriation of 6 PBMCs resulted in relatively large quantities of monocytes in fractions 1 or 2. These 6 PBMCs contained greater quantities of monocytes than the other 53 PBMCs. Among fraction 5 isolates 38 of 59 contained >10% neutrophils. High neutrophil content of fraction 5 was associated with greater quantities of neutrophils in the PBMC concentrate. Following density gradient separation the neutrophil counts fell to 3.6 ± 3.4% (all products contained <10% neutrophils). Following red cell lysis of the elutriated lymphocyte fraction the lymphocyte recovery was 86.7 ± 24.0% and 34.3 ± 37.4% of red blood cells remained. Elutriation was consistent and effective for isolating monocytes and lymphocytes from PBMC concentrates for manufacturing clinical cell therapies, but further processing is often required.

  2. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  4. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain.

    Science.gov (United States)

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-11-01

    Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.

  6. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  7. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  8. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells

    Directory of Open Access Journals (Sweden)

    Jung Mi Yoon

    2015-01-01

    Full Text Available BACKGROUND: Doxycycline (DC has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL-mediated apoptosis against several tumor types in the concentration range of 10-40 μg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. METHODS: The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. RESULTS AND CONCLUSION: In the present findings we showed that low concentration of DC (<2.0 μg/mL exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 μg/mL significantly (p < 0.001 attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazo-lium bromide (MTT assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 μg/mL. Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 μg/mL did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of cas-pase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 μg/mL. Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  9. The Development of Adult Innate Lymphoid Cells

    Science.gov (United States)

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  10. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  11. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations

    International Nuclear Information System (INIS)

    Gao, Jing; Meng, Qingwei; Zhao, Yanbin; Chen, Xuesong; Cai, Li

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most aggressive types of cancer. However, resistance to cisplatin (CDDP) remains a major challenge in NSCLC treatment. The purpose of this study was to investigate the ability of EHD1 [Eps15 homology (EH) domain - containing protein 1] to confer CDDP resistance in NSCLC cells and to investigate mechanisms of this resistance. The associations between EHD1 expression in NSCLC specimens and clinicopathological features, including prognosis, were assessed by immunohistochemistry (IHC). Using DNA microarrays, we performed a genome-wide analysis of cisplatin-resistant NSCLC cells to identify the involvement of the EHD1 gene in this resistance. We overexpressed and knocked down EHD1 in cell lines to investigate the effect of this gene on proliferation and apoptosis. A quantitative analytical method for assessing CDDP in cells was developed. High-performance liquid chromatography was used to measure the concentration of cisplatin in cells. The immunohistochemistry assay showed that adjuvant chemotherapy-treated NSCLC patients expressing EHD1 exhibited reduced OS compared with patients who did not express EHD1 (P = 0.01). Moreover, DNA microarrays indicated that the EHD1 gene was upregulated in CDDP- resistant NSCLC cells. The IC50 value of CDDP in cells that overexpressed EHD1 was 3.3-fold greater than that in the A549-control line, and the IC50 value of EHD1 knockdown cells was at least 5.2-fold lower than that of the control cells, as evidenced by a CCK-8 assay. We found that the percentage of early apoptotic cells was significantly decreased in A549-EHD1 cells, but the rates of early apoptosis were higher in the EHD1 knockdown cell line than in the A549/DDP control line, as indicated by a flow cytometry analysis. High-performance liquid chromatography (HPLC) showed that the total platinum level was lower in A549-EHD1 cells than in control cells, and the concentration of CDDP was higher in the EHD1 knockdown cells than in

  13. Yersinia enterocolitica septicaemia from transfusion of red cell concentrate stored for 16 days.

    OpenAIRE

    Jones, B L; Saw, M H; Hanson, M F; Mackie, M J; Scott, J; Murphy, W G

    1993-01-01

    Two cases of transfusion transmitted Yersinia enterocolitica biotype 3, serotype 09 infection occurred in south east Scotland within four months of each other. In one case, a 79 year old man died the day after receiving a unit of red cell concentrate that had been stored for 29 days after donation. In the second case a 78 year old man died three days after transfusion of a unit of red cell concentrate that had been collected 16 days before transfusion. The donors of both units had no symptoms...

  14. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  15. Development of induction cells at CAEP

    International Nuclear Information System (INIS)

    Wang Huacen; Zhang Kaizhi; Cheng Nian'an; Zhang Wenwei; Lai Qinggui; Wen Long; Zhang Linwen; Deng Jianjun; Ding Bonan

    2002-01-01

    The effects to develop induction cells for induction linac and radiography at CAEP are introduced and reviewed in this paper. During the past two decades, several kinds of cells have been designed and tested, and some of them have been used for construction of induction linac, such as Dragon-1 and 12 MeV, and a Synthetic Test Stand (STS) for comprehensive linac technology study. The structure, test results and performance in the induction linac of these cells are given

  16. Hypertranscription in development, stem cells, and regeneration

    Science.gov (United States)

    Percharde, Michelle; Bulut-Karslioglu, Aydan; Ramalho-Santos, Miguel

    2016-01-01

    SUMMARY Cells can globally up-regulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years, but it has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration and cell competition. We review the history, methods for analysis, underlying mechanisms and biological significance of hypertranscription. PMID:27989554

  17. Advanced PEFC development for fuel cell powered vehicles

    Science.gov (United States)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  18. Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells.

    Science.gov (United States)

    Okumura, Naoki; Ishida, Naoya; Kakutani, Kazuya; Hongo, Akane; Hiwa, Satoru; Hiroyasu, Tomoyuki; Koizumi, Noriko

    2017-11-01

    To develop analysis software for cultured human corneal endothelial cells (HCECs). Software was designed to recognize cell borders and to provide parameters such as cell density, coefficient of variation, and polygonality of cultured HCECs based on phase contrast images. Cultured HCECs with high or low cell density were incubated with Ca-free and Mg-free phosphate-buffered saline for 10 minutes to reveal the cell borders and were then analyzed with software (n = 50). Phase contrast images showed that cell borders were not distinctly outlined, but these borders became more distinctly outlined after phosphate-buffered saline treatment and were recognized by cell analysis software. The cell density value provided by software was similar to that obtained using manual cell counting by an experienced researcher. Morphometric parameters, such as the coefficient of variation and polygonality, were also produced by software, and these values were significantly correlated with cell density (Pearson correlation coefficients -0.62 and 0.63, respectively). The software described here provides morphometric information from phase contrast images, and it enables subjective and noninvasive quality assessment for tissue engineering therapy of the corneal endothelium.

  19. Development of a membraneless ethanol/oxygen biofuel cell

    International Nuclear Information System (INIS)

    Topcagic, Sabina; Minteer, Shelley D.

    2006-01-01

    Biofuel cells are similar to traditional fuel cells, except the metallic electrocatalyst is replaced with a biological electrocatalyst. This paper details the development of an enzymatic biofuel cell, which employs alcohol dehydrogenase to oxidize ethanol at the anode and bilirubin oxidase to reduce oxygen at the cathode. This ethanol/oxygen biofuel cell has an active lifetime of about 30 days and shows power densities of up to 0.46 mW/cm 2 . The biocathode described in this paper is unique in that bilirubin oxidase is immobilized within a modified Nafion polymer that acts both to entrap and stabilize the enzyme, while also containing the redox mediator in concentrations large enough for self-exchange based conduction of electrons between the enzyme and the electrode. This biocathode is fuel tolerant, which leads to a unique fuel cell that employs both renewable catalysts and fuel, but does not require a separator membrane to separate anolyte from catholyte

  20. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  1. Strategic Partnerships in Fuel Cell Development

    Science.gov (United States)

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  2. The fuel cell; development and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Van Rijnsoever, J.W.M.

    Activities on fuel cells and fuel cell development in the USA and Japan are surveyed. Possibilities for large scale application are mentioned. Attention is given to efficiency and environmental aspects. There are no problems about hazardous emissions. Besides electric power some heat is generated, which is not always a disadvantage. In many cases both are useful products. (A.V.)

  3. Stomatal and pavement cell density linked to leaf internal CO2 concentration.

    Science.gov (United States)

    Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-08-01

    Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Increased cell-free DNA concentrations in patients with obstructive sleep apnea.

    Science.gov (United States)

    Shin, Chol; Kim, Jin K; Kim, Je H; Jung, Ki H; Cho, Kyung J; Lee, Chang K; Lee, Seung G

    2008-12-01

    Blood concentrations of cell-free DNA, which is considered to be released during apoptosis, are elevated under some pathological conditions such as cardiovascular disease and cancer. The association between obstructive sleep apnea (OSA) and cell-free DNA concentrations has not been reported so far. The purpose of the present study was to examine the association between OSA and plasma DNA concentrations. A case-control study was conducted using a total of 164 men aged 39-67 years, who were free of coronary heart disease and cancer. Laboratory-based overnight polysomnography was performed for all participants. On the basis of polysomnography, patients with an apnea-hypopnea index (AHI) = 5-30 events/h were defined as having mild-moderate OSA (n = 33) and those with >30 events/h were defined as having severe OSA (n = 49). All 82 controls had AHI DNA concentrations from all participants were analyzed for the beta-globin gene using fluorescence-based real-time polymerase chain reaction. Patients with severe OSA had significantly higher plasma DNA concentrations than persons with mild-moderate OSA and those without OSA (P DNA concentration (P DNA concentrations (>8 microg/L) had approximately fourfold higher odds of OSA than those with low DNA levels. Further data are warranted to confirm the association for men and to evaluate the association for women.

  5. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.

    Science.gov (United States)

    Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P

    2016-09-20

    In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures

  7. Relationship between haemoglobin concentration and packed cell volume in cattle blood samples

    Directory of Open Access Journals (Sweden)

    Paa-Kobina Turkson

    2015-02-01

    Full Text Available A convention that has been adopted in medicine is to estimate haemoglobin (HB concentration as a third of packed cell volume (PCV or vice versa. The present research set out to determine whether a proportional relationship exists between PCV and Hb concentration in cattle blood samples, and to assess the validity of the convention of estimating Hb concentration as a third of PCV. A total of 440 cattle in Ghana from four breeds (Ndama, 110; West African Short Horn, 110; Zebu, 110 and Sanga, 110 were bled for haematological analysis, specifically packed cell volume, using the microhaematocrit technique and haemoglobin concentration using the cyanmethaemoglobin method. Means, standard deviations, standard errors of mean and 95% confidence intervals were calculated. Trendline analyses generated linear regression equations from scatterplots. For all the cattle, a significant and consistent relationship (r = 0.74 was found between Hb concentration and PCV (%. This was expressed as Hb concentration (g/dL = 0.28 PCV + 3.11. When the Hb concentration was estimated by calculating it as a third of PCV, the relationship was expressed in linear regression as Hb concentration (g/dL = 0.83 calculated Hb + 3.11. The difference in the means of determined (12.2 g/dL and calculated (10.9 g/dL Hb concentrations for all cattle was significant (p < 0.001, whereas the difference in the means of determined Hb and corrected calculated Hb was not significant. In conclusion, a simplified relationship of Hb (g/dL = (0.3 PCV + 3 may provide a better estimate of Hb concentration from the PCV of cattle.

  8. Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams

    Science.gov (United States)

    Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.

    2004-01-01

    Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most

  9. Effect of various 3H-thymidine concentrations on the kinetics of chinese hamster cell division

    International Nuclear Information System (INIS)

    Yuzhakov, V.V.; Lychev, V.A.

    1985-01-01

    A study of the asynchronous culture of Chinese hamster fibroblasts by autoradiography has shown that the pulse (15 min) incorporation of 3 H-thymidine in nuclear DNA influences the kinetics of labelled cell proliferation. The results obtained suggest that one of the early biological effects of the pulse incorporation of 3 H-thymidine is a delay in the occurrence of the first mitosis. With the concentration of 3 H-thymidine 37 kBq/ml the slowing down of the movement of labelled cells in the cycle is detected by a shift and overlapping of waves of labelled and unlabelled mitotic cells. In an increase of the concentration up to 370-925 kBq/ml the pattern of the curves of labelled mitotic cells is distorted. These distortions are well interpreted by the nature of change of the index of labelled and unlabelled mitotic cells. After an increase in 3 H-thymidine concentration from 37 up to 370-925 kBq/ml the mitotic activity of cells labelled at the end of S-phase decreases from 1 to o0.6-0.1% respectively. With the concentration of 925 kBq/ml for these cells incorporating 3 H-thymidine at the end of S-phase, a delay of the entry into mitosis reaches 6-8 h. Autoradiography data with assessment of granule density suggest that mitotic activity and the period of delay in the occurrence of mitosis depend on the dose of irradiation with intranuclear tritium

  10. High-concentration mirror-based Kohler integrating system for tandem solar cells

    Science.gov (United States)

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  11. Nanomolar concentration of blood-soluble drag-reducing polymer inhibits experimental metastasis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Ding Z

    2017-02-01

    Full Text Available Zhijie Ding,1,* Marion Joy,1,* Marina V Kameneva,1-3 Partha Roy1,3-6 1Department of Bioengineering, 2Department of Surgery, 3McGowan Institute of Regenerative Medicine, 4Department of Pathology, 5Department of Cell Biology, 6Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA, USA *These authors contributed equally to this work Abstract: Metastasis is the leading cause of cancer mortality. Extravasation of cancer cells is a critical step of metastasis. We report a novel proof-of-concept study that investigated whether non-toxic blood-soluble chemical agents capable of rheological modification of the near-vessel-wall blood flow can reduce extravasation of tumor cells and subsequent development of metastasis. Using an experimental metastasis model, we demonstrated that systemic administration of nanomolar concentrations of so-called drag-reducing polymer dramatically impeded extravasation and development of pulmonary metastasis of breast cancer cells in mice. This is the first proof-of-principle study to directly demonstrate physical/rheological, as opposed to chemical, way to prevent cancer cells from extravasation and developing metastasis and, thus, it opens the possibility of a new direction of adjuvant interventional approach in cancer. Keywords: breast cancer, metastasis, extravasation, hemodynamics, drag-reducing polymer, blood cell traffic, microvessels

  12. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2012-01-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3

  13. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture.

    Science.gov (United States)

    Yoshida, Ryu; Cheng, Mingyu; Murray, Martha M

    2014-02-01

    Tissue engineering is one new strategy being developed to treat ACL ruptures. One such approach is bio-enhanced ACL repair, where a suture repair is supplemented with a bio-active scaffold containing platelets. However, the optimal concentration of platelets to stimulate ACL healing is not known. We hypothesized that increasing platelet concentrations in the scaffold would enhance critical cell behaviors. Porcine ACL fibroblasts were obtained from explant culture and suspended in platelet poor plasma (PPP), 1× platelet-rich plasma (PRP), 3× PRP, 5× PRP, or phosphate buffered saline (PBS). The cell suspensions were cultured in a 3D collagen scaffold. Cellular metabolism (MTT assay), apoptosis (TUNEL assay), and gene expression for type I and type III collagen were measured. 1× PRP significantly outperformed 5× PRP in all parameters studied: Type I and III collagen gene expression, apoptosis prevention, and cell metabolism stimulation. ACL fibroblasts cultured with 1× PRP had the highest type I and type III collagen gene expression. 1× PRP and PPP groups had the highest cell metabolism and lowest apoptosis rates. Concentration of platelets had significant effects on the behavior of ACL fibroblasts; thus, it is an important parameter that should be specified in clinical or basic science studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Cell module and fuel conditioner development

    Science.gov (United States)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  15. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  16. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  17. Type II GaSb quantum ring solar cells under concentrated sunlight.

    Science.gov (United States)

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  18. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  19. Radiation survival of cells from spheroids grown in different oxygen concentrations

    International Nuclear Information System (INIS)

    Franko, A.J.; Sutherland, R.M.

    1979-01-01

    The position of the internal, chronically hypoxic cells in spheroids was varied by alterations in the oxygen concentration in the growth medium. Such alterations were expected to cause large changes in the size of the radiobiologically hypoxic fraction. This was tested by growing and irradiating spheroids in oxygen concentrations between 5 and 20.3%, ensuring that the irradiation and growth conditions were as similar as possible. The survival curves appeared to be linear below a surviving fraction of 3 x 10 -2 , and the slopes were intermediate between the slopes of control curves for cells from spheroids irradiated in nitrogen or when fully oxygenated. Thus direct estimates of the hypoxic fractions could not be made. Two models of oxygen diffusion might explain the data. One model assumes that a large fraction of cells was fully hypoxic (radiobiologically) and that these internal, G 1 -confined, chronically hypoxic cells had a lower inherent radioresistance than the outer proliferating cells. Evidence was presented which indicated that this model was unlikely to be correct. The other model assumes that the inherent radioresistance was equal throughout the spheroid, and that the innermost cells died before the oxygen concentration was reduced sufficiently to cause full hypoxic protection. Theoretical survival curves based on this model were generated using the measured geometries ofthe spheroids and multitarget single-hit survival theory. Acceptable agreement with the postulate that the innermost cells of spheroids die at between 0.2 and 0.4% oxygen was obtained. These data may have implications regarding the relative contributions of chronic and acute hypoxia to the fraction of hypoxic cells in tumors

  20. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  1. Effects of low concentrations of Regorafenib and Sorafenib on human HCC cell AFP, migration, invasion and growth in vitro

    Science.gov (United States)

    Carr, Brian Irving; D’Alessandro, Rosalba; Refolo, Maria Grazia; Iacovazzi, Palma Aurelia; Lippolis, Catia; Messa, Caterina; Cavallini, Aldo; Correale, Mario; Di Carlo, Antonio

    2012-01-01

    Sorafenib was shown in clinical trial to enhance survival in hepatocellular carcinoma (HCC) patients, but with minimal tumor shrinkage. To correlate several indices of HCC growth at various drug concentrations, HCC cells were grown in various low concentrations of two multi-kinase inhibitors, Regorafenib (Stivarga) and Sorafenib (Nexavar) and their effects were examined on alpha-fetoprotein (AFP), cell growth, migration and invasion. In two AFP positive human HCC cell lines, AFP was inhibited at 0.1–1µM drug concentrations. Cell migration and invasion were also inhibited at similar low drug concentrations. However, 10-fold higher drug concentrations were required to inhibit cell growth in both AFP positive and negative cells. To investigate this concentration discrepancy of effects, cells were then grown for prolonged times and sub-cultured in low drug concentrations and then their growth was re-tested. The growth in these drug-exposed cells was found to be slower than cells without prior drug exposure and they were also more sensitive to subsequent drug challenge. Evidence was also found for changes in cell signaling pathways in these slow-growth cells. Low multi-kinase inhibitor concentrations thus modulate several aspects of HCC cell biology. PMID:23169148

  2. The role of changes in the oxygen concentration in modification of reproductive death of cells in vitro

    International Nuclear Information System (INIS)

    Korystov, Yu.N.

    1983-01-01

    In this report the data are discussed and summarized concerning cell oxygenation in culture. Formulae are proposed for calculation of the oxygen concentration in suspension, monolayer and spheroid, as well as numerical parameters are submitted determining the oxygenation of cells in vitro. This permits to estimate quantitatively the oxygen concentration at the cell surface upon irradiation in different experimental conditions

  3. Stomach development, stem cells and disease

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  4. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  5. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection.

    Science.gov (United States)

    Baumgart, J; Bintig, W; Ngezahayo, A; Lubatschowski, H; Heisterkamp, A

    2010-02-01

    Fs-laser based opto-perforation is a gentle method for gene transfer into sensitive cells such as stem cells or primary cells. The high selectivity and the low damage to the cell lead to a high efficiency of transfection. However, there are side effects which induce stress to the cell due to the exchange of intra- and extracellular media as well as the disintegration of the structure of biomolecules resulting from the laser exposure. Moreover, the mechanisms of the optical transfection are still unclear. In this paper, we present our study on calcium (Ca(2+)) homeostasis during cell surgery, especially during laser induced membrane perforation. We show that the manipulation of cells can induce an increase in the cytosolic Ca(2+) concentration. This increase was not observed if the manipulation of the cells was performed in absence of the extracellular calcium indicating the importance of the Ca(2+) uptake. We found, that the uptake of extracellular Ca(2+) strongly depends on the repetition rate and the irradiation time of the laser pulses. The exposure for several seconds to kHz pulses even induces Ca(2+) induced Ca(2+) release. Dependent on the location of perforation, probably in the vicinity of an intracellular Ca(2+) stock, an instantaneous intracellular Ca(2+) release can be induced. Since Ca(2+) could be involved in negative side effect by cell surgery, we propose an application of the optoperforation technique in nominal Ca(2+)-free external solution.

  6. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    Science.gov (United States)

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P oxygen levels significantly increased viability (P oxygen levels significantly reduced ATP production (P oxygen was significant in regards to cell viability (P oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Prototype commercial electrooxidation cell for the recovery of molybdenum and rhenium from molybdenite concentrates

    International Nuclear Information System (INIS)

    Scheiner, B.J.; Pool, D.L.; Lindstrom, R.E.; McCleland, G.E.

    1979-01-01

    As part of the goal to maximize minerals and metals recovery from primary domestic resources, design factors associated with minimizing current leakage in bipolar cell configurations were studied as a means of improving the efficiency of bipolar electrooxidation cells. Initial studies that were conducted in a small bipolar cell operating at 140 to 145 volts and 15.4 A indicated how design factors could be employed to minimize current leakage around adjacent electrodes during cell operation. Based on these results, a 40-electrode, 108-kVA prototype of an industrial-sized cell was constructed and tested for extracting metal values from offgrade molybdenite concentrates. The feasibility of recovering molybdenum and rhenium from the oxidized pulp also was determined. Feed to the process sequence consisted of flotation concentrates containing 16 to 35% Mo as molybdenite and 6 to 15% Cu. Electrooxidation in the prototype cell results in 84 to 97% Mo and Re extraction with a corresponding energy consumption of 9 to 13 kWh/lb Mo extracted

  8. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  9. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.

  10. Emergency transfusion of patients with unknown blood type with blood group O Rhesus D positive red blood cell concentrates: a prospective, single-centre, observational study.

    Science.gov (United States)

    Selleng, Kathleen; Jenichen, Gregor; Denker, Kathrin; Selleng, Sixten; Müllejans, Bernd; Greinacher, Andreas

    2017-05-01

    Emergency patients with unknown blood type usually receive O Rhesus D negative (RhD-) red blood cell concentrates until their blood group is determined to prevent RhD+ related adverse transfusion reactions. As 85% of individuals are RhD+, this consumption of O RhD- red blood cell concentrates contributes to shortages of O RhD- red blood cell concentrates, sometimes forcing transfusion of known RhD- patients with RhD+ red blood cell concentrates. Here we report the outcome of this transfusion policy transfusing all emergency patients with unknown blood type with O RhD+ red blood cell concentrates. In this prospective single-centre observational study done between Jan 1, 2001, and Dec 31, 2015, we assessed all consecutive RhD- patients at the University Medicine Greifswald who received RhD+ red blood cell concentrates (emergency patients with unknown blood type; and RhD- patients receiving RhD+ red blood cell concentrates during RhD- red blood cell concentrate shortages). No patients were excluded. The primary endpoint was anti-D allo-immunisation at 2 months follow-up or later. Patients were followed up and tested for immunisation against red blood cell antigens using the direct antiglobulin test and an antibody screen every 3-5 days for 4 weeks or until death, or hospital discharge. Surviving patients were screened for development of anti-D antibodies for up to 12 months (at the predefined timepoints 2, 3, 6, and 12 months) after RhD+ red blood cell transfusion. 437 emergency patients, of whom 85 (20%) were RhD-, received 2836 RhD+ red blood cell concentrates. The overall risk of inducing anti-D antibodies (in all 437 recipients) was 17 (4%, 95% CI 2·44-6·14) of 437 (assuming all patients lost to follow-up developed anti-D allo-immunisation). During this period, 110 known RhD- patients received RhD+ red blood cell concentrates during RhD- red blood cell concentrate shortages. Of these, 29 (26%; 95% CI 19·0-35·3) developed anti-D allo-immunisation (assuming all

  11. Preliminary temperature Accelerated Life Test (ALT) on III-V commercial concentrator triple-junction solar cells

    OpenAIRE

    Espinet González, Pilar; Algora del Valle, Carlos; Orlando Carrillo, Vincenzo; Nuñez Mendoza, Neftali; Vázquez López, Manuel; Bautista Villares, Jesus; Xiugang, He; Barrutia Poncela, Laura; Rey-Stolle Prado, Ignacio; Araki, Kenji

    2012-01-01

    A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three e...

  12. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  13. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    International Nuclear Information System (INIS)

    Supriyanto, A.; Maya; Iriani, Y.; Ramelan, A. H.; Nurosyid, F; Rosa, E. S.

    2016-01-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10 -3 %, 2.2×10 -3 %, 5.9×10 -3 %, and 6.1×10 -3 % efficiency of organics solar cells respectively. (paper)

  14. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  15. Heparin concentration is critical for cell culture with human platelet lysate.

    Science.gov (United States)

    Hemeda, Hatim; Kalz, Jana; Walenda, Gudrun; Lohmann, Michael; Wagner, Wolfgang

    2013-09-01

    Culture media for mesenchymal stromal cells (MSCs) are generally supplemented with fetal bovine serum. Human platelet lysate (hPL) has been proven to be a very effective alternative without the risk of xenogeneic infections or immune reactions. In contrast to fetal bovine serum, hPL comprises plasma, and anticoagulants-usually unfractionated heparin (UFH)-need to be added to prevent gel formation. Cultures of MSCs in hPL media with various concentrations of UFH and enoxaparin, a low-molecular-weight heparin (LMWH), were systematically compared with regard to proliferation, fibroblastoid colony-forming unit frequency, immunophenotype and in vitro differentiation. At least 0.61 IU/mL UFH or 0.024 mg/mL LMWH was necessary for reliable prevention of coagulation of hPL pools used in this study. Higher concentrations impaired cellular proliferation in a dose-dependent manner even without benzyl alcohol, which is commonly added to heparins as a bacteriostatic agent. Colony-forming unit frequency was also reduced at higher heparin concentrations, particularly with LMWH, whereas no significant effect was observed on cellular morphology or immunophenotype. High concentrations of heparins reduced the in vitro differentiation toward adipogenic and osteogenic lineages. Heparin concentration is critical for culture of MSCs in hPL media; this is of particular relevance for cellular therapy where cell culture procedures need to be optimized and standardized. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model.

    Science.gov (United States)

    Lee, Yueh-Lun; Lee, Lin-Wen; Su, Chen-Yao; Hsiao, George; Yang, Yi-Yuan; Leu, Sy-Jye; Shieh, Ying-Hua; Burnouf, Thierry

    2013-09-01

    Platelet concentrate lysates (PCLs) are increasingly used in regenerative medicine. We have developed a solvent/detergent (S/D)-treated PCL. The functional properties of this preparation should be unveiled. We hypothesized that, due to transforming growth factor-β1 (TGF-β1) content, PCLs may exert immunosuppressive and anti-inflammatory functions. PCL was prepared by S/D treatment, oil extraction, and hydrophobic interaction chromatography. The content of TGF-β in PCL was determined by enzyme-linked immunosorbent assay. Cultured CD4+ T cells were used to investigate the effects of PCL on expression of transcription factor forkhead box P3 (Foxp3), the inhibition of T-cell proliferation, and cytokine production. The regulatory function of PCL-converted CD4+ T cells was analyzed by suppressive assay. The BALB/c mice were given PCL-converted CD4+ T cells before ovalbumin (OVA) sensitization and challenge using an asthma model. Inflammatory parameters, such as the level of immunoglobulin E (IgE), airway hyperresponsiveness (AHR), bronchial lavage fluid eosinophils, and cytokines were assayed. Recombinant human (rHu) TGF-β1 was used as control. PCL significantly enhanced the development of CD4+Foxp3+-induced regulatory T cells (iTregs). Converted iTregs produced neither Th1 nor Th2 cytokines and inhibited normal T-cell proliferation. PCL- and rHuTGF-β-converted CD4+ T cells prevented OVA-induced asthma. PCL- and rHuTGF-β-modified T cells both significantly reduced expression levels of OVA-specific IgE and significantly inhibited the development of AHR, airway eosinophilia, and Th2 responses in mice. S/D-treated PCL promotes Foxp3+ iTregs and exerts immunosuppressive and anti-inflammatory properties. This finding may help to understand the clinical properties of platelet lysates. © 2013 American Association of Blood Banks.

  17. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  18. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  19. Influence of intracellular adenosine-triphosphate concentration of yeast cells on survival following X-irradiation

    International Nuclear Information System (INIS)

    Reinhard, R.D.; Pohlit, W.

    1975-01-01

    The effect of D-glucose, 2-deoxy-D-glucose and starvation in buffer on the ATP-concentration of yeast cells has been studied. In both the wild-type and a respiratory-deficient mutant strain 2-deoxy-D-glucose decreases the value for ATP, while it is enhanced by glucose only in the mutant strain. Populations with different ATP-concentrations have been irradiated. The results suggest that ATP may be an essential factor in the system that determines the length of the shoulder of the dose effect curves. (orig.) [de

  20. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  1. THE DEVELOPMENT OF PLANTS FOR THE PRODUCTION OF CONCENTRATED PASTES OF FRUIT AND VEGETABLE RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available Summary. Developed a new system for producing concentrated semi-finished products in the form of pastes for the food industry. Currently, an important task of the food industry is the creation of new products with the aim of improving the structure of the range, saving scarce raw materials, as well as reduce sugar intake; development of product functionality and products with extended shelf life. The use of local non-traditional types of plant materials can contribute to solving existing problems. Fruit and vegetable pastes are a valuable food products which can be used as a semifinished product in the confectionery, bakery, food concentrates industry. Fruit and vegetable purees have a distinct structurally viscous or pseudo-plastic properties and concentration form a very viscous mass. Already in the beginning of the process of concentration, i.e. at a relatively low degree of evaporation that leads to a rapid increase in the viscosity of the concentrate mass and reduce evaporation. With increasing temperature is the burning mass, and also change its color and flavor. Therefore, for the concentration of fruit and vegetable purees, you must use equipment whose design takes into account the possible rheological and thermal problems. The analysis of literary data structures evaporators and studies, we developed a system for producing concentrated pastes of fruit and vegetable raw materials. Developed installation can increase the quality of the finished product due to the intensification of the process of concentration, to reduce material and energy resources, increase productivity.

  2. Protective effect of high concentrations of vitamin C on the radiation response of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    O'Connor, M.K.; Malone, J.F.; Moriarty, M.

    1977-01-01

    The interaction of radiation with various chemical and physical agents has been studied with a view to finding safe reliable methods of altering radiosensitivity, as well as acquiring a deeper understanding of the chemical and physiological processes involved in the development of radiation damage. The agents most frequently studied include oxygen, known radiosensitisers, metabolic inhibitors and cytotoxic drugs. Because of toxicity, and related problems, manipulation of the concentrations of these substances in vivo is difficult. However many substances, whose importance in normal physiology is well established, have not been well studied from the point of view of their influence on radiation response. The influence of Vitamin C on the survival of mammalian cells (CHO - Clone A) after irradiation is reported. High concentrations of the vitamin (0.3 mg/ml) had a profound effect on radiosensitivity, giving a survival 7 times larger than untreated cells, at the highest dose used. Survival curves demonstrate that the effect is mainly, but not exclusively, due to an increase in the D 0 by a factor of about 1.5. The protective effect occurs in a concentration region that overlaps the physiological range, but the relationship between Vitamin C levels in the cells and in the medium, is complex. These observations could be of importance in reducing biological consequences of accidental radiation exposure, or deliberate diagnostic medical exposures. They may also be important in radiotherapy

  3. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  4. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  5. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  6. Luminescent solar concentrators with a bottom-mounted photovoltaic cell: performance optimization and power gain analysis

    Institute of Scientific and Technical Information of China (English)

    Ningning Zhang; Yi Zhang; Jun Bao; Feng Zhang; Sen Yan; Song Sun; Chen Gao

    2017-01-01

    Polymethyl methacrylate (PMMA) plate luminescent solar concentrators with a bottom-mounted (BM-LSCs) photovoltaic (PV) cell are fabricated by using a mixture of Lumogen Red 305 and Yellow 083 fluorescent dyes and a commercial monocrystalline silicon cell.The fabricated LSC with dye concentrations of 40 ppm has the highest power gain of 1.50,which is the highest value reported for the dye-doped PMMA plate LSCs.The power gain of the LSC comes from three parts:the waveguide light,the transmitted light,and the reflected light from a white reflector,and their contributions are analyzed quantitatively.The results suggest that the BM-LSCs have great potential for future low-cost PV devices in building integrated PV applications.

  7. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  8. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  9. [Biologic effects of different concentrations of putrescine on human umbilical vein endothelial cells].

    Science.gov (United States)

    Chen, Jianxia; Rong, Xinzhou; Fan, Guicheng; Li, Songze; Zhang, Tao; Li, Qinghui

    2015-12-01

    To explore the effects of different concentrations of putrescine on proliferation, migration, and apoptosis of human umbilical vein endothelial cells (HUVECs). HUVECs were routinely cultured in vitro. The 3rd to the 5th passage of HUVECs were used in the following experiments. (1) Cells were divided into 500, 1 000, and 5 000 µg/mL putrescine groups according to the random number table (the same grouping method was used for following grouping), with 3 wells in each group, which were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h. Morphology of cells was observed by inverted optical microscope. (2) Cells were divided into 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group, with 4 wells in each group. Cells in the putrescine groups were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h, and cells in control group were cultured with complete culture solution with no additional putrescine for 24 h. Cell proliferation activity (denoted as absorption value) was measured by colorimetry. (3) Cells were divided (with one well in each group) and cultured as in experiment (2), and the migration ability was detected by transwell migration assay. (4) Cells were divided (with one flask in each group) and cultured as in experiment (2), and the cell apoptosis rate was determined by flow cytometer. Data were processed with one-way analysis of variance, Kruskal-Wallis test, and Dunnett test. (1) After 24-h culture, cell attachment was good in 500 µg/mL putrescine group, and no obvious change in the shape was observed; cell attachment was less in 1 000 µg/mL putrescine group and the cells were small and rounded; cells in 5 000 µg/mL putrescine group were in fragmentation without attachment. (2) The absorption values of cells in 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups

  10. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  11. Unraveling Natural Killer T-Cells Development

    Directory of Open Access Journals (Sweden)

    Sabrina Bianca Bennstein

    2018-01-01

    Full Text Available Natural killer T-cells are a subset of innate-like T-cells with the ability to bridge innate and adaptive immunity. There is great interest in harnessing these cells to improve tumor therapy; however, greater understanding of invariant NKT (iNKT cell biology is needed. The first step is to learn more about NKT development within the thymus. Recent studies suggest lineage separation of murine iNKT cells into iNKT1, iNKT2, and iNKT17 cells instead of shared developmental stages. This review will focus on these new studies and will discuss the evidence for lineage separation in contrast to shared developmental stages. The author will also highlight the classifications of murine iNKT cells according to identified transcription factors and cytokine production, and will discuss transcriptional and posttranscriptional regulations, and the role of mammalian target of rapamycin. Finally, the importance of these findings for human cancer therapy will be briefly discussed.

  12. Development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author).

  13. Development of solid oxide fuel cell technology

    International Nuclear Information System (INIS)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author)

  14. Association of ITPA gene variation and serum ribavirin concentration with a decline in blood cell concentrations during pegylated interferon-alpha plus ribavirin therapy for chronic hepatitis C.

    Science.gov (United States)

    Nakagawa, Mina; Sakamoto, Naoya; Watanabe, Takako; Nishimura-Sakurai, Yuki; Onozuka, Izumi; Azuma, Seishin; Kakinuma, Sei; Nitta, Sayuri; Kiyohashi, Kei; Kusano-Kitazume, Akiko; Murakawa, Miyako; Yoshino, Kohei; Itsui, Yasuhiro; Tanaka, Yasuhito; Mizokami, Masashi; Watanabe, Mamoru

    2013-03-01

    Genetic variation leading to inosine triphosphatase (ITPA) deficiency protects chronic hepatitis C patients receiving ribavirin against hemolytic anemia. The relationship between ITPA gene variation and serum ribavirin concentration was analyzed in association with a reduction in blood cells and dose reduction of pegylated interferon (PEG-IFN) or ribavirin. A total of 300 hepatitis C patients treated with PEG-IFN plus ribavirin were analyzed. Genetic polymorphisms were determined in ITPA and the quantitative reduction in blood cells from the baseline was analyzed every 4 weeks for the duration of treatment and after the end of therapy. The decline in hemoglobin (Hb) or platelet (PLT) level at week 4 compared to baseline was also assessed according to ribavirin concentrations. Patients with the ITPA-CA/AA genotypes showed a lower degree of Hb reduction throughout therapy than those with the ITPA-CC genotype and a marked difference in mean Hb reduction was found at week 4 (CA/AA -1.0 vs. CC -2.8, p < 0.001). The ITPA-CC genotype had significantly less reduction in the mean platelet count than the ITPA-CA/AA genotypes early during treatment (p < 0.001 for weeks 4 and 8). Patients with the ITPA-CA/AA genotypes were less likely to develop anemia, regardless of the concentration of ribavirin. Patients with baseline PLT counts below 130 × 10(3)/μl had a significantly lower tendency to achieve sustained virological response (SVR), especially those with the ITPA-CA/AA genotypes. ITPA gene variation was not extracted by multivariable analysis as an important predictor of SVR. Despite the fact that ITPA variants were less likely to develop anemia, patients with low baseline PLT counts were difficult to treat, especially those with the ITPA-CA/AA genotype. These results may give a valuable pharmacogenetic diagnostic tool for the tailoring of dosing to minimize drug-induced adverse events.

  15. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  16. Determination of blood cell subtype concentrations from frozen whole blood samples using TruCount beads.

    Science.gov (United States)

    Langenskiöld, Cecilia; Mellgren, Karin; Abrahamsson, Jonas; Bemark, Mats

    2016-06-24

    In many studies it would be advantageous if blood samples could be collected and analyzed using flow cytometry at a later stage. Ideally, sample collection should involve little hands-on time, allow for long-term storage, and minimally influence the samples. Here we establish a flow cytometry antibody panel that can be used to determine granulocytes, monocytes, and lymphocyte subset concentrations in fresh and frozen whole blood using TruCount technology. The panel can be used on fresh whole-blood samples as well as whole-blood samples that have been frozen after mixing with 10% DMSO. Concentrations in frozen and fresh sample is highly correlated both when frozen within 4 h and the day after collection (r ≥ 0.98), and the estimated concentration in frozen samples was between 91 and 94% of that in fresh samples for all cell types. Using this method whole-blood samples can be frozen using a simple preparation method, and stored long-term before accurate determination of cell concentration. This allows for standardized analysis of the samples at a reference laboratory in multi-center studies. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  17. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  18. Advanced Cell Development and Degradation Studies

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; O'Brien, R.C.; Condie, K.G.; Sohal, M.; Housley, G.K.; Hartvigsen, J.J.; Larsen, D.; Tao, G.; Yildiz, B.; Sharma, V.; Singh, P.; Petigny, N.; Cable, T.L.

    2010-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003-2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  19. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  20. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  1. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.

    2015-01-01

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  2. Development of endosperm transfer cells in barley.

    Science.gov (United States)

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  3. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

    DEFF Research Database (Denmark)

    Rødgaard, Tina; Schou, Kenneth; Friis, Martin Barfred

    2008-01-01

    of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory volume...... decrease (RVD). Upon return to the original isotonic medium, cells shrank initially followed by a regulatory volume increase (RVI). To maintain cell shrinkage, the RVI process was inhibited as follows: Ethyl-isopropyl-amiloride (EIPA) inhibited the Na(+)/H(+) antiport, Bumetanide inhibited the Na(+)/K(+)/2......Cl(-) co-transporter, and Gadolinium inhibited shrinkage-activated Na(+) channels. Cells remained shrunken for at least 4 hours (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high NaCl hypertonic medium...

  4. Gladiolus development in response to bulb treatment with different concentrations of humic acids

    Directory of Open Access Journals (Sweden)

    Marihus Altoé Baldotto

    2013-02-01

    Full Text Available Gladiolus is an ornamental species produced for cut flowers and propagated by corms. The early flowering and increase in the number of flower buds, besides the production of commercial corms are constant challenges to be addressed in the crop improvement. Commercial production of ornamentals is technologically accelerated by means of growth regulators. Among them, the auxins stand out for their key role in the adventitious rooting and cell elongation. Alternatively, the humic substances present in the organic matter also have biostimulating effect, which is very similar to the auxinic effect. Therefore, this work aimed to study the growth and development of gladiolus in response to application of different concentrations of humic acids (HA isolated from vermicompost. Corms were soaked for 24 hours in solutions containing 0, 10, 20, 30 and 40 mmol L-1 of C from HA. The corms were planted in 10-dm³ plastic bags filled with substrate and kept in a greenhouse. Growth of shoots and roots was evaluated. The results showed that the use of HA accelerates growth, and anticipates and increases flowering of Gladiolus.

  5. Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K.; Okullo, W.; van Dyk, E.E.; Vorster, F.J. [Physics Department, Nelson Mandela Metropolitan University, P O Box 77000, Port Elizabeth 6031 (South Africa)

    2010-12-15

    Focused sunlight can act as a localized source of excess minority carriers in a solar cell. Current signal generated by these carriers gives considerable information about the electrical properties of the cell's material. Point by point current-voltage data were measured for a back point-contact concentrator photovoltaic cell when illuminated by focused sunlight. Two numerical curve fitting procedures: a non-linear two-point interval division and particle swarm optimization algorithm were then applied to extract local parameters (i.e. as function of position) from the current-voltage data at each measurement point. Extracted parameters plotted yields relative spatial information about the electrical properties of a solar cell in a two or three dimensional mapping. The curve fitting routines applied to current-voltage data reveal that performance parameters: short circuit current, open circuit voltage, maximum power and fill factor show distinct variations in the vicinity of the observed current reducing feature. The relative values of the diode ideality factors, series resistance, shunt resistance and reverse saturation currents from both methods showed no significant measurable features that could be distinguished. This shows that the observed reduction in photo-induced current was due to severe recombination in the bulk or around the highly diffused point contacts and not the quality of the multiple p-n junctions of the cell. These approaches allow one to obtain a set of parameters at each local point on the cell which are reasonable and representative of the physical system. (author)

  6. A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.

    Science.gov (United States)

    Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G

    2014-04-22

    The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.

  7. Radiosensitivity of Hela cells in various O2 concentrations and consideration of oxygen effect in radiotherapy

    International Nuclear Information System (INIS)

    Kuroda, Yoshikazu; Nyunoya, Koichiro

    1979-01-01

    The aim of this paper is the study of the radiosensitivity of HeLa cells in vitro in various oxygen concentrations and the consideration of the utilization of oxygen effect in radiation therapy, based on the data of HeLa cells and tumor oxygen tension. Survival curves of HeLa cells are found to be exponential as a function of radiation dose and the radiosensitivity is dependent on oxygen tension of culture medium. Relative radiosensitivity decreases remarkably at low level of oxygen, especially under 9 mmHg pO 2 . The utilization of oxygen effect in radiation may be useful in hyperbaric oxygen inhalation and not useful under local tissue hypoxia induced by tourniquet application. Reoxygenation occurs with shrinkage of tumor after irradiation and this phenomenon will diminish the value of hyperbaric oxygen in radiation therapy. (author)

  8. Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application

    International Nuclear Information System (INIS)

    Mao Qing; Krewer, Ulrike

    2012-01-01

    The nonlinear frequency response of a direct methanol fuel cell (DMFC) is studied by analyzing the total harmonic distortion (THD) spectra. The dependence of the THD spectra on methanol concentration and methanol oxidation kinetics is investigated by means of both simulation and experiment. Simulation using a continuous stirred tank reactor network model suggests that the methanol concentration profile in the anode has a strong impact on the THD spectra. The experimentally observed nonlinear behavior of the DMFC anode can be qualitatively reproduced with a model containing a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics. Both experiment and simulation results show that THD value has a monotonic correlation with methanol concentration at certain frequencies and its sensitivity to concentration is improved with increased current amplitude. The monotonic relationship enables the THD to sense the methanol concentration level by the DMFC itself, which is of mayor interest for the portable application as an external sensor for the system can be omitted.

  9. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  10. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  11. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.

    Science.gov (United States)

    Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D

    2009-02-21

    To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.

  12. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)

    2014-07-01

    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  13. A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels

    International Nuclear Information System (INIS)

    Wu, Q X; Zhao, T S; Chen, R; Yang, W W

    2010-01-01

    Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO 2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.

  14. Modelling and experimental studies on a direct methanol fuel cell working under low methanol crossover and high methanol concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Energia e Geologia, Fuel Cells and Hydrogen, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-08-15

    A number of issues need to be resolved before DMFC can be commercially viable such as the methanol crossover and water crossover which must be minimised in portable DMFCs. The main gain of this work is to systematically vary commercial MEA materials and check their influence on the cell performance of a direct methanol fuel cell operating at close to room temperature. A detailed experimental study on the performance of an <> developed DMFC with 25 cm{sup 2} of active membrane area, working near the ambient conditions is described. Tailored MEAs (membrane-electrode assemblies), with different structures and combinations of gas diffusion layers (GDLs), were designed and tested in order to select optimal working conditions at high methanol concentration levels without sacrificing performance. The experimental polarization and power density curves were successfully compared with the predictions of a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC recently developed by the same authors. The influence of the anode gas diffusion layer media, the membrane thickness and the MEA properties on the cell performance are explained under the light of the predicted methanol crossover rate across the membrane. A tailored MEA build-up with the common available commercial materials was proposed to achieve relatively low methanol crossover, operating at high methanol concentrations. The use of adequate materials for the gas diffusion layers (carbon paper at the anode GDL and carbon cloth at the cathode GDL) enables the use of thinner membranes enhancing the water back diffusion which is essential to work at high methanol concentrations. (author)

  15. Recent developments in blood cell labeling research

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-09-07

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs.

  16. Recent developments in blood cell labeling research

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-01-01

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs

  17. KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.

  18. A Sensitive Cell-Based Assay to Measure the Doxycycline Concentration in Biological Samples

    NARCIS (Netherlands)

    Kleibeuker, Wendy; Zhou, Xue; Centlivre, Mireille; Legrand, Nicolas; Page, Mark; Almond, Neil; Berkhout, Ben; Das, Atze T.

    2009-01-01

    Doxycycline (DOX) is widely used as a pharmacological agent and as an effector molecule in inducible gene expression systems. For most applications, it is important to determine whether the DOX concentration reaches the level required for optimal efficacy. We developed a sensitive bioassay for

  19. Development of concentration measurement system in a mini-channel using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki

    2008-01-01

    A local NMR sensor to measure methanol concentration of fluid flowing in a mini-channel was developed. The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 0.60 mm inside diameter. Using the sensors, local methanol concentration of water-methanol mixture in the mini-channel of 3.0 mm width and 1.5 mm depth was measured. The effects of flow velocity in the channel and the gravity direction on the methanol concentration distribution in the channel were investigated experimentally. (author)

  20. Improving optical performance of concentrator cells by means of a deposited nanopattern layer

    International Nuclear Information System (INIS)

    García-Linares, Pablo; Besson, Pierre; Weick, Clément; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Kämpfe, Thomas; Jourlin, Yves

    2015-01-01

    Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n air ∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I SC ) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results

  1. Improving optical performance of concentrator cells by means of a deposited nanopattern layer

    Energy Technology Data Exchange (ETDEWEB)

    García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Besson, Pierre; Weick, Clément; Baudrit, Mathieu [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Dominguez, César [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Instituto de Energía Solar - Universidad Politécnica de Madrid, Madrid (Spain); Dellea, Olivier [CEA-LITEN, Laboratoire de Surfaces Nanostructurées, Grenoble (France); Kämpfe, Thomas; Jourlin, Yves [Laboratoire Hubert Curien UMR CNRS, Université de Lyon, St. Etienne (France)

    2015-09-28

    Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n{sub air}∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I{sub SC}) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results.

  2. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  3. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Monica [Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany); Schmetzer, Helga [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Braeu, Marion; Buhmann, Raymund [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany)

    2016-11-15

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  4. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    International Nuclear Information System (INIS)

    Weiler, Monica; Schmetzer, Helga; Braeu, Marion; Buhmann, Raymund

    2016-01-01

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3 + T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  5. Hydrogen Fuel Cell development in Columbia (SC)

    Energy Technology Data Exchange (ETDEWEB)

    Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chen, Fanglin [Univ. of South Carolina, Columbia, SC (United States); Popov, Branko [Univ. of South Carolina, Columbia, SC (United States); Chao, Yuh [Univ. of South Carolina, Columbia, SC (United States); Xue, Xingjian [Univ. of South Carolina, Columbia, SC (United States)

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  6. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  7. Programmed cell death during quinoa perisperm development.

    Science.gov (United States)

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  8. Vitrification by Ultra-fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Microcapillary: A Study Using Murine Embryonic Stem Cells

    Science.gov (United States)

    He, Xiaoming; Park, Eric Y.H.; Fowler, Alex; Yarmush, Martin L.; Toner, Mehmet

    2009-01-01

    Conventional cryopreservation protocols for slow-freezing or vitrification involve cell injury due to ice formation/cell dehydration or toxicity of high cryoprotectant (CPA) concentrations, respectively. In this study, we developed a novel cryopreservation technique to achieve ultra-fast cooling rates using a quartz microcapillary (QMC). The QMC enabled vitrification of murine embryonic stem (ES) cells using an intracellular cryoprotectant concentration in the range used for slowing freezing (1–2 M). The cryoprotectants used included 2 M 1,2-propanediol (PROH, cell membrane permeable) and 0.5 M extracellular trehalose (cell membrane impermeable). More than 70% of the murine ES cells post-vitrification attached with respect to non-frozen control cells, and the proliferation rates of the two groups were similar. Preservation of undifferentiated properties of the pluripotent murine ES cells post vitrification cryopreservation was verified using three different types of assays: the expression of transcription factor Oct-4, the presentation of the membrane surface glycoprotein SSEA-1, and the elevated expression of the intracellular enzyme alkaline phosphatase. These results indicate that vitrification at a low concentration (2 M) of intracellular cryoprotectants is a viable and effective approach for the cryopreservation of murine embryonic stem cells. PMID:18462712

  9. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn

    2012-12-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 ± 0.4 mol H2/mole acetate and gas production rate of 2.2 ± 0.2 m3 H2/m3/d were achieved here with an initial anolyte pH = 9 and catholyte NaCl concentration of 98 mM. Further increases in the salt concentration substantially reduced the anolyte pH to as low as 4.6, resulting in reduced MEC performance due to pH inhibition of exoelectrogens. Cathodic hydrogen recovery was high (rcat > 90%) as hydrogen consumption by hydrogenotrophic methanogens was prevented by separating the anode and cathode chambers using a membrane. These results show that the MEC can be optimized for hydrogen production through proper choices in the concentration of a non-buffered saline catholyte and initial anolyte pH in two chamber MECs. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    Science.gov (United States)

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  11. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error.

    Science.gov (United States)

    Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean

    2013-02-28

    Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs

  13. Treatment of AVN Using Autologous BM Stem Cells and Activated Platelet-Derived Growth Factor Concentrates.

    Science.gov (United States)

    Nandeesh, Nagaraj H; Janardhan, Kiranmayee; Subramanian, Vignesh; Ashtekar, Abhishek Bhushan; Srikruthi, Nandagiri; Koka, Prasad S; Deb, Kaushik

    Avascular Necrosis (AVN) of hip is a devastating condition seen in younger individuals. It is the ischemic death of the constituents of the bone cartilage of the hip. The femoral head (FH) is the most common site for AVN. It results from interruption of the normal blood flow to the FH that fits into the hip socket. Earlier studies using autologous bone marrow stem cell concentrate injections have shown encouraging results with average success rates. The current study was designed to improve significantly the cartilage regeneration and clinical outcome. Total of 48 patients underwent autologous bone marrow stem cell and activated platelet-rich plasma derived growth factor concentrate (PRP-GFC) therapy for early and advanced stages AVN of femoral head in a single multi-specialty center. The total treatment was divided into three phases. In the phase I, all the clinical diagnostic measurements such as magnetic resonance imaging (MRI), computed tomography (CT) etc. with respect to the AVN patients and bone marrow aspiration from posterior iliac spine from the patients were carried out. In the phase II, isolation of stem cells and preparation from the patients were performed. Subsequently, in phase III, the stem cells and PRP- GFCs were transplanted in the enrolled patients. Ninety three percent of the enrolled AVN patients showed marked enhancement in the hip bone joint space (more than 3mm) after combined stem cells and PRP-GFC treatment as evidenced by comparison of the pre- and post-treatment MRI data thus indicative of regeneration of cartilage. The treated patients showed significant improvement in their motor function, cartilage regrowth (3 to 10mm), and high satisfaction in the two-year follow-up. Combination of stem cell and PRP-GFC therapy has shown promising cartilage regeneration in 45 out of 48 patients of AVN. This study clearly demonstrates the safety and efficacy of this treatment. Larger numbers of patients need to be evaluated to better understand the

  14. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  15. Buffer layer between a planar optical concentrator and a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E. [Departamento de Ingeniería Matemática and CI" 2 MA, Universidad de Concepción, Concepción, Casilla 160-C (Chile); Barber, Greg D. [Penn State Institute of Energy and the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Faryad, Muhammad [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  16. Electrochemical behavior of heavily cycled nickel electrodes in Ni/H2 cells containing electrolytes of various KOH concentrations

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    A study has been made of charge and discharge voltage changes with cycling of Ni/H2 cells containing electrolytes of various KOH concentrations. A study has also been made of electrochemical behavior of the nickel electrodes from the cycled Ni/H2 cells as a function of overcharge amounts. Discharge voltages depressed gradually with cycling for cells having high KOH concentrations (31 to 36 percent), but the voltages increased for those having low KOH concentrations (21 to 26 percent). To determine if there was a crystallographic change of the active material due to cycling, electrochemical behavior of nickel electrodes was studied in an electrolyte flooded cell containing either 31 or 26 percent KOH electrolyte as a function of the amount of overcharge. The changes in discharge voltage appear to indicate crystal structure changes of active material from gamma-phase to beta-phase in low KOH concentrations, and vice versa in high KOH concentration.

  17. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  18. KOH concentration effect on the cycle life of nickel-hydrogen cells. IV - Results of failure analysis

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1990-01-01

    Potassium hydroxide concentration effects on the cycle life of a Ni/H2 cell have been studied by carrying out a cycle life test on ten Ni/H2 boiler plate cells which contain electrolytes of various KOH concentrations. Failure analyses of these cells were carried out after completion of the life test, which accumulated up to 40,000 cycles at an 80-percent depth of discharge over a period of 3.7 years. These failure analyses included studies on changes of electrical characteristics of test cells, and component analyses after disassembly of the cell. The component analyses included visual inspections, dimensional changes, capacity measurements of nickel electrodes, scanning electron microscopy, surface area measurements, and chemical analyses. Results have indicated that failure mode and change in the nickel electrode varied as the concentration was varied, especially when the concentration was changed from 31 percent or higher to 26 percent or lower.

  19. Canine osteosarcoma cell lines from patients with differing serum alkaline phosphatase concentrations display no behavioural differences in vitro.

    Science.gov (United States)

    Holmes, K E; Thompson, V; Piskun, C M; Kohnken, R A; Huelsmeyer, M K; Fan, T M; Stein, T J

    2015-09-01

    Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumour size, presence of metastatic disease and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behaviour of osteosarcoma cells differ based on serum ALP concentration. Here, we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behaviour differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP, assays were performed to evaluate proliferation, migration, invasion and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion or chemosensitivity between cell lines associated with normal or increased serum ALP concentration. © 2013 Blackwell Publishing Ltd.

  20. Canine osteosarcoma cell lines from patients with differing serum alkaline phosphatase concentrations display no behavioral differences in vitro

    Science.gov (United States)

    Holmes, Katie E.; Thompson, Victoria; Piskun, Caroline M.; Kohnken, Rebecca A.; Huelsmeyer, Michael K.; Fan, Timothy M.; Stein, Timothy J.

    2013-01-01

    Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumor size, presence of metastatic disease, and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behavior of osteosarcoma cells differ based on serum ALP concentration. Here we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behavior differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP assays were performed to evaluate proliferation, migration, invasion, and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion, or chemosensitivity between cell lines associated normal or increased serum ALP concentration. PMID:23489774

  1. KOH concentration effect on the cycle life of nickel-hydrogen cells. Part 4: Results of failure analyses

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    KOH concentration effects on cycle life of a Ni/H2 cell have been studied by carrying out a cycle life test of ten Ni/H2 boiler plate cells which contain electrolytes of various KOH concentrations. Failure analyses of these cells were carried out after completion of the life test which accumulated up to 40,000 cycles at an 80 percent depth of discharge over a period of 3.7 years. These failure analyses included studies on changes of electrical characteristics of test cells and component analyses after disassembly of the cell. The component analyses included visual inspections, dimensional changes, capacity measurements of nickel electrodes, scanning electron microscopy, BET surface area measurements, and chemical analyses. Results have indicated that failure mode and change in the nickel electrode varied as the concentration was varied, especially, when the concentration was changed from 31 percent or higher to 26 percent or lower.

  2. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  3. Development of automatic high-concentration boron measurement technique; Konodo hoso jido sokutei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Honda, S.; Ito, A. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-03-01

    The technology that can automatically measure the boron concentration in boric acid water was developed. A high-concentration boric acid solution must be held at a high temperature to prevent the deposition. Skill and precision ({plus_minus}0.2 to 0.3% for 10 to 2500 ppm as boron concentration, and {plus_minus}2 to 3% for 2500 to 25,000 ppm) are required to analyze the boric acid solution manually. In theory, the boron concentration in a wide range can be measured, and boron has a constant-temperature function. A density hydrometer method that facilitates the treatment and calibration in high precision and at low cost was chosen. The vibration period generated when vibration is given to the solution specimen put in a U-tube is higher as the density is lower. On the basis of this theory, the density of a specimen can be obtained according to the relation with the same data of the known-concentration boric acid water. The high-concentration boric acid water that cannot be measured by the existing boron densitometer can be measured directly. It can also be measured in a low-concentration area. The technique can be used in a laboratory as the simplified method that is replaced by the current manual analysis. The reduction effect of analytical chemical`s waste liquid can also be expected. In the electric power industry, automated equipment is required for high efficiency and labor saving. 13 figs., 3 tabs.

  4. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    Science.gov (United States)

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  5. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    Science.gov (United States)

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  6. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  7. The influence of Fe2+ on growth and development of cells enzymatically isolated from Porphyra yezoensis blades

    Science.gov (United States)

    Songdong, Shen; Jixun, Dai

    2005-03-01

    Fe2+ acted as an accessorial factor for many cellular enzymatic reactions is very important for seaweed growth and development, but the Fe2+ requirement in nori had not been seen, Porphyra yezoensis cells were separated enzymatically and cultured in a series of sterilized seawater media containing various concentrations of Fe2+. The growth development and cell were investigated in this work. Through this experiment, two biologically-meant concentration scales were found, one is low concentrations, 12.1-102.1 μg/L, 10-100 times than that in seawater, favoring the development of isolated cells of Porphyra and the other was high concentrations, more than 10mg/L inhibiting the cell growth, leading to the deformity and shrinkage of the cells. At the concentration of 50 mg/L, the cells stopped growing and died eventually.

  8. Stomatal and pavement cell density linked to leaf internal CO2 concentration

    Czech Academy of Sciences Publication Activity Database

    Šantrůček, Jiří; Vráblová, M.; Šimková, Marie; Hronková, Marie; Drtinová, M.; Květoň, J.; Vrábl, D.; Kubásek, J.; Macková, J.; Wiesnerová, Dana; Neuwithová, J.; Schreiber, L.

    2014-01-01

    Roč. 114, č. 2 (2014), s. 191-202 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP501/12/1261 Institutional support: RVO:60077344 Keywords : Stomatal density * Stomata development * Pavement cells Subject RIV: CE - Biochemistry Impact factor: 3.654, year: 2014

  9. Technology Enabling Ultra High Concentration Multi-Junction Cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M.; Colter, Peter

    2016-03-30

    The project goal is to enable multijunction cells to operate at greater than 2000× suns intensity with efficiency above forty percent. To achieve this goal the recipients have developed a robust high-bandgap tunnel junction, reduce series resistance, and integrated a practical heat dissipation scheme.

  10. The biochemistry of hematopoietic stem cell development.

    Science.gov (United States)

    Kaimakis, P; Crisan, M; Dzierzak, E

    2013-02-01

    The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC

  11. Development of a 10 Hz measurement system for atmospheric aerosol concentration

    International Nuclear Information System (INIS)

    Bouarouri, Assia

    2014-01-01

    The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (10 3 -10 5 cm -3 ) within a response time of 100 ms. Two ion sources, point-to-hole and wire-to-slit have been characterized. The increase of the ion flow in the post-discharge by EHD ion confinement in both the discharge gap and the hole has been shown. At first, using an experimental survey driven in two mixing configurations, concentric and face-to-face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and N i .t product, with N i , the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (N i 0 ≥10 9 cm -3 ) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory. The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-to-hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-concentration data inversion. The preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (10 3 cm -3 ) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other

  12. Sensor development for in situ detection of concentration polarization and fouling of reverse osmosis membranes

    Science.gov (United States)

    Detrich, Kahlil T.; Goulbourne, Nakhiah C.

    2009-03-01

    The purpose of this research is to evaluate three polymer electroding techniques in developing a novel in situ sensor for an RO system using the electrical response of a thin film composite sensor. Electrical impedance spectroscopy (EIS) was used to measure the sensor response when exposed to sodium chloride solutions with concentrations from 0.1 M to 0.8 M in both single and double bath configurations. An insulated carbon grease sensor was mechanically stable while a composite Direct Assembly Process (DAP) sensor was fragile upon hydration. Scanning electron microscopy results from an impregnation-reduction technique showed gold nanoparticles were deposited most effectively when presoaked in a potassium hydroxide solution and on an uncoated membrane; surface resistances remained too high for sensor implementation. Through thickness carbon grease sensors showed a transient response to changes in concentration, and no meaningful concentration sensitivity was noted for the time scales over which EIS measurements were taken. Surface carbon grease electrodes attached to the polyamide thin film were not sensitive to concentration. The impedance spectra indicated the carbon grease sensor was unable to detect changes in concentration in double bath experiments when implemented with the polyamide surface exposed to salt solutions. DAP sensors lacked a consistent response to changes in concentration too. A reverse double bath experiment with the polysulfone layer exposed to a constant concentration exhibited a transient impedance response similar to through thickness carbon grease sensors in a single bath at constant concentration. These results suggest that the microporous polysulfone layer is responsible for sensor response to concentration.

  13. Evaluation of droplet digital PCR for quantification of residual leucocytes in red blood cell concentrates.

    Science.gov (United States)

    Doescher, A; Loges, U; Petershofen, E K; Müller, T H

    2017-11-01

    Enumeration of residual white blood cells in leucoreduced blood components is essential part of quality control. Digital PCR has substantially facilitated quantitative PCR and was thus evaluated for measurements of leucocytes. Target for quantification of leucocytes by digital droplet PCR was the blood group gene RHCE. The SPEF1 gene was added as internal control for the entire assay starting with automated DNA extraction. The sensitivity of the method was determined by serial dilutions of standard samples. Quality control samples were analysed within 24 h, 7 days and 6 months after collection. Routine samples from leucodepleted red blood cell concentrates (n = 150) were evaluated in parallel by flow-cytometry (LeucoCount) and by digital PCR. Digital PCR reliably detected at least 0·4 leucocytes per assay. The mean difference between PCR and flow-cytometric results from 150 units was -0·01 (±1·0). DNA samples were stable for up to at least six months. PCR measurement of leucocytes in samples from plasma and platelet concentrates also provided valid results in a pilot study. Droplet digital PCR to enumerate leucocytes offers an alternative for quality control of leucoreduced blood products. Sensitivity, specificity and reproducibility are comparable to flow-cytometry. The option to collect samples over an extended period of time and the automatization introduce attractive features for routine quality control. © 2017 International Society of Blood Transfusion.

  14. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  15. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  16. Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations.

    Science.gov (United States)

    de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga

    2014-08-01

    One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.

  17. Prospects for development of fuel cells

    Directory of Open Access Journals (Sweden)

    В. М. Шабер

    2017-10-01

    Full Text Available The article is devoted to the solution of a complex of problems that arise in small and medium-scale treatment complexes, gas production plants and small and medium-capacity power plants associated with the processing of crude methane and the possibility of reducing the greenhouse effect.The economic feasibility of the development of fuel cells (FC on raw biomethane was demonstrated by the authors in previous publications.The specificity of the solution of problems is focused on small and medium-scale treatment complexes, gas production plants and small and medium power plants.The aim of the study is to show the possibility of solving a multicomponent task of developing fuel cells, including the experimental determination of the actual use of sodium formate as a reducing agent for the production of electricity in a fuel cell (FC.Results are the following: the possibility of solving the issues of reducing greenhouse gas emissions into the atmosphere during processing of waste products of human vital activity is proved. A method for converting methane and carbon dioxide emissions into useful products is shown.

  18. Effects of export concentration on CO2 emissions in developed countries: an empirical analysis.

    Science.gov (United States)

    Apergis, Nicholas; Can, Muhlis; Gozgor, Giray; Lau, Chi Keung Marco

    2018-03-08

    This paper provides the evidence on the short- and the long-run effects of the export product concentration on the level of CO 2 emissions in 19 developed (high-income) economies, spanning the period 1962-2010. To this end, the paper makes use of the nonlinear panel unit root and cointegration tests with multiple endogenous structural breaks. It also considers the mean group estimations, the autoregressive distributed lag model, and the panel quantile regression estimations. The findings illustrate that the environmental Kuznets curve (EKC) hypothesis is valid in the panel dataset of 19 developed economies. In addition, it documents that a higher level of the product concentration of exports leads to lower CO 2 emissions. The results from the panel quantile regressions also indicate that the effect of the export product concentration upon the per capita CO 2 emissions is relatively high at the higher quantiles.

  19. The concentration of copper, zinc and molybdenum in serum and red blood cells of Filipinos

    International Nuclear Information System (INIS)

    Cruz, B. de la; Lansangan, L.M.; Asprer, G.A.; Paradero, R.R.; Acuna, T.T.

    1975-01-01

    Eighty-two samples of serum and red blood cells from 32 normal subjects and 50 patients with hypertension, old myocardial infarct and diabetes mellitus were analyzed by neutron activation analysis for copper, zinc and molybdenum. The mean value of copper in the normal serum (0.56 μg/g) was found to be lower than the reported mean values of 1.13 μg/g and 1.15 μg/g for foreign subjects. The mean value of copper in the normal red blood cells (0.55 μg/g) was also found to be lower than the reported values of 0.92 μg/g and 0.95 μg/g among foreigners. The mean concentration of copper in the serum of patients with hypertension and old myocardial infarct (1.02+-0.25 μg/g) and diabetes mellitus (1.06+-0.02 μg/g) were higher than the normal value of 0.56+-0.15 μg/g. The mean concentration of zinc in the serum of patients with hypertension and old myocardial infarct (0.74+-0.38 μg/g) and in diabetes mellitus (0.61+-0.33 μg/g) were lower than the normal value of 1.25+-0.58 μg/g. The level of copper in the red blood cells of patients with hypertension and old myocardial infarct (0.99+-0.62 μg/g) and diabetes mellitus (0.75+-0.39 μg/g) were found to be higher than the normal value of (0.55+-0.41) μg/g). The mean concentration of molybdenum in the red blood cells of patients with hypertension and old myocardial infarct (1.16+-0.73 μg/g) and diabetes mellitus (1.55+-0.91 μg/g) were higher than the normal level of 0.73+-0.43 μg/g. The results are discussed

  20. INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS

    Science.gov (United States)

    Morgan; Potts; Oates

    1994-09-01

    The intracellular concentrations of sodium, chloride, phosphorus and potassium under normal conditions in pavement epithelial (PE) cells of brown trout (Salmo trutta) gill were 66, 51, 87 and 88 mmol l-1 respectively. The concentrations of these elements under identical conditions in mitochondria-rich (MR) cells were not significantly different, except for that of chlorine, which was lower in MR cells (40 mmol l-1). The concentration of sodium in the PE cells decreased slightly after exposure of the fish to low external [Na+] (25 µmol l-1) for 7 days but increased greatly within 5 min of subsequent exposure to 1 mmol l-1 external Na+. These changes in external [Na+] had no significant effect on MR cells. Exposure of fish to low [Cl-] (25 µmol l-1) had no effect on PE or MR cells, but on exposure to 1 mmol l-1 Cl- the concentrations of chlorine, phosphorus and potassium in both types of cells increased, whilst the intracellular sodium concentration decreased only in MR cells. The PE cells were little affected by exposure of the fish to the carbonic anhydrase inhibitor acetazolamide. In contrast, 0.5 mmol l-1 external acetazolamide caused a significant decrease in intracellular phosphorus, chlorine and potassium concentrations in MR cells. This suggests that the PE cells are the sites of sodium uptake in the gills of the brown trout and that chloride uptake occurs via the MR cells. These results are discussed with respect to the sites and possible mechanisms of ionic exchange in freshwater vertebrates.

  1. Aluminum-air power cell research and development

    Science.gov (United States)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  2. Relations between fluxes and concentrations of Na in cell suspensions of Acer pseudoplatanus

    International Nuclear Information System (INIS)

    Pennarun, A.-M.

    1978-01-01

    Taking in account the data provided by preliminary compartmental analysis, the net influxes of 24 Na measured in Acer cells after a short loading period (45 minutes) followed by a short wash (1 minute) represent the influx across the plasmalemma (phi sub(0c)) and, after a long loading period (4 hours) followed by a long wash (2 hours) represent the quasi-steady influx from the external solution to the vacuole (phi sub(0v). At flux equilibrium and when the external Na concentration is high enough, the other unidirectional fluxes - phi sub(c0), phi sub(cv) and phi sub(vc) - can be determined from these measurements. This method was used to study the variation of Na flux in terms of the external concentrations and the resulting internal concentrations. The kinetics obtained confirm the active nature of the efflux phi sub(vc) across the tonoplast according to the conclusions given by the application of the USSING-TEORELL criterion to the results of compartmental analysis. On the contrary, they suggest a passive character for the efflux phi sub(c0) accross the plasmalemma which could be considered as active according to the USSING-TEORELL criterion. The contradiction could be eliminated by taking into consideration the important underestimation of the Na activity coefficient in the cytoplasm, due to the neglecting of water binding [fr

  3. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.

    Science.gov (United States)

    Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2016-12-08

    A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    Science.gov (United States)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  5. Activation/Inhibition of mast cells by supra-optimal antigen concentrations.

    Science.gov (United States)

    Huber, Michael

    2013-01-22

    Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with "its own Ag", thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5'-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra

  6. Effects of Supplementing Concentrates Differing in Carbohydrate Composition in Veal Calf Diets: II. Rumen Development

    NARCIS (Netherlands)

    Suárez, B.J.; Reenen, van C.G.; Gerrits, W.J.J.; Stockhofe, N.; Vuuren, van A.M.; Dijkstra, J.

    2006-01-01

    The objective of this experiment was to examine the effects of concentrates in feed, differing in carbohydrate source, on the rumen development of veal calves. For this purpose, 160 male Holstein Friesian x Dutch Friesian crossbred calves were used in a complete randomized block design with a 5 x 2

  7. Gastrointestinal development of dairy calves fed low- or high-starch concentrate at two milk allowances

    DEFF Research Database (Denmark)

    Kosiorowska, Anna Katarzyna; Puggaard, Liselotte; Hedemann, Mette Skou

    2011-01-01

    The objective was to study the effect of type of concentrate with varying starch and fibre content on growth and gastrointestinal development in preweaned dairy calves. Thirty-two newborn Danish Holstein male calves were allocated to four treatment groups in eight blocks of four calves. An experi...

  8. Improved premises for cell factory development

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie

    The sustainable manufacturing of medicines, materials and chemicals is enabled with biotechnology, and the key to the development of new processes, as well as improvement of existing ones, lies in our fundamental understanding of the biological systems we manipulate. Recombinant protein production...... is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed over the past four decades for this purpose. Understanding of the genetic code and our ability to manipulate genetic material, paves the way for the microbial cell factory development that enables production......, and building a platform for enhanced expression of certain plant genes in bacteria. The relevance of the conducted research to the field of biotechnology is covered, as well as necessary scientific background and history. Specifically, the surprisingly minor effects of tRNA overexpression on the production...

  9. Usefulness of estimation of blood procalcitonin concentration versus C-reactive protein concentration and white blood cell count for therapeutic monitoring of sepsis in neonates

    Directory of Open Access Journals (Sweden)

    Agnieszka Kordek

    2014-12-01

    Full Text Available Aim: This study was intended to assess the clinical usefulness of blood procalcitonin (PCT concentrations for the diagnosis and therapeutic monitoring of nosocomial neonatal sepsis.Material/Methods: The enrolment criterion was sepsis clinically manifesting after three days of life. PCT concentrations were measured in venous blood from 52 infected and 88 uninfected neonates. The results were interpreted against C-reactive protein (CRP concentrations and white blood cell counts (WBC.Results: Differences between the two groups in PCT and CRP concentrations were highly significant. No significant differences between the groups were noted for WBC. The threshold value on the receiver operator characteristic curve was 2.06 ng/mL for PCT (SE 75%; SP 80.68%; PPV 62.22%; NPV 88.75%; AUC 0.805, 5.0 mg/L for CRP (SE 67.44%; SP 73.68%; PPV 42.02%; NPV 88.89%; AUC 0.801, and 11.9 x109/L for WBC (SE 51.16%; SP 50.68%; PPV 23.16%; NPV 78.13%; AUC 0.484. Procalcitonin concentrations decreased 24 hours after initiation of antibiotic therapy and reverted to the control level after 5-7 days. C-reactive protein concentrations began to decline after two days of antibiotic therapy but were still higher than in the control group after 5-7 days of treatment. No significant changes in WBC during the treatment were observed.Conclusions: Procalcitonin concentrations in blood appear to be of use for the diagnosis and therapeutic monitoring of nosocomial infections in neonates as this parameter demonstrates greater sensitivity and specificity than C-reactive protein. White blood cell counts appear to be of little diagnostic value in the early phase of infection or for therapeutic monitoring.

  10. Performance, rumen development, and carcass traits of male calves fed starter concentrate with crude glycerin

    Directory of Open Access Journals (Sweden)

    Raylon Pereira Maciel

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to assess the effects of including crude glycerin in the diet on intake, performance, rumen development, and carcass traits of dairy crossbred veal calves fed starter concentrate containing 0, 80, 160, and 240 g kg−1 crude glycerin. Twenty-eight calves with an average weight of 38.03±6.7 kg and five days of age were distributed in a completely randomized design with four treatments with seven replications. Calves were individually housed in covered stalls equipped with feeders and drinkers for 56 days. The calf response to inclusion of crude glycerin in the concentrate changed over the weeks and the inclusion level of 240 g kg−1 resulted in greater dry matter intake and average daily gain. There was no effect on the final weight and total weight gain of the animals, with mean values of 73.60 and 35.16 kg, respectively. The weight of the rumen-reticulum adjusted for body weight, empty body weight, and total stomach weight increased linearly with the inclusion of crude glycerin. Blood total protein, globulin, urea, cholesterol, gamma glutamyl transferase, aspartate aminotransferase, and alkaline phosphatase concentrations did not differ among treatments. Carcass traits and meat color were not affected. Crude glycerin can be added to dairy calf starter concentrate up to 240 g kg−1 dry matter because it benefits concentrate intake, performance, and rumen development without affecting animal health.

  11. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

      The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc.......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid...

  12. Relationship Between Iodine Concentration in Maternal Colostrum and Neurobehavioral Development of Infants in Shanghai, China.

    Science.gov (United States)

    Wu, Meiqin; Wu, Deqing; Wu, Wei; Li, Hui; Cao, Lulu; Xu, Jian; Yu, Xiaodan; Bian, Xiaoyan; Yan, Chonghuai; Wang, Weiye

    2016-08-01

    It is well known that iodine plays an important role in the process of early growth and development of most organs, especially the brain. However, iodine concentration in the colostrum and its association with the neurobehavioral development of infants remains unclear. Colostrums from 150 women were collected, and their iodine concentrations were measured. The median colostrum iodine level was 187.8 μg/L. The Bayley Scales of Infant and Toddler Development-III test was performed when the infants were about 18 months. The mean cognitive, language, and motor composite scores were 105.3 ± 9.8, 105.2 ± 11.1, and 104.6 ± 6.7, respectively. And the mean scores of the 5 subtests were 11.1 ± 2.0, 9.3 ± 2.0, 12.4 ± 2.3, 11.1 ± 1.2, and 10.4 ± 1.2, respectively. No statistically significant difference was observed in the cognition, language, or motor development of infants across different levels of colostrum iodine. After adjusting for a range of confounding factors, colostrum iodine concentration was a predictor of motor development, specifically gross motor development. © The Author(s) 2016.

  13. Melaleuca alternifolia Concentrate Inhibits in Vitro Entry of Influenza Virus into Host Cells

    Directory of Open Access Journals (Sweden)

    Lifang Jiang

    2013-08-01

    Full Text Available Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.

  14. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  15. Mast cell concentration and skin wound contraction in rats treated with Brazilian pepper essential oil (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Estevão, Lígia Reis Moura; Medeiros, Juliana Pinto de; Simões, Ricardo Santos; Arantes, Rosa Maria Esteves; Rachid, Milene Alvarenga; Silva, Regildo Márcio Gonçalves da; Mendonça, Fábio de Souza; Evêncio-Neto, Joaquim

    2015-04-01

    To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. The treated group showed higher mast cell concentrations (poil increases mast cell concentration and promotes skin wound contraction in rats.

  16. Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells

    International Nuclear Information System (INIS)

    Gosak, Marko; Dolenšek, Jurij; Markovič, Rene; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž

    2015-01-01

    Highlights: • Physiological processes within and among pancreatic beta cells are very complex. • We analyze the simultaneous recordings of membrane potential and calcium dynamics. • We represent the interaction patterns among beta cells as a multilayer network. • The nature of the intracellular dynamics is found to rely on the network structure. - Abstract: Modern theory of networks has been recognized as a very successful methodological concept for the description and analysis of complex systems. However, some complex systems are more complex than others. For instance, several real-life systems are constituted by interdependent subsystems and their elements are subjected to different types of interactions that can also change with time. Recently, the multilayer network formalism has been proposed as a general theoretical framework for the description and analysis of such multi-dimensional complex systems and is acquiring more and more prominence in terms of a new research direction. In the present study, we use this methodology for the description of functional connectivity patterns and signal propagation between pancreatic beta cells in an islet of Langerhans at the levels of membrane potential (MP) and cytosolic calcium concentration ([Ca"2"+]_c) dynamics to study the extent of overlap in the two networks and to clarify whether time lags between the two signals in individual cells are in any way dependent on the role these cells play in the functional networks. The two corresponding network layers are constructed on the basis of signal directions and pairwise correlations, whereas the interlayer connections represent the time lag between both measured signals. Our results confirm our previous finding that both MP and [Ca"2"+]_c change spread across an islet in the form of a depolarization and a [Ca"2"+]_c wave, respectively. Both types of waves follow nearly the same path and the networks in both layers have a similar but not entirely the same structure

  17. Clear cell hidradenocarcinoma developing in pacemaker pocket.

    Science.gov (United States)

    Reyes, Cesar V

    2008-11-01

    An octagenerian woman developed clear cell hidradenocarcinoma, a rare neoplasm of eccrine sweat gland origin, 4 years following pacemaker implantation in her right lateral chest. The tumor immunohistochemically mimicked a metastatic lobular breast carcinoma, for example, strongly positive estrogen, weakly positive progesterone, and weakly reactive mammoglobin. A complete surgical excision of the tumor was complemented with ipsilateral dissection of involved adjacent axillary lymph nodes. Recommended irradiation was refused by the patient. Retrospective 3-year mammogram review, 2-year postsurgery follow-up, and complete postmortem evaluation failed to prove a primary breast malignancy or other metastatic lesion elsewhere.

  18. Exergy, Energy, and Dynamic Parameter Analysis of Indigenously Developed Low-Concentration Photovoltaic System

    OpenAIRE

    Pankaj Yadav; Brijesh Tripathi; Manoj Kumar

    2013-01-01

    Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when conce...

  19. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    International Nuclear Information System (INIS)

    Roepke, Troy A.; Snyder, Mark J.; Cherr, Gary N.

    2005-01-01

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17β-estradiol (E 2 ), estrone (E 1 ), estriol (E 3 ), progesterone (P 4 ) and 17α-ethynylestradiol (EE 2 )). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC 50 values for a reduction in normal development was as follows: TBT L.anamesus > OCT > TBT S. p urpuratus >> E 2 > EE 2 > DDD >> BisA > P 4 > E 1 >> E 3 . The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E 2 , OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor-mediated actions. Tamoxifen, a partial ER agonist, alone inhibited development at

  20. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development

    DEFF Research Database (Denmark)

    Stubbe, Jane; Madsen, Kirsten; Nielsen, Finn Thomsen

    2006-01-01

    In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning (P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested...

  1. Development of a process to reduce the uranium concentration of liquid radioactive waste

    International Nuclear Information System (INIS)

    Fuentealba Toro, Edgardo David

    2015-01-01

    The purpose of radioactive waste management is to prevent the discharge of waste into the biosphere, a function carried out in Chile by the Chilean Nuclear Energy Commission (CCHEN), which stores around 500 [L] of these organic and inorganic waste in cans coming from research of Universities and CCHEN' laboratories. Within the inorganic liquid waste are concentrations of Uranyl salts with sulfates, chlorides and phosphates. The purpose of this work is to develop at laboratory level a process to concentrate and precipitate uranium salts (Sulfate and Uranyl Chloride) present in radioactive liquid effluents, because in the case of these very long period wastes in liquid state, the most widely used processes are aimed at concentrating or extracting radioactive compounds through separation processes, for their conditioning and final storage under conditions whose radiological risk is minimized. The selected process is liquid-liquid extraction, being evaluated solvents such as benzene and kerosene with the following extractants: tri-n-octylphosphine oxide (TOPO), di-2-ethylhexyl phosphoric acid (DEHPA) and Cyanex© 923. To determine the extraction conditions, which allow to reduce the concentration of uranium to values lower than 10 ppm, the extractant concentration was modified from 0.05 to 0.41 [M] with solvent volume / residue (VO/VA) ratios of 0.2 to 0.5, at an initial concentration of 8,446 [gU/L] and subsequent precipitation of uranium extracted by a reaction with ammonium carbonate. From these experimental tests the maximum extraction conditions were determined. To the generated effluents, a second stage of extraction was necessary in order to reduce its concentration below 10 [mg / L]. The experimental tests allowed to reduce the concentration under 2.5 [mgU/L], equivalent to 99.97% extraction efficiency. The tests with Cyanex© 923 in replacement of the TOPO, allowed to obtain similar results and even better in some cases, due to the fact that final

  2. Increases in cellular calcium concentration stimulate pepsinogen secretion from dispersed chief cells

    International Nuclear Information System (INIS)

    Raufman, J.P.; Berger, S.; Cosowsky, L.; Straus, E.

    1986-01-01

    Intracellular calcium concentration ([Ca]i) and pepsinogen secretion from dispersed chief cells from guinea pig stomach were determined before and after stimulation with calcium ionophores. [Ca]i was measured using the fluorescent probe quin2. Basal [Ca]i was 105 +/- 4 nM. Pepsinogen secretion was measured with a new assay using 125 I-albumin substrate. This assay is 1000-fold more sensitive than the widely-used spectrophotometric assay, technically easy to perform, rapid, and relatively inexpensive. The kinetics and stoichiometry of ionophore-induced changes in [Ca]i and pepsinogen secretion were similar. These data support a role for calcium as a cellular mediator of pepsinogen secretion

  3. GUM approach to uncertainty estimations for online 220Rn concentration measurements using Lucas scintillation cell

    International Nuclear Information System (INIS)

    Sathyabama, N.

    2014-01-01

    It is now widely recognized that, when all of the known or suspected components of errors have been evaluated and corrected, there still remains an uncertainty, that is, a doubt about how well the result of the measurement represents the value of the quantity being measured. Evaluation of measurement data - Guide to the expression of Uncertainty in Measurement (GUM) is a guidance document, the purpose of which is to promote full information on how uncertainty statements are arrived at and to provide a basis for the international comparison of measurement results. In this paper, uncertainty estimations following GUM guidelines have been made for the measured values of online thoron concentrations using Lucas scintillation cell to prove that the correction for disequilibrium between 220 Rn and 216 Po is significant in online 220 Rn measurements

  4. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Busse, P.M.

    1980-01-01

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G 1 is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while there is no concentration threshold for the slowing of progression through G 1 . Progression through G 2 appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G 2 is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G 1 cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G 1 and G 2 cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders

  5. Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms

    Science.gov (United States)

    Van Laar, Tricia A.; Chen, Tsute; You, Tao

    2015-01-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells. PMID:25583711

  6. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  7. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples

    International Nuclear Information System (INIS)

    Štrok, Marko; Hintelmann, Holger; Dimock, Brian

    2014-01-01

    Highlights: • The method for the quantitative pre-concentration of Hg from seawater was developed. • First report of Hg isotope ratios in seawater is presented. • A unique mass independent 200 Hg isotope fractionation was observed. • This fractionation has unique potential to distinguish anthropogenic and natural Hg. - Abstract: Hg concentrations in seawater are usually too low to allow direct (without pre-concentration and removal of salt matrix) measurement of its isotope ratios with multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS). Therefore, a new method for the pre-concentration of Hg from large volumes of seawater was developed. The final method allows for relatively fast (about 2.5 L h −1 ) and quantitative pre-concentration of Hg from seawater samples with an average Hg recovery of 98 ± 6%. Using this newly developed method we determined Hg isotope ratios in seawater. Reference seawater samples were compared to samples potentially impacted by anthropogenic activity. The results show negative mass dependent fractionation relative to the NIST 3133 Hg standard with δ 202 Hg values in the range from −0.50‰ to −1.50‰. In addition, positive mass independent fractionation of 200 Hg was observed for samples from reference sites, while impacted sites did not show significant Δ 200 Hg values. Although the influence of the impacted sediments is limited to the seawater and particulate matter in very close proximity to the sediment, this observation may raise the possibility of using Δ 200 Hg to distinguish between samples from impacted and reference sites

  8. Development of a package program for estimating ground level concentrations of radioactive gases

    International Nuclear Information System (INIS)

    Nilkamhang, W.

    1986-01-01

    A package program for estimating ground level concentration of radioactive gas from elevate release was develop for use on IBM P C microcomputer. The main program, GAMMA PLUME NT10, is based on the well known VALLEY MODEL which is a Fortran computer code intended for mainframe computers. Other two options were added, namely, calculation of radioactive gas ground level concentration in Ci/m 3 and dose equivalent rate in mren/hr. In addition, a menu program and editor program were developed to render the program easier to use since the option could be readily selected and the input data could be easily modified as required through the keyboard. The accuracy and reliability of the program is almost identical to the mainframe. Ground level concentration of radioactive radon gas due to ore program processing in the nuclear chemistry laboratory of the Department of Nuclear Technology was estimated. In processing radioactive ore at a rate of 2 kg/day, about 35 p Ci/s of radioactive gas was released from a 14 m stack. When meteorological data of Don Muang (average for 5 years 1978-1982) were used maximum ground level concentration and the dose equivalent rate were found to be 0.00094 p Ci/m 3 and 5.0 x 10 -10 mrem/hr respectively. The processing time required for the above problem was about 7 minutes for any case of source on IBM P C which was acceptable for a computer of this class

  9. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.

    Science.gov (United States)

    Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A

    2016-06-01

    This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and low fertility showing no symptoms (visible and physiological) of phytotoxicity or deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples.

    Science.gov (United States)

    Štrok, Marko; Hintelmann, Holger; Dimock, Brian

    2014-12-03

    Hg concentrations in seawater are usually too low to allow direct (without pre-concentration and removal of salt matrix) measurement of its isotope ratios with multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS). Therefore, a new method for the pre-concentration of Hg from large volumes of seawater was developed. The final method allows for relatively fast (about 2.5Lh(-1)) and quantitative pre-concentration of Hg from seawater samples with an average Hg recovery of 98±6%. Using this newly developed method we determined Hg isotope ratios in seawater. Reference seawater samples were compared to samples potentially impacted by anthropogenic activity. The results show negative mass dependent fractionation relative to the NIST 3133 Hg standard with δ(202)Hg values in the range from -0.50‰ to -1.50‰. In addition, positive mass independent fractionation of (200)Hg was observed for samples from reference sites, while impacted sites did not show significant Δ(200)Hg values. Although the influence of the impacted sediments is limited to the seawater and particulate matter in very close proximity to the sediment, this observation may raise the possibility of using Δ(200)Hg to distinguish between samples from impacted and reference sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction

    DEFF Research Database (Denmark)

    Shitu, J. O.; Chartrain, M.; Woodley, John

    2009-01-01

    The presence of high concentrations of substrate or product may impede the optimal functioning of a biocatalyst, more so in the case of whole cell biocatalysts where the metabolic status of the cells may be compromised. In this article we investigate these effects using as an example the Baeyer-V...

  12. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    Directory of Open Access Journals (Sweden)

    Samuel C. Kim

    2015-10-01

    Full Text Available Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922 treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method.

  13. Cigarette Smoking Is Associated with a Lower Concentration of CD105+ Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Shaul Beyth

    2015-01-01

    Full Text Available Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs, known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t= 3.2, P=0.004. This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair.

  14. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    Science.gov (United States)

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  15. MECHANICAL STRENGTH ENHANCEMENT OF OPEN-CELL ALUMINA FOAMS USING OPTIMUM CONCENTRATION OF DEFLOCCULANT

    Directory of Open Access Journals (Sweden)

    A. Hadi

    2015-06-01

    Full Text Available Open-cell alumina foams were prepared using the appropriate alumina slurry and polyurethane sponge with linear pore density of approximately 14 pores per inch (ppi as a template by the replica method. The rheological studies showed that the optimum solid content for the slurries without deflocculants was 60 wt. %. In order to increase the slurry solid content, Tiron (1,2-dihydroxy-3,5-benzene disulfonic acid disodium salt was used as dispersant. To determine the optimum concentration of dispersant, the viscosity curves of alumina slurries containing different values of Tiron from 0 to 1.2 wt. % (based on dry material weight were studied. The optimum concentration of Tiron obtained for lowest viscosity was 0.8 wt. %. Thus, the solid content in the slurry could be increased from 60 to 66 wt. %. The effect of increase in the slurry solid content and the way it affects the foam structure and the mechanical strength were investigated. Microstructural observations of the foams show a significant reduction in macroscopic and microscopic defects in the foam struts when the slurry solid content is increased. Total porosity of the produced alumina foams prepared using slurries containing 60 and 66 wt. % solid are 83.3 and 80.4 %, respectively, while the compressive strength of the foams has increased from 1.33 to 3.24 MPa.

  16. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Canepa, Silvia

    2015-01-01

    We investigated the combined effect of the initial cell density (12 500, 35 000, 75 000, and 100 000 cells cm−2) and concentration of the anti-cancer drug doxorubicin on HeLa cells by performing timedependent cytotoxicity assays using real-time electrochemical impedance spectroscopy. A correlation...... between the rate of cell death and the initial cell seeding density was found at 2.5 μM doxorubicin concentration, whereas this was not observed at 5 or 100 μM. By sensing the changes in the cell–substrate interaction using impedance spectroscopy under static conditions, the onset of cytotoxicity...... was observed 5 h earlier than when using a standard colorimetric end-point assay (MTS) which measures changes in the mitochondrial metabolism. Furthermore, with the MTS assay no cytotoxicity was observed after 15 h of incubation with 2.5 μM doxorubicin, whereas the impedance showed at this time point cell...

  17. Boron concentration measurements by alpha spectrometry and quantitative neutron autoradiography in cells and tissues treated with different boronated formulations and administration protocols

    International Nuclear Information System (INIS)

    Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi,; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio

    2014-01-01

    The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. - Highlights: • A method for 10B measurements in samples based on neutron autoradiography was developed. • The results were compared with those of alpha spectrometry applied on tissue and cell samples. • Boronated liposomes were developed and administered to osteosarcoma cell cultures. • Neutron autoradiography was employed to measure boron concentration due to liposomes. • Liposomes were proved to be more effective in concentrating boron in cells than BPA

  18. Regularities of development of unspecific reaction of cells, and modification of chemical protection

    International Nuclear Information System (INIS)

    Veksler, A.M.; Korystov, Yu.N.; Kublik, L.N.; Ehjdus, L.Kh.

    1979-01-01

    Regularities of development of a unspecific reaction of cells under the effect of different substances belonging to weak electrolytes have been studied. It was demonstrated that the rate of the unspecific reaction development under the effect of cysteamine and caffeine-benzoate depends on the agent concentration, temperature and pH of a medium. It was established that the response of a cell is determined by the overall intracellular concentration of the agent rather than by its specific character. The total concentration of the substance inside the cell depends on its physico-chemical characteristics and, with a pH gradient between cell and medium, can markedly vary from that in the medium. With similar intracellular content, both substances proved to be virtually equally effective. This suggests that it is possible to assess the effectiveness of some other biologically active substances many of which are weak electrolytes

  19. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    Science.gov (United States)

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  20. Effects of Platelets on Platelet Concentrate Product on the Activation of Human Peripheral Blood Monocyte Cells

    Directory of Open Access Journals (Sweden)

    N Sadat Razavi Hoseini

    2016-02-01

    Full Text Available Introduction: Monocytes can interact with platelets due to their surface molecules such as P-selectin glycoprotein ligand-1 (PSGL-1, and form monocyte-platelet complex. In the present study, the effects of platelets interaction of platelet concentrates (PCs and peripheral blood monocytes were investigated in vitro as a model to predict the probable interactions of these cells and consequently activation of monocytes. Methods: In this experimental study, units of whole blood and PCs were prepared from Tehran Blood Transfusion Center. After isolation of monocytes from the whole blood, these cells were treated with PC- derived platelets. The activation of monocytes was assessed before and after treatment by the analysis of the respiratory burst of monocytes using dihydrorhodamine 123 (DHR-123. The study data were analyzed using the non-parametric test of Wilcoxon. Results: The purity of monocytes was determined as 86.1±2 using NycoPrep method. The respiratory burst of monocytes was increased after exposure with platelets. In fact, the difference was significant when platelets were used on the 5th day of storage (P=0.001. Conclusions: The study findings revealed that platelets have an efficient capacity to stimulate and activate monocytes. The possible involvement of molecules in the interaction of platelet-monocyte demand to be further studied in future.

  1. Paralytic shellfish toxin concentration and cell density changes in Pyrodinium bahamense -Noctiluca scintillans feeding experiments.

    Science.gov (United States)

    Azanza, Rhodora V; Cruz, Lourdes J; Cariño, Flerida A; Blanco, Alelea G; Butardo, Vito M

    2010-05-01

    For the first time the potential of Noctiluca scintillans, a non-toxic mixotrophic dinoflagellate, in bioconverting and/or excreting saxitoxin has been illustrated, thus contributing to the limited knowledge on the aspects of toxin pathways in the food chain/web and predator-prey preferences. Noctiluca growth rate increased with higher Pyrodinium concentration but the ratio of Noctiluca to Pyrodinium should at least be 1:250 cells per mL. Noctiluca fed with Pyrodinium alone was found to decrease in number suggesting that the nutrients from this prey were insufficient. This was confirmed by the improved cell density of Noctiluca upon addition of 0.01% casitone to the Pyrodinium-fed Noctiluca. The alternative prey (Gymnodinium sanguineum) slowed down the grazing impact of Noctiluca on Pyrodinium. Noctiluca depleted Gymnodinium earlier than Pyrodinium showing preference over a prey with less saxitoxin. After the feeding experiments, total saxitoxin levels decreased to 72% in the Noctiluca-Pyrodinium setup whereas no saxitoxin was detected in the Noctiluca culture fed with Pyrodinium and G. sanguineum. It is possible that Gymnodinium can provide some nutrients needed to make Noctiluca more efficient in bioconverting saxitoxin. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    International Nuclear Information System (INIS)

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-01-01

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100 0 C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables

  3. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Lain, M.J.; Fletcher, P.A.; Dawson, R.K.; Pottinger, J.S.

    1989-01-01

    The primary aim of the programme is to develop and evaluate remote electrochemical decontamination systems for metal surfaces. The bulk of the waste volume should be reduced to a reuse or low-level waste disposal category, while concentrating most of the activity in a small volume suitable for immobilisation. The goal of the development programme is to test these techniques in both alpha-active and alpha-beta-gamma hot cells in order to ascertain their usefulness as a component of an overall decommissioning strategy. As a result of the radiological environment, particular emphasis will be placed on remote operation in order to reduce occupational radiation exposure. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate will be investigated: immersion of small items in tanks for electroetching and in situ electropolishing. In both cases, reagents will be chosen with their subsequent disposal in mind. (Author)

  4. Early prenatal vitamin D concentrations and social-emotional development in infants.

    Science.gov (United States)

    Chawla, Devika; Fuemmeler, Bernard; Benjamin-Neelon, Sara E; Hoyo, Cathrine; Murphy, Susan; Daniels, Julie L

    2017-12-04

    Many pregnant women in the United States have suboptimal vitamin D, but the impact on infant development is unclear. Moreover, no pregnancy-specific vitamin D recommendations have been widely accepted. Given the ubiquitous expression of vitamin D receptors in the brain, we investigated the association between early prenatal plasma 25-hydroxyvitamin D (25(OH)D) concentrations and children's social and emotional development in the Newborn Epigenetic Study, a prospective study of pregnancies from 2009 to 2011 in Durham, North Carolina. We measured 25(OH)D concentrations in first or second trimester plasma samples and categorized 25(OH)D concentrations into quartiles. Covariates were derived from maternal questionnaires. Mothers completed the Infant Toddler Social-Emotional Development Assessment when children were 12-24 months of age. We used multivariable linear regression to evaluate associations between 25(OH)D and specific behavior scores, adjusted for season of blood draw, maternal age, education, parity, smoking, marital status, prepregnancy BMI, and infant gender. We investigated effect-measure modification by race/ethnicity. Of the 218 mother-infant pairs with complete data, Black mothers had much lower 25(OH)D concentrations as compared to White and Hispanic mothers. After adjustment, lower prenatal 25(OH)D was associated with slightly higher (less favorable) Internalizing scores among White children, but lower (more favorable) Internalizing scores among Black and Hispanic children. Lower prenatal 25(OH)D also appears to be associated with higher (less favorable) dysregulation scores, though only among White and Hispanic children. Though imprecise, preliminary results warrant further investigation regarding a role for prenatal vitamin D on children's early social and emotional development.

  5. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3

    Science.gov (United States)

    Hanck, J. A.; Nekoksa, G.

    1982-08-01

    Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.

  6. Developing Derrida’s Psychoanalytic Graphology: Diametric and Concentric Spatial Movements

    OpenAIRE

    Downes, Paul

    2013-01-01

    Derrida’s work encompasses dynamic spatial dimensions to understanding as a pervasive theme, including the search for a ‘new psychoanalytic graphology’ in Writing and Difference. This preoccupation with a spatial text for repression also occurs later in Archive Fever. Building on Derrida, this paper seeks to develop key aspects of a new dynamic psychoanalytic graphology through diametric and concentric interactive spatial relation. These spatial movements emerge from a radical reconstruction ...

  7. Investigation of concentration overpotential distribution in a polymer electrolyte fuel cell. Paper no. IGEC-1-081

    International Nuclear Information System (INIS)

    Tajiri, K.; Yang, X.-G.; Wang, C.-Y.; Shinohara, K.

    2005-01-01

    Simultaneous measurement of current and high frequency resistance (HFR) distributions has been performed using a segmented polymer electrolyte fuel cell operated with H 2 /air. Each flow plate consisted of twelve segments along a serpentine flow field. Two types of gas diffusion layer (GDL), a treated hydrophobic carbon cloth coated with a microporous layer (MPL) on one side, and an untreated hydrophilic carbon cloth without MPL, were studied and contrasted. The total voltage loss is divided into three overpotentials: the activation, ohmic and concentration; and the concentration overpotential and its distribution are analyzed in detail. While the fuel cell using the GDL with MPL features a nearly uniform concentration overpotential profile, the one without-MPL shows an increase in concentration overpotential along the cathode flow. When the local concentration overpotential is plotted against the local oxygen concentration, the carbon cloth GDL without MPL showed a steeply increasing concentration overpotential with decreasing oxygen concentration, indicating a high sensitivity to the oxygen content. The same trend was observed for the GDL without MPL under lower relative humidity gases. It is thus found that the increase in concentration overpotential with decreasing oxygen concentration is related to the absence of MPL. (author)

  8. Prenatal concentrations of Perfluoroalkyl substances and early communication development in British girls.

    Science.gov (United States)

    Jeddy, Zuha; Hartman, Terryl J; Taylor, Ethel V; Poteete, Cayla; Kordas, Katarzyna

    2017-06-01

    Perfluoroalkyl substances (PFAS), found in many household products and classed as endocrine disrupting chemicals, can be transferred through the placenta and are associated with multiple developmental deficits in offspring. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC), we investigated the association between intrauterine exposure to PFAS and early communication development in 432 mother-daughter dyads at 15 and 38months of age. Concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA) were measured in maternal serum collected during pregnancy. Early communication development was measured with the ALSPAC-adapted MacArthur Communicative Development Inventories for Infants and Toddlers. The infant questionnaire measured verbal comprehension, vocabulary comprehension and production, nonverbal communication, and social development. The toddler questionnaire measured language, intelligibility, and communicative sub-scores. Multivariable linear regression was used to examine associations between each PFAS exposure and each communication sub-scale score. The association between maternal PFAS concentrations and early communication development at 15 and 38months of age varied by maternal age at delivery. In daughters of younger mothers (PFAS was positively and negatively associated with communication development among girls, with inconsistent pattern of association across all measured PFAS and endpoints. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    Science.gov (United States)

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Directory of Open Access Journals (Sweden)

    Shanmiao Gou

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  11. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  12. Low Concentrations of Metformin Selectively Inhibit CD133+ Cell Proliferation in Pancreatic Cancer and Have Anticancer Action

    Science.gov (United States)

    Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133+ but not CD24+CD44+ESA+ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133+ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  13. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead.

    Science.gov (United States)

    Imen, Sanaz; Chang, Ni-Bin; Yang, Y Jeffrey

    2015-09-01

    Adjustment of the water treatment process to changes in water quality is a focus area for engineers and managers of water treatment plants. The desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of total suspended solids (TSS) concentrations. This paper presents the development of a suite of nowcasting and forecasting methods by using high-resolution remote-sensing-based monitoring techniques on a daily basis. First, the integrated data fusion and mining (IDFM) technique was applied to develop a near real-time monitoring system for daily nowcasting of the TSS concentrations. Then a nonlinear autoregressive neural network with external input (NARXNET) model was selected and applied for forecasting analysis of the changes in TSS concentrations over time on a rolling basis onward using the IDFM technique. The implementation of such an integrated forecasting and nowcasting approach was assessed by a case study at Lake Mead hosting the water intake for Las Vegas, Nevada, in the water-stressed western U.S. Long-term monthly averaged results showed no simultaneous impact from forest fire events on accelerating the rise of TSS concentration. However, the results showed a probable impact of a decade of drought on increasing TSS concentration in the Colorado River Arm and Overton Arm. Results of the forecasting model highlight the reservoir water level as a significant parameter in predicting TSS in Lake Mead. In addition, the R-squared value of 0.98 and the root mean square error of 0.5 between the observed and predicted TSS values demonstrates the reliability and application potential of this remote sensing-based early warning system in terms of TSS projections at a drinking water intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Krishna Mohan, T.V.; Nancharaiah, Y.V.; Venugopalan, V.P.; Narasimhan, S.V.; Satyasai, P.M.

    2010-01-01

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  15. Suitable Concentrations of Uric Acid Can Reduce Cell Death in Models of OGD and Cerebral Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Zhang, Bin; Yang, Ning; Lin, Shao-Peng; Zhang, Feng

    2017-07-01

    Cerebral infarction (CI) is a common clinical cerebrovascular disease, and to explore the pathophysiological mechanisms and seek effective treatment means are the hotspot and difficult point in medical research nowadays. Numerous studies have confirmed that uric acid plays an important role in CI, but the mechanism has not yet been clarified. When treating HT22 and BV-2 cells with different concentrations of uric acid, uric acid below 450 μM does not have significant effect on cell viability, but uric acid more than 500 μM can significantly inhibit cell viability. After establishing models of OGD (oxygen-glucose deprivation) with HT22 and BV-2 cells, uric acid at a low concentration (50 μM) cannot improve cell viability and apoptosis, and Reactive oxygen species (ROS) levels during OGD/reoxygenation; a suitable concentration (300 μM) of uric acid can significantly improve cell viability and apoptosis, and reduce ROS production during OGD/reoxygenation; but a high concentration (1000 μM) of uric acid can further reduce cell viability and enhance ROS production. After establishing middle cerebral artery occlusion of male rats with suture method, damage and increase of ROS production in brain tissue could be seen, and after adding suitable concentration of uric acid, the degree of brain damage and ROS production was reduced. Therefore, different concentrations of uric acid should have different effect, and suitable concentrations of uric acid have neuroprotective effect, and this finding may provide guidance for study on the clinical curative effect of uric acid.

  16. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  17. EPR measurements of phenolic concentration in developing red grapeseeds - a pilot study

    International Nuclear Information System (INIS)

    Troup, G.J.; Kennedy, J.A.; Hutton, D.R.; Hewitt, D.; Hunter, C.A.; Pilbrow, J.R.; Ristic, R.; Iland, P.; Jones, G.P. Anon

    2000-01-01

    Full text: Phenolics, in the liquid (wine, Troup et al., Free Radicals Research, 1994, 20, 63 - 68) and solid state, give stable free radical signals detectable by EPR. Observations of EPR signals (partly due to phenolics) in developing red grapeseeds, as a function of time, have been made. The increasing, then decreasing of this signal as a function of time correlates well with the theory of phenolic concentration in developing grapeseeds recently proposed by Kennedy et al. (in press). This is a very significant application of EPR Spectroscopy in the Wine Industry, so far unfamiliar with its use

  18. The development of human mast cells. An historical reappraisal

    International Nuclear Information System (INIS)

    Ribatti, Domenico

    2016-01-01

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34"+/CD117"+/CD13"+multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs. - Highlights: • Human mast cells originate from CD34/CD117/CD13 positive multipotent hematopoietic progenitors. • Stem cell factor is a major chemotactic factor for mast cells and their progenitors. • Different mast cell phenotypes can develop in different tissues and organs.

  19. Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water

    International Nuclear Information System (INIS)

    Han Xinyue; Wang Yiping; Zhu Li; Xiang Haijun; Zhang Hui

    2012-01-01

    Highlights: ► Factors for performance degradation of silicon CPV cells in DI water were investigated. ► Long term immersion results showed no significant degradation on bare silicon CPV cell in 65° C DI water. ► Isc, not Voc of tabbed cells decreased with exposure time, notably under sunlight. ► The occurrence of galvanic corrosion on tabbed CPV cells has been confirmed. ► Performance recovery of tabbed cells after cleaning indicated that the cells are not damaged after long-time immersion. - Abstract: Direct de-ionized (DI) water immersion cooling has been verified to be an effective method of managing the operating temperature of silicon solar cells under concentration. However, the stable electrical performance is difficult to be achieved. Possible factors from bare cell self, materials for tabbing cells were investigated in this study for understanding the degradation mechanism. Long term immersion results showed that no significant degradation on bare cells operated in DI water at 65 °C. When cells were tabbed using lead-based solder and flux, the short circuit current (I sc ) of cells decreased with exposure time, notably under sunlight, but it was not observed for cell open circuit voltage (V oc ). The epoxy tabbed cells test also demonstrated that the tabbed cells without lead-based solder and flux involved were also found drop in I sc , but with slower rate. The presence of lead and tin black oxides on the lead based-soldered tabbed cells and red deposition on the epoxy tabbed cells confirmed the occurrence of galvanic corrosion. However, particular cleaning recovers the I–V towards its initial values for the former tabbed cells, and partial recovery for the latter tabbed cells, which indicates that the cells are not damaged after long-time DI water immersion.

  20. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  1. Splenocytes cultured in low concentrations of IL-2 generate NK cell specificities toward syngenic and allogenic targets

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Jeppesen, M; Claesson, M H

    2000-01-01

    Splenocytes cultured in the presence of 30-60 units/ml IL-2 for 5 days develop natural killer activity toward syngeneic and allogeneic tumor cell targets. The IL-2 activated splenocytes, themselves, are partially resistant, whereas concanavalin A-activated T blast cells are completely resistant...... to killing. Surprisingly, major histocompatibility complex (MHC)-I-negative target cells are also resistant to natural killer (NK)-cell-mediated killing. Cells resistant to killing were unable to block NK-cell-mediated killing of sensitive targets as judged from cold target cell inhibition experiments......, and one type of target cells sensitive to killing did generally not cross-block killing of other killing-sensitive target cell types. Alloantigen exposure of splenocytes, i.e., one-way mixed lymphocyte cultures, partially prevents the development of NK-cell activity. Our data suggest that target...

  2. Estimation of Abbreviated Cyclosporine A Area under the Concentration-Time Curve in Allogenic Stem Cell Transplantation after Oral Administration

    Directory of Open Access Journals (Sweden)

    Hanene ELjebari

    2012-01-01

    Full Text Available Measurements of Cyclosporine (CsA systemic exposure permit its dose adjustment in allogenic stem cell transplantation recipients to prevent graft-versus-host disease. CsA LSSs were developed and validated from 60 ASCT patients via multiple linear regressions. All whole-blood samples were analyzed by fluorescence polarization immunoassay (FPIA-Axym. The 10 models that have used CsA concentrations at a single time point did not have a good fit with AUC0–12 (R2<0.90. 2 and 4 were the time points that correlated best with AUC0–12 h, R2 were respectively 0.848, and 0.897. The LSS equation with the best predictive performance (bias, precision and number of samples utilized three sampling concentrations was AUC0–12 h=0.607+1.569×0.5+2.098×2+3.603×4(R2=0.943. Optimal LSSs equations which limited to those utilizing three timed concentrations taken within 4 hours post-dose developed from ASCT recipient's patients yielded a low bias <5% ranged from 1.27% to 2.68% and good precision <15% ranged from 9.60% and 11.02%. We propose an LSS model with equation AUC0–12 h=0.82+2.766×2+3.409×4 for a practical reason. Bias and precision for this model are respectively 2.68% and 11.02%.

  3. Developing an interactive computational system to simulate radon concentration inside ancient egyptian tombs

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Salama, E; El-Fikia, S A [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Abo-EImagd, M; Eissa, H M [National Institute for Standard, Radiation Measurements Department, P. O. Box 136Giza code no. 12211 RSSP (Egypt)

    2007-06-15

    RSSP (Radon Scale Software Package) is an interactive support system that simulates the radon concentration inside ancient Egyptian tombs and the consequences on the population in terms of internal and external exposure. RSSP consists of three interconnected modules: the first one simulates the radon concentration inside ancient Egyptian tombs using a developed mathematical model. This model introduces the possibility of controlling the rate of radon accumulation via additional artificial ventilation systems. The source of inputs is an editable database for the tombs includes the geometrical dimensions and some environmental parameters like temperature and outdoor radon concentration at the tombs locations. The second module simulates the absorbed dose due to internal exposure of radon and its progeny. The third module simulates the absorbed dose due to external exposure of Gamma rays emitted from the tomb wall rocks. RSSP introduces the facility of following the progress of radon concentration as well as Internal and external absorbed dose in a wide range of time (seconds, minutes, hours and days) via numerical data and the corresponding graphical interface.

  4. Developing an interactive computational system to simulate radon concentration inside ancient egyptian tombs

    International Nuclear Information System (INIS)

    Metwally, S. M.; Salama, E.; El-Fikia, S. A.; Abo-EImagd, M.; Eissa, H. M.

    2007-01-01

    RSSP (Radon Scale Software Package) is an interactive support system that simulates the radon concentration inside ancient Egyptian tombs and the consequences on the population in terms of internal and external exposure. RSSP consists of three interconnected modules: the first one simulates the radon concentration inside ancient Egyptian tombs using a developed mathematical model. This model introduces the possibility of controlling the rate of radon accumulation via additional artificial ventilation systems. The source of inputs is an editable database for the tombs includes the geometrical dimensions and some environmental parameters like temperature and outdoor radon concentration at the tombs locations. The second module simulates the absorbed dose due to internal exposure of radon and its progeny. The third module simulates the absorbed dose due to external exposure of Gamma rays emitted from the tomb wall rocks. RSSP introduces the facility of following the progress of radon concentration as well as Internal and external absorbed dose in a wide range of time (seconds, minutes, hours and days) via numerical data and the corresponding graphical interface

  5. Development of solar concentrators for high-power solar-pumped lasers.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  6. Development of fast measurements of concentration of NORM U-238 by HPGe

    Science.gov (United States)

    Cha, Seokki; Kim, Siu; Kim, Geehyun

    2017-02-01

    Naturally Occureed Radioactive Material (NORM) generated from the origin of earth can be found all around us and even people who are not engaged in the work related to radiation have been exposed to unnecessary radiation. This NORM has a potential risk provided that is concentrated or transformed by artificial activities. Likewise, a development of fast measruement method of NORM is emerging to prevent the radiation exposure of the general public and person engaged in the work related to the type of business related thereto who uses the material in which NORM is concentrated or transfromed. Based on such a background, many of countries have tried to manage NORM and carried out regulatory legislation. To effienctly manage NORM, there is need for developing new measurement to quickly and accurately analyze the nuclide and concentration. In this study, development of the fast and reliable measurement was carried out. In addition to confirming the reliability of the fast measurement, we have obtained results that can suggest the possibility of developing another fast measurement. Therefore, as a follow-up, it is possible to develop another fast analytical measurement afterwards. The results of this study will be very useful for the regulatory system to manage NORM. In this study, a review of two indirect measurement methods of NORM U-238 that has used HPGe on the basis of the equilibrium theory of relationships of mother and daughter nuclide at decay-chain of NORM U-238 has been carried out. For comparative study(in order to know reliabily), direct measurement that makes use of alpha spectrometer with complicated pre-processing process was implemented.

  7. Keynote address: hypoxic cell sensitizers: clinical developments

    International Nuclear Information System (INIS)

    Dische, S.

    1989-01-01

    Tumors having small islands of cells should be radiosensitive, and those having large masses, radioresistant. This was found to be the case and there is a ready explanation for this: the outside cells are close to blood vessels and will thus be well supplied with oxygen, while the inside cells are not well placed in this respect. Now it is known that cells well supplied with oxygen are radiosensitive, compared to the same cells deprived of oxygen; it is therefore likely that for this reason, variation in blood supply, that the outside cells are more easily destroyed than those within.''29 references

  8. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time.

    Science.gov (United States)

    Wollman, Adam J M; Leake, Mark C

    2015-01-01

    We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of

  9. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  10. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    Science.gov (United States)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  11. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations.

    Science.gov (United States)

    Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank

    2014-01-01

    Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts.

  12. Evaluation of Cytotoxic Effects of Different Concentrations of Porous Hollow Au Nanoparticles (PHAuNPs) on Cells

    International Nuclear Information System (INIS)

    Rao, S.; Tata, U.; Lin, V.K.; Chiao, J.C.; Huang, Ch.; Hao, Y.; Wu, P.; Arora, N.; Ahn, J.

    2014-01-01

    Nanoparticles (NPs) have been introduced as a suitable alternative in many in vivo bio applications. The risks of utilizing nanoparticles continue to be an ongoing research. Furthermore, the various chemicals used in their synthesis influence the cytotoxic effects of nanoparticles. We have investigated the cytotoxicity of Porous Hollow Au Nanoparticles (PHAuNPs) on cancer cell lines PC-3, PC-3ML, and MDA-MB-231 and the normal cell line PNT1A. Cell proliferation for the different cells in the presence of different concentrations of the PHAuNPs was assessed after 24 hours and 72 hours of incubation using MTT assay. The study also included the cytotoxic evaluation of pegylated PHAuNPs. Identical cell seeding densities, particle concentrations, and incubation times were employed for these two types of Au nanoparticles. Our results indicated that (1) impact on cell proliferation was concentration dependent and was different for the different cell types without cellular necrosis and (b) cellular proliferation might be impacted more based on the cell line.

  13. Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet.

    Science.gov (United States)

    Aguiar, Odair; Gollücke, Andréa Pittelli Boiago; de Moraes, Bárbara Bueno; Pasquini, Gabriela; Catharino, Rodrigo Ramos; Riccio, Maria Francesca; Ihara, Silvia Saiuli Miki; Ribeiro, Daniel Araki

    2011-03-01

    The goal of the present study was to investigate whether subchronic treatment with grape juice concentrate is able to protect liver and peripheral blood cells against cholesterol-induced injury in rats. The effects of the grape juice concentrate treatment on histopathological changes, immunohistochemistry for cyclo-oxygenase-2 (COX-2), and basal and oxidative DNA damage induced by H2O2 using a single-cell gel (comet) assay were evaluated. Male Wistar rats (n 18) were divided into three groups: group 1--negative control; group 2--cholesterol at 1 % (w/w) in their diet, treated for 5 weeks; group 3--cholesterol at 1 % in their chow, treated for 5 weeks, and grape juice concentrate at 222 mg/d in their drinking-water in the final week only. The results indicated that the treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in group 3 compared with group 2. However, grape juice concentrate was able to decrease oxidative DNA damage induced by H2O2 in peripheral blood cells, as depicted by the tail moment results. COX-2 expression in the liver did not show statistically significant differences (P>0·05) between groups. Taken together, the present results suggest that the administration of subchronic grape juice concentrate prevents oxidative DNA damage in peripheral blood cells.

  14. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development

    Directory of Open Access Journals (Sweden)

    Mariya A. Dikovskaya

    2013-08-01

    Full Text Available Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population. Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment. Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia; lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia. Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate

  15. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz

    2016-09-24

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP\\'s performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  16. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  17. Genotoxic effects of daily personal exposure to particle mass and number concentrations on buccal cells

    Science.gov (United States)

    de Almeida, Daniela S.; da Costa, Silvano César; Ribeiro, Marcos; Moreira, Camila A. B.; Beal, Alexandra; Squizzato, Rafaela; Rudke, Anderson Paulo; Rafee, Sameh Adib Abou; Martins, Jorge A.; Palioto, Graciana Freitas; Kumar, Prashant; Martins, Leila D.

    2018-03-01

    The aim of this study is to assess personal exposure to Particle Number Concentrations (PNC) in four size ranges between 0.3 and 10 μm, and particulate matter (PM1; PM2.5; PM4; PM10) in order to evaluate possible genotoxic effects through a comet assay in buccal cells. A convenience cohort of 30 individuals from a Brazilian medium-sized city was selected. These individuals aged between 20 and 61 and worked in typical job categories (i.e., administrative, commerce, education, general services and transport). They were recruited to perform personal exposure measurements during their typical daily routine activities, totaling 240 h of sampling. The 8-h average mass concentrations in air for volunteers ranged from 2.4 to 31.8 μg m-3 for PM1, 4.2-45.1 μg m-3 for PM2.5, 7.9-66.1 μg m-3 for PM4 and from 23.1 to 131.7 μg m-3 for PM10. The highest PNC variation was found for 0.3-0.5 range, between 14 and 181 particles cm-3, 1 to 14 particles cm-3 for the 0.5-1.0 range, 0.2 to 2 particles cm-3 for the 1.0-2.5 range, and 0.06 to 0.7 particles cm-3 for the 2.5-10 range. Volunteers in the 'education' category experienced the lowest inhaled dose of PM2.5, as opposed to those involved in 'commercial' activities with the highest doses for PM10 (1.63 μg kg-1 h-1) and PM2.5 (0.61 μg kg-1 h-1). The predominant cause for these high doses was associated with the proximity of the workplace to the street and vehicle traffic. The comet assay performed in buccal cells indicated that the volunteers in 'commerce' category experienced the highest damage to their DeoxyriboNucleic Acid (DNA) compared with the control category (i.e. 'education'). These results indicate the variability in personal exposure of the volunteers in different groups, and the potential damage to DNA was much higher for those spending time in close proximity to the vehicle sources (e.g. commercial services) leading to exposure to a higher fraction of fine particles. This study builds understanding on the exposure

  18. An international database of radionuclide concentration ratios for wildlife: development and uses

    International Nuclear Information System (INIS)

    Copplestone, D.; Beresford, N.A.; Brown, J.E.; Yankovich, T.

    2013-01-01

    A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data. -- Highlights: • An online database containing wildlife radionuclide transfer parameters is described. • Database underpins recent ICRP and IAEA data wildlife transfer compilations. • Database contains equilibrium based whole organism to media concentration ratios

  19. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Fernández, Eduardo F.; Almonacid, Florencia

    2015-01-01

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  20. Kinetics of ethanol production by immobilized Kluyveromyces marxianus cells at varying sugar concentrations of Jerusalem artichoke juice

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.; Margaritis, A.

    1987-08-01

    Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.

  1. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  2. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles.

    Science.gov (United States)

    Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R

    2011-02-01

    Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  3. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    Directory of Open Access Journals (Sweden)

    Wenqing Wu

    2016-12-01

    Full Text Available During radiotherapy procedures, radiation-induced bystander effect (RIBE can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2, at a relatively low concentration (20 µM, effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB and micronucleus (MN. In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2 of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2 with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1, MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS andcyclooxygenase-2 (COX-2. The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  4. Reduced Seminal Concentration of CD45pos Cells after Follicle-Stimulating Hormone Treatment in Selected Patients with Idiopathic Oligoasthenoteratozoospermia

    Directory of Open Access Journals (Sweden)

    Rosita A. Condorelli

    2014-01-01

    Full Text Available The present study evaluated the conventional sperm parameters and the seminal concentration of CD45pos cells (pan-leukocyte marker of infertile patients with idiopathic oligoasthenoteratozoospermia (OAT. The patients were arbitrarily divided into three groups treated with recombinant follicle-stimulating hormone FSH: α (Group A = 20 patients, recombinant FSH-β (Group B = 20 patients, and highly purified human FSH (Group C = 14 patients. All treated groups achieved a similar improvement of the main sperm parameters (density, progressive motility, and morphology, but only the increase in the percentage of spermatozoa with normal morphology was significant compared to the baseline in all three examined groups. Moreover, all groups had a significant reduction of the seminal concentration of CD45pos cells and of the percentage of immature germ cells. Before and after the treatment, the concentration of CD45pos cells showed a positive linear correlation with the percentage of immature germ cells and a negative correlation with the percentage of spermatozoa with regular morphology. These results demonstrate that treatment with FSH is effective in patients with idiopathic OAT and that there are no significant differences between the different preparations. The novelty of this study is in the significant reduction of the concentration of CD45pos cells observed after the treatment.

  5. Cell wall heterogeneity in root development of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Marc Somssich

    2016-08-01

    Full Text Available Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signalling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modelling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.

  6. Erythroxylum pungens elicits vasorelaxation by reducing intracellular calcium concentration in vascular smooth muscle cells of rats

    Directory of Open Access Journals (Sweden)

    Aurylene C. Oliveira

    2012-01-01

    Full Text Available The cardiovascular effects elicited by the ethanolic extract obtained from the roots of Erythroxylum pungens O.E. Schulz, Erythroxylaceae (EEEP and the vasorelaxant effect induced by its main tropane alkaloid (pungencine were investigated. In normotensive rats, administration of EEEP (1, 10, 30 and 60 mg/kg i.v., randomly produced dose-dependent hypotension (-2±1, -7±0.5 -17.6±1, -24±1 Δ mmHg, n=5 followed by tachycardia (3±0.5, 7±2, 7.1±1, 10±5 Δ bpm, n=5. In intact phenylephrine (Phe, 10 µM-pre-contracted rings, EEEP (0.01-500 µg/mL induced concentration-dependent vasorelaxation (EC50 13.7±5.5 µg/mL, Maximal Response= 92±2.6%, and this effect was unchanged after the removal of the vascular endothelium (EC50 27.2±4.7 µg/ml, Maximal Response= 88.3±3.3 %. In KCl (80 mM-pre-contracted-endothelium-denuded rings, EEEP elicited concentration-dependent relaxation (EC50= 128.2±11.2 µg/mL, Maximal Response 76.8±3.4%. Vasorelaxation has also been achieved with tonic contractions evoked by the L-type Ca2+ channel agonist Bay K 8644 (EC50 80.2±9.1 µg/mL, Maximal Response 86.3±8.3%. In addition, in a depolarizing medium, EEEP inhibited CaCl2 (30-500 µg/mL induced contractions and caused a concentration-dependent rightward shift of the relaxation curves. Lastly, the tropane alkaloid pungencine caused vasorelaxation in mesenteric arteries resembling to the EEEP responses. These results suggests that EEEP induces hypotension and vasorelaxation, at least in part, due to the reduction in [Ca2+]i in vascular smooth muscle cells.

  7. Reductions in red blood cell 2,3-diphosphoglycerate concentration during continuous renal replacment therapy.

    Science.gov (United States)

    Sharma, Shilpa; Brugnara, Carlo; Betensky, Rebecca A; Waikar, Sushrut S

    2015-01-07

    Hypophosphatemia is a frequent complication during continuous renal replacement therapy (CRRT), a dialytic technique used to treat AKI in critically ill patients. This study sought to confirm that phosphate depletion during CRRT may decrease red blood cell (RBC) concentration of 2,3-diphosphoglycerate (2,3-DPG), a crucial allosteric effector of hemoglobin's (Hgb's) affinity for oxygen, thereby leading to impaired oxygen delivery to peripheral tissues. Phosphate mass balance studies were performed in 20 patients with severe AKI through collection of CRRT effluent. RBC concentrations of 2,3-DPG, venous blood gas pH, and oxygen partial pressure required for 50% hemoglobin saturation (P50) were measured at CRRT initiation and days 2, 4, and 7. Similar measurements were obtained on days 0 and 2 in a reference group of 10 postsurgical patients, most of whom did not have AKI. Associations of 2,3-DPG with laboratory parameters and clinical outcomes were examined using mixed-effects and Cox regression models. Mean 2,3-DPG levels decreased from a mean (±SD) of 13.4±3.4 µmol/g Hgb to 11.0±3.1 µmol/g Hgb after 2 days of CRRT (Plevels decreased from 29.7±4.4 mmHg to 26.7±4.0 mmHg (Plevels after 2 days of CRRT were not significantly lower than those in the reference group on day 2. Among patients receiving CRRT, 2,3-DPG decreased by 0.53 µmol/g Hgb per 1 g phosphate removed (95% confidence interval 0.38 to 0.68 µmol/g Hgb; P<0.001). Greater reductions in 2,3-DPG were associated with higher risk for death (hazard ratio, 1.43; 95% confidence interval, 1.09 to 1.88; P=0.01). CRRT-induced phosphate depletion is associated with measurable reductions in RBC 2,3-DPG concentration and a shift in the O2:Hgb affinity curve even in the absence of overt hypophosphatemia. 2,3-DPG reductions may be associated with higher risk for in-hospital death and represent a potentially avoidable complication of CRRT. Copyright © 2015 by the American Society of Nephrology.

  8. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  9. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Roepke, Troy A. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Snyder, Mark J. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States); Cherr, Gary N. [Bodega Marine Laboratory, University of California, Davis, POB 247, Bodega Bay, CA 94923 (United States) and Departments of Environmental Toxicology and Nutrition, One Shields Avenue, University of California, Davis, CA 95616 (United States)]. E-mail: gncherr@ucdavis.edu

    2005-01-26

    Environmental endocrine disrupting compounds (EDCs) are a wide variety of chemicals that typically exert effects, either directly or indirectly, through receptor-mediated processes, thus mimicking endogenous hormones and/or inhibiting normal hormone activities and metabolism. Little is known about the effects of EDCs on echinoderm physiology, reproduction and development. We exposed developing sea urchin embryos (Strongylocentrotus purpuratus and Lytechinus anamesus) to two known EDCs (4-octylphenol (OCT), bisphenol A (BisA)) and to natural and synthetic reproductive hormones (17{beta}-estradiol (E{sub 2}), estrone (E{sub 1}), estriol (E{sub 3}), progesterone (P{sub 4}) and 17{alpha}-ethynylestradiol (EE{sub 2})). In addition, we studied two non-estrogenic EDCs, tributyltin (TBT) and o,p-DDD. Successful development to the pluteus larval stage (96 h post-fertilization) was used to define EDC concentration-response relationships. The order of compound potency based on EC{sub 50} values for a reduction in normal development was as follows: TBT {sub L.anamesus} > OCT > TBT {sub S.{sub p}}{sub urpuratus} >> E{sub 2} > EE{sub 2} > DDD >> BisA > P{sub 4} > E{sub 1} >> E{sub 3}. The effect of TBT was pronounced even at concentrations substantially lower than those commonly reported in heavily contaminated areas, but the response was significantly different in the two model species. Sea urchin embryos were generally more sensitive to estrogenic EDCs and TBT than most other invertebrate larvae. Stage-specific exposure experiments were conducted to determine the most sensitive developmental periods using blastula, gastrula and post-gastrula (pluteus) stages. The stage most sensitive to E{sub 2}, OCT and TBT was the blastula stage with less overall sensitivity in the gastrula stage, regardless of concentration. Selective estrogen receptor modulators (SERMs) were added to the experiments individually and in combination with estrogenic EDCs to interfere with potential receptor

  10. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L. [Florida Solar Energy Center, Cocoa, FL (United States); Sleiti, Ahmad [Univ. of North Carolina, Charlotte, NC (United States)

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

  11. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...

  12. Electrical-optical characterization of multijunction solar cells under 2000X concentration

    Science.gov (United States)

    Bonsignore, Gaetano; Gallitto, Aurelio Agliolo; Agnello, Simonpietro; Barbera, Marco; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Dentici, Ignazio; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Paredes, Filippo; Sciortino, Luisa

    2014-09-01

    In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties by the electroluminescence (EL) spectra of the top (InGaP) and middle (InGaAs) subcells. From the analysis of the experimental data we extracted the bandgap energies of these III-V semiconductors in the range 305÷385 K.

  13. [In-line leukocyte depletion ov thrombocytapheresis concentrates with the Fresenius-AS-104 cell separator].

    Science.gov (United States)

    Zeiler, T; Kretschmer, V

    1997-01-01

    This study reports on in-line filtration of 72 platelet concentrates (PC) collected by the Fresenius AS 104 cell separator, using the new C4F sets with integrated leukocyte filters (Biofil P plus). 72 volunteer donors, automatic counts of platelets, microscopical counting of residual leukocytes with the Nageotte chamber, GMP-140 by flow cytometrie, beta-thromboglobulin release, platelet aggregation (ADP, collagen). Filtration reduced leukocytes by 98.5%. Residual leukocyte contamination remained clearly below 5 x 10(6) (mean 0.5 +/- 0.6 x 10(6), maximum 2.8 x 10(6). Platelet loss by filtration was found to be between 27.4 and 0.7% (median 8.5%). Filtration caused a significant decrease of platelet aggregability (p < 0.005), but no significant increase of beta-thromboglobulin release and only a slight decrease of GMP-140 expression. From these data can be concluded that in-line filtration was highly efficient with acceptable platelet retention. No significant platelet activation could be observed in the PC. The decrease of platelet aggregability have been due to the reduction of activated platelets which are believed to show reduced in vivo survival.

  14. In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes

    Science.gov (United States)

    Stübi, René; Levrat, Gilbert; Hoegger, Bruno; Viatte, Pierre; Staehelin, Johannes; Schmidlin, F. J.

    2008-07-01

    The analysis of 140 dual flights between two types of ozonesondes, namely, the Brewer-Mast (BM) and the electrochemical concentration cell (ECC), is presented in this study. These dual flights were performed before the transition from BM to ECC as the operational ozonesonde for the Payerne Aerological Station, Switzerland. The different factors of the ozonesonde data processing are considered and their influences on the profile of the difference are evaluated. The analysis of the ozone difference between the BM and the ECC ozonesonde data shows good agreement between the two sonde types. The profile of the ozone difference is limited to ±5% (±0.3 mPa) from the ground to 32 km. The analysis confirms the appropriateness of the standard BM data processing method and the usefulness of the normalization of the ozonesonde data. The conclusions of the extended dual flight campaigns are corroborated by the analysis of the time series of the Payerne soundings for the periods of 5 years before and after the change from BM to ECC which occurred in September 2002. No significant discontinuity can be identified in 2002 attributable to the change of sonde.

  15. Development and characterization of cell culture systems from Puntius (Tor) chelynoides (McClelland).

    Science.gov (United States)

    Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K

    2012-05-25

    Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    International Nuclear Information System (INIS)

    García-Linares, Pablo; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-01-01

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I SC ) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications

  17. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    Energy Technology Data Exchange (ETDEWEB)

    García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Dominguez, César [CEA-LITEN, Laboratoire de Photovoltaïque à Concentration, INES, Le Bourget du Lac (France); Instituto de Energía Solar - Universidad Politécnica de Madrid, Madrid (Spain); Dellea, Olivier; Fugier, Pascal [CEA-LITEN, Laboratoire de Surfaces Nanostructurées, Grenoble (France)

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  18. The effect of the optical system on the electrical performance of III–V concentrator triple junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.D., E-mail: S206029578@nmmu.ac.za; Dyk, E.E. van; Vorster, F.J.

    2016-01-01

    High Concentrated Photovoltaic (H-CPV) technologies utilize relatively inexpensive reflective and refractive optical components for concentration to achieve high energy yield. The electrical performance of H-CPV systems is, however, dependent on the properties and configuration of the optical components. The focus of this paper is to summarize the effect of the properties of the optical system on the electrical performance of a Concentrator Triple Junction (CTJ) InGaP/InGaAs/Ge cell. Utilizing carefully designed experiments that include spectral measurements and intensity profiles in the optical plane of the CTJ cell, the influence of photon absorption, Fresnel lens properties and chromatic aberration created by the optical system on the electrical performance of a CTJ cell is shown. From the results obtained, it is concluded that good characterization and understanding of the optical system’s properties may add to improved design of future multi-junction devices.

  19. Development of Soil Derived Concentration Guidance Levels for Decommissioning at Overseas Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Wook; Yoon, Suk Bon; Kim, Jeongju [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In Korea, the criteria are expected to be given in terms of dose as in US and Spain. However, since dose cannot be measured, corresponding measurable concentration limits, so-called Derived Concentration Guidance Levels (DCGLs), should be developed for each radionuclide which is expected to be present in the site. Also, as they serve as a goal of decommissioning and direct dismantling and decontamination methods applicable to the site, DCGLs should be developed in the early phase of decommissioning. This paper describes how each overseas nuclear power plant developed its site-specific Soil DCGLs: what kind of post closure use of the site (scenario) was assumed and how the site-specific Soil DCGLs were calculated based on the scenario assumed for each plant. Through this, it is intended to derive lessons learned which will be instructive for future decommissioning of domestic nuclear power plants including Kori Unit 1. It is very important to have as good under-standing as possible of characteristics of the site by collection of relevant information and data in order to apply a scenario which is most foreseeable and plausible for a site to be decommissioned and to provide site-specific inputs to the calculation of the Soil DCGLs. These efforts will help to have not-overly conservative values for the Soil DCGLs, thus thereby reducing the costs and time needed for performing the decommissioning.

  20. [Serum calcium and phosphorus concentration and alkaline phosphatase activity in healthy children during growth and development].

    Science.gov (United States)

    Savić, Ljiljana; Savić, Dejan

    2008-01-01

    Many changes happen during growth and development in an organism as a result of important hormon changes, especially biohumoral ones. These changes make a problem when interpreting biochemical results in pediatric population. The most important changes are intensive calcium and phosphorus metabolic turnover in bone tissue with changes in alkaline phosphatase activity as a result of osteoblast activity. The aim of this study was to follow the serum calcium and phosphorus concentration and alkaline phosphatase activity in children 1-15 years old in different growth and development period and of different sexes and to fortify the influence of growth and development dynamics on biohumoral status in healthy male and female children. We evaluated 117 healthy children of both sexes from 1-15 years of age and divided them into three age groups: 1-5, 6-10 and 11-15 years. We followed the serum calcium and phosphorus concentration and alkaline phosphatase activity in different groups and in different sexes. Our investigation found significantly higher values of serum calcium in boys than in girls with no important changes between the age groups and significantly higher values of serum phosphorus in the youngest age group in all children and in different sexes with no important sex differences. Alkaline phosphatase activity followed the growth spurt and was the biggest in 6-10 years group in girls and in 11-15 years group in boys.

  1. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  2. Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations

    Energy Technology Data Exchange (ETDEWEB)

    Bagastyo, Arseto Y. [Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072 (Australia); Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111 (Indonesia); Batstone, Damien J. [Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072 (Australia); Kristiana, Ina [Curtin Water Quality Research Centre, Resources and Chemistry Precinct, Department of Chemistry, Curtin University, Bentley, Perth, WA 6102 (Australia); Escher, Beate I. [National Research Centre for Environmental Toxicology (Entox), The University of Queensland, Brisbane, QLD 4108 (Australia); Joll, Cynthia [Curtin Water Quality Research Centre, Resources and Chemistry Precinct, Department of Chemistry, Curtin University, Bentley, Perth, WA 6102 (Australia); Radjenovic, Jelena, E-mail: j.radjenovic@uq.edu.au [Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072 (Australia)

    2014-08-30

    Highlights: • 100% of COD and ∼70% of DOC was removed in both cell configurations. • ∼21.7 mg L{sup −1} of AOCl and ∼2.3 mg L{sup −1} of AOBr was formed regardless of the membrane use. • The TEQ was far lower than expected given the high AOCl concentrations. • The undivided cell consumed lower energy compared to the divided cell. - Abstract: An undivided electrolytic cell may offer lower electrochlorination through reduction of chlorine/hypochlorite at the cathode. This study investigated the performance of electrooxidation of reverse osmosis concentrate using boron-doped diamond electrodes in membrane-divided and undivided cells. In both cell configurations, similar extents of chemical oxygen demand and dissolved organic carbon removal were obtained. Continuous formation of chlorinated organic compounds was observed regardless of the membrane presence. However, halogenation of the organic matter did not result in a corresponding increase in toxicity (Vibrio fischeri bioassay performed on extracted samples), with toxicity decreasing slightly until 10 Ah L{sup −1}, and generally remaining near the initial baseline-toxicity equivalent concentration (TEQ) of the raw concentrate (i.e., ∼2 mg L{sup −1}). The exception was a high range toxicity measure in the undivided cell (i.e., TEQ = 11 mg L{sup −1} at 2.4 Ah L{sup −1}), which rapidly decreased to 4 mg L{sup −1}. The discrepancy between the halogenated organic matter and toxicity patterns may be a consequence of volatile and/or polar halogenated by-products formed in oxidation by OH· electrogenerated at the anode. The undivided cell exhibited lower energy compared to the divided cell, 0.25 kWh gCOD{sup −1} and 0.34 kWh gCOD{sup −1}, respectively, yet it did not demonstrate any improvement regarding by-products formation.

  3. An international database of radionuclide concentration ratios for wildlife: development and uses.

    Science.gov (United States)

    Copplestone, D; Beresford, N A; Brown, J E; Yankovich, T

    2013-12-01

    A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss

    Science.gov (United States)

    Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi

    In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.

  5. Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis.

    Science.gov (United States)

    Stangret, Aleksandra; Wnuk, Anna; Szewczyk, Grzegorz; Pyzlak, Michał; Szukiewicz, Dariusz

    2017-01-01

    Vasculogenesis and angiogenesis are crucial for maintaining proper placental perfusion and optimal fetal development. Among other physical and chemical factors, hypoxia is known to stimulate angiogenic processes. Preplacental type of hypoxia is often associated with maternal anemia and is thought to enhance vascularization within the fetoplacental unit. The goal of this study was to establish the correlation between the local expression of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) receptors (flt-1, flk-1) with maternal hemoglobin (Hb) concentration, hematocrit (Ht) values and the infant birthweight. In total, 43 specimens of term placentas obtained from normal course pregnancies delivered at term were included in the study. The expression of flt-1 and flk-1 receptors was analyzed by immunohistochemical staining. Vascular/extravascular tissular index (V/EVTI) was measured by assessing a total vascular area. Nonparametric Mann-Whitney U-test and Spearman's rank correlation were used to compare the various parameters and their differences between the groups. Among the patients with low Hb concentration, nearly 2-fold greater expression of the flt-1 receptor was positively correlated with infants birthweight (p = 0.028). Increased placental vascular density (increased flt-1 expression), during a physiological course of gestation, may be an adaptive response to lowered maternal Hb concentration and Ht values encountered during pregnancy.

  6. Resveratrol Exerts Dosage and Duration Dependent Effect on Human Mesenchymal Stem Cell Development

    Science.gov (United States)

    Peltz, Lindsay; Gomez, Jessica; Marquez, Maribel; Alencastro, Frances; Atashpanjeh, Negar; Quang, Tara; Bach, Thuy; Zhao, Yuanxiang

    2012-01-01

    Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs. PMID:22615926

  7. Comparison between the concentration of mast cells and risk criteria of malignancy in intestinal adenomas

    Directory of Open Access Journals (Sweden)

    Bruna Luz Custódio Camargo

    2012-03-01

    Full Text Available Intestinal adenomas are benign neoplasms that present a risk of malignancy associated with three independent characteristics: the polyp size, the histological architecture and the severity of epithelial dysplasia (or atypia. Current evidence suggests that mast cells (CM contribute to the tumorigenesis of colorectal carcinomas. Objective: Compare the concentration of CM in intestinal adenomas and risk criteria for malignancy in these tumors (size, histological type and degree of cellular atypia. METHODS: We conducted a retrospective study with 102 anatomopathological reports of intestinal adenoma excision. We selected paraffin blocks with the central area of the tumor. The CM were stained with toluidine blue. RESULTS: In most cases (89.2%, n=91, the mast cells concentration (MC was less than 6 CM/10 high power field (HPF (p=0.0001. Most adenomas, regardless of their histological type, showed 0 CM/10 HPF (p=0.083. In most adenomas, regardless of their size, MC was 0 CM/10 HPF (p=0.665. Presence or absence of atypia was associated, in most cases, with MC of 0 CM/10 HPF (p=0.524. Conclusion: This study did not show association between the MC and histological type, size or presence of atypical cells in intestinal adenomas.Adenomas intestinais são neoplasias benignas que apresentam risco de malignização relacionado a três características independentes: o tamanho do pólipo, a arquitetura histológica e a gravidade da displasia (ou atipia epitelial. Evidências atuais sugerem que os mastócitos contribuem para a tumorigênese do carcinoma colorretal. OBJETIVO: Analisar comparativamente a concentração de mastócitos em adenomas intestinais e os critérios de risco para malignização nesses tumores (tamanho, tipo histológico e grau de atipia celular. Métodos: Realizou-se um estudo retrospectivo, com seleção de 102 laudos anatomopatológicos de exérese de adenoma intestinal. Foram selecionados os blocos de parafina com a área central da

  8. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro.

    Science.gov (United States)

    Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin; Huang, Xijun; He, Caifeng; Jiang, Li; Quan, Daping; Zhou, Xiang; Zhu, Zhaowei

    2016-05-01

    Platelet-rich plasma (PRP) contains various growth factors and appears to have the potential to promote peripheral nerve regeneration, but evidence is lacking regarding its biological effect on Schwann cells (SCs). The present study was designed to investigate the effect of PRP concentration on SCs in order to determine the plausibility of using this plasma-derived therapy for peripheral nerve injury. PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and growth factor concentrations. Primary cultures of rat SCs were exposed to various concentrations of PRP (40%, 20%, 10%, 5% and 2.5%). Cell proliferation assays and flow cytometry were performed to study to assess SC proliferation. Quantitative real-time PCR and ELISA analysis were performed to determine the ability of PRP to induce SCs to produce nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). Microchemotaxis assay was used to analyse the cell migration capacity. The results obtained indicated that the platelet concentration and growth factors in our PRP preparations were significantly higher than in whole blood. Cell culture experiments showed that 2.5-20% PRP significantly stimulated SC proliferation and migration compared to untreated controls in a dose-dependent manner. In addition, the expression and secretion of NGF and GDNF were significantly increased. However, the above effects of SCs were suppressed by high PRP concentrations (40%). In conclusion, the appropriate concentration of PRP had the potency to stimulate cell proliferation, induced the synthesis of neurotrophic factors and significantly increased migration of SCs dose-dependently. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  9. [Changes in Ca(2+)concentration and caspase-3 expression and their relationship in Raji cells exposed to electromagnetic radiation].

    Science.gov (United States)

    Wang, Wei; Liu, Huan-xin; Wang, De-wen; Zuo, Hong-yan; Peng, Rui-yun

    2013-02-01

    To study the effects of electromagnetic pulse (EMP), S-band high power microwave (S-HPM), and X-band high power microwave (X-HPM) on the Ca(2+) concentration and caspase-3 expression in Raji cells and the relationship between Ca(2+) concentration and caspase-3 expression, and to investigate the regulatory mechanism of electromagnetic radiation damage. Raji cells were cultured conventionally. Some cells were irradiated by EMP, S-HPM, and X-HPM in the logarithmic growth phase for 6 hours and then collected; others received sham irradiation as a control. The Ca(2+) concentration in the cells was measured by laser scanning confocal microscope; the caspase-3 expression in the cells was evaluated by Western blot. Compared with the control group (Ca(2+) fluorescence intensity = 43.08 ± 2.08; caspase-3 expression level = 0.444 ± 0.13), the EMP,S-HPM, and X-HPM groups had significantly increased Ca(2+) concentrations, with Ca(2+) fluorescence intensities of 69.56 ± 1.71, 50.06 ± 1.89, and 70.68 ± 1.59, respectively (P < 0.01), and had upregulated caspase-3 expression, with expression levels of 0.964 ± 0.12, 0.586 ± 0.16, and 0.970 ± 0.07, respectively (P < 0.01). Each of the EMP and X-HPM groups had significantly higher Ca(2+) fluorescence intensity and caspase-3 expression level than the S-HPM group (P < 0.01), but there were no significant differences between the EMP and X-HPM groups. The linear regression analysis showed that the caspase-3 expression was upregulated as the Ca(2+) concentration increased, with a positive correlation between them (P < 0.01). EMP, S-HPM, and X-HPM cause damage probably by increasing the Ca(2+) concentration in cells and in turn inducing caspase-3 overexpression.

  10. A comparative study on the transplantation of different concentrations of human umbilical mesenchymal cells into diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Jia-Hui; Kong; Dan; Zheng; Song; Chen; Hong-Tao; Duan; Yue-Xin; Wang; Meng; Dong; Jian; Song

    2015-01-01

    AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations.

  11. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Ischemic Changes in the Electrocardiogram and Circulatory Collapse Accompanied by Severe Anemia Owing to the Delay of Red Blood Cell Concentrate Transfusion in Two Patients with Intraoperative Massive Bleeding].

    Science.gov (United States)

    Horiuchi, Toshinori; Noguchi, Teruo; Kurita, Naoko; Yamaguchi, Ayako; Takeda, Masafumi; Sha, Keiichi; Nagahata, Toshihiro

    2016-01-01

    We present two patients developing intraoperative massive bleeding and showed ischemic changes in the electrocardiogram and circulatory collapse accompanied by severe anemia owing to the delay of red blood cell concentrate transfusion. One patient underwent hepatectomy and the other pancreaticoduodenectomy. Their lowest hemoglobin concentration was around 2 g x dl(-1), and they showed ischemic changes in the electrocardiogram and severe decreases in blood pressure. The former received compatible red blood cell concentrate and the latter received uncrossmatched same blood group red blood cell concentrate immediately, and their electrocardiogram and blood pressure quickly improved. To avoid life-threatening anemia, emergency red blood cell concentrate transfusion including compatible different blood group transfusion should be applied for intraoperative massive bleeding.

  13. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    International Nuclear Information System (INIS)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-01-01

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. 31 P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts

  14. SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction

    International Nuclear Information System (INIS)

    Pasquier, Jennifer; Abu-Kaoud, Nadine; Abdesselem, Houari; Madani, Aisha; Hoarau-Véchot, Jessica; Thawadi, Hamda Al.; Vidal, Fabien; Couderc, Bettina; Favre, Gilles; Rafii, Arash

    2015-01-01

    The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites. Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases. We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion. We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases. The online version of this article (doi:10.1186/s12885-015-1556-7) contains supplementary material, which is available to authorized users

  15. Artocarpin Induces Apoptosis in Human Cutaneous Squamous Cell Carcinoma HSC-1 Cells and Its Cytotoxic Activity Is Dependent on Protein-Nutrient Concentration

    Directory of Open Access Journals (Sweden)

    Stephen Chu-Sung Hu

    2015-01-01

    Full Text Available Artocarpin, a natural prenylated flavonoid, has been shown to have various biological properties. However, its effects on human cutaneous squamous cell carcinoma (SCC have not been previously investigated. We set out to determine whether artocarpin has cytotoxic effects on SCC cells and whether its pharmacological activity is dependent on protein-nutrient concentration. Our results showed that treatment of HSC-1 cells (a human cutaneous SCC cell line with artocarpin decreased cell viability and induced cell apoptosis by increasing caspase 3/7 activity. These effects were more pronounced at low fetal bovine serum (FBS concentrations. Artocarpin induced an increase in the level of phospho-p38 and a decrease in the levels of phospho-ERK, phospho-JNK, phospho-Akt, phospho-mTOR, and phospho-S6K. High FBS concentrations in the culture media inhibited and delayed the uptake of artocarpin from the extracellular compartment (culture media into the intracellular compartment, as determined by high performance liquid chromatography (HPLC analysis. In conclusion, artocarpin induces apoptosis in HSC-1 cells through modulation of MAPK and Akt/mTOR pathways. Binding of artocarpin to proteins in the FBS may inhibit cellular uptake and reduce the cytotoxic activity of artocarpin on HSC-1 cells. Therefore, artocarpin may have potential use in the future as a form of treatment for cutaneous SCC.

  16. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-01-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural

  17. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...

  18. Preferential Ty1 retromobility in mother cells and nonquiescent stationary phase cells is associated with increased concentrations of total Gag or processed Gag and is inhibited by exposure to a high concentration of calcium.

    Science.gov (United States)

    Peifer, Andrew C; Maxwell, Patrick H

    2018-03-21

    Retrotransposons are abundant mobile DNA elements in eukaryotic genomes that are more active with age in diverse species. Details of the regulation and consequences of retrotransposon activity during aging remain to be determined. Ty1 retromobility in Saccharomyces cerevisiae is more frequent in mother cells compared to daughter cells, and we found that Ty1 was more mobile in nonquiescent compared to quiescent subpopulations of stationary phase cells. This retromobility asymmetry was absent in mutant strains lacking BRP1 that have reduced expression of the essential Pma1p plasma membrane proton pump, lacking the mRNA decay gene LSM1 , and in cells exposed to a high concentration of calcium. Mother cells had higher levels of Ty1 Gag protein than daughters. The proportion of protease-processed Gag decreased as cells transitioned to stationary phase, processed Gag was the dominant form in nonquiescent cells, but was virtually absent from quiescent cells. Treatment with calcium reduced total Gag levels and the proportion of processed Gag, particularly in mother cells. We also found that Ty1 reduced the fitness of proliferating but not stationary phase cells. These findings may be relevant to understanding regulation and consequences of retrotransposons during aging in other organisms, due to conserved impacts and regulation of retrotransposons.

  19. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N.; Lascaud, S.

    1999-12-01

    The authors report on three different in situ and ex situ concentration measurement methods in symmetric lithium/polymer-electrolyte/lithium cells. The results were examined on the basis of a simple calculation of ionic concentration within the electrolyte, in the case where no dendrite is observed, this calculation accounts quantitatively for all experimental results. In the case of dendritic growth, the authors can measure the concentration distribution around the dendrites; this permits correlation of the active parts of the electrodes and of the growing dendrites with local ionic depletion in the vicinity of these active parts.

  20. Chemical Utilization of Albizia lebbeck Leaves for Developing Protein Concentrates as a Dietary Supplement.

    Science.gov (United States)

    Khan, Lutful Haque; Varshney, V K

    2017-08-17

    In search of nonconventional sources of protein to combat widespread malnutrition, the possibility of developing a protein concentrate as an alternative dietary supplement from abundantly available yet poorly valorized leaves of Albizia lebbeck (siris) was examined. A process for recovery of leaf protein concentrate (LPC) from these leaves was optimized and applied for isolation of LPCs from lower, middle, and upper canopies of the tree. The optimized conditions (leaves to water 1:9, coagulation at pH 4.0 using 1 N citric acid at 90°C for 11 minutes) afforded LPCs containing protein 37.15%, 37.57%, and 37.76% in 5.99%, 5.97%, and 6.07% yield, respectively. The proximate nutritional composition, pigments, minerals, in vitro digestibility, and antinutritional factors of these LPCs were determined. Analysis of variance of these data revealed no significant difference with respect to canopy. Use of Albizia lebbeck leaves for development of LPC as a food/feed supplement was revealed.

  1. Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2006-01-01

    Resveratrol, a phytochemical present in grapes, has been demonstrated to inhibit tumourigenesis in animal models. However, the specific mechanism by which resveratrol exerts its anticarcinogenic effect has yet to be elucidated. In the present study, the inhibitory effects of resveratrol on cell...... proliferation and apoptosis were evaluated in the human leukaemia cell line HL-60 and the human hepatoma derived cell line HepG2. We found that after a 2 h incubation period, resveratrol inhibited DNA synthesis in a concentration-dependent manner. The IC50 value was 15 μM in both HL-60 and HepG2 cells. When...... the time of treatment was extended, an increase in IC50 value was observed; for example, at 24 h the IC50 value was 30 μM for HL-60 cells and 60 μM for HepG2 cells. Flow cytometry revealed that cells accumulated in different phases of the cell cycle depending on the resveratrol concentration. Furthermore...

  2. Neonatal thyroid-stimulating hormone concentration and psychomotor development at preschool age.

    Science.gov (United States)

    Trumpff, Caroline; De Schepper, Jean; Vanderfaeillie, Johan; Vercruysse, Nathalie; Van Oyen, Herman; Moreno-Reyes, Rodrigo; Tafforeau, Jean; Vandevijvere, Stefanie

    2016-12-01

    Thyroid hormones are essential for normal brain development. The aim of this study is to assess if high concentration of thyroid stimulating hormone (TSH) that is below the clinical threshold (5-15 mIU/L) at neonatal screening is linked to psychomotor development impairments in the offspring at preschool age. A total of 284 Belgian preschool children 4-6 years old and their mothers were included in the study. The children were randomly selected from the total list of neonates screened in 2008, 2009 and 2010 by the Brussels newborn screening centre. The sampling was stratified by gender and TSH range (0.45-15 mIU/L). Infants with congenital hypothyroidism (>15 mIU/L), low birth weight and/or prematurity were excluded. Psychomotor development was assessed using the Charlop-Atwell scale of motor coordination. The iodine status of children was determined using median urinary iodine concentration. Socioeconomic, parental and child potential confounding factors were measured through a self-administered questionnaire. TSH level was not significantly associated with total motor score (average change in z-score per unit increase in TSH is 0.02 (-0.03, 0.07), p=0.351), objective motor score (p=0.794) and subjective motor score (p=0.124). No significant associations were found using multivariate regression model to control confounding factors. Mild thyroid dysfunction in the newborn-reflected by an elevation of TSH that is below the clinical threshold (5-15 mIU/L)-was not associated with impaired psychomotor development at preschool age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. The development of microfabricated biocatalytic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi; Karube, Isao [University of Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-02-01

    The production of electricity by biocatalytic fuel cells has been feasible for almost two decades and can produce electric power at a practical level. These fuel cells use immobilized microorganisms or enzymes as catalysts, and glucose as a fuel. A microfabricated enzyme battery has recently been made that is designed to function as a power supply for microsurgery robots or artificial organs. (author)

  4. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  5. Cell fate control in the developing central nervous system

    International Nuclear Information System (INIS)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-01-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  6. Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations.

    Science.gov (United States)

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Escher, Beate I; Joll, Cynthia; Radjenovic, Jelena

    2014-08-30

    An undivided electrolytic cell may offer lower electrochlorination through reduction of chlorine/hypochlorite at the cathode. This study investigated the performance of electrooxidation of reverse osmosis concentrate using boron-doped diamond electrodes in membrane-divided and undivided cells. In both cell configurations, similar extents of chemical oxygen demand and dissolved organic carbon removal were obtained. Continuous formation of chlorinated organic compounds was observed regardless of the membrane presence. However, halogenation of the organic matter did not result in a corresponding increase in toxicity (Vibrio fischeri bioassay performed on extracted samples), with toxicity decreasing slightly until 10AhL(-1), and generally remaining near the initial baseline-toxicity equivalent concentration (TEQ) of the raw concentrate (i.e., ∼2mgL(-1)). The exception was a high range toxicity measure in the undivided cell (i.e., TEQ=11mgL(-1) at 2.4AhL(-1)), which rapidly decreased to 4mgL(-1). The discrepancy between the halogenated organic matter and toxicity patterns may be a consequence of volatile and/or polar halogenated by-products formed in oxidation by OH electrogenerated at the anode. The undivided cell exhibited lower energy compared to the divided cell, 0.25kWhgCOD(-1) and 0.34kWhgCOD(-1), respectively, yet it did not demonstrate any improvement regarding by-products formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Estimation of indigestible NDF in forages and concentrates from cell wall composition

    DEFF Research Database (Denmark)

    Krämer, Monika; Weisbjerg, Martin Riis; Lund, Peter

    2012-01-01

    within plant type, where INDF is defined as the portion of plant cell walls not digested after 288 h rumen incubation in Dacron bags with 12 μm pore size. INDF is one of the more important parameters determining the net energy (NE) value of a diet in some recently developed ruminant feed evaluation...... systems. Effects of maturity and cut number on INDF in three legumes and 18 grasses were determined based on an experiment in which each forage was cut at three times of primary growth and once in each of the following three regrowths. These data were supplemented with data from earlier experiments...... System (CNCPS) to predict INDF, averaging 2.6 for legumes, grains and grain byproducts, 2.7 for grasses and 1.0 for oilseeds including byproducts. The INDF/IOM ratio varied less among plant species within plant type than among plant types. Multiple linear regression analysis revealed higher INDF...

  8. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  9. Determination of Zidovudine Triphosphate Intracellular Concentrations in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus-Infected Individuals by Tandem Mass Spectrometry

    Science.gov (United States)

    Font, Eva; Rosario, Osvaldo; Santana, Jorge; García, Hermes; Sommadossi, Jean-Pierre; Rodriguez, Jose F.

    1999-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) used against the human immunodeficiency virus (HIV) need to be activated intracellularly to their triphosphate moiety to inhibit HIV replication. Intracellular concentrations of these NRTI triphosphates, especially zidovudine triphosphate (ZDV-TP), are relatively low (low numbers of femtomoles per 106 cells) in HIV-infected patient peripheral blood mononuclear cells. Recently, several methods have used either high-performance liquid chromatography (HPLC) or solid-phase extraction (SPE) coupled with radioimmunoassay to obtain in vivo measurements of ZDV-TP. The limit of detection (LOD) by these methods ranged from 20 to 200 fmol/106 cells. In this report, we describe the development of a method to determine intracellular ZDV-TP concentrations in HIV-infected patients using SPE and HPLC with tandem mass spectrometry for analysis. The LOD by this method is 4.0 fmol/106 cells with a linear concentration range of at least 4 orders of magnitude from 4.0 to 10,000 fmol/106 cells. In hispanic HIV-infected patients, ZDV-TP was detectable even when the sampling time after drug administration was 15 h. Intracellular ZDV-TP concentrations in these patients ranged from 41 to 193 fmol/106 cells. The low LOD obtained with this method will provide the opportunity for further in vivo pharmacokinetic studies of intracellular ZDV-TP in different HIV-infected populations. Furthermore, this methodology could be used to perform simultaneous detection of two or more NRTIs, such as ZDV-TP and lamivudine triphosphate. PMID:10582890

  10. Standard Test Method for Calibration of Non-Concentrator Photovoltaic Secondary Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers calibration and characterization of secondary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of a photovoltaic device. 1.2 Secondary reference cells are calibrated indoors using simulated sunlight or outdoors in natural sunlight by reference to a primary reference cell previously calibrated to the same desired reference spectral irradiance distribution. 1.3 Secondary reference cells calibrated according to this test method will have the same radiometric traceability as the of the primary reference cell used for the calibration. Therefore, if the primary reference cell is traceable to the World Radiometric Reference (WRR, see Test Method E816), the resulting secondary reference cell will also be traceable to the WRR. 1.4 This test method appli...

  11. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.

    Science.gov (United States)

    Moccia, Francesco; Bertoni, Giuseppe; Pla, Alessandra Florio; Dragoni, Silvia; Pupo, Emanuela; Merlino, Annalisa; Mancardi, Daniele; Munaron, Luca; Tanzi, Franco

    2011-09-01

    Hydrogen sulphide (H2S) is a recently discovered gasotransmitter that may regulate a growing number of endothelial functions, including nitric oxide (NO) release, proliferation, adhesion and migration, which are the key steps of angiogenesis. The mechanism whereby H2S impacts on endothelial physiology is still unclear: however, the aforementioned processes are driven by an increase in intracellular Ca2+ concentration ([Ca2+]i). In the present study, we exploited the excised rat aorta to gain insights into the regulation of [Ca2+]i by H2S within in situ endothelial cells (ECs). Sodium hydrosulphide (NaHS), a H2S donor, caused an elevation in [Ca2+]i, which disappeared in absence of extracellular Ca2+. NaHSinduced Ca2+ inflow was sensitive to high doses of Gd3+, but not BTP-2. Inhibition of the reverse-mode of the Na+-Ca2+ exchanger (NCX), with KB-R7943 or upon removal of extracellular Na+, abrogated the Ca2+ response to NaHS. Moreover, NaHS-elicited Ca2+ entry was significantly reduced by TEA and glybenclamide, which hinted at the involvement of ATP-dependent K+ (KATP) channels. Conversely, NaHS-evoked Ca2+ signal was not affected by the reducing agent, dithiothreitol. Acute addition of NaHS hindered both Ca2+ release and Ca2+ entry induced by ATP, a physiological agonist of ECs. Consistently, inhibition of endogenous H2S synthesis with DL-propargylglycine impaired ATP-induced Ca2+ inflow, whereas it did not affect Ca2+ mobilization. These data provide the first evidence that H2S may stimulate Ca2+ influx into ECs by recruiting the reverse-mode of NCX and KATP channels. In addition, they show that such gasotransmitter may modulate the Ca2+ signals elicited by physiological stimuli in intact endothelium.

  12. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multiscale mechanisms of cell migration during development: theory and experiment.

    Science.gov (United States)

    McLennan, Rebecca; Dyson, Louise; Prather, Katherine W; Morrison, Jason A; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M

    2012-08-01

    Long-distance cell migration is an important feature of embryonic development, adult morphogenesis and cancer, yet the mechanisms that drive subpopulations of cells to distinct targets are poorly understood. Here, we use the embryonic neural crest (NC) in tandem with theoretical studies to evaluate model mechanisms of long-distance cell migration. We find that a simple chemotaxis model is insufficient to explain our experimental data. Instead, model simulations predict that NC cell migration requires leading cells to respond to long-range guidance signals and trailing cells to short-range cues in order to maintain a directed, multicellular stream. Experiments confirm differences in leading versus trailing NC cell subpopulations, manifested in unique cell orientation and gene expression patterns that respond to non-linear tissue growth of the migratory domain. Ablation experiments that delete the trailing NC cell subpopulation reveal that leading NC cells distribute all along the migratory pathway and develop a leading/trailing cellular orientation and gene expression profile that is predicted by model simulations. Transplantation experiments and model predictions that move trailing NC cells to the migratory front, or vice versa, reveal that cells adopt a gene expression profile and cell behaviors corresponding to the new position within the migratory stream. These results offer a mechanistic model in which leading cells create and respond to a cell-induced chemotactic gradient and transmit guidance information to trailing cells that use short-range signals to move in a directional manner.

  14. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  15. Reference ranges for blood concentrations of nucleated red blood cells in neonates.

    Science.gov (United States)

    Christensen, Robert D; Henry, Erick; Andres, Robert L; Bennett, Sterling T

    2011-01-01

    Previous studies reported a relationship between high nucleated red blood cells (NRBC) in neonates and the development of intraventricular hemorrhage (IVH) and/or retinopathy of prematurity (ROP). We sought to (1) establish reference ranges for NRBC in neonates based on a large data set, (2) compare NRBC from automated versus manual counts, (3) determine the effect of an elevated NRBC, on the day of birth, on the odds of developing grade ≥3 IVH or ROP. We analyzed all NRBC obtained during 8.5 years in a multihospital system, displaying the 5th and 95th percentile limits according to gestational age and postnatal age. NRBC counts were retrieved from 61,932 neonates, 26,536 of which were excluded from the data set. Comparing 9,000 samples run simultaneously on manual versus automated methods, the manual counts yielded slightly higher counts, but the difference is likely insignificant clinically. Altitude of the birth hospital did not correlate with NRBC, and no correlations were observed with cord pH or 1- or 5-min Apgar. An NRBC count >95th percentile limit was associated with higher odds of developing a grade ≥3 IVH (OR 4.28; 95% CI 3.17-5.77) and grade ≥3 ROP (OR 4.18; 95% CI 2.74-6.38). The figures of this report display reference ranges for NRBC according to gestational age and postnatal age. An NRBC count above the 95% limit at birth is associated with a higher risk of subsequently developing severe IVH and severe ROP. We speculate that this association is because an elevated NRBC count is a marker for prenatal hypoxia. Copyright © 2010 S. Karger AG, Basel.

  16. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  17. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same......One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...

  18. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Crane, M.St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA))

    1984-06-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G/sub 2/ phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed.

  19. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    International Nuclear Information System (INIS)

    Crane, M. St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K.

    1984-01-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G 2 phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed. (author)

  20. Phase I/II safety study of transfusion of prion-filtered red cell concentrates in transfusion-dependent patients.

    LENUS (Irish Health Repository)

    Cahill, M R

    2010-08-01

    Variant Creutzfeldt-Jakob (vCJD) is a fatal transfusion transmissible prion infection. No test for vCJD in the donor population is currently available. Therefore, prion removal by filtration of red cell concentrate (RCC) is an attractive option for prevention.

  1. White blood cell fragments in platelet concentrates prepared by the platelet-rich plasma or buffy-coat methods

    NARCIS (Netherlands)

    Dijkstra-Tiekstra, M. J.; van der Schoot, C. E.; Pietersz, R. N. I.; Reesink, H. W.

    2005-01-01

    BACKGROUND AND OBJECTIVES: White blood cell (WBC) fragments in platelet concentrates (PCs) may induce allo-immunization in the recipient. MATERIALS AND METHODS: As the level of WBC fragments can differ between PCs produced using different methods, we compared PCs prepared by using the buffy-coat

  2. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    Science.gov (United States)

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    is an important aspect of cell modelling. ... 1Supercomputer Education and Research Centreand 2Bioinformatics Centre, Indian Institute ... Important aspects in each panel are listed. ... subsumption relationship, in which the child term is a more.

  4. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  5. Development of a methanol reformer for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Baard

    2003-03-01

    Vehicles powered by fuel cells are from an environmental aspect superior to the traditional automobile using internal combustion of gasoline. Power systems which are based upon fuel cell technology require hydrogen for operation. The ideal fuel cell vehicle would operate on pure hydrogen stored on-board. However, storing hydrogen on-board the vehicle is currently not feasible for technical reasons. The hydrogen can be generated on-board using a liquid hydrogen carrier such as methanol and gasoline. The objective of the work presented in this thesis was to develop a catalytic hydrogen generator for automotive applications using methanol as the hydrogen carrier. The first part of this work gives an introduction to the field of methanol reforming and the properties of a fuel cell based power system. Paper I reviews the catalytic materials and processes available for producing hydrogen from methanol. The second part of this thesis consists of an experimental investigation of the influence of the catalyst composition, materials and process parameters on the activity and selectivity for the production of hydrogen from methanol. In Papers II-IV the influence of the support, carrier and operational parameters is studied. In Paper V an investigation of the catalytic properties is performed in an attempt to correlate material properties with performance of different catalysts. In the third part of the thesis an investigation is performed to elucidate whether it is possible to utilize oxidation of liquid methanol as a heat source for an automotive reformer. In the study which is presented in Paper VI a large series of catalytic materials are tested and we were able to minimize the noble metal content making the system more cost efficient. In the final part of this thesis the reformer prototype developed in the project is evaluated. The reformer which was constructed for serving a 5 k W{sub e} fuel cell had a high performance with near 100 % methanol conversion and CO

  6. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  7. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  8. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

    Science.gov (United States)

    Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

    2017-04-10

    We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

  9. Development of electret technology to measure indoor radon-daughter concentrations: Final report (Phase 1)

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.C.; Stieff, L.R.

    1989-05-01

    A new type of radon progeny monitor called an electret radon progeny integrating sampling unit (E-RPISU) was developed and demonstrated which uses an electret ion chamber to measure the progeny concentration. A conventional 1 LPM particulate air sampling system is used to collect the progeny on a 35 cm 2 filter which is mounted on the side of the electret ion chamber such that the collected progeny are exposed to the inside of the chamber. The alpha radiation emitted by the progeny collected on the filter ionizes the air in the 220 ml chamber. The ions of opposite polarity collect on the surface of the 127 μm thick electret and reduce its surface voltage. A specially built surface voltmeter is used to measure the electret voltage before and after sampling. The electret voltage drop which occurs during the sampling period is shown to be proportional to the time integrated progeny concentration. Two prototype systems were fabricated and tested in homes and in calibrated radon chambers. The resulting data are presented and analyzed. The calibration factor for the E-RPISU ranged from 1.5 to 2.0 V/mWL-day depending on the electret voltage. Two of the E-RPISUs were delivered to UNC Geotech for further testing. 32 refs., 11 figs., 5 tabs

  10. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    Science.gov (United States)

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-07-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  11. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  12. Comparison of fibroblast cell regeneration in three different concentrations of Wharton’s Jelly mesenchymal stem cells conditioned medium (WJMSCs-CM)

    Science.gov (United States)

    Untoro, E. G.; Asrianti, D.; Usman, M.; Meidyawati, R.; Margono, A.

    2017-08-01

    Wharton’s Jelly-derived mesenchymal stem cells (WJMSCs) have gained interest as an alternative source of stem cells for regenerative medicine. Although many studies have characterized Wharton’s Jelly biologically, the effects of different concentrations in a cultured medium have not yet been compared. Damaged fibroblasts, the primary components of irreversible dental pulpitis, irreversibly impair the ability to regenerate and lead to the disruption of extracellular matrix. This study was performed to evaluate the potency of three WJMSCs-CM concentrations in improving serum-starved fibroblasts. Fibroblasts were cultivated in five passages, and divided into four groups. The first group (the control group) consisted of fibroblast cells that had been treated using starvation methods. The other groups (the treatment groups) were treated with various concentration of WJMSCs-CM (50%, 25% and 12.5%). Proliferative ability was evaluated using a cell count method and analyzed with a one-way ANOVA. Cultivation of serum-starved fibroblasts produced significantly higher cell counts in 12.5% WJMSCs-CM compared to the 50% group. It can be concluded that 12.5% WJMSCs-CM is the most efficient concentration for fibroblast proliferation.

  13. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    Science.gov (United States)

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  14. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  15. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    Science.gov (United States)

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  16. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, Sandra Raquel; Longhi, Marielen; Zini, Lucas Pandolphi [Universidade de Caxias do Sul (CCET/UCS), Caxias do Sul, RS (Brazil). Centro de Ciências Exatas e Tecnologia; Beltrami, Lilian Vanessa Rossa; Boniatti, Rosiana; Cardoso, Henrique Ribeiro Piaggio; Vega, Maria Rita Ortega; Malfatti, Célia de Fraga, E-mail: lvrossa@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Pesquisa em Corrosão

    2017-07-01

    Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl) methacrylate (TMSPMA), tetraethoxysilane (TEOS) and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG) plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD) nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior. (author)

  17. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    Full Text Available Abstract Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl methacrylate (TMSPMA, tetraethoxysilane (TEOS and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA, X-ray diffraction (XRD nuclear magnetic resonance spectroscopy (NMR and Fourier transform infrared spectroscopy (FT-IR. The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior.

  18. Development of free surface flow between concentric cylinders with vertical axes

    International Nuclear Information System (INIS)

    Watanabe, T; Toya, Y; Nakamura, I

    2005-01-01

    Numerical and experimental studies are conducted on flows developing between two concentric cylinders with vertical axes. The inner cylinder rotates and the outer and the lower end wall are fixed. The upper boundary is a free surface. The flow is at rest in an initial state, and the inner cylinder impulsively begins to rotate or its rotation speed linearly increases to a prescribed value. The acceleration rate of the inner cylinder changes the formation processes of flows and/or the final flow modes. Time-dependent flows appear at higher Reynolds numbers, and the numerical and experimental results of the power spectra show some agreements. It is suggested that critical Reynolds numbers appear, at which the fluctuations in the displacement of the free surface and the kinetic energy of a velocity component steeply increase

  19. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  20. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish

    International Nuclear Information System (INIS)

    Pinder, John E.; Rowan, David J.; Smith, Jim T.

    2016-01-01

    Data from published studies and World Wide Web sources were combined to develop a regression model to predict "1"3"7Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. - Highlights: • We developed a model to predict concentration ratios (C_r) for saltwater fish. • The model requires only a single input variable to predict C_r. • That variable is a mean numeric trophic level available at (fishbase.org). • The K concentrations in seawater were not an important predictor variable. • The median-to observed ratio for 56 independently measured C_r was 0.83.

  1. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells-update 2

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in low earth orbit (LEO) cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40 000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. This test was conducted at Hughes Aircraft Company under a NASA Lewis contract. The purpose was to investigate the effect of KOH concentration on cycle life. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The boiler plate test results are in the process of being validated using flight hardware and real time LEO test at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. Six 48 Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16600 cycles during the continuing test.

  2. Development of a portable wireless system for bipolar concentric ECG recording

    International Nuclear Information System (INIS)

    Prats-Boluda, G; Ye-Lin, Y; Bueno Barrachina, J M; Senent, E; Rodriguez de Sanabria, R; Garcia-Casado, J

    2015-01-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization). (paper)

  3. A drug target that stimulates development of healthy stem cells

    Science.gov (United States)

    Scientists have overcome a major impediment to the development of effective stem cell therapies by studying mice that lack CD47, a protein found on the surface of both healthy and cancer cells. They discovered that cells obtained from the lungs of CD47-de

  4. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  5. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression.

    Science.gov (United States)

    Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L

    2016-01-06

    Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. © 2016 Authors.

  6. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration

    International Nuclear Information System (INIS)

    Osawa, Hiroyuki; Ohnishi, Hirohide; Takano, Koji; Noguti, Takasi; Mashima, Hirosato; Hoshino, Hiroko; Kita, Hiroto; Sato, Kiichi; Matsui, Hirofumi; Sugano, Kentaro

    2006-01-01

    Sonic Hedgehog (Shh), a member of hedgehog peptides family, is expressed in gastric gland epithelium. To elucidate Shh function to gastric mucosal