WorldWideScience

Sample records for concentrations ventilation rate

  1. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  2. Effect of ventilation rate and board loading on formaldehyde concentration : a critical review of the literature

    Science.gov (United States)

    George E. Myers

    1984-01-01

    A critical literature review has been carried out on the influence of ventilation rate (N, hr.-1) and board loading (L, m2/m3) on steady state formaldehyde concentrations (Cs, ppm) resulting from particleboard and plywood emissions. Large differences exist among boards in the extent to which their formaldehyde concentrations change with N or L in laboratory chambers....

  3. Indoor radon concentration and its possible dependence on ventilation rate and flooring type

    International Nuclear Information System (INIS)

    Ashok, G. V.; Nagaiah, N.; Shiva Prasad, N. G.

    2012-01-01

    The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (±geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ±1.54 Bq m -3 . The morning, afternoon and night averages were found to be 42.6 ±2.05, 15.3 ±2.18 and 28.5 ±2.2 Bq m -3 , respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA-the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y -1 and 11.9 per 10 6 persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied. (authors)

  4. Radon concentration; source strength and ventilation rate: how well do we know the connections

    International Nuclear Information System (INIS)

    Ring, J.W.

    1984-01-01

    The simple steady state model which is frequently used to relate radon concentration (C), source strength (S) and ventilation rate (l/'tau') is expressed in the equation C=S'tau'. The assumptions of this model are given and their validity explored in this paper. In particular the assumption of steady state conditions fot the ventilation rate is studied experimentally in a simple one chamber building, the Solar Classroom at Hamilton College. Even in this simple case variations are found of a factor of three or more in 'tau' which can be attributed to wind and stack effects. Studies of other houses are cited which show that variations of 'tau' between houses can be as large as factor of sixty or more. The implications of these results for developing ventilation standards or for mitigating the indoor radon problem are suggested. Individual houses can be understood and mitigating strategies implemented in them on a case by case basis but a statistical treatment of houses in general does not seem to be a fruitful approach. (Author)

  5. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...... studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants...

  6. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  7. Test plan for headspace gas concentration measurement and headspace ventilation rate measurement for DCRTs 241-A-244, 241-BX-244, 241-S-244, 241-TX-244

    International Nuclear Information System (INIS)

    Bauer, R.E.

    1998-01-01

    This test plan provides the directions to characterize the headspace gas concentrations and the headspace ventilation rate for double contained receiver tanks 241-A-244, 241-BX-244, 241-S-244, and 241-TX-244

  8. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    Science.gov (United States)

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight

  9. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms.

    Science.gov (United States)

    Maula, H; Hongisto, V; Naatula, V; Haapakangas, A; Koskela, H

    2017-11-01

    The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality, and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO 2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO 2 level 2260 ppm). CO 2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odor intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  11. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D.N.; Nielsen, Peter V.

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order...... that the air is fully mixed. The objective of this work is to determine the influence of the location of a pollutant, temperature differences and whether the room is furnished or not. It is also investigated if it is sufficient to determine the mean concentration in the room to determine the personal exposure....... Full scale experiments along with a breathing thermal manikin (BTM) have been used. The results show that the location of the sources is of great importance, just as well as temperature differences. Furthermore, the concentration in the breathing zone showed large differences throughout the room....

  12. Association between substandard classroom ventilation rates and students' academic achievement.

    Science.gov (United States)

    Haverinen-Shaughnessy, U; Moschandreas, D J; Shaughnessy, R J

    2011-04-01

    This study focuses on the relationship between classroom ventilation rates and academic achievement. One hundred elementary schools of two school districts in the southwest United States were included in the study. Ventilation rates were estimated from fifth-grade classrooms (one per school) using CO(2) concentrations measured during occupied school days. In addition, standardized test scores and background data related to students in the classrooms studied were obtained from the districts. Of 100 classrooms, 87 had ventilation rates below recommended guidelines based on ASHRAE Standard 62 as of 2004. There is a linear association between classroom ventilation rates and students' academic achievement within the range of 0.9-7.1 l/s per person. For every unit (1 l/s per person) increase in the ventilation rate within that range, the proportion of students passing standardized test (i.e., scoring satisfactory or above) is expected to increase by 2.9% (95%CI 0.9-4.8%) for math and 2.7% (0.5-4.9%) for reading. The linear relationship observed may level off or change direction with higher ventilation rates, but given the limited number of observations, we were unable to test this hypothesis. A larger sample size is needed for estimating the effect of classroom ventilation rates higher than 7.1 l/s per person on academic achievement. The results of this study suggest that increasing the ventilation rates toward recommended guideline ventilation rates in classrooms should translate into improved academic achievement of students. More studies are needed to fully understand the relationships between ventilation rate, other indoor environmental quality parameters, and their effects on students' health and achievement. Achieving the recommended guidelines and pursuing better understanding of the underlying relationships would ultimately support both sustainable and productive school environments for students and personnel. © 2010 John Wiley & Sons A/S.

  13. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence.

    Science.gov (United States)

    Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will

    2004-01-01

    A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but

  14. On the influence of the ventilation rate to the radiation burden in dwellings

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1980-01-01

    Calculations on the influence of the ventilation rate to the concentration of radon in dwellings from radioactive material of natural origin in building material are completed with a few examples of measurements. In addition, the optimization of the ventilation rate and the consequences of poorly ventilated dwellings are reported briefly. (author)

  15. Measurements of waste tank passive ventilation rates using tracer gases

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  16. The effect of ventilation on the indoor air concentration of PCB

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2015-01-01

    The impact of increased ventilation on polychlorinated biphenyl (PCB) air concentration by installation of mechanical balanced ventilation units was studied. The intervention was carried out in three PCB-contaminated rooms; one classroom in an elementary school and two small bedrooms...... in an apartment in a residential building. In the classroom, the air exchange rate (ACH) was raised from 0.2 (without mechanical ventilation) to 5.5 /h during the intervention. In the two bedrooms, the highest ACH was 6.6 /h and 0.5 /h without mechanical ventilation. The corresponding concentration decrease...

  17. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    Science.gov (United States)

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  18. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  19. Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.

    Science.gov (United States)

    Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa

    2018-02-27

    The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.

  20. The declined levels of inflammatory cytokines related with weaning rate during period of septic patients using ventilators.

    Science.gov (United States)

    Yang, Chao-Huei; Hsiao, Jung-Lung; Wu, Ming-Feng; Lu, Mei-Hua; Chang, Hui-Ming; Ko, Wang-Sheng; Chiou, Ya-Ling

    2018-02-01

    Approximately 50% of patients with sepsis-induced acute lung injury and acute respiratory distress syndrome require mechanical ventilation. Patients with extended mechanical ventilator use routinely develop reinfections, which increases hospital stay, mortality, and health care cost. Some studies have pointed out inflammatory factors concentrations can affect ventilator weaning, but do not indicate changed inflammatory factors related to ventilator weaning during using ventilators. This study aimed to investigate during period of septic patients using ventilators, the inflammatory cytokines concentrations related with weaning rate. Blood was collected from 35 septic patients before and during ventilator use on days 1, 7, 14, and 21 (or weaning). 58.3% (N = 20) of septic patients with mechanical ventilators were weaned successfully within 21 days (ventilator weaned group, VW), 16.7% (N = 6) did not wean within 21 days (ventilator dependent group, VD), and 25% died (death group) in hospital. Before ventilator use, higher C-reactive protein (CRP), IL-6, and IL-8 levels were measured in the death group than in all other groups (P ventilator use, CRP, IL-6, and IL-8 concentrations declined significantly in VW and VD patients (P ventilators weaning successfully such as disease control, nutritional status, and so on. The declined levels of serum inflammatory cytokines, especially IL-6, improved inflammation status might be one factor of successfully weaning during septic patients on ventilators. © 2016 John Wiley & Sons Ltd.

  1. Waste tank ventilation rates measured with a tracer gas method

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  2. Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials

    International Nuclear Information System (INIS)

    Ericson, S.O.

    1984-01-01

    Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached house in Sweden this can be equivalent to a decrease in oil consumption of 0.5 m 3 . At present price this corresponds to a saving of SEK 1200, 150 US dollars per annum. The contribution of the building materials to the concentration of radon in indoor air is approximately the inverse to air exchange rate. For a small change in ventilation rate and cost, in SEK/man Sv or US dollar/man Sv, is a function of ventilation rate, exhalation from building materials, the ratio between surface of walls, floor and ceiling to the volume of air. Thus, it is possible to find the specific ventilation rate where the marginal cost for a small increase in ventilation rate and the marginal reduction in radon concentration will give a specific amount of money for each man Sv. Examples are given. Conclusions are that for most building materials in a climate like the Swedish, there are other factors than exhalation of radon from building materials that sets the lower limit of recommendable ventilation rate. (Author)

  3. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    Science.gov (United States)

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  4. Research of CO2 concentration in naturally ventilated lecture room

    Science.gov (United States)

    Laska, Marta; Dudkiewicz, Edyta

    2017-11-01

    Naturally ventilated buildings especially dedicated for educational purposes need to be design to achieve required level of thermal comfort and indoor air quality. It is crucial in terms of both: health and productivity of the room users. Higher requirements of indoor environment are important due to the level of students concentration, their ability to acquire new knowledge and willingness to interact with the lecturer. The article presents the results of experimental study and surveys undertaken in naturally ventilated lecture room. The data is analysed in terms of CO2 concentration and its possible influence on users. Furthermore the outcome of the research is compared with the CO2 concentration models available in the literature.

  5. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  6. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    Brabec, M.; Jilek, K.

    2004-01-01

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  7. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  8. Reducing indoor radon concentrations by passive subslab ventilation

    International Nuclear Information System (INIS)

    Jiranek, M.

    2005-01-01

    The primary objective of our study was to establish whether passive soil ventilation systems installed under existing houses have an effect on indoor radon concentrations. Experiments were conducted in two single-family houses. The soil ventilation under each house consists of the network of flexible perforated pipes laid into the layer of coarse gravel of the minimal thickness 150 mm. Soil air from the perforated pipes is ventilated by means of the vertical exhaust pipe that runs through the heated part of the house and ends above the roof of the house. At the top of the vertical exhaust a wind turbine is mounted in order to improve the stack effect during the windy weather .In addition to the soil ventilation both houses were provided with new floors composed of concrete slab and radon proof insulation made of LDPE membrane. The efficiency of passive soil ventilation systems varies within the year in dependence on the temperature gradient and wind speed. Preliminary results indicate that temperature gradient predominates. However the maximum under-pressure at the base of the vertical exhaust pipe caused by temperature differences is not so high. During one-year observation period the maximum temperature related under-pressure was only -8 Pa. The wind effect starts to be noticeable for speeds higher than 5 m/s and more apparent becomes for speeds above 10 m/s. The maximum values of under-pressure due to wind forces were measured within the range - 20 Pa and -30 Pa for wind speeds from 20 m/s to 25 m/s. Quite significant variations of the subslab under-pressure within one day were observed. The maximum under pressure was measured at late night or early morning when the outdoor temperature was the lowest. Annual variations were also confirmed. During the winter the temperature gradient is higher than in the summer time and thus the subslab under-pressure is consistently higher in the winter. Preliminary results indicate that passive soil ventilation systems with

  9. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  10. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  11. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Science.gov (United States)

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  12. Effect of ventilation type on radon concentration at places of work

    International Nuclear Information System (INIS)

    Oksanen, E.

    1994-01-01

    Indoor radon ( 222 Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements, but the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected. (author)

  13. Study on calculation models and distribution rules of the radon concentration and its progenies concentration in blind roadway with forced-exhaust ventilation

    International Nuclear Information System (INIS)

    Ye Yongjun; Wang Liheng; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Wang Shuyun; Ding Dexin

    2014-01-01

    The forced-exhaust ventilation is an important way to control the concentration of radon and its progenies in long-distance blind driving roadway. It is of great significance for guiding the design of ventilation and radiation protection to study distribution characteristics of the concentration of radon and its progenies in the wind of roadway adopting the forced-exhaust ventilation. Therefore, according to the decay relationship of radon and its progenies, a simplified mathematical calculation model was built, which relates to the radon activity concentration and the potential alpha concentration of radon progenies. The paper also analyzed the sources of radon and its progenies in the limited space of the blind roadway. Then, based on the turbulence mass transfer theory of ventilation air flow, the paper established mathematical calculation models of distribution characteristics of the radon activity concentration and the potential alpha concentration of radon progenies in blind roadway with forced-exhaust ventilation, respectively. Finally, the paper applied the calculation models to a special blind roadway, and discussed the influence of the ventilation air inflow and the radon exhalation rate of rock wall on the distribution of radon concentration and the potential alpha concentration of radon progenies in the roadway. Meanwhile, some protective measurements were put forward to reduce the radiation dose of worker caused by radon and its progenies in the blind roadway. (authors)

  14. Practical guidebook on the modulation of ventilation flow rates; Guide pratique sur la modulation des debits de ventilation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The modulation of ventilation flow rates aims at adapting the flow rate of ventilation systems to the real occupancy of rooms, at maintaining a good indoor air quality and at mastering the energy expenses due to air renewing in rooms. This technical guidebook presents the design of modulated ventilation systems (definition of occupancy areas in buildings, choice of presence sensors (CO{sub 2}, hygrometry, temperature, CO, VOC and other specific probes)), their principle and implementation. (J.S.)

  15. A preliminary study on the association between ventilation rates in classrooms and student performance.

    Science.gov (United States)

    Shaughnessy, R J; Haverinen-Shaughnessy, U; Nevalainen, A; Moschandreas, D

    2006-12-01

    Poor conditions leading to substandard indoor air quality (IAQ) in classrooms have been frequently cited in the literature over the past two decades. However, there is limited data linking poor IAQ in the classrooms to student performance. Whereas, it is assumed that poor IAQ results in reduced attendance and learning potential, and subsequent poor student performance, validating this hypothesis presents a challenge in today's school environment. This study explores the association between student performance on standardized aptitude tests that are administered to students on a yearly basis, to classroom carbon dioxide (CO2) concentrations, which provide a surrogate of ventilation being provided to each room. Data on classroom CO2 concentrations (over a 4-5 h time span within a typical school day) were recorded in fifth grade classrooms in 54 elementary schools within a school district in the USA. Results from this preliminary study yield a significant (P classroom-level ventilation rate and test results in math. They also indicate that non-linear effects may need to be considered for better representation of the association. A larger sample size is required in order to draw more definitive conclusions. Practical Implications Future studies could focus on (1) gathering more evidence on the possible association between classroom ventilation rates and students' academic performance; (2) the linear/non-linear nature of the association; and (3) whether it is possible to detect 'no observed adverse effect level' for adequate ventilation with respect to academic performance in schools. All of this information could be used to improve guidance and take regulatory actions to ensure adequate ventilation in schools. The high prevalence of low ventilation rates, combined with the growing evidence of the positive impact that sufficient ventilation has on human performance, suggests an opportunity for improving design and management of school facilities.

  16. Effect of a ventilator-focused intervention on the rate of Acinetobacter baumannii infection among ventilated patients.

    Science.gov (United States)

    Cohen, Regev; Shimoni, Zvi; Ghara, Riad; Ram, Ron; Ben-Ami, Ronen

    2014-09-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia, often as a result of ventilator equipment contamination. Evidence-based guidance on optimal care of ventilator equipment to prevent infection is lacking. Here, we report on a significant and persistent reduction in A baumannii infection rates achieved by introducing a strict policy on ventilator care. We implemented an institution-wide ventilator care policy that included routine exchange of breathing circuits and external bacterial filters (every 7-14 days) and replacement followed by routine sterilization of internal bacterial filters (every 4-8 weeks). We analyzed sputum cultures and patient outcomes among ventilated patients before and after the intervention. Between January 2012 and March 2013, 321 patients ventilated for more than 3 days comprised the study cohort. Health care-associated A baumannii acquisition was significantly reduced during the postintervention period (33% vs 16%; odds ratio, 0.39; 95% confidence interval, 0.23-0.67; P = .0008). Additionally, the median time to A baumannii acquisition was significantly longer postintervention (59 vs 21 days; P < .0001). A baumannii ventilator-associated pneumonia risk was also reduced postintervention (odds ratio, 0.39; P = .005). Implementing a stricter standard of ventilator care than that currently defined in published guidelines can significantly decrease health care-associated A baumannii acquisition and related adverse outcomes among ventilated patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    Science.gov (United States)

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heredia, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison between different gas sampling methods, and the effect of different ventilation conditions.

  19. Effect of ventilation on concentrations of indoor radon- and thoron-progeny: Experimental verification of a simple model

    International Nuclear Information System (INIS)

    Sheets, R.W.; Thompson, C.C.

    1993-01-01

    Different models relating the dependence of radon ( 222 Rn)- and thoron ( 220 Rn)-progeny activities on room ventilation rates are presented in the literature. Some of these models predict that, as the rate of ventilation increases, activities of thoron progeny decrease more rapidly than those of radon progeny. Other models predict the opposite trend. In this study alpha activities of the radon progeny, 218 Po, 214 Pb, and 214 Bi, together with the thoron progeny 212 Pb, were measured over periods of several days in two rooms of a closed, heated house. Effective ventilation rates were calculated from measured 214 Pb/ 214 Bi ratios. A simple model in which progeny concentrations decrease by radioactive decay and by dilution with outside air has been used to calculate 212 Pb/ 214 Pb ratios as a function of ventilation rate. Calculated ratios are found to correlate significantly with experimentally-determined ratios (R 2 ∼ 0.5--0.8 at p < 0.005) confirming that, for this house, thoron progeny activities decrease faster than radon progeny activities with increasing rates of ventilation

  20. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    Science.gov (United States)

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of ventilation on hyaluronan and protein concentration in pleural liquid of anesthetized and conscious rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1998-01-01

    The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.

  2. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Introduced with a brief discussion of the key role of ventilation in controlling mine atmospheres, the effects of the design of the ventilation system on the control of radon daughter concentrations are illustrated with specific reference to Alcan's Director Mine, St-Lawrence, Nfld. (This fluorspar mine was found to have high radon concentrations due to mine water bringing in dissolved radon.) After a discussion of the health physics history of the mine, the various phases of the ventilation system design and the general results are detailed. The author draws some conclusions having general application to the design of any mine with a radon or thoron daughter concentration. These include minimizing the 'age' of the air; the need for continuous ventilation in all areas; the value of remote control and monitoring; and the benefits of mine pressurization

  3. [Experimental study on the influence of natural and artificial ventilation on indoor radon concentration].

    Science.gov (United States)

    Remetti, R; Gigante, G E

    2010-01-01

    The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.

  4. Adaptive Support Ventilation May Deliver Unwanted Respiratory Rate-Tidal Volume Combinations in Patients with Acute Lung Injury Ventilated According to an Open Lung Concept

    NARCIS (Netherlands)

    Dongelmans, Dave A.; Paulus, Frederique; Veelo, Denise P.; Binnekade, Jan M.; Vroom, Margreeth B.; Schultz, Marcus J.

    2011-01-01

    Background: With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury.

  5. Association between ventilation rates in 390 Swedish homes and allergic symptoms in children

    DEFF Research Database (Denmark)

    Bornehag, Carl Gustaf; Sundell, Jan; Hagerhed-Engman, L.

    2005-01-01

    in 390 homes, were examined by physicians. Ventilation rates were measured by a passive tracer gas method, and inspections were carried out in the homes. About 60% of the multi-family houses and about 80% of the single-family houses did not fulfill the minimum requirement regarding ventilation rate...

  6. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  7. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    Science.gov (United States)

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. A Prospective Study of Ventilation Rates and Illness Absence in California Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eliseeva, Ekaterina A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-07

    Background – This study investigated the associations of ventilation rates (VRs), estimated from indoor CO2 concentrations, in offices with the amount of respiratory infections, illness absences, and building-related health symptoms in occupants. Methods – Office buildings were recruited from three California climate zones. In one or more study spaces within each building, real-time logging sensors measured carbon dioxide, temperature, and relative humidity for one year. Ventilation rates were estimated using daily peak CO2 levels, and also using an alternative metric. Data on occupants and health outcomes were collected through web-based surveys every three months. Multivariate models were used to assess relationships between metrics of ventilation rate or CO2 and occupant outcomes. For all outcomes, negative associations were hypothesized with VR metrics, and positive associations with CO2 metrics. Results – Difficulty recruiting buildings and low survey response limited sample size and study power. In 16 studied spaces within 9 office buildings, VRs were uniformly high over the year, from twice to over nine times the California office VR standard (7 L/s or 15 cfm per person). VR and CO2 metrics had no statistically significant relationships with occupant outcomes, except for a small significantly positive association of the alternative VR metric with respiratory illness-related absence, contrary to hypotheses. Conclusions– The very high time-averaged VRs in the California office buildings studied presumably resulted from “economizer cycles” bringing in large volumes of outdoor air; however, in almost all buildings even the estimated minimum VRs supplied (without the economizer) substantially exceeded the minimum required VR. These high VRs may explain the absence of hypothesized relationships with occupant outcomes. Among uniformly high VRs, little variation in contaminant concentration and occupant effects would be expected. These findings may

  9. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  10. Krypton-enhanced ventilation CT with dual energy technique: experimental study for optimal krypton concentration.

    Science.gov (United States)

    Chung, Yong Eun; Hong, Sae Rom; Lee, Mi-Jung; Lee, Myungsu; Lee, Hye-Jeong

    2014-11-01

    To assess the feasibility of krypton-enhanced ventilation CT using dual energy (DE) technique for various krypton concentrations and to determine the appropriate krypton concentration for DE ventilation CT through an animal study. Baseline DECT was first performed on seven New Zealand white rabbits. The animals were then ventilated using 20%, 30%, 40%, 50%, 60%, to 70% krypton concentration, and DECT was performed for each concentration. Krypton extraction was performed through a workstation, and results were displayed on a color map. Overlay Hounsfield unit (HU) values were obtained by two observers in consensus readings. A linear mixed model was used to correlate overlay HU values and krypton concentrations. Visual assessments of the homogeneity of krypton maps were also performed. Mean overlay HU values according to krypton concentration were as follows; 20% krypton, 1.68 ± 5.15; 30% krypton, 3.73 ± 5.93; 40% krypton, 6.92 ± 5.51; 50% krypton, 10.88 ± 5.17; 60% krypton, 14.54 ± 4.23; and 70% krypton, 18.79 ± 3.63. We observed a significant correlation between overlay HU values on krypton maps and krypton concentrations (P krypton color maps, all observers determined universal enhancement on the 70% krypton map for all animals. It is feasible to evaluate lung ventilation function using DECT with a krypton concentration of at least 70%.

  11. Sustained Reduction of Ventilator-Associated Pneumonia Rates Using Real-Time Course Correction With a Ventilator Bundle Compliance Dashboard.

    Science.gov (United States)

    Talbot, Thomas R; Carr, Devin; Parmley, C Lee; Martin, Barbara J; Gray, Barbara; Ambrose, Anna; Starmer, Jack

    2015-11-01

    The effectiveness of practice bundles on reducing ventilator-associated pneumonia (VAP) has been questioned. To implement a comprehensive program that included a real-time bundle compliance dashboard to improve compliance and reduce ventilator-associated complications. DESIGN Before-and-after quasi-experimental study with interrupted time-series analysis. SETTING Academic medical center. In 2007 a comprehensive institutional ventilator bundle program was developed. To assess bundle compliance and stimulate instant course correction of noncompliant parameters, a real-time computerized dashboard was developed. Program impact in 6 adult intensive care units (ICUs) was assessed. Bundle compliance was noted as an overall cumulative bundle adherence assessment, reflecting the percentage of time all elements were concurrently in compliance for all patients. The VAP rate in all ICUs combined decreased from 19.5 to 9.2 VAPs per 1,000 ventilator-days following program implementation (Pdashboard was associated with significant sustained decreases in VAP rates and an increase in bundle compliance among adult ICU patients.

  12. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings

    International Nuclear Information System (INIS)

    Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V.

    2015-01-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. (authors)

  13. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    Science.gov (United States)

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  15. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berkeley, Pam M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  16. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  17. Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway

    Science.gov (United States)

    Goyal, Radha; Khare, Mukesh

    2009-12-01

    A study on indoor-outdoor RSPM (PM 10, PM 2.5 and PM 1.0) mass concentration monitoring has been carried out at a classroom of a naturally ventilated school building located near an urban roadway in Delhi City. The monitoring has been planned for a year starting from August 2006 till August 2007, including weekdays (Monday, Wednesday and Friday) and weekends (Saturday and Sunday) from 8:0 a.m. to 2:0 p.m., in order to take into account hourly, daily, weekly, monthly and seasonal variations in pollutant concentrations. Meteorological parameters, including temperature, rH, pressure, wind speed and direction, and traffic parameters, including its type and volume has been monitored simultaneously to relate the concentrations of indoor-outdoor RSPM with them. Ventilation rate has also been estimated to find out its relation with indoor particulate concentrations. The results of the study indicates that RSPM concentrations in classroom exceeds the permissible limits during all monitoring hours of weekdays and weekends in all seasons that may cause potential health hazards to occupants, when exposed. I/O for all sizes of particulates are greater than 1, which implies that building envelop does not provide protection from outdoor pollutants. Further, a significant influence of meteorological parameters, ventilation rate and of traffic has been observed on I/O. Higher I/O for PM 10 is indicating the presence of its indoor sources in classroom and their indoor concentrations are strongly influenced by activities of occupants during weekdays.

  18. Ventilation rate in equilibrium factor measurements with solid state nuclear track detectors (SSNTD)

    International Nuclear Information System (INIS)

    Gil, L.R.; Leitao, R.M.S.; Marques, A.; Rivera, A.

    1994-08-01

    Ventilation rate values are calculated from track density measurements in solid state nuclear track detectors (SSNTD), both when ventilation is the main cause of radioactive disequilibrium in radon progeny and when it shares importance with other agents. The method consists in exposing a SSNTD of high intrinsic efficiency (CR-39) in filtered and unfiltered conditions and, in addition, covered with a thin Aluminium foil, to stop alpha particles from 218 Po and 222 Rn. No calibrations are required but, when necessary, independent measurements of the loss rates of radioactivity to aerosol and to walls have to perform. Ventilation rates depend upon geometry detection efficiencies for alpha particles, here obtained by Monte Carlo simulation, taking into account the space distribution of emission positions. This may lead to sizeable corrections in ventilation and equilibrium factor values. Since geometric detection efficiencies depend upon alpha-particle ranges in air, the influences of barometric variables are also discussed. (author). 7 refs

  19. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Experience in mines shows that a very high concentration of radon daughters builds up in an unventilated dead end heading. Even minimal air movement results in a drastic reduction in radon daughter concentration. Designing the ventilation system to provide an optimized flow of fresh air into the workplace results in acceptable climatic conditions and radon daughter levels. The example of the Director fluorospar mine in Newfoundland is used to illustrate the actual design and operation of a ventilation system that provided effective radon daughter control. It was found at this mine that the age of the air underground should be kept as low as possible; that no areas of the mine should be left unventilated unless they could be kept at negative pressure; that a comparatively simple remote control and monitoring system helped stabilize ventilation and detected upsets; that the ventilation system should operate continuously, even when the mine is shut down for short periods; and that pressurization of the mine seemed to inhibit radon influx

  20. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  1. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  2. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were

  3. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    Science.gov (United States)

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO 2 , VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its

  4. Impact of regional ventilation changes on surface particulate matter concentrations in South Korea

    Science.gov (United States)

    Kim, H. C.; Stein, A. F.; Chai, T.; Ngan, F.; Kim, B. U.; Jin, C. S.; Hong, S. Y.; Park, R.; Son, S. W.; Bae, C.; Bae, M.; Song, C. K.; Kim, S.

    2017-12-01

    The recent increase in surface particulate matter (PM) concentrations in South Korea is intriguing due to its disagreement with current intensive emission reduction efforts. The long-term trend of surface PM concentrations in South Korea declined in the 2000s, but since 2012 its concentrations have tended to increase, resulting in frequent severe haze events in the region. This study demonstrates that the interannual variation of surface PM concentrations in South Korea is not only affected by changes in local or regional emission sources, but also closely linked with the interannual variations in regional ventilation. Using EPA Community Multiscale Air Quality modeling system, a 12-year (2004-2015) regional air quality simulation was conducted to assess the impact of the meteorological conditions under constant anthropogenic emissions. In addition, NOAA HYSPLIT dispersion model was utilized to estimate the strength of regional ventilation that dissipates local pollutions. Simulated PM concentrations show a strong negative correlation (i.e. R=-0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuations in regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012, with -1.45±0.12, -1.41±0.16, and -1.09±0.16 mg/m3 per year in Seoul, the Seoul Metropolitan Area, and South Korea, respectively.

  5. Calculation note: project W-320 primary ventilation air flow requirements for mitigation of steady state flammable gas concentrations in the headspaces of tanks 241-C-106 and 241-AY-102

    International Nuclear Information System (INIS)

    Estey, S.D.

    1997-01-01

    This calculation note analyzes headspace concentrations of hydrogen dependent upon assumed ventilation flow rates provided for tanks 241-C-106 and 241-AY-102. The analyses are based on measured or estimated steady state hydrogen release rates. Tank 241-C-106 is analyzed prior to sluicing; tank 241-AY-102 is analyzed both prior to and after completion of sluicing. Specific analyses, using both best estimated and bounding hydrogen generation rates, include the minimum primary ventilation flow rates required in the tanks to ensure that the steady state hydrogen concentration in the respective tank headspace does not exceed 25% and 100% of the LFL. The headspace hydrogen concentration as a function of time as well as the time required to reach 25% and 100% of LFL upon complete loss of active ventilation, starting from the steady state hydrogen concentration based on a 200 CFM minimum flow rate in tank 241-C-106 and a 100 CFM minimum flow rate in tank241-AY-102. The headspace hydrogen concentration as a function of thee following partial loss of active ventilation (i.e., step changes to l60, l20, 80, and 40 CFM ventilation flow rates) in tank 241-C-106, staffing from a 200 CFM flow rate and the corresponding steady state hydrogen concentration based on the 200 CFM flow rate. The headspace hydrogen concentration as a function of the following partial loss of active ventilation i.e., step changes to 80, 60, 40, and 20 CFM ventilation flow rates) in tank 241-AY-102, starting from a 100 CFM flow rate and the corresponding steady state hydrogen concentration based on the 100 CFM flow rate

  6. Effects of Classroom Ventilation Rate and Temperature on Students' Test Scores.

    Directory of Open Access Journals (Sweden)

    Ulla Haverinen-Shaughnessy

    Full Text Available Using a multilevel approach, we estimated the effects of classroom ventilation rate and temperature on academic achievement. The analysis is based on measurement data from a 70 elementary school district (140 fifth grade classrooms from Southwestern United States, and student level data (N = 3109 on socioeconomic variables and standardized test scores. There was a statistically significant association between ventilation rates and mathematics scores, and it was stronger when the six classrooms with high ventilation rates that were indicated as outliers were filtered (> 7.1 l/s per person. The association remained significant when prior year test scores were included in the model, resulting in less unexplained variability. Students' mean mathematics scores (average 2286 points were increased by up to eleven points (0.5% per each liter per second per person increase in ventilation rate within the range of 0.9-7.1 l/s per person (estimated effect size 74 points. There was an additional increase of 12-13 points per each 1°C decrease in temperature within the observed range of 20-25°C (estimated effect size 67 points. Effects of similar magnitude but higher variability were observed for reading and science scores. In conclusion, maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students.

  7. Effects of Classroom Ventilation Rate and Temperature on Students' Test Scores.

    Science.gov (United States)

    Haverinen-Shaughnessy, Ulla; Shaughnessy, Richard J

    2015-01-01

    Using a multilevel approach, we estimated the effects of classroom ventilation rate and temperature on academic achievement. The analysis is based on measurement data from a 70 elementary school district (140 fifth grade classrooms) from Southwestern United States, and student level data (N = 3109) on socioeconomic variables and standardized test scores. There was a statistically significant association between ventilation rates and mathematics scores, and it was stronger when the six classrooms with high ventilation rates that were indicated as outliers were filtered (> 7.1 l/s per person). The association remained significant when prior year test scores were included in the model, resulting in less unexplained variability. Students' mean mathematics scores (average 2286 points) were increased by up to eleven points (0.5%) per each liter per second per person increase in ventilation rate within the range of 0.9-7.1 l/s per person (estimated effect size 74 points). There was an additional increase of 12-13 points per each 1°C decrease in temperature within the observed range of 20-25°C (estimated effect size 67 points). Effects of similar magnitude but higher variability were observed for reading and science scores. In conclusion, maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students.

  8. Effects of Classroom Ventilation Rate and Temperature on Students’ Test Scores

    Science.gov (United States)

    2015-01-01

    Using a multilevel approach, we estimated the effects of classroom ventilation rate and temperature on academic achievement. The analysis is based on measurement data from a 70 elementary school district (140 fifth grade classrooms) from Southwestern United States, and student level data (N = 3109) on socioeconomic variables and standardized test scores. There was a statistically significant association between ventilation rates and mathematics scores, and it was stronger when the six classrooms with high ventilation rates that were indicated as outliers were filtered (> 7.1 l/s per person). The association remained significant when prior year test scores were included in the model, resulting in less unexplained variability. Students’ mean mathematics scores (average 2286 points) were increased by up to eleven points (0.5%) per each liter per second per person increase in ventilation rate within the range of 0.9–7.1 l/s per person (estimated effect size 74 points). There was an additional increase of 12–13 points per each 1°C decrease in temperature within the observed range of 20–25°C (estimated effect size 67 points). Effects of similar magnitude but higher variability were observed for reading and science scores. In conclusion, maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students. PMID:26317643

  9. The influence of opening windows and doors on the natural ventilation rate of a residential building

    Science.gov (United States)

    An analysis of air exchange rates due to intentional window and door openings in a research test house located in a residential environment is presented. These data inform the development of ventilation rate control strategies as building envelopes are tightened to improve the e...

  10. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  11. Metronome improves compression and ventilation rates during CPR on a manikin in a randomized trial.

    Science.gov (United States)

    Kern, Karl B; Stickney, Ronald E; Gallison, Leanne; Smith, Robert E

    2010-02-01

    We hypothesized that a unique tock and voice metronome could prevent both suboptimal chest compression rates and hyperventilation. A prospective, randomized, parallel design study involving 34 pairs of paid firefighter/emergency medical technicians (EMTs) performing two-rescuer CPR using a Laerdal SkillReporter Resusci Anne manikin with and without metronome guidance was performed. Each CPR session consisted of 2 min of 30:2 CPR with an unsecured airway, then 4 min of CPR with a secured airway (continuous compressions at 100 min(-1) with 8-10 ventilations/min), repeated after the rescuers switched roles. The metronome provided "tock" prompts for compressions, transition prompts between compressions and ventilations, and a spoken "ventilate" prompt. During CPR with a bag/valve/mask the target compression rate of 90-110 min(-1) was achieved in 5/34 CPR sessions (15%) for the control group and 34/34 sessions (100%) for the metronome group (pmetronome or control group during CPR with a bag/valve/mask. During CPR with a bag/endotracheal tube, the target of both a compression rate of 90-110 min(-1) and a ventilation rate of 8-11 min(-1) was achieved in 3/34 CPR sessions (9%) for the control group and 33/34 sessions (97%) for the metronome group (pMetronome use with the secured airway scenario significantly decreased the incidence of over-ventilation (11/34 EMT pairs vs. 0/34 EMT pairs; pmetronome was effective at directing correct chest compression and ventilation rates both before and after intubation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  13. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...... ventilation. The results are critically compared with the air flow rates assessed through anemometric measurements. The measurement features, limitations, shortcomings and uncertainties are also discussed....... is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  14. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  15. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  16. Effects of vehicle ventilation system, fuel type, and in-cabin smoking on the concentration of toluene and ethylbenzene in Pride cars

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2013-01-01

    Conclusion: The ventilation condition, fuel type, and in-cabin smoking were not significantly impressive on the toluene and ethylbenzene concentrations inside the cars. However, simultaneous usage of the vehicle ventilation system and natural ventilation (windows could lead to little decrease in toluene concentration levels inside the car, while smoking consumption by passengers can increase them.

  17. A Technical Basis for Employing Facility Ventilation Air Exchange Rates in the Decision to Downpost

    CERN Document Server

    Mantooth, D S

    2001-01-01

    Utilizing the ventilation exchange rate as a basis for the decision to downpost a location within a facility from an airborne radiation area (ARA) based on initial air count(DAC). Not used in the case of a confirmed or suspected contamination release.

  18. Ventilation rates indicate stress-coping styles in Nile tilapia

    Indian Academy of Sciences (India)

    increase and act in an active (e.g. high-level aggression or avoidance) manner in ... hand, VR can be linked to metabolic rates (Alvarenga and. Volpato 1995). ... dry pellets (22% protein, Purina® Ltd, Campinas, SP, Brazil). Leftover food was ... food offered, but this technique guaranteed fish were able to eat until satiation.

  19. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  20. The effects of smoking status and ventilation on environmental tobacco smoke concentrations in public areas of UK pubs and bars

    Science.gov (United States)

    Carrington, Joanna; Watson, Adrian F. R.; Gee, Ivan L.

    UK public houses generally allow smoking to occur and consequently customer ETS exposure can take place. To address this, in 1999 the UK Government and the hospitality industry initiated the Public Places Charter (PPC) to increase non-smoking facilities and provide better ventilation in public houses. A study involving 60 UK pubs, located in Greater Manchester, was conducted to investigate the effects of smoking area status and ventilation on ETS concentrations. ETS markers RSP, UVPM, FPM, SolPM and nicotine were sampled and analysed using established methodologies. ETS marker concentrations were significantly higher ( P mobile in these environments and tends to remain in the smoking areas. This result, together with the much higher reductions in nicotine concentrations between smoking and non-smoking areas compared to other markers, suggests that nicotine is not the most suitable marker to use in these environments as an indicator of the effectiveness of tobacco control policies. The use of ventilation systems (sophisticated HVAC systems and extractor fans in either the on or off mode) did not have a significant effect ( P > 0.05) on ETS marker concentrations in either the smoking or non-smoking areas. The PPC aims to reduce non-smoking customers' exposure through segregation and ventilation and provide customer choice though appropriate signs. This study indicates that although ETS levels are lower in non-smoking sections and signs will assist customers in reducing their exposure, some exposure will still occur because ETS was detected in non-smoking areas. Existing ventilation provision was not effective in reducing exposure and signs advertising ventilated premises may be misleading to customers. Improvements in the design and management of ventilation systems in pubs and bars are required to reduce customer exposure to ETS, if the aims of the PPC are to be met.

  1. The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production.

    Science.gov (United States)

    Calvet, S; Estellés, F; Cambra-López, M; Torres, A G; Van den Weghe, H F A

    2011-11-01

    Carbon dioxide balances are useful in determining ventilation rates in livestock buildings. These balances need an accurate estimation of the CO(2) produced by animals and their litter to determine the ventilation flows. To estimate the daily variation in ventilation flow, it is necessary to precisely know the daily variation pattern of CO(2) production, which mainly depends on animal activity. The objective of this study was to explore the applicability of CO(2) balances for determining ventilation flows in broiler buildings. More specifically, this work aimed to quantify the amount of CO(2) produced by the litter, as well as the amount of CO(2) produced by the broilers, as a function of productive parameters, and to analyze the influence of broiler activity on CO(2) emissions. Gas concentrations and ventilation flows were simultaneously measured in 3 trials, with 1 under experimental conditions and the other 2 in a commercial broiler farm. In the experimental assay, broiler activity was also determined. At the end of the experimental trial, on the day after the removal of the broilers, the litter accounted for 20% of the total CO(2) produced, and the broilers produced 3.71 L/h of CO(2) per kg of metabolic weight. On the commercial farm, CO(2) production was the same for the 2 cycles (2.60 L/h per kg of metabolic weight, P > 0.05). However, substantial differences were found between CO(2) and broiler activity patterns after changes in light status. A regression model was used to explain these differences (R(2) = 0.52). Carbon dioxide increased with bird activity, being on average 3.02 L/h per kg of metabolic weight for inactive birds and 4.73 L/h per kg of metabolic weight when bird activity was highest. Overall, CO(2) balances are robust tools for determining the daily average ventilation flows in broiler farms. These balances could also be applied at more frequent intervals, but in this case, particular care is necessary after light status changes because of

  2. In China, students in crowded dormitories with a low ventilation rate have more common colds: evidence for airborne transmission.

    Directory of Open Access Journals (Sweden)

    Yuexia Sun

    Full Text Available OBJECTIVE: To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. METHODS: In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO(2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO(2 concentrations. RESULTS: In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person. CONCLUSION: Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students.

  3. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  4. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  5. Respiratory induced heart rate variability during slow mechanical ventilation Marker to exclude brain death patients

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Kružliak, P.; Šrámek, V.; Cundrle, I.; Leinveber, P.; Adamek, M.; Zvoníček, V.

    2017-01-01

    Roč. 129, 7-8 (2017), s. 251-258 ISSN 0043-5325 R&D Projects: GA ČR GAP103/11/0933; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MZd NS10105 Institutional support: RVO:68081731 Keywords : critical illness * sedation * brain death * respiratory rate variability * heart rate variability * mechanical ventilation Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 0.974, year: 2016

  6. Evaluation of optimal dual axis concentrated photovoltaic thermal system with active ventilation using Frog Leap algorithm

    International Nuclear Information System (INIS)

    Gholami, H.; Sarwat, A.I.; Hosseinian, H.; Khalilnejad, A.

    2015-01-01

    Highlights: • Electro-thermal performance of open-loop controlled dual axis CPVT is investigated. • For using the absorbed heat, active ventilation with a heat storage tank is used. • Economic optimization of the system is performed, using Frog Leap algorithm. • Detailed model of all sections is simulated with their characteristics evaluation. • Triple-junction photovoltaic cells, which are the most recent technology, are used. - Abstract: In this study, design and optimization of a concentrated photovoltaic thermal (CPVT) system considering electrical, mechanical, and economical aspects is investigated. For this purpose, each section of the system is simulated in MATLAB, in detail. Triple-junction photovoltaic cells, which are the most recent technology, are used in this study. They are more efficient in comparison to conventional photovoltaic cells. Unlike ordinary procedures, in this work active ventilation is used for absorbing the thermal power of radiation, using heat storage tanks, which not only results in increasing the electrical efficiency of the system through decreasing the temperature, but also leads to storing and managing produced thermal energy and increasing the total efficiency of the system up to 85 percent. The operation of the CPVT system is investigated for total hours of the year, considering the needed thermal load, meteorological conditions, and hourly radiation of Khuznin, a city in Qazvin province, Iran. Finally, the collector used for this system is optimized economically, using frog leap algorithm, which resulted in the cost of 13.4 $/m"2 for a collector with the optimal distance between tubes of 6.34 cm.

  7. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing

    International Nuclear Information System (INIS)

    Perrier, Frederic; Richon, Patrick

    2010-01-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m -3 in summer to about 800-1400 Bq m -3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10 -6 s -1 . Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m -3 hPa -1 . This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.

  9. Effects of air conditioning, dehumidification and natural ventilation on indoor concentrations of 222Rn and 220Rn

    International Nuclear Information System (INIS)

    Lee, Thomas K.C.; Yu, K.N.

    2000-01-01

    A bedroom was selected for detailed measurements on 220 Rn and 222 Rn concentrations and environmental parameters including CO 2 concentration, temperature and relative humidity. To simulate different sealing conditions, five conditions were artificially created in the sampling period of 25 consecutive days. It was concluded that natural ventilation is the most efficient way to lower the 222 Rn levels, while air conditioning is the next. Dehumidification provides only a marginal reduction of 222 Rn levels. The 220 Rn concentrations are not affected by natural ventilation, air conditioner or dehumidification, and were all around 10 Bq m -3 . There are no significant correlations between the 220 Rn and 222 Rn concentrations and environmental conditions such as CO 2 concentrations, temperature, relative humidity and pressure

  10. An Investigation of the Effect of Ventilation Inlet and Outlet Arrangement on Heat Concentration in a Ship Engine Room

    Directory of Open Access Journals (Sweden)

    E. Alizadeh

    2017-10-01

    Full Text Available Τhe ventilation in the ship engine rooms is an essential issue concerning finest performance of engines and diesel generators as well as electric motors. The present study has aimed at the analysis of temperature distribution inside the ship main engine room. In the same way, attempts have been made to identify those points with considerable thermal concentration in main engine room space, so that proper ventilation systems could be engineered and utilized and favorable thermal conditions could be realized. The CFD approach has been utilized in order to analyze impact of the designed ventilation system on the temperature distribution pattern. The Inlet layout and area have been analyzed under a variety of scenarios in order to decrease the average temperature and eliminate the heat concentrations in various points of the engine room. The temperature distribution and location and area of ventilation air inlet have been studied in different modes resulted in temperature distribution pattern, heat concentration outline and average volumetric temperature level in each mode. The results indicated that considerable circulating air volume is required compared to those levels suggested by common practices, calculations and standards in order to eliminate the heat concentration.

  11. Antibiotic consumption and ventilator-associated pneumonia rates, some parallelism but some discrepancies.

    Science.gov (United States)

    Nora, David; Póvoa, Pedro

    2017-11-01

    Ventilator-associated pneumonia (VAP) is a common infection in intensive care units (ICUs) but its clinical definition is neither sensitive nor specific and lacks accuracy and objectivity. New defining criteria were proposed in 2013 by the National Healthcare Safety Network (NHSN) in order to more accurately conduct surveillance and track prevention progress. Although there is a consistent trend towards a decrease in VAP incidence during the last decade, significant differences in VAP rates have been reported and are persistently lower in NHSN and other American reports (0.0 to 4.4 VAP per 1,000 ventilator-days in 2012) compared to the European Centre for Disease Prevention and Control (ECDC) data (10 VAP per 1,000 ventilator-days in 2014). In the United States, VAP has been proposed as an indicator of quality of care in public reporting, and the threat of financial penalties for this diagnosis has put pressure on hospitals to minimize VAP rates that may lead to artificial lower values, independently of patient care. Although prevention bundles may contribute for encouraging reductions in VAP incidence, both pathophysiologic and epidemiologic factors preclude a zero-VAP rate. It would be expected from the trend of reduction of VAP incidence that the consumption of antibiotics would also decrease in particular in those hospitals with lowest VAP rates. However, ICU reports show a steadily use of antibiotics for nosocomial pneumonia in 15% of patients and both ECDC and NHSN data on antibiotic consumption showed no significant trend. Knowledge of bacterial epidemiology and resistance profiles for each ICU has great relevance in order to understand trends of antibiotic use. The new NHSN criteria provide a more objective and quantitative data based VAP definition, including an antibiotic administration criterion, allowing, in theory, a more comprehensive assessment and a reportable benchmark of the observed VAP and antibiotic consumption variability.

  12. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    Science.gov (United States)

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  13. Increasing rate of middle ear ventilation tube insertion in children in denmark

    DEFF Research Database (Denmark)

    Djurhuus, Bjarki Ditlev; Skytthe, Axel; Christensen, Kaare

    2014-01-01

    ventilation tube insertions distributed among 269,459 different children were identified. From 1997 to 2010 the age standardized incidence rate in 0-15-year-olds increased from 26 to 40 per 1000 person years with an estimated annual increase of 2.0% (95% confidence interval 1.9-2.1%). The largest increase...... in incidence rate was found in 1-year-olds with an annual increase of 4.5% (95% confidence interval 4.4-4.6%). Age-specific incidence rates remained at maximum around the age of 14 months throughout the period. The cumulative incidence proportion for the 2010 birth cohort by the time they reach the age of 5......OBJECTIVE: To study the incidence rates of middle ear ventilation tube insertion in children aged 0 to 15 years in Denmark from 1997 to 2010. METHODS: Using two national registers, the Danish National Health Service Register and the Danish National Patient Register, practically all cases of middle...

  14. Impact of the humidification device on intubation rate during noninvasive ventilation with ICU ventilators: results of a multicenter randomized controlled trial.

    Science.gov (United States)

    Lellouche, François; L'Her, E; Abroug, F; Deye, N; Rodriguez, P O; Rabbat, A; Jaber, S; Fartoukh, M; Conti, G; Cracco, C; Richard, J C; Ricard, J D; Mal, H; Mentec, H; Loisel, F; Lacherade, J C; Taillé, S; Brochard, L

    2014-02-01

    The use of heat and moisture exchangers (HME) during noninvasive ventilation (NIV) can increase the work of breathing, decrease alveolar ventilation, and deliver less humidity in comparison with heated humidifiers (HH). We tested the hypothesis that the use of HH during NIV with ICU ventilators for patients with acute respiratory failure would decrease the rate of intubation (primary endpoint) as compared with HME. We conducted a multicenter randomized controlled study in 15 centers. After stratification by center and type of respiratory failure (hypoxemic or hypercapnic), eligible patients were randomized to receive NIV with HH or HME. Of the 247 patients included, 128 patients were allocated to the HME group and 119 to the HH group. Patients were comparable at baseline. The intubation rate was not significantly different: 29.7% in the HME group and 36.9% in the HH group (p = 0.28). PaCO2 did not significantly differ between the two arms, even in the subgroup of hypercapnic patients. No significant difference was observed for NIV duration, ICU and hospital LOS, or ICU mortality (HME 14.1 vs. HH 21.5%, p = 0.18). In this study, the short-term physiological benefits of HH in comparison with HME during NIV with ICU ventilators were not observed, and no difference in intubation rate was found. The physiologic effects may have been obscured by leaks or other important factors in the clinical settings. This study does not support the recent recommendation favoring the use of HH during NIV with ICU ventilators.

  15. Numerical investigation on the gas entrainment rate on ventilated supercavity body

    Directory of Open Access Journals (Sweden)

    WuGang Yang

    2016-12-01

    Full Text Available The supercavitation technique provides a means of significantly increasing the velocity of an underwater vehicle. This technique involves essentially the creation of stable supercavity shape. The method of artificial ventilation is most effective for generating and dominating the supercavity. This paper focuses on the numerical simulation of flow field around three-dimensional body. The method is based on the multiphase computational fluid dynamics model combined with the turbulence model and the full cavity model. The fundamental similarity parameters of ventilated supercavity flows that include cavitation number, Froude number Fr, entrainment rate CQ, and drag coefficient Cx are all investigated numerically in the case of steady flow and gravity field. We discuss the following simulations results in three parts: (1 the variations of the cavitation number and the supercavity’s relative diameter with entrainment rate; (2 the drag coefficient versus the cavitation number; and (3 deformation of supercavity axis caused by gravitational effect for three different fixed three Froude numbers. In the full paper, we give the comparison results of the drag reduction ratio among numerical simulation and experiment conducted in hydrodynamic tunnel and towing tank, respectively. We summarize our discussion of gravitational effect on the axis deformation of supercavity as follows: in the case of smaller Froude number, the inclination of the cavity axis increases monotonously with increasing horizontal length and reaches its maximal value at the end of supercavity; this deformation can be almost completely negligible when the Froude number Fr is larger than 7.0. The comparisons with the experimental data in the hydrodynamic tunnel and the towing tank indicate that the present method is effective for predicting the flows around ventilated supercavity; that the numerical results is in good agreement with the experimental ones and that the maximal value of the

  16. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  17. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  18. A comparison between tracer gas and aerosol particles distribution indoors: The impact of ventilation rate, interaction of airflows, and presence of objects

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Ondráček, Jakub; Melikov, Arsen Krikor

    2017-01-01

    for the exposure to all different-sized test particles. A change in the ventilation rate did not affect the difference in concentration distribution between tracer gas and larger particle sizes. Increasing the room surface area did not influence the similarity in the dispersion of the aerosol particles...... room with mixing ventilation. Three layouts were arranged: an empty room, an office room with an occupant sitting in front of a table, and a single-bed hospital room. The room occupant was simulated by a thermal manikin. Monodisperse particles of three sizes (0.07, 0.7, and 3.5 μm) and nitrous oxide...... tracer gas were generated simultaneously at the same location in the room. The particles and gas concentrations were measured in the bulk room air, in the breathing zone of the manikin, and in the exhaust air. Within the breathing zone of the sitting occupant, the tracer gas emerged as reliable predictor...

  19. Use of ventilator associated pneumonia bundle and statistical process control chart to decrease VAP rate in Syria.

    Science.gov (United States)

    Alsadat, Reem; Al-Bardan, Hussam; Mazloum, Mona N; Shamah, Asem A; Eltayeb, Mohamed F E; Marie, Ali; Dakkak, Abdulrahman; Naes, Ola; Esber, Faten; Betelmal, Ibrahim; Kherallah, Mazen

    2012-10-01

    Implementation of ventilator associated pneumonia (VAP) bundle as a performance improvement project in the critical care units for all mechanically ventilated patients aiming to decrease the VAP rates. VAP bundle was implemented in 4 teaching hospitals after educational sessions and compliance rates along with VAP rates were monitored using statistical process control charts. VAP bundle compliance rates were steadily increasing from 33 to 80% in hospital 1, from 33 to 86% in hospital 2 and from 83 to 100% in hospital 3 during the study period. The VAP bundle was not applied in hospital 4 therefore no data was available. A target level of 95% was reached only in hospital 3. This correlated with a decrease in VAP rates from 30 to 6.4 per 1000 ventilator days in hospital 1, from 12 to 4.9 per 1000 ventilator days in hospital 3, whereas VAP rate failed to decrease in hospital 2 (despite better compliance) and it remained high around 33 per 1000 ventilator days in hospital 4 where VAP bundle was not implemented. VAP bundle has performed differently in different hospitals in our study. Prevention of VAP requires a multidimensional strategy that includes strict infection control interventions, VAP bundle implementation, process and outcome surveillance and education.

  20. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  1. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    Science.gov (United States)

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  2. CFD evaluation of natural ventilation of indoor environments by the concentration decay method : CO2 gas dispersion from a semi-enclosed stadium

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.

    2013-01-01

    Computational Fluid Dynamics (CFD) simulations can be used to assess indoor natural ventilation by solving the interaction between the urban wind flow and the indoor airflow. The air exchange rate (ACH) can be obtained from the simulated volume flow rates through the ventilation openings or by the

  3. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  4. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  5. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation

    International Nuclear Information System (INIS)

    Schranz, C; Möller, K; Becher, T; Schädler, D; Weiler, N

    2014-01-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (p I ), inspiration and expiration time (t I , t E ) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal p I and adequate t E can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's ‘optimized’ settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end

  6. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.

    Science.gov (United States)

    Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K

    2014-03-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.

  7. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  8. Estimation of time-varying pollutant emission rates in a ventilated enclosure: inversion of a reduced model obtained by experimental application of the modal identification method

    International Nuclear Information System (INIS)

    Girault, M; Maillet, D; Bonthoux, F; Galland, B; Martin, P; Braconnier, R; Fontaine, J R

    2008-01-01

    A method is proposed for the estimation of time-varying emission rates of pollutant sources in a ventilated enclosure, through the resolution of an inverse forced convection problem. Unsteady transport–diffusion of the pollutant is considered, with the assumption of a stationary velocity field remaining unchanged during emission (passive contaminant). The pollutant transport equation is therefore linear with respect to concentration. The source's location is also supposed to be known. As the first step, a reduced model (RM) linking concentrations at a set of control points to emission rates of sources is identified from experimental data by using the modal identification method (MIM). This parameter estimation problem uses transient contaminant concentration measurements made at control points inside the ventilated enclosure, corresponding to increasing and decreasing steps of emission rates. Such experimental modelling allows us to avoid dealing with a CFD code involving turbulence modelling and to get rid of uncertainties about sensors position. In a second step, the identified RM is used to solve an inverse forced convection problem: from contaminant concentration measured at the same control points, rates of sources emitting simultaneously are estimated with a sequential in time algorithm using future time steps

  9. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. 108.437 Section 108.437 Shipping COAST GUARD, DEPARTMENT OF... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for...

  10. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...... at low rate. This paper describes a new approach for ACR evaluation in naturally ventilated occupied spaces. Actual metabolic CO2 time variation record in an interval of time is compared with the computed variation of metabolic CO2 for the same time interval under reference conditions: sleeping occupants...

  11. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  12. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    Directory of Open Access Journals (Sweden)

    Allison P. Patton

    2016-01-01

    Full Text Available There are limited data on air quality parameters, including airborne particulate matter (PM in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1 measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E and mechanical (Building L ventilation; (2 compare indoor and outdoor PM mass concentrations and their ratios (I/O in these buildings, taking into account the effects of occupant behavior; and (3 evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3 than in Building L (37 µg/m3; I/O was higher in Building E (1.3–2.0 than in Building L (0.5–0.8 for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation are important factors affecting residents’ exposure to PM in residential green buildings.

  13. The impacts of balanced and exhaust mechanical ventilation on indoor radon

    International Nuclear Information System (INIS)

    Fisk, W.J.; Mowris, R.J.

    1987-02-01

    Models for estimating radon entry rates, indoor radon concentrations, and ventilation rates in houses with a basement or a vented crawl-space and ventilated by natural infiltration, mechanical exhaust ventilation, or balanced mechanical ventilation are described. Simulations are performed for a range of soil and housing characteristics using hourly weather data for the heating season in Spokane, WA. For a house with a basement, we show that any ventilation technique should be acceptable when the soil permeability is less than approximately 10 -12 m 2 . However, exhaust ventilation leads to substantially higher indoor radon concentrations than infiltration or balanced ventilation with the same average air exchange rate when the soil permeability is 10 -10 m 2 or greater. For houses with a crawl-space, indoor radon concentrations are lowest with balanced ventilation, intermediate with exhaust ventilation, and highest with infiltration

  14. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  15. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  16. Heart Rate Variability in Patients with Chronic Obstructive Pulmonary Disease Treated by Noninvasive Mechanic Ventilation

    Directory of Open Access Journals (Sweden)

    Zekeriya Küçükdurmaz

    2011-08-01

    Full Text Available Aims: This study aimed to investigate heart rate variability (HRV of patients with severe COPD who are treated by noninvasive mechanic ventilation (NIMV.Patients and Method: Twenty-seven patient (58±8 years, 9 F with severe COPD treated by nocturnal NIMV at home and 23 sex and age matched volunteers (56±8 years, 11 F who has not dyspnea as a control group recruited in the study. Subjects underwent spirometry, blood gas analysis, transthoracic echocardiography, 24 hours ambulatory ECG analysis. Time domain HRV analysis performed from ambulatory ECG records. Results: 52% of patients at NYHA functional class II, 36% at class III, and 12% at class IV when they have been treated by NIMV. Groups were similar for age and sex (p>0.05 for both. Heart rates of patients were higher significantly than controls’ (p0.05. But, systolic pulmonary pressures were higher of COPD group (p<0.01. 24 hours heart rate was higher, and standard deviation of normal R-R intervals (SDNN 24 hours, SDNN night, SDNN day, SDNN index (SDNNI and standard deviation of mean R-R intervals (SDANNI values were lower in COPD group significantly. SDNN was inversely correlated with duration of daily NIMV usage, intensive care unit administration and entubation rate and PaCO2. SDNNI was inversely correlated with functional class, duration of daily NIMV usage, intensive care unit administration rate and PaCO2. Else, SDNNI was correlated with predicted forced vital capacity % (FVC% and predicted forced expiratory volume at 1 second % (FEV1%.Conclusion: Time domain HRV decreases in patients with severe COPD. Decrease is correlated with severity of disease, and it presents in despite of the chronic nocturnal NIMV application. These patients have high risk for cardiovascular morbidity and mortality and should be monitored and manegement for cardiovascular events.

  17. Ventilator-Associated Pneumonia in Trauma Patients: Different Criteria, Different Rates.

    Science.gov (United States)

    Leonard, Kenji L; Borst, Gregory M; Davies, Stephen W; Coogan, Michael; Waibel, Brett H; Poulin, Nathaniel R; Bard, Michael R; Goettler, Claudia E; Rinehart, Shane M; Toschlog, Eric A

    2016-06-01

    No consensus exists regarding the definition of ventilator-associated pneumonia (VAP). Even within a single institution, inconsistent diagnostic criteria result in conflicting rates of VAP. As a Level 1 trauma center participating in the Trauma Quality Improvement Project (TQIP) and the National Healthcare Safety Network (NHSN), our institution showed inconsistencies in VAP rates depending on which criteria was applied. The purpose of this study was to compare VAP definitions, defined by culture-based criteria, National Trauma Data Bank (NTDB) and NHSN, using incidence in trauma patients. A retrospective chart review of consecutive trauma patients who were diagnosed with VAP and met pre-determined inclusion and exclusion criteria admitted to our rural, 861-bed, Level 1 trauma and tertiary care center between January 2008 and December 2011 was performed. These patients were identified from the National Trauma Registry of the American College of Surgeons (NTRACS) database and an in-house infection control database. Ventilator-associated pneumonia diagnosis criteria defined by the U.S. Center for Disease Control and Prevention (used by the NHSN), the NTDB, and our institutional, culture-based criteria gold standard were compared among patients. Two hundred seventy-nine patients were diagnosed with VAP (25.4% met NHSN criteria, 88.2% met NTDB, and 76.3% met culture-based criteria). Only 58 (20.1%) patients met all three criteria. When NHSN criteria were compared with culture-based criteria, NHSN showed a high specificity (92.5%) and low sensitivity (28.2%). The positive predictive value (PPV) was 84.5%, but the negative predictive value (NPV) was 47.1%. The agreement between the NHSN and the culture-based criteria was poor (κ = 0.18). Conversely, the NTDB showed a lower specificity (57.8%), but greater sensitivity (86.4%) compared with culture-based criteria. The PPV and NPV were both 74% and the two criteria showed fair agreement (κ = 0.41). The lack of

  18. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each

  19. Determination by a CFD code of the heat release rate in a confined and mechanically-ventilated compartment fire

    International Nuclear Information System (INIS)

    Nasr, Ayoub

    2011-01-01

    For several years, many experimental/numerical research programs have been carried out at IRSN in order to provide sufficient data on the burning process and understand the behavior of a pool fire in a confined and mechanically ventilated compartment. Several experimental tests have shown that in some cases, the oxygen concentration in the local decreases then stabilizes until fire extinction. The fuel mass loss rate is instantaneously adjusted according to the ventilation in the local, which may leads to a lower fuel consumption rate as compared to that in free atmosphere. The fire duration is then 2 to 3 times greater than that obtained in free atmosphere, which may damages some specific safety equipment used to reduce the spread of fire between compartments such as fire doors. The objective of this work is to propose a theoretical approach that allows the determination of the burning rate of fuels for pool fires in a closed compartment. Fuel response to vitiated air as well as burning enhancement due to hot gases and confinement should be taken into account. Thus, a theoretical formulation, based on an energy balance equation at the pool fire surface, was developed and compared with the empirical correlation of Peatross and Beyler before being implemented in a CFD code 'ISIS', developed at IRSN and validated against PRISME fire test results. The main advantage of this global approach is that no assumptions were made on the relative importance of each mode of heat transfer from the flame. In fact, the convective and the radiant components of the heat flux from the flame to the fuel surface were determined taking into account the air vitiation effect. In addition to this theoretical approach, an experimental work was conducted at the Institut PPRIME to study heptane pool fires in a reduced-scale fire compartment, in the aim to investigate the effects of vitiated air on fire parameters. These results were used to validate the theoretical formulation developed

  20. Ventilation rates in classrooms and performances of students. Preliminary study on their association; Ventilatiedebieten in klaslokalen en prestaties van scholieren

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, R.J. [The University of Tulsa, Tulsa, OK (United States); Haverinen-Shaughnessy, U.; Nevalainen, A. [Department of Environmental Health, National Public Health Institute, Kuopio (Finland); Moschandreas, D. [Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, IL (United States)

    2007-10-15

    Poor conditions leading to sub-standard indoor air quality (IAQ) in classrooms have been frequently cited in the literature over the past two decades. However, there is limited data linking poor IAQ in the classrooms to student performance. Whereas, it is assumed that poor IAQ results in reduced attendance and learning potential, and subsequent poor student performance, validating this hypothesis presents a challenge in today's school environment. This study explores the association between student performance on standardized aptitude tests that are administered to students on a yearly basis, to classroom carbon dioxide (CO2) concentrations, which provide a surrogate of ventilation being provided to each room. Data on classroom CO2 concentrations (over a 4-5h time span within a typical school day) were recorded in fifth grade classrooms in 54 elementary schools within a school district in the USA. Results from this preliminary study yield a significant (P<0.10) association between classroom-level ventilation rate and test results in math. They also indicate that non-linear effects may need to be considered for better representation of the association. A larger sample size is required in order to draw more definitive conclusions. [Dutch] Slechte omstandigheden die leiden tot een benedenmaatse binnenluchtkwaliteit (Indoor Air Quality - IAQ) in klaslokalen, zijn in de afgelopen twee decennia regelmatig aangehaald in de literatuur. Toch zijn er weinig onderzoeksresultaten waarin een verband wordt gelegd tussen een slechte IAQ in klaslokalen en de prestatie van scholieren. Er wordt verondersteld dat een slechte IAQ resulteert in een verminderde aanwezigheid en in een verminderd vermogen om te studeren, en daarop volgend in een slechte schoolprestatie. Om die reden zal het valideren van deze hypothese een uitdaging vormen in de schoolomgeving van dit moment. Dit onderzoek bestudeert het verband tussen de prestaties van scholieren en de concentraties koolstofdioxide

  1. Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System

    Science.gov (United States)

    Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.

    2013-04-01

    Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.

  2. Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System

    International Nuclear Information System (INIS)

    Macías, R; García, M A; Ramos, J; Bragós, R; Fernández, M

    2013-01-01

    Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.

  3. Minimum ventilation rates as a function of the use and the frequency of use of rooms. Final report. Mindestluftwechsel in Abhaengigkeit von der Nutzungsart und -intensitaet. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, J; Schlueter, G; Angerer, C; Meyer, H D

    1986-12-01

    From a hygienic view-point optimum indoor air quality can be characterized as the complete absence of pollutants. The most important sources of such pollutants are reviewed, amongst them those entering a room from outside, those generated by man and his activities and those emanating from different materials such as building materials, furnishing, cleansing and polishing agents. In view of achieving acceptable indoor conditions all emissions have to be kept as low as possible. Carbon dioxide and body odors as well as pollutants, the concentrations of which cannot be reduced to non-relevant levels by product control, should be eliminated by ventilation measures. However, such measures should not exceed a given limit, since in order to minimize energy consumption, air exchange rates have to be kept at a minimum. As a result of the investigations, it is concluded that the minimum ventilation rate should be derived from the acceptable CO/sub 2/ concentration. The concentrations of all other pollutants (e.g., formaldehyde) should be limited by product control or source removal. With 75 refs., 10 tabs., 19 figs.

  4. Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2017-02-01

    Full Text Available The ventilation rate (VR is a key parameter affecting indoor environmental quality (IEQ and the energy consumption of buildings. This paper reviews the use of CO2 as a “natural” tracer gas for estimating VRs, focusing on applications in school classrooms. It provides details and guidance for the steady-state, build-up, decay and transient mass balance methods. An extension to the build-up method and an analysis of the post-exercise recovery period that can increase CO2 generation rates are presented. Measurements in four mechanically-ventilated school buildings demonstrate the methods and highlight issues affecting their applicability. VRs during the school day fell below recommended minimum levels, and VRs during evening and early morning were on the order of 0.1 h−1, reflecting shutdown of the ventilation systems. The transient mass balance method was the most flexible and advantageous method given the low air change rates and dynamic occupancy patterns observed in the classrooms. While the extension to the build-up method improved stability and consistency, the accuracy of this and the steady-state method may be limited. Decay-based methods did not reflect the VR during the school day due to heating, ventilation and air conditioning (HVAC system shutdown. Since the number of occupants in classrooms changes over the day, the VR expressed on a per person basis (e.g., L·s−1·person−1 depends on the occupancy metric. If occupancy measurements can be obtained, then the transient mass balance method likely will provide the most consistent and accurate results among the CO2-based methods. Improved VR measurements can benefit many applications, including research examining the linkage between ventilation and health.

  5. Ventilator-driven xenon ventilation studies

    International Nuclear Information System (INIS)

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  6. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  7. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients.

    Science.gov (United States)

    Duan, Jun; Han, Xiaoli; Bai, Linfu; Zhou, Lintong; Huang, Shicong

    2017-02-01

    To develop and validate a scale using variables easily obtained at the bedside for prediction of failure of noninvasive ventilation (NIV) in hypoxemic patients. The test cohort comprised 449 patients with hypoxemia who were receiving NIV. This cohort was used to develop a scale that considers heart rate, acidosis, consciousness, oxygenation, and respiratory rate (referred to as the HACOR scale) to predict NIV failure, defined as need for intubation after NIV intervention. The highest possible score was 25 points. To validate the scale, a separate group of 358 hypoxemic patients were enrolled in the validation cohort. The failure rate of NIV was 47.8 and 39.4% in the test and validation cohorts, respectively. In the test cohort, patients with NIV failure had higher HACOR scores at initiation and after 1, 12, 24, and 48 h of NIV than those with successful NIV. At 1 h of NIV the area under the receiver operating characteristic curve was 0.88, showing good predictive power for NIV failure. Using 5 points as the cutoff value, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for NIV failure were 72.6, 90.2, 87.2, 78.1, and 81.8%, respectively. These results were confirmed in the validation cohort. Moreover, the diagnostic accuracy for NIV failure exceeded 80% in subgroups classified by diagnosis, age, or disease severity and also at 1, 12, 24, and 48 h of NIV. Among patients with NIV failure with a HACOR score of >5 at 1 h of NIV, hospital mortality was lower in those who received intubation at ≤12 h of NIV than in those intubated later [58/88 (66%) vs. 138/175 (79%); p = 0.03). The HACOR scale variables are easily obtained at the bedside. The scale appears to be an effective way of predicting NIV failure in hypoxemic patients. Early intubation in high-risk patients may reduce hospital mortality.

  8. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  9. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  10. Alterations in the rate of limb movement using a lower body positive pressure treadmill do not influence respiratory rate or phase III ventilation.

    Science.gov (United States)

    Buono, Michael J; Burnsed-Torres, Marissa; Hess, Bethany; Lopez, Kristine; Ortiz, Catherine; Girodo, Ariel; Lolli, Karen; Bloom, Brett; Bailey, David; Kolkhorst, Fred W

    2015-01-01

    The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (V CO2 ). Naturally, to match the V CO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0 ± 0.1 to 4.1 ± 0.2 mph, which resulted in a significant (P body weight) to 133 ± 6 at 4.1 mph (i.e., 50% of body weight). The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  11. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation

    Directory of Open Access Journals (Sweden)

    Michael J. Buono

    2015-01-01

    Full Text Available The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200. The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (VCO2. Naturally, to match the VCO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0±0.1 to 4.1±0.2 mph, which resulted in a significant (P<0.05 increase in the mean step frequency (steps per minute from 118±10 at 3 mph (i.e., 100% of body weight to 133±6 at 4.1 mph (i.e., 50% of body weight. The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  12. Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings.

    Science.gov (United States)

    Leivo, Virpi; Prasauskas, Tadas; Du, Liuliu; Turunen, Mari; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2018-04-15

    Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO 2 ) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO 2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO 2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Apte, Mike G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These

  14. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624

    DEFF Research Database (Denmark)

    Heebøll, Anna; Wargocki, Pawel; Toftum, Jørn

    2018-01-01

    of Copenhagen, Denmark, were retrofitted either with a decentralized, balanced supply and exhaust mechanical ventilation unit with heat recovery; automatically operable windows with an exhaust fan; automatically operable windows with alternating counter-flow heat recovery through slots in the outside wall......; or a visual feedback display unit showing the current classroom carbon dioxide concentration, thus advising when the windows should be opened. For comparison, one classroom retained the original approach for achieving ventilation by manual opening of windows. One year after retrofitting the classrooms carbon...... dioxide concentrations, temperatures, energy use, and window and door opening behavior were recorded during a four week period in the heating season in January. The measured carbon dioxide concentrations were significantly lower in the classrooms with the mechanical ventilation system and the system...

  15. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  16. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  17. Demand specifying variables and current ventilation rate requirements with respect to the future use of voc sensing for dcv control

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    be also taken into account in the ventilation control. Recent development in gas sensing technology resulted in a new generation of relatively cheap and practically applicable sensors that can offer measurements of some of the pollutants mentioned above – mainly Volatile Organic Compounds (VOC......Demand Controlled Ventilation (DCV) is a well established principle to provide a certain indoor environmental quality, defined both in the terms of air quality and thermal comfort. This is accomplished by adjusting the supplied airflow rate according to a certain demand indicator, which......). This seems to bring a new dimension into the control of DCV systems. This paper is a contribution to the workshop on utilization of VOC sensing technology used for DCV control. The aim of the paper is to provide a short review of different types of demand variables used to control DCV systems and summarize...

  18. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  19. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  20. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  1. Transport rates and concentration gradients during grain filling in wheat

    International Nuclear Information System (INIS)

    Fisher, D.B.; Gifford, R.M.

    1986-01-01

    Short-term mass transport rates into wheat ears were calculated at mid grain fill from 32 PO 4 translocation velocities and sieve tube sap concentrations in the peduncle. Over a wide range of velocities (8.5 to 170 cm/hr), sieve tube sap concentrations (514 to 1050 milliosmolal) and grains per ear (20 to 54 in intact ears, as few as 7 in partially degrained ears), there were no evident differences in the rate of mass transport per grain through the peduncle. Increased sieve tube sap concentration was accompanied in the endosperm cavity sap by increased sucrose concentration, but amino acid concentration and total osmolality remained essentially constant. Thus the rate of transport into the grains appeared to remain constant in spite of altered concentration gradients across the crease tissues of the grain and changing sucrose concentration in the endosperm cavity. The constancy of endosperm cavity sap osmolality suggests that osmoregulatory processes in the grain may play a role in regulating transport rate into the grain

  2. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation

    OpenAIRE

    Michael J. Buono; Marissa Burnsed-Torres; Bethany Hess; Kristine Lopez; Catherine Ortiz; Ariel Girodo; Karen Lolli; Brett Bloom; David Bailey; Fred W. Kolkhorst

    2015-01-01

    The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (V CO2 ). Naturally, to match the V CO2 while reducin...

  3. Impact of ventilation rates on SBS symptoms and productivity in offices

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Fanger, Povl Ole

    1999-01-01

    Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in a normally furnished office space ventilated with an outdoor air flow of 3, 10 and 30 L/s per person (corresponding to aiur changes of 0.6, 2.0 and 6 h-1, respectively), while all other environmental...... subjects occupied the office for 4.6 hours in the afternoon, six subjects at a time; they remained thermally neutral by adjusting their clothing. Subjects assessed perceived air quality and SBS symptoms, and performed simulated office work so that their productivity could be assessed. Increasing the supply...

  4. Effect of metronome rates on the quality of bag-mask ventilation during metronome-guided 30:2 cardiopulmonary resuscitation: A randomized simulation study.

    Science.gov (United States)

    Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk

    2017-01-01

    Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. This is a prospective, randomized, crossover observational study using a RespiTrainer○ r . To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P =0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P =0.006). In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR.

  5. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  6. Preovulatory progesterone concentration associates significantly to follicle number and LH concentration but not to pregnancy rate

    DEFF Research Database (Denmark)

    Yding Andersen, Claus; Bungum, Leif; Nyboe Andersen, Anders

    2011-01-01

    Using data from a large prospective randomized controlled trial that evaluated the effect of recombinant LH (rLH)co-administration for ovarian stimulation, the present study assessed whether progesterone concentration on the day of human chorionic gonadotrophin (HCG) administration was associated...... with or without rLH administration from day 6 of stimulation. There was no significant association between the late-follicular-phase progesterone concentration and the clinical pregnancy rate. However, progesterone concentration was strongly associated with the number of follicles and retrieved oocytes. Late......-follicular-phase LH concentration also showed a significant positive association with progesterone concentration (P = 0.018). Administration of rLH during ovarian stimulation did not affect progesterone concentration. The present study does not support an association between progesterone concentration on the day...

  7. Heart rate and leukocytes after air and ground transportation in artificially ventilated neonates: a prospective observational study.

    Science.gov (United States)

    Grosek, Stefan; Mlakar, Gorazd; Vidmar, Ivan; Ihan, Alojz; Primozic, Janez

    2009-01-01

    To evaluate the effect of interhospital air and ground transportation of artificially ventilated neonates on heart rate and peripheral blood leukocyte counts. Prospective, observational study. Level III multidisciplinary Neonatal and Pediatric Intensive Care Unit. Fifty-eight near-term artificially ventilated transported neonates between May 2006 and April 2007. Day-helicopter, day- and night-ground transportation. Heart rate at retrieval, on admission to the ICU and 1 h later, and peripheral blood leukocyte counts on admission and 1 d later were compared. Fifteen neonates were transported by helicopter during the daytime (D-HEL), 20 by daytime ground and 23 by nighttime ground transportation (D-GROUND, N-GROUND). No differences in delivery mode, birth weight, gestational age, gender, primary diagnoses for transportation, response time and duration of transportation were found between the groups. Similarly, no differences in pH, pCO(2), blood pressure and skin temperature at retrieval and on admission to the ICU were found between the three groups. The mean heart rate at retrieval did not differ significantly, while on arrival in the ICU and 1 h later the D-GROUND group of patients showed a significantly higher mean heart rate compared to the D-HEL and N-GROUND groups. Moreover, leukocyte counts on arrival in the ICU showed significantly higher leukocyte counts in the D-GROUND group of patients compared to the D-HEL group of patients. These results demonstrate that there is an association between daytime ground transportation and higher heart rate and peripheral blood leukocytes.

  8. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  9. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  10. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  11. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    Science.gov (United States)

    Solevåg, Anne Lee; Schmölzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this

  12. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  13. Preovulatory progesterone concentration associates significantly to follicle number and LH concentration but not to pregnancy rate

    DEFF Research Database (Denmark)

    Yding Andersen, Claus; Bungum, Leif; Nyboe Andersen, Anders

    2011-01-01

    Using data from a large prospective randomized controlled trial that evaluated the effect of recombinant LH (rLH)co-administration for ovarian stimulation, the present study assessed whether progesterone concentration on the day of human chorionic gonadotrophin (HCG) administration was associated...... with or without rLH administration from day 6 of stimulation. There was no significant association between the late-follicular-phase progesterone concentration and the clinical pregnancy rate. However, progesterone concentration was strongly associated with the number of follicles and retrieved oocytes. Late...

  14. Modeling ventilation and radon in new dutch dwellings

    International Nuclear Information System (INIS)

    Janssen, M.P.M.

    2003-01-01

    Indoor radon concentrations were estimated for various ventilation conditions, the differences being mainly related to the airtightness of the dwelling and the ventilation behavior of its occupants. The estimations were aimed at describing the variation in air change rates and radon concentrations to be expected in the representative newly built Dutch dwellings and identifying the most important parameters determining air change rate and indoor radon concentration. The model estimations were compared with measurements. Most of the air was predicted to enter the model dwelling through leaks in the building shell, independent of the ventilation conditions of the dwelling. Opening the air inlets was shown to be an efficient way to increase infiltration and thus to decrease radon concentration. The effect of increasing the mechanical ventilation rate was considerably less than opening the air inlets. The mechanical ventilation sets the lower limit to the air change rate of the dwelling, and is effective in reducing the radon concentration when natural infiltration is low. Opening inside doors proved to be effective in preventing peak concentrations in poorly ventilated rooms. As the airtightness of newly built dwellings is still being improved, higher radon concentrations are to be expected in the near future and the effect of occupant behavior on indoor radon concentrations is likely to increase. According to the model estimations soil-borne radon played a moderate role, which is in line with measurements. (au)

  15. Dependence of indoor-pollutant concentrations on sources, ventilation rates, and other removal factors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.; Grimsrud, D.T.

    1983-01-01

    The behavior of several classes of chemical and physical pollutants include emissions from combustion appliances, radon and its progeny, formaldehyde, and other organic compounds. Current research at Lawrence Berkeley Laboratory is described and research needs in the area of indoor air quality is pointed out

  16. Skin Tattoos Alter Sweat Rate and Na+ Concentration.

    Science.gov (United States)

    Luetkemeier, Maurie Joe; Hanisko, Joseph Michael; Aho, Kyle Mathiew

    2017-07-01

    The popularity of tattoos has increased tremendously in the last 10 yr particularly among athletes and military personnel. The tattooing process involves permanently depositing ink under the skin at a similar depth as eccrine sweat glands (3-5 mm). The purpose of this study was to compare the sweat rate and sweat Na concentration of tattooed versus nontattooed skin. The participants were 10 healthy men (age = 21 ± 1 yr), all with a unilateral tattoo covering a circular area at least 5.2 cm. Sweat was stimulated by iontophoresis using agar gel disks impregnated with 0.5% pilocarpine nitrate. The nontattooed skin was located contralateral to the position of the tattooed skin. The disks used to collect sweat were composed of Tygon® tubing wound into a spiral so that the sweat was pulled into the tubing by capillary action. The sweat rate was determined by weighing the disk before and after sweat collection. The sweat Na concentration was determined by flame photometry. The mean sweat rate from tattooed skin was significantly less than nontattooed skin (0.18 ± 0.15 vs 0.35 ± 0.25 mg·cm·min; P = 0.001). All 10 participants generated less sweat from tattooed skin than nontattooed skin and the effect size was -0.79. The mean sweat Na concentration from tattooed skin was significantly higher than nontattooed skin (69.1 ± 28.9 vs 42.6 ± 15.2 mmol·L; P = 0.02). Nine of 10 participants had higher sweat Na concentration from tattooed skin than nontattooed skin, and the effect size was 1.01. Tattooed skin generated less sweat and a higher Na concentration than nontattooed skin when stimulated by pilocarpine iontophoresis.

  17. Attempt to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J [State Office for Nuclear Protection, Prague (Czech Republic)

    1996-12-31

    For radon diagnosis in houses the `ventilation experiment` was used as a standard method. After removal of indoor radon by draught the build-up of radon concentration a(t) [Bq/m{sup 3}] was measured continuously and from the time course the constant radon entry rate A [Bq/h] and the exchange rate k [h{sup -1}] was calculated by regression analysis using model relation a(t) A(1-e{sup -kt})/kV with V [m{sup 3}] for volume of the room. The conditions have to be stable for several hours so that the assumption of constant A and k was justified. During the day both quantities were independently (?) changing, therefore a method to determine variable entry rate A(t) and exchange rate k(t) is needed for a better understanding of the variability of the indoor radon concentration. Two approaches are given for the determination of variable in time radon entry rates and air exchange rates from continuously measured indoor radon concentration - numerical solution of the equivalent difference equations in deterministic or statistic form. The approaches are not always successful. Failures giving a right ration for the searched rates but not of the rates them self could not be explained.

  18. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  19. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  20. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  1. Decrease in delivery room intubation rates after use of nasal intermittent positive pressure ventilation in the delivery room for resuscitation of very low birth weight infants.

    Science.gov (United States)

    Biniwale, Manoj; Wertheimer, Fiona

    2017-07-01

    The literature supports minimizing duration of invasive ventilation to decrease lung injury in premature infants. Neonatal Resuscitation Program recommended use of non-invasive ventilation (NIV) in delivery room for infants requiring prolonged respiratory support. To evaluate the impact of implementation of non-invasive ventilation (NIV) using nasal intermittent positive pressure ventilation (NIPPV) for resuscitation in very low birth infants. Retrospective study was performed after NIPPV was introduced in the delivery room and compared with infants receiving face mask to provide positive pressure ventilation for resuscitation of very low birth weight infants prior to its use. Data collected from 119 infants resuscitated using NIPPV and 102 infants resuscitated with a face mask in a single institution. The primary outcome was the need for endotracheal intubation in the delivery room. Data was analyzed using IBM SPSS Statistics software version 24. A total of 31% of infants were intubated in the delivery room in the NIPPV group compared to 85% in the Face mask group (p=rates were 11% in the NIPPV group and 31% in the Face mask group (p<0.001). Epinephrine administration was also lower in NIPPV group (2% vs. 8%; P=0.03). Only 38% infants remained intubated at 24hours of age in the NIPPV group compared to 66% in the Face mask group (p<0.001). Median duration of invasive ventilation in the NIPPV group was shorter (2days) compared to the Face mask group (11days) (p=0.01). The incidence of air-leaks was not significant between the two groups. NIPPV was safely and effectively used in the delivery room settings to provide respiratory support for VLBW infants with less need for intubation, chest compressions, epinephrine administration and subsequent invasive ventilation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  3. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  4. Modeling ventilation rates in bedrooms based on building characteristics and occupant behavior

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Toftum, Jørn; Clausen, Geo

    2011-01-01

    Air change rate (ACR) data obtained from the bedrooms of 500 Danish children and presented in an earlier paper were analyzed in more detail. Questionnaires distributed to the families, home inspections and interviews with the parents provided information about a broad range of residential charact...

  5. The influence of opening windows and doors on the natural ventilation rate of a residential building

    Science.gov (United States)

    Increased building energy efficiency is important in reducing national energy use and greenhouse gas emissions. An analysis of air change rates due to door and window openings in a research test house located in a residential environment are presented. These data inform developme...

  6. Cost-benefit of ventilation and averted radon in dwellings

    International Nuclear Information System (INIS)

    Katona, T.; Kanyar, B.

    2003-01-01

    To assess an economically optimal ventilation rate we have introduced a cost-benefit analysis taking into account the cost of heating and benefit of averted dose due to ventilation. The cost of heating due to the elevated ventilation for mitigation of radon content in dwellings can be compensated by the monetary benefit of the averted dose, in case of higher (annually 3-10 mSv) exposure. During the heating season the economically optimal ventilation takes 0.1-0.5 h -1 , meanwhile the radon concentration in the indoor air decreases to 200-800 Bq/m 3 , depending on the exhalation of radon, number of persons living in the dwellings and other local parameters. Our results from the optimal planning correspond to the radon concentrations recommended by the international organizations as action levels. In general, the periodic ventilation in daytime provides a higher averted dose than the constant one in case of the same heating cost. (authors)

  7. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    Science.gov (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  8. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students

    OpenAIRE

    SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA

    2014-01-01

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, o...

  9. A COMPARISON BETWEEN VENTILATION AND HEART RATE AS INDICATOR OF OXYGEN UPTAKE DURING DIFFERENT INTENSITIES OF EXERCISE

    Directory of Open Access Journals (Sweden)

    Jacques Prioux

    2010-03-01

    Full Text Available The aim of this study is to compare the relation between ventilation (VE and oxygen uptake (VO2 [VO2=ƒ(VE] and between heart rate (HR and VO2 [VO2=ƒ(HR]. Each one of the subjects performed three types of activities of different intensities (walking without load, walking with load and intermittent work. VO2, VE, and HR were measured continuously by using indirect calorimetry and an electrocardiogram. Linear regressions and coefficients of determination (r² were calculated to compare the relation VO2 =ƒ(VE and VO2 =ƒ(HR for two different regroupings: by session duration (r²session and by subject (r²subject. Results showed that r²session of the relation VO2 =ƒ(VE were significantly higher than those of the relation VO2 =ƒ(HR for steady state activities (walking with or without load during 3 or 6 min, p < 0.01 and for activities without oxygen consumption steady state (walking with or without load during 1 min, p < 0.01 and intermittent work, p < 0.05. VE is more strongly correlated with VO2 than with HR. This is a very promising approach to develop a new method to estimate energy expenditure

  10. Rate of driving a ventilation tunnel by means of the GPK heading machine using roof bolting and steel supports. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Cheremnov, V.I.; Kruglyak, A.S.; Miroshnikova, L.A.; Sharov, V.N.

    1983-05-01

    The paper discusses a method for strata control during mine drivage tested in the im. Voroshilov coal mine in 1982. A ventilation tunnel with a crosscut of 16.4 m/sup 2/ was driven in coal with compression strength coefficient from 0.8 to 1.0, argillites and aleurites in the floor and the roof with compression strength coefficient from 4 to 6. Mining depth was 150 m, water influx was low. The tunnel was driven by means of the GPK heading machine with a 1PNB-2 loader. The AMK support system which consisted of arched steel supports, steel beams for joining steel arches and of roof bolts was used. Arched supports were installed each 0.8 m. The roof between the arches was supported by a system of roof bolts and junction beams. Support design is shown in a scheme. Increasing support spacing to 0.8 m (instead of 0.5 m) and roof bolting permitted drivage rate to be increased and steel consumption to be significantly reduced (by 244 kg/m). (3 refs.)

  11. Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making.

    Science.gov (United States)

    Maddalena, R; Mendell, M J; Eliseeva, K; Chan, W R; Sullivan, D P; Russell, M; Satish, U; Fisk, W J

    2015-08-01

    Ventilation rates (VRs) in buildings must adequately control indoor levels of pollutants; however, VRs are constrained by the energy costs. Experiments in a simulated office assessed the effects of VR per occupant on perceived air quality (PAQ), Sick Building Syndrome (SBS) symptoms, and decision-making performance. A parallel set of experiments assessed the effects of VR per unit floor area on the same outcomes. Sixteen blinded healthy young adult subjects participated in each study. Each exposure lasted four hours and each subject experienced two conditions in a within-subject study design. The order of presentation of test conditions, day of testing, and gender were balanced. Temperature, relative humidity, VRs, and concentrations of pollutants were monitored. Online surveys assessed PAQ and SBS symptoms and a validated computer-based tool measured decision-making performance. Neither changing the VR per person nor changing the VR per floor area, had consistent statistically significant effects on PAQ or SBS symptoms. However, reductions in either occupant-based VR or floor-area-based VR had a significant and independent negative impact on most decision-making measures. These results indicate that the changes in VR employed in the study influence performance of healthy young adults even when PAQ and SBS symptoms are unaffected. The study results indicate the importance of avoiding low VRs per person and low VRs per floor area to minimize decrements in cognitive performance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Increasing ventilation as an intervention in homes of asthmatic children

    DEFF Research Database (Denmark)

    Hogaard, Nina Viskum; Rubak, Sune Leisgaard Mørck; Halken, Susanne

    2016-01-01

    in children. We conducted a double-blind, placebo-controlled intervention study with 46 asthmatic, house dust mite allergic children. The aim was to investigate the association between indoor air quality in homes and severity of asthma, in particular the effect of increased ventilation rate and expected lower...... exposure to HDM on medication intake among these children. As a result of the intervention, the ventilation rate increased and the CO2 concentration fell significantly compared to baseline in the intervention group. The analyses of the effect of ventilation on health outcomes are being processed...

  13. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  14. Ammonia emissions in tunnel-ventilated broiler houses

    Directory of Open Access Journals (Sweden)

    KAO Lima

    2011-12-01

    Full Text Available Gas production in broiler houses and their emissions are closely related to the microclimate established inside the house according to air temperature, humidity, and velocity. Therefore, the internal house environment is influenced by building typology and ventilation system. The objective of the present study was to evaluate ammonia emission rates in broiler houses equipped with different ventilation systems (negative or positive pressure and litter conditions (new or built-up. The environment of six commercial broiler houses was evaluated internal and external NH3 concentrations. Ventilation rates were recorded to estimate ammonia emission rates. The efficiency of circulation and exhaust fans was assessed, and higher ventilation rates were determined in negative-pressure houses due to the higher flow of the fans. Houses with new litter increased ammonia emission rates along the rearing period, indicating the relationship between gas emissions, bird age and ventilation rates, and presented a typical curve of NH3 emission increase. Negative-pressure houses with built-up litter presented higher emission rates during the first rearing week due to the high NH3 concentration during the brooding period, when the ventilation rates required to maintain chick thermal comfort are low. Although the results of the present study indicate an advantage of the positive-pressure systems as to gas emissions, further research is needed reduce gas emissions in broiler houses with negative-pressure systems.

  15. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    Science.gov (United States)

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  16. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  17. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  18. Dependence of radon level on ventilation systems in residences

    International Nuclear Information System (INIS)

    Kokotti, H.

    1995-01-01

    The concentration of indoor radon and radon entry from soil into a house are expected to increase with increasing radon concentration in soil pores, and indoor radon concentration is expected to decrease with increasing ventilation rate. Depressurization, which can be caused by the stack effect, by wind and by unbalanced ventilation, creates different pressure conditions in a house and in the soil beneath it. To reveal the possible differences in radon removal and entry resulting from different ventilation systems, radon concentrations were determined in three similar slab-on-grade buildings provided with mechanical supply and exhaust ventilation, mechanical exhaust or natural ventilation. To limitate the effect of differences in soil parameters, the houses were constructed on the same gravel esker in Kuopio. Thus, the variation in radon entry as a result of different depressurisation of the houses (caused by unbalanced mechanical ventilation systems) could also be observed. In addition, the effect of pressurisation on living rooms could be determined in five slab-on-grade houses constructed on the same esker in Hollola. Mechanical supply and exhaust ventilation system controlled by measured indoor-outdoor pressure difference, was installed in the six houses. The seasonal variation with and without controlled pressure conditions were followed in a slab-on-grade house constructed on a gravel esker in Rekola. Long-term radon concentrations were observed to correlate negatively with air exchange rates. However, the removal effect of ventilation was found to be disturbed by negative pressure due to the stack effect and/or to unbalanced mechanical ventilation. (91 refs., 17 figs., 10 tabs.)

  19. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios

    Science.gov (United States)

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-10-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while travelling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst travelling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position/ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88 and 97% of cabin pollutant

  20. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  1. Market Concentration Rate and Market Performance of China’s Swine Industry

    Institute of Scientific and Technical Information of China (English)

    Jia ZHANG; Yucheng HE

    2016-01-01

    Empirical study on market concentration rate and market performance of China’s Swine Industry indicates that higher market concentration rate brings higher overall performance of swine industry. There exists no obvious causal relation between market concentration rate and market performance,but market performance is highly correlated with market concentration rate. The improvement in performance of swine industry is dependent on further optimization of market concentration rate and other factors.

  2. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  3. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children

    DEFF Research Database (Denmark)

    Hägerhed-Engman, L.; Sigsgaard, T.; Samuelson, I.

    2009-01-01

    There are consistent findings on associations between asthma and allergy symptoms and residential mold and moisture. However, definitions of 'dampness' in studies are diverse because of differences in climate and building construction. Few studies have estimated mold problems inside the building...... ventilation rate in combination with moldy odor along the skirting board further increased the risk for three out of four studied outcomes, indicating that the ventilation rate is an effect modifier for indoor pollutants.This study showed that mold odor at the skirting board level is strongly associated...... with allergic symptoms among children. Such odor at that specific place can be seen as a proxy for some kind of hidden moisture or mold problem in the building structure, such as the foundation or wooden ground beam. In houses with odor along the skirting board, dismantling of the structure is required...

  4. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  5. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  7. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  8. Changes in ventilation and locomotion of Gammarus pulex (Crustacea, Amphipoda) in response to low concentrations of pharmaceuticals

    NARCIS (Netherlands)

    Lange, de H.J.; Peeters, E.T.H.M.; Lürling, M.F.L.L.W.

    2009-01-01

    Exposure to contaminants below lethal concentrations may affect the performance of organisms, resulting in measurable differences in behavior. We measured the response of the benthic invertebrate Gammarus pulex (Crustacea, Amphipoda) to sublethal concentrations of three pharmaceuticals, fluoxetine,

  9. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  10. Air quality Performance of Ductless Personalized Ventilation in Conjunction with Displacement Ventilation: Impact of Walking Person

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Lu, Pengfei; Melikov, Arsen Krikor

    2015-01-01

    The present experiment evaluates the impact of air disturbances from a walking person on inhaled air by ductless personalized ventilation (DPV) with displacement ventilation (DV), when a seated occupant is the source of pollution: bio-effluents and exhaled air. The measurements took place in a full...... and the DV supply. Pollution from feet and exhaled air by one manikin was simulated with tracer gases. Room temperature of 26 °C and 90 L/s DV supply flow rate were kept constant. Measurements under numerous combinations of DPV operation modes and supply flow rates were performed. Tracer gas concentrations...

  11. Nunavut housing ventilation research 2003-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D.

    2005-11-15

    Inuit children in Alaska and Nunavut have high rates of severe lower respiratory tract infections, with hospitalization rates of 300 per year for each 1000 infants. The aim of this research report was to summarize the findings of a pilot project measuring the indoor air quality (IAQ) in 20 Cape Dorset houses as well as a study measuring the ventilation rates of 100 house from 4 communities in Nunavut. The 20 house pilot study included a respiratory questionnaire; a detailed home inspection and data collection; a blower door airtightness test; 7 day measurements of nitrogen dioxide (NO{sub 2}), nicotine, carbon dioxide (CO{sub 2}), relative humidity and temperature; a natural air change rate testing using Brookhaven tracer gas technology; and settled floor dust and bed dust collection followed by biological analysis. The 100 house study recorded 3 to 5 days of house temperatures, relative humidity and CO{sub 2}. The Brookhaven tracer gas technique was used to establish house air change rate. A questionnaire was used to assess ventilation devices. A medical questionnaire was administered and an evaluation of hospitalization data was carried out. Results indicated that a large number of Nunavut houses were not adequately ventilated. In the 20 house study, a third of the houses showed air change rates that would be considered low by any ventilation standards, and that were very low when considering the high occupancy of the houses. In the hundred house study, almost all houses indicated a mean CO{sub 2} level over 1000 ppm, and peaks exceeded 2000 ppm in approximately half the houses. The concentrations were far higher than those seen in southern Canadian homes. It was concluded that the development and promotion of energy-efficient ventilation devices could help to resolve ventilation deficiencies in Nunavut. 2 figs.

  12. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK.

    Science.gov (United States)

    Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan

    2015-07-21

    The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings

  13. Assessing the influence of mechanical ventilation on blood gases and blood pressure in rattlesnakes

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Buchanan, Rasmus; Jensen, Heidi Meldgaard

    2014-01-01

    OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospectiv...

  14. Induced radioactivity in air-estimation of ventilation rates at the vault and experimental areas of the proposed K-500 superconducting cyclotron, Calcutta

    International Nuclear Information System (INIS)

    Ravishankar, R.

    1999-01-01

    Guidelines are given for the necessary ventilation rates in vault and experimental areas from radiological safety point of view, for the proposed K-500 super-conducting cyclotron at Calcutta. A method is presented for estimating the amount of short lived radioisotopes like 13 N and 15 O taking the (n,2n) mode of productions. Considering the operating conditions of K-500 machine for the production of maximum neutron flux (300 MeV, 50pnA Li beam on Ta target) the energy differential neutron flux and the energy differential production cross section of 13 N and 15 O have been generated using ALICE-91 computer code. The differential cross sections have been folded with radial neutron flux distribution and then integrated over the entire volume of the cyclotron vault, to obtain the total production of the two radioactive gases. The DAC values have been obtained by considering the immersion dose in a semi-infinite hemispherical cloud. Natural decay and removal due to ventilation have been considered to get the recommended ventilation rates. (author)

  15. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  16. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  17. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  18. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    Science.gov (United States)

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  20. Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated indoor climate and window opening behaviour by pupils, as well as their perceptions and symptoms in classrooms with different types of ventilation systems. Four classrooms were selected in the same school in suburban Denmark. Classroom ventilation was achieved either......-heating and heating seasons; CO2 concentration was used to estimate average classroom ventilation rates. At the end of each measuring period, the pupils were asked to report their perceptions of the indoor environment and their acute health-related symptoms. The classroom in which ventilation was achieved by manually...... operable windows had the highest air temperatures and CO2 concentrations during both non-heating and heating season; the estimated average air-change rate was lowest in this classroom. The classroom with mechanical ventilation had the highest estimated average air-change rate. Windows were frequently...

  1. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  2. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    Science.gov (United States)

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (Ptidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (Ptidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  3. Mass concentration coupled with mass loading rate for evaluating PM_2_._5 pollution status in the atmosphere: A case study based on dairy barns

    International Nuclear Information System (INIS)

    Joo, HungSoo; Park, Kihong; Lee, Kwangyul; Ndegwa, Pius M.

    2015-01-01

    This study investigated particulate matter (PM) loading rates and concentrations in ambient air from naturally ventilated dairy barns and also the influences of pertinent meteorological factors, traffic, and animal activities on mass loading rates and mass concentrations. Generally, relationships between PM_2_._5 concentration and these parameters were significantly poorer than those between the PM loading rate and the same parameters. Although ambient air PM_2_._5 loading rates correlated well with PM_2_._5 emission rates, ambient air PM_2_._5 concentrations correlated poorly with PM_2_._5 concentrations in the barns. A comprehensive assessment of PM_2_._5 pollution in ambient air, therefore, requires both mass concentrations and mass loading rates. Emissions of PM_2_._5 correlated strongly and positively with wind speed, temperature, and solar radiation (R"2 = 0.84 to 0.99) and strongly but negatively with relative humidity (R"2 = 0.93). Animal activity exhibited only moderate effect on PM_2_._5 emissions, while traffic activity did not significantly affect PM_2_._5 emissions. - Highlights: • Sink PM_2_._5 loading rates correlate well with source PM_2_._5 emission rates. • Sink PM_2_._5 concentrations correlate poorly with source PM_2_._5 concentrations. • Mass loading rate complements mass concentration in appraising sink PM_2_._5 status. • PM_2_._5 emissions is dependent on wind speed, temp, solar strength, and RH. • Cow traffic activity affects PM_2_._5 emissions, while traffic activity does not. - Both PM mass loading rate and concentrations are required for comprehensive assessment of pollution potential of PM released into the atmosphere.

  4. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  5. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  6. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative...

  7. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  8. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  9. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 μm and complete for particle sizes greater than 50 μm. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  10. Ventilation of carbon monoxide from a biomass pellet storage tank--a study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation.

    Science.gov (United States)

    Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin

    2015-01-01

    Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions.

    Science.gov (United States)

    Cheong, Chang Heon; Lee, Seonhye

    2018-03-13

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.

  12. Performance of low pressure mechanical ventilation concept with diffuse ceiling inlet for renovation of school classrooms

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    In a great portion of Danish primary schools the mechanical ventilation systems is outdated or simply rely on opening of windows to ventilate the classrooms. This leads to high energy consumption for fans and/or ventilation heat losses and poor indoor environment, as the ventilation systems cannot...... provide a sufficient ventilation rate. A recent study with 750 Danish classrooms show that 56 % had CO2-concentrations over a 1000 ppm, which is the recommended limit by the Danish working environment authority and this adversely affects the performance and well being of the pupils. This paper describes...... a mechanical ventilation concept to lower energy consumption and improve the indoor environment, developed for refurbishment of school classrooms. The performance of the concept is investigated through computer simulations and measurements of energy consumption and indoor environment. The measurements are made...

  13. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  14. Accuracy of an indirect calorimeter for mechanically ventilated infants and children: the influence of low rates of gas exchange and varying FIO2.

    Science.gov (United States)

    Joosten, K F; Jacobs, F I; van Klaarwater, E; Baartmans, M G; Hop, W C; Meriläinen, P T; Hazelzet, J A

    2000-08-01

    To test the accuracy and validity of the Deltatrac II MBM-200 metabolic monitor for use in mechanically ventilated infants and children in the pediatric intensive care unit. Laboratory validation of an indirect calorimeter with a ventilated lung model. The influence of low tidal volumes and low levels of oxygen consumption (V(O2)) and carbon dioxide production (V(CO2)) in combination with different levels of inspired oxygen concentrations (F(IO2)) was investigated. University research laboratory. Low tidal volumes were provided with two intermittent flow types of ventilators, a Servo 300 and a Servo 900C. A butane flame with a V(O2) approximating 20 mL/min and 40 mL/min was ventilated. To investigate the effect of different levels of F(IO2) on the accuracy of V(O2), V(CO2), and respiratory quotient (RQ), measurements were performed at F(IO2) target values of 0.25, 0.40, and 0.60. No significant differences were found between the ventilators regarding V(O2), V(CO2), and RQ measurements. The mean deviation of V(O2) increased significantly with increasing F(IO2) to -7.98% with a V(O2) of 21.0 mL/min and to -8.46% with a V(O2) of 38.9 mL/min (F(IO2), 0.558) with a variability (2 SD) of +/- 4.86% and +/- 6.82%, respectively. The mean deviation and variability of V(CO2) in all tests remained within 8%. The mean deviation of RQ increased significantly with increasing F(IO2) to 5.5% with a V(O2) of 21.0 mL/min and to 5.69% with a V(O2) of 38.9 mL/min (F(IO2), 0.558) with a variability (2 SD) of +/- 5.62% and +/- 5.76%, respectively. The minute to minute delivered F(IO2) fluctuated significantly when increasing the level of F(IO2). The Deltatrac II MBM-200 metabolic monitor appears accurate for low levels of V(O2) and V(CO2) during mechanical ventilation with F(IO2) levels up to 0.390. With increasing F(IO2) to 0.558, the increase in deviation of V(O2) for single measurements can be of clinical relevance for mechanically ventilated infants and children. The increased

  15. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    International Nuclear Information System (INIS)

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    Highlights: • Novel multi-leg homogeniser concentrating assembly is developed for CPV system. • Single set of concentrator, concentrates sunlight on 4 MJCs with 1° acceptance angle. • The system performance is analyzed through experiment and ray tracing simulation. • Mini two axis solar tracker, with high tracking accuracy, is developed and tested. • Electrical rating analysis accurately estimates CPV system performance in any region. - Abstract: Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region.

  16. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Daniel V. [Biosystems and; Wang, Dongbo [Biosystems and; Lin-Gibson, Sheng [Biosystems and

    2017-08-31

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  18. Reduction in NO2-concentration across ventilation filters in an office building located close to heavy traffic

    OpenAIRE

    Reyes-Lingjerde, Alexander

    2016-01-01

    In Scandinavia, people live in climatic conditions that makes it favorable to stay indoors at wintertime. Norway has a relatively small population, even so Bergen and Oslo reaches annual average nitrogen dioxide concentrations equal to or above the levels in large European cities. Newspapers in Bergen recommend the population to stay indoors in urban areas that are highly polluted. Bergen municipality takes measurements of the outdoor pollution continuously, but mor...

  19. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  20. Ventilation techniques and radon in small houses

    International Nuclear Information System (INIS)

    Keskinen, J.; Graeffe, G.; Janka, K.

    1988-01-01

    Indoor radon is the main cause of radiation exposure in Finland. The National Board of Health set the recommended concentration limits in 1986: an action level of 800 Bq/m 3 and a planning value of 200 Bq/m 3 for new buildings. The 800 Bq/m 3 concentration is estimated to be exceeded in 1.4% of the housing. This rather high number has motivated a number of studies concerning countermeasures against radon in existing houses. The purpose of this study was to find out possible remedial actions against radon using standard ventilation techniques. The ventilation rates were not increased over 0.71/h in order to have a realistic view about the possibilities of the state-of-the-art techniques. Special attention was given to methods which would be generally applicable to a large number of dwellings already existing. Results are reported of a pilot study with six small houses with established high radon concentrations

  1. Particulate pollution in ventilated space: Analysis of influencing factors

    International Nuclear Information System (INIS)

    Zhao Bin; Wu Jun

    2009-01-01

    Particle pollution has been identified to be a major indoor air pollution problem as many epidemiologic evidences have indicated that the particle exposure affects the occupant health. In common practice, mechanical ventilation is introduced to maintain a satisfactory indoor air quality for the occupant, which includes the area of particle control within the space. In order to have an effective control to the indoor particle pollution, it is important to understand the major factors influencing the indoor particle concentration in the breathing zone. This study employs a previously proposed approach to study the particle pollution in a typical ventilation system. The model simultaneously takes into account the interactions between particle transport in ventilation ducts and rooms and particle spatial distribution. It has been proven that an entire ventilation system, including filters, ducts and rooms, can be regarded as a serial of filters in steady-state cases, hence the name 'particle filter group model'. The particle concentration in the breathing zone is calculated under different conditions, and the result is then validated by experimental data. Based on the results, four main factors that affect the particle concentration in the breathing zone are identified, they are fresh air rate, particle filter efficiency, the type of the ventilation duct (roughness) and ventilation modes. Their degrees of influence are analyzed and then the possible measures to improve/control the indoor particle pollution are suggested

  2. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    KAUST Repository

    Burhan, Muhammad

    2016-03-09

    Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region. © 2016 Elsevier Ltd. All rights reserved.

  3. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis

    KAUST Repository

    Burhan, Muhammad; Chua, Kian Jon Ernest; Ng, Kim Choon

    2016-01-01

    Concentrated photovoltaic (CPV) system utilizing multi-junction solar cells, is the main focus for current research, offering highest efficiency among all photovoltaic systems. The main aspect of CPV system is the design and performance of concentrating assembly, as it determines the performance of whole CPV system. However, the conventional design of CPV concentrating assembly dedicates one concentrator for each solar cell, in which single concentrator is capable to concentrate solar radiation onto single solar cell. This paper proposes a novel concentrating assembly for CPV system, which is designed to concentrate solar radiation onto four multi-junction solar cells with a single set of concentrators. The proposed design not only can reduce the number of concentrators and assembly efforts for CPV systems, but also achieved an acceptance angle of 1°. In this paper, the proposed multi-leg homogeniser CPV concentrating assembly is designed, developed, experimentally tested and verified through ray tracing simulation. The paper also discuss the development of mini, precise and accurate but cost effective two axis solar tracker for CPV system, which can be installed at any location even at rooftop of residential buildings, unlike conventional large scale CPV systems. Moreover, through the electrical rating analysis of the developed CPV system, its performance can be accurately estimated in any region. © 2016 Elsevier Ltd. All rights reserved.

  4. Why this crisis in residential ventilation

    NARCIS (Netherlands)

    Hasselaar, E.

    2008-01-01

    Ventilation is the cornerstone of good indoor air quality. Ventilation requirements have major attention in building regulations, but ventilation in practice is often poor, resulting in increased concentration of pollutants and hence exposure to health risk. Inspection of 500 houses with interviews

  5. Pretest Predictions for Ventilation Tests

    International Nuclear Information System (INIS)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only

  6. Ventilator-associated pneumonia: the influence of bacterial resistance, prescription errors, and de-escalation of antimicrobial therapy on mortality rates

    Directory of Open Access Journals (Sweden)

    Ana Carolina Souza-Oliveira

    2016-09-01

    Conclusion: Prescription errors influenced mortality of patients with Ventilator-associated pneumonia, underscoring the challenge of proper Ventilator-associated pneumonia treatment, which requires continuous reevaluation to ensure that clinical response to therapy meets expectations.

  7. Mitigation of indoor radon using balanced mechanical ventilation

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1986-01-01

    Previous research has shown that, for a given source strength, the concentration of Rn 222 in the home is inversely proportional to the ventilation rate. Further reductions in the concentration of the decay products of radon can be achieved due to the decrease in residence time of the parent gas as well as increased plate-out of the progeny. Natural and mechanical ventilation can affect the distribution of pressure across the building envelope potentially increasing the flow of radon bearing soil gas into the home gas into the home and/or promoting mixing of areas of higher and lower concentration. Balanced heat recovery ventilation systems were installed in ten homes in the Boyertown, Pennsylvania area. Ventilation was restricted initially to the basement area. Five installations were later modified to introduce supply air to upstairs living spaces while continuing to exhaust from the basement. An independent contractor measured Rn 222 concentrations and decay product activity in the basement and first floor living area before and after installation or modification of the heat recovery ventilation system. Additional experiments to evaluate the effect of house tightening techniques and positive pressurization of the basement were conducted. With balanced ventilation of the basement only, the mean reduction in Working Level was 92.8% with a high of 98% and a low of 76%. Mean reduction of radon gas concentration was 79.1%. When modified to supply air upstairs, mean reduction in Working Level in the living area was 90%. House tightening measures to reduce stack effect were observed to reduce radon concentration. Results indicate that balanced ventilation is an effective strategy for radon mitigation and can be expected to achieve recommended levels in a majority of homes. 9 references, 2 figures, 2 tables

  8. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  9. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

    DEFF Research Database (Denmark)

    Aganovic, Amar; Hamon, Mathieu; Kolarik, Jakub

    Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review...... of the existing literature, to establish a link between ventilation rate and key indoor air pollutants. Design characteristics of a mechanical ventilation system such as supply/exhaustairflow, system and design of supply and exhaust outlets were considered. The performance of various ventilation solutionswas......-house ventilation rate was reported below 0.5h-1 or 14 l/s·person in bedrooms, the concentrations of the pollutants elevated above minimum threshold limits (CO2>1350 ppm; TVOC >3000 μg/m3) defined by the standard. Insufficient or non-existent supply of air was related to significantly higher pollutant...

  10. Ventilator-associated pneumonia rates at major trauma centers compared with a national benchmark: a multi-institutional study of the AAST.

    Science.gov (United States)

    Michetti, Christopher P; Fakhry, Samir M; Ferguson, Pamela L; Cook, Alan; Moore, Forrest O; Gross, Ronald

    2012-05-01

    Ventilator-associated pneumonia (VAP) rates reported by the National Healthcare Safety Network (NHSN) are used as a benchmark and quality measure, yet different rates are reported from many trauma centers. This multi-institutional study was undertaken to elucidate VAP rates at major trauma centers. VAP rate/1,000 ventilator days, diagnostic methods, institutional, and aggregate patient data were collected retrospectively from a convenience sample of trauma centers for 2008 and 2009 and analyzed with descriptive statistics. At 47 participating Level I and II centers, the pooled mean VAP rate was 17.2 versus 8.1 for NHSN (2006-2008). Hospitals' rates were highly variable (range, 1.8-57.6), with 72.3% being above NHSN's mean. Rates differed based on who determined the rate (trauma service, 27.5; infection control or quality or epidemiology, 11.9; or collaborative effort, 19.9) and the frequency with which VAP was excluded based on aspiration or diagnosis before hospital day 5. In 2008 and 2009, blunt trauma patients had higher VAP rates (17.3 and 17.6, respectively) than penetrating patients (11.0 and 10.9, respectively). More centers used a clinical diagnostic strategy (57%) than a bacteriologic strategy (43%). Patients with VAP had a mean Injury Severity Score of 28.7, mean Intensive Care Unit length of stay of 20.8 days, and a 12.2% mortality rate. 50.5% of VAP patients had a traumatic brain injury. VAP rates at major trauma centers are markedly higher than those reported by NHSN and vary significantly among centers. Available data are insufficient to set benchmarks, because it is questionable whether any one data set is truly representative of most trauma centers. Application of a single benchmark to all centers may be inappropriate, and reliable diagnostic and reporting standards are needed. Prospective analysis of a larger data set is warranted, with attention to injury severity, risk factors specific to trauma patients, diagnostic method used, VAP definitions

  11. Use of natural basement ventilation to control radon in single family dwellings

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-01-01

    Natural basement ventilation has always been recommended as a means of reducing radon levels in houses. However, its efficacy has never been documented. In these experiments, natural ventilation has for the first time been studied systematically in two research houses during both the summer cooling season and the winter heating season. Ventilation rates, environmental and house operating parameters, as well as radon levels, have been monitored. It can be definitely concluded from radon entry rate calculations that natural ventilation can reduce radon levels in two ways. The first is by simple dilution. The second is by reducing basement depressurization and thus the amount of radon-contaminated soil gas drawn into the structure. Therefore, basement ventilation can be an effective mitigation strategy under some circumstances. It might be especially useful in houses with low radon concentrations (of the order of 370 Bq m -1 ) or those with low levels and which cannot be mitigated cost-effectively with conventional technology. (Author)

  12. Time required for partial pressure of arterial oxygen equilibration during mechanical ventilation after a step change in fractional inspired oxygen concentration.

    Science.gov (United States)

    Cakar, N; Tuŏrul, M; Demirarslan, A; Nahum, A; Adams, A; Akýncý, O; Esen, F; Telci, L

    2001-04-01

    To determine the time required for the partial pressure of arterial oxygen (PaO2) to reach equilibrium after a 0.20 increment or decrement in fractional inspired oxygen concentration (FIO2) during mechanical ventilation. A multi-disciplinary ICU in a university hospital. Twenty-five adult, non-COPD patients with stable blood gas values (PaO2/FIO2 > or = 180 on the day of the study) on pressure-controlled ventilation (PCV). Following a baseline PaO2 (PaO2b) measurement at FIO2 = 0.35, the FIO2 was increased to 0.55 for 30 min and then decreased to 0.35 without any other change in ventilatory parameters. Sequential blood gas measurements were performed at 3, 5, 7, 9, 11, 15, 20, 25 and 30 min in both periods. The PaO2 values measured at the 30th min after a step change in FIO2 (FIO2 = 0.55, PaO2[55] and FIO2 = 0.35, PaO2[35]) were accepted as representative of the equilibrium values for PaO2. Each patient's rise and fall in PaO2 over time, PaO2(t), were fitted to the following respective exponential equations: PaO2b + (PaO2[55]-PaO2b)(1-e-kt) and PaO2[55] + (PaO2[35]-PaO2[55])(e-kt) where "t" refers to time, PaO2[55] and PaO2[35] are the final PaO2 values obtained at a new FIO2 of 0.55 and 0.35, after a 0.20 increment and decrement in FIO2, respectively. Time constant "k" was determined by a non-linear fitting curve and 90% oxygenation times were defined as the time required to reach 90% of the final equilibrated PaO2 calculated by using the non-linear fitting curves. Time constant values for the rise and fall periods were 1.01 +/- 0.71 min-1, 0.69 +/- 0.42 min-1, respectively, and 90% oxygenation times for rises and falls in PaO2 periods were 4.2 +/- 4.1 min-1 and 5.5 +/- 4.8 min-1, respectively. There was no significant difference between the rise and fall periods for the two parameters (p > 0.05). We conclude that in stable patients ventilated with PCV, after a step change in FIO2 of 0.20, 5-10 min will be adequate for obtaining a blood gas sample to measure a Pa

  13. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  14. Inhaled Antibiotics for Ventilator-Associated Infections.

    Science.gov (United States)

    Palmer, Lucy B

    2017-09-01

    Multidrug-resistant organisms are creating a challenge for physicians treating the critically ill. As new antibiotics lag behind the emergence of worsening resistance, intensivists in countries with high rates of extensively drug-resistant bacteria are turning to inhaled antibiotics as adjunctive therapy. These drugs can provide high concentrations of drug in the lung that could not be achieved with intravenous antibiotics without significant systemic toxicity. This article summarizes current evidence describing the use of inhaled antibiotics for the treatment of bacterial ventilator-associated pneumonia and ventilator-associated tracheobronchitis. Preliminary data suggest aerosolized antimicrobials may effectively treat resistant pathogens with high minimum inhibitory concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The amazing Minivent ventilator

    African Journals Online (AJOL)

    Southern African Journal of Anaesthesia and Analgesia is co-published by Medpharm Publications, NISC (Pty) Ltd and Cogent, ... Respiratory rate was obtained by counting the clicking noise ... was appointed as a part-time lecturer to the University of the ... The Minivent became the first of three miniature ventilators that.

  16. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  17. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Adriano Arruda Henrard

    2014-01-01

    Full Text Available The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1 and generating biomass (2.89 g L−1 were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1 was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate.

  18. Radon concentration, absorbed dose rate in air and concentration of natural radionuclides in soil in the Osaka district of Japan

    International Nuclear Information System (INIS)

    Megumi, K.; Matsunami, T.; Ishiyama, T.; Abe, M.; Kimura, S.; Yamazaki, K.; Tsujimoto, T.

    1992-01-01

    Radon concentrations in outdoor air at 18 sites in the Osaka district, in the central part of Japan's main island, were measured with electrostatic integrating radon monitors which were developed by Y Ikebe et al of the Osaka survey centre as part of a nationwide survey of radon indoors and outdoors in Japan conducted by the National Institute of Radiological Science. The mean radon concentration in outdoor air during 2-month periods was measured over a period of a year and a half. In addition, the absorbed dose rate in air and the concentration of natural radionuclides in soil were measured at 40 sites in Osaka Prefecture which is located in the central part of the Osaka district using thermoluminescence dosemeters and with gamma ray spectrometry, respectively. Radon concentration in outdoor air showed a seasonal pattern, reaching its maximum during the winter and its minimum during the summer, but this variation was not significant at the coastal sites. It was concluded that this variation is correlated with a seasonal wind which blows from the continental interior to the ocean in winter and in the opposite direction in summer, as well as with geographical factors. Radon concentration in outdoor air in the Osaka district ranged from 0.6 to 17.9 Bq.m -3 and mean annual radon concentration in outdoor air at the 18 sites ranged from 2.7 to 6.9 Bq.m -3 . It was discovered that radon concentration in outdoor air decreased with wind speed in both winter and summer. The absorbed dose rate in air ranged from 66 to 114 nGy.h -1 , and the concentration of 226 Ra in soil ranged from 20 to 60 Bq.kg -1 respectively. (author)

  19. Evidence of inadequate ventilation in portable classrooms: results of a pilot study in Los Angeles County.

    Science.gov (United States)

    Shendell, D G; Winer, A M; Weker, R; Colome, S D

    2004-06-01

    The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.

  20. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  1. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  2. Intelligent ventilation in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Sigal Sviri

    2012-08-01

    Full Text Available Objectives. Automated, microprocessor-controlled, closed-loop mechanical ventilation has been used in our Medical Intensive Care Unit (MICU at the Hadassah Hebrew-University Medical Center for the past 15 years; for 10 years it has been the primary (preferred ventilator modality. Design and setting. We describe our clinical experience with adaptive support ventilation (ASV over a 6-year period, during which time ASV-enabled ventilators became more readily available and were used as the primary (preferred ventilators for all patients admitted to the MICU. Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84% were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6% with severe hypoxia and high inspiratory pressures were placed on pressure-controlled ventilation, in most cases to satisfy a technical requirement for precise and conservative administration of inhaled nitric oxide. The overall pneumothorax rate was less than 3%, and less than 1% of patients who were ventilated only using ASV developed pneumothorax. Conclusions. ASV is a safe and acceptable mode of ventilation for complicated medical patients, with a lower than usual ventilation complication rate.

  3. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    OpenAIRE

    Qing-Hui WANG; Fang MU; Li-Feng WEI

    2014-01-01

    This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or conce...

  4. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  5. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2007-01-01

    the concentration of exhaled air pollution increased in the room. The two types of personalized ventilation performed differently. Subsequent analyses of airborne infection transmission risk indicated that personalized ventilation could become a supplement to traditional methods of infection control....... of pollutants associated with exhaled air and floor material emissions was evaluated at various combinations of personalized and underfloor airflow rates. Compared to underfloor ventilation alone, personalized and underfloor ventilation provided excellent protection Of seated occupants from any pollution, while......The performance of two personalized. ventilation systems supplying air at the breathing zone was tested in conjunction with underfloor ventilation generating two different airflow patterns in a full-scale test room. Two breathing thermal manikins were used to simulate occupants. The distribution...

  6. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  7. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.

    1995-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  8. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R

    1996-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  9. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume.

    Science.gov (United States)

    Szegedi, L L; Barvais, L; Sokolow, Y; Yernault, J C; d'Hollander, A A

    2002-01-01

    We measured lung mechanics and gas exchange during one-lung ventilation (OLV) of patients with chronic obstructive pulmonary disease, using three respiratory rates (RR) and unchanged minute volume. We studied 15 patients about to undergo lung surgery, during anaesthesia, and placed in the lateral position. Ventilation was with constant minute volume, inspiratory flow and FIO2. For periods of 15 min, RR of 5, 10, and 15 bpm were applied in a random sequence and recordings were made of lung mechanics and an arterial blood gas sample was taken. Data were analysed with the repeated measures ANOVA and paired t-test with Bonferroni correction. PaO2 changes were not significant. At the lowest RR, PaCO2 decreased (from 42 (SD 4) mm Hg at RR 15-41 (4) mm Hg at RR 10 and 39 (4) mm Hg at RR 5, P<0.01), and end-tidal carbon dioxide increased (from 33 (5) mm Hg at RR 15 to 35 (5) mm Hg at RR 10 and 36 (6) mm Hg at RR 5, P<0.01). Intrinsic positive end-expiratory pressure (PEEPi) was reduced even with larger tidal volumes (from 6 (4) cm H2O at RR 15-5 (4) cm H2O at RR 10, and 3 (3) cm H2O at RR 5, P<0.01), most probably caused by increased expiratory time at the lowest RR. A reduction in RR reduces PEEPi and hypercapnia during OLV in anaesthetized patients with chronic obstructive lung disease.

  10. Modeling and Control of Livestock Ventilation Systems and Indoor Environments

    DEFF Research Database (Denmark)

    Wu, Zhuang; Heiselberg, Per; Stoustrup, Jakob

    2005-01-01

    The hybrid ventilation systems have been widely used for livestock barns to provide optimum indoor climate by controlling the ventilation rate and air flow distribution within the ventilated building structure. The purpose of this paper is to develop models for livestock ventilation systems and i...

  11. Volatile Organic Compound Concentrations and Emission Rates in New Manufactured and Site-Built Houses

    Energy Technology Data Exchange (ETDEWEB)

    Armin Rudd

    2008-10-30

    This study was conducted with the primary objective of characterizing and comparing the airborne concentrations and the emission rates of total VOCs and selected individual VOCs, including formaldehyde, among a limited number of new manufactured and site-built houses.

  12. Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests

    International Nuclear Information System (INIS)

    Telegadas, K.

    1979-01-01

    A simple technique is presented for estimating maximum credible gross beta air concentrations from nuclear detonations in the atmosphere, based on aircraft sampling of radioactivity following each Chinese nuclear test from 1964 to 1976. The calculated concentration is a function of the total yield and fission yield, initial vertical radioactivity distribution, time after detonation, and rate of horizontal spread of the debris with time. calculated maximum credible concentrations are compared with the highest concentrations measured during aircraft sampling. The technique provides a reasonable estimate of maximum air concentrations from 1 to 10 days after a detonation. An estimate of the whole-body external gamma dose rate corresponding to the maximum credible gross beta concentration is also given. (author)

  13. Thermal optimum for pikeperch (Sander lucioperca) and the use of ventilation frequency as a predictor of metabolic rate

    DEFF Research Database (Denmark)

    Frisk, Michael; Skov, Peter Vilhelm; Steffensen, John Fleng

    2012-01-01

    at six temperatures, ranging from 13 to 28 °C, in order to identify the temperature where pikeperch has the largest metabolic scope (MS). Between 13 and 25 °C, standard metabolic rates (SMR) increased as expected with a Q10=1.8 in response to increasing temperatures, while maximum metabolic rate (MMR...... consumption rate (M_ O2), during normoxia and progressive hypoxia. A strong correlation was found between fV and M_ O2 across all temperatures, and fV could predict M_ O2 with a high degree of accuracy in normoxia...

  14. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates

    Science.gov (United States)

    John S. Kominoski; Amy D. Rosemond; Jonathan P. Benstead; Vladislav Gulis; John C. Maerz; David Manning

    2015-01-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-...

  15. Exposure to Exhaled Air from a Sick Occupant in a Two-Bed Hospital Room with Mixing Ventilation: Effect of Posture of Doctor and Air Change Rate

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Mariya

    2013-01-01

    Full-scale measurements were performed in a climate chamber set as a two-bed hospital room, ventilated at 3, 6 and 12 ACH with overhead mixing ventilation. Air temperature was kept constant at 22 °C. Two breathing thermal manikins were used to mimic a sick patient lying on one side in one of the ...

  16. Effect of dietary protein level on ewe milk yield and on air quality under different ventilation rates

    Directory of Open Access Journals (Sweden)

    A. Sevi

    2010-01-01

    Full Text Available The efficiency of dietary N utilization for milk protein synthesis in dairy animals is quite low (15 to 35% (NRC, 1988; Tamminga, 1992, therefore farmers are driven to use high protein level diets for sustaining milk production in lactating animals. Previous experiments have demonstrated that an increase in the protein level of diet from 13 to 16% resulted in higher blood urea concentrations (Jaime and Purroy, 1995 and increased N excretion in urine in sheep (Gonzalez et al., 1984.

  17. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  18. The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children (RP-1257)

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2007-01-01

    Two independent field intervention experiments were carried out in school classrooms in late summer (in 2004 and 2005). The air temperature was manipulated by either operating or idling split cooling units installed for the purpose. In one of these experiments, the outdoor air supply rate was also...... series. The above improvements were mainly in terms of the speed at which tasks were performed, with negligible effects on error rate. Most school classrooms worldwide experience raised air temperatures during increased thermal loads, e.g., in warm weather; these results show that providing some means...

  19. Estimation of ventilation rate in uranium or thorium handling laboratories using short-lived thoron daughter activity

    International Nuclear Information System (INIS)

    Shivade, R.K.; Deshpande, S.B.

    2016-01-01

    Natural uranium in oxide form is used as fuel in the Indian PHWR. Natural 238 U fuel contains 232 Th as an impurity to the extent of 50 - 60 ppm. This thorium impurity is converted to 232 U in reactor during irradiation. 232 U is converted to 224 Ra by alpha decays, 224 Ra further decays to 220 Rn by alpha decays. 220 Rn decays to stable 208 Pb by emitting alpha, beta particles and gamma rays. 220 Rn is inert gas but its daughter products are in particulate form. Effective half-life of Tn decay series is 10.6 hrs and four days are required to reduce the air borne activity concentration to negligible level on a filter paper sample. Uranium or thorium is handled remotely in the glove boxes with proper shielding. Glove boxes are under optimum negative pressure. Exhausts from glove boxes are connected to stack with proper filtration. Amber ares of the Lab is also supplied with conditioned air supply for human comfort and to keep the atmospheric thoron daughter concentration under control. Even after using proper engineering safety features, thoron that is in the gaseous form can came out from glove boxes due to holes on the neoprene gloves of micro or nano dimensions. Probability of thoron gas leakage is more during bagging out or bagging in operations. This gives rise to thoron daughter activity in the working atmosphere of Lab constantly and workers should be protected adequately

  20. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    OpenAIRE

    Solev?g, Anne Lee; Schm?lzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to vent...

  1. Short-term airing by natural ventilation - modeling and control strategies.

    Science.gov (United States)

    Perino, M; Heiselberg, P

    2009-10-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.

  2. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  3. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    Science.gov (United States)

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  4. Influence of mixing and solid concentration on sodium bicarbonate secondary nucleation rate in stirred tank

    Energy Technology Data Exchange (ETDEWEB)

    Wylock, C.; Debaste, F.; Haut, B. [Transfers, Interfaces and Processes - Chemical Engineering Unit, ULB, Brussels (Belgium); Gutierrez, V.; Delplancke-Ogletree, M.P. [Chemicals and Materials Department, ULB, Brussels (Belgium); Cartage, T. [Solvay SA, Brussels (Belgium)

    2010-09-15

    This work aims to investigate the influence of the solid concentration in suspension on the contact secondary nucleation rate of sodium bicarbonate crystallization in a stirred tank crystallizer and to show the necessity of a local description of the mixing for a nucleation rate influence study. Experiments and computational fluid dynamics (CFD) simulations are realized. Crystallization kinetic parameters are extracted from experimental data using a mass distribution fitting approach. CFD and the experimental results allow identifying that a mixing property correlated with the measurements of the secondary nucleation rate in the stirred tank crystallizer appears to be the turbulent dissipation rate on the edge of the impeller. Its influence and the influence of the solid concentration in the suspension on the secondary nucleation rate are estimated by the evaluation of their exponents in a kinetic law. The obtained exponent values are then discussed qualitatively. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Theoretical study of inspiratory flow waveforms during mechanical ventilation on pulmonary blood flow and gas exchange.

    Science.gov (United States)

    Niranjan, S C; Bidani, A; Ghorbel, F; Zwischenberger, J B; Clark, J W

    1999-08-01

    A lumped two-compartment mathematical model of respiratory mechanics incorporating gas exchange and pulmonary circulation is utilized to analyze the effects of square, descending and ascending inspiratory flow waveforms during mechanical ventilation. The effects on alveolar volume variation, alveolar pressure, airway pressure, gas exchange rate, and expired gas species concentration are evaluated. Advantages in ventilation employing a certain inspiratory flow profile are offset by corresponding reduction in perfusion rates, leading to marginal effects on net gas exchange rates. The descending profile provides better CO2 exchange, whereas the ascending profile is more advantageous for O2 exchange. Regional disparities in airway/lung properties create maldistribution of ventilation and a concomitant inequality in regional alveolar gas composition and gas exchange rates. When minute ventilation is maintained constant, for identical time constant disparities, inequalities in compliance yield pronounced effects on net gas exchange rates at low frequencies, whereas the adverse effects of inequalities in resistance are more pronounced at higher frequencies. Reduction in expiratory air flow (via increased airway resistance) reduces the magnitude of upstroke slope of capnogram and oxigram time courses without significantly affecting end-tidal expired gas compositions, whereas alterations in mechanical factors that result in increased gas exchanges rates yield increases in CO2 and decreases in O2 end-tidal composition values. The model provides a template for assessing the dynamics of cardiopulmonary interactions during mechanical ventilation by combining concurrent descriptions of ventilation, capillary perfusion, and gas exchange. Copyright 1999 Academic Press.

  6. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK

    Directory of Open Access Journals (Sweden)

    Tim Sharpe

    2015-07-01

    Full Text Available The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in “healthy” Indoor Air Quality (IAQ in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for “adequate” ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of “trickle ventilators open plus doors open” gave an average of 1021 ppm. “Trickle ventilators open” gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported

  7. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  8. Paradoxical Acinetobacter-associated ventilator-associated pneumonia incidence rates within prevention studies using respiratory tract applications of topical polymyxin: benchmarking the evidence base.

    Science.gov (United States)

    Hurley, J C

    2018-04-10

    Regimens containing topical polymyxin appear to be more effective in preventing ventilator-associated pneumonia (VAP) than other methods. To benchmark the incidence rates of Acinetobacter-associated VAP (AAVAP) within component (control and intervention) groups from concurrent controlled studies of polymyxin compared with studies of various VAP prevention methods other than polymyxin (non-polymyxin studies). An AAVAP benchmark was derived using data from 77 observational groups without any VAP prevention method under study. Data from 41 non-polymyxin studies provided additional points of reference. The benchmarking was undertaken by meta-regression using generalized estimating equation methods. Within 20 studies of topical polymyxin, the mean AAVAP was 4.6% [95% confidence interval (CI) 3.0-6.9] and 3.7% (95% CI 2.0-5.3) for control and intervention groups, respectively. In contrast, the AAVAP benchmark was 1.5% (95% CI 1.2-2.0). In the AAVAP meta-regression model, group origin from a trauma intensive care unit (+0.55; +0.16 to +0.94, P = 0.006) or membership of a polymyxin control group (+0.64; +0.21 to +1.31, P = 0.023), but not membership of a polymyxin intervention group (+0.24; -0.37 to +0.84, P = 0.45), were significant positive correlates. The mean incidence of AAVAP within the control groups of studies of topical polymyxin is more than double the benchmark, whereas the incidence rates within the groups of non-polymyxin studies and, paradoxically, polymyxin intervention groups are more similar to the benchmark. These incidence rates, which are paradoxical in the context of an apparent effect against VAP within controlled trials of topical polymyxin-based interventions, force a re-appraisal. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. The influence of the cigarette smoke pollution and ventilation rate on alpha-activities per unit volume due to radon and its progeny

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Flata, K.

    2003-01-01

    Alpha and beta activities per unit volume air due to radon, thoron and their decay products were evaluated in the air of various cafe rooms polluted by cigarette smoke. Both CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) were used. Equilibrium factors between radon and its progeny and thoron and its daughters have been evaluated in the air of the studied cafe rooms. The committed equivalent doses due to short-lived radon decay products were determined in different regions of the respiratory tract of non-smoker members of the public. The influence of cigarette smoke pollution, ventilation rate and exposure time on committed equivalent dose in the respiratory systems of non-smokers was investigated. Committed equivalent doses ranged from 1.15x10 -11 -2.7x10 -7 Sv.y -1 /h of exposure in the extrathoracic region and from 0.8x10 -12 -1.7x10 -8 Sv.y -1 /h of exposure in the thoracic region of the respiratory tract of non-smokers

  10. The Contaminant Distribution in a Ventilated Room with Different Air Terminal Devices

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The room ventilation is investigated for three different air terminal devices under isothermal conditions. Velocity distribution in the occupied zone is measured for each air terminal device at different air exchange rates. The maximum air exchange rate is determined on the base of both the throw...... of the jets and the comfort requirements applied to measured air velocities in the occupied zone. Normalized concentration distribution in the test room is determined along a vertical line through the middle of the room as a function of the air exchange rate and the density of the tracer gas. The relative...... ventilation efficiency, , based on the room average concentration is also determined as a function of the air exchange rate and the density of the tracer gas. The influence from the position of the return opening on the relative ventilation efficiency is found for one air terminal device....

  11. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  12. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  13. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    Science.gov (United States)

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Krypton for computed tomography lung ventilation imaging: preliminary animal data.

    Science.gov (United States)

    Mahnken, Andreas H; Jost, Gregor; Pietsch, Hubertus

    2015-05-01

    The objective of this study was to assess the feasibility and safety of krypton ventilation imaging with intraindividual comparison to xenon ventilation computed tomography (CT). In a first step, attenuation of different concentrations of xenon and krypton was analyzed in a phantom setting. Thereafter, 7 male New Zealand white rabbits (4.4-6.0 kg) were included in an animal study. After orotracheal intubation, an unenhanced CT scan was obtained in end-inspiratory breath-hold. Thereafter, xenon- (30%) and krypton-enhanced (70%) ventilation CT was performed in random order. After a 2-minute wash-in of gas A, CT imaging was performed. After a 45-minute wash-out period and another 2-minute wash-in of gas B, another CT scan was performed using the same scan protocol. Heart rate and oxygen saturation were measured. Unenhanced and krypton or xenon data were registered and subtracted using a nonrigid image registration tool. Enhancement was quantified and statistically analyzed. One animal had to be excluded from data analysis owing to problems during intubation. The CT scans in the remaining 6 animals were completed without complications. There were no relevant differences in oxygen saturation or heart rate between the scans. Xenon resulted in a mean increase of enhancement of 35.3 ± 5.5 HU, whereas krypton achieved a mean increase of 21.9 ± 1.8 HU in enhancement (P = 0.0055). The use of krypton for lung ventilation imaging appears to be feasible and safe. Despite the use of a markedly higher concentration of krypton, enhancement is significantly worse when compared with xenon CT ventilation imaging, but sufficiently high for CT ventilation imaging studies.

  15. Radon concentration distribution mapping in a small detached house

    International Nuclear Information System (INIS)

    Muellerova, Monika; Moravcsik, Attila; Holy, Karol; Hutka, Miroslav; Hola, Olga

    2013-01-01

    Radon activity concentration was investigated in an older, single storey detached house. The rooms of the house are in contact with the bedrock. The house is fitted with plastic windows and populated mostly during the summer. Integral (Raduet) and continuous (AlphaGUARD) methods were used to measure the radon activity concentration. Average radon and thoron activity concentrations in the house were 150 Bq/m 3 and 40 Bq/m 3 , respectively. The impact of the house occupancy on radon activity concentration was significant only during the summer months when a decrease of radon activity concentration was recorded due to an increased ventilation rate. In the autumn and winter months, the impact of the house occupancy on radon activity concentration was relatively small - up to 20 %. The increases in radon activity concentration after the room had been thoroughly ventilated were analysed in order to estimate the ventilation rate and the rate of radon supply into the house. (orig.)

  16. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  17. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  18. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  19. Measurement of radon exhalation rate and soil gas radon concentration in areas of southern Punjab (Pakistan)

    International Nuclear Information System (INIS)

    Mujahid, S. A.; Hussain, S.; Ramzan, M.

    2010-01-01

    Plastic track detectors were used to measure the radon concentration and exhalation rate from the soil samples. The samples were collected from areas of southern Punjab (Pakistan). In a laboratory experiment, passive alpha dosemeters were installed inside cylindrical bottles containing the soil samples. The radon concentrations and the radon exhalation rate were found in the ranges of 34±7 to 260±42 Bq m -3 and 38±8 to 288±46 mBq m -2 h -1 , respectively. The on-site measurements of radon in the soil gas were also carried out in these areas using a scintillation alpha counter. The concentration of radon in the soil gas was found in the range of 423±82-3565±438 Bq m -3 . (authors)

  20. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lorenzetti, David M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    in the kitchen and bedroom of several homes. A hood with large capture volume and a measured flow of 108 L/s reduced concentrations 80-95%. IMPLICATIONS: These measurements demonstrate that operation of natural gas cooking burners without venting can cause short-term kitchen concentrations of NO2 to exceed the US outdoor health standard, and can elevate concentrations of NO, NO2, and ultrafine particles throughout the home. Results are generally consistent with a recent simulation study that estimated widespread 1h NO2 exposures exceeding 100 ppb in homes that use gas burners without venting. While operating a venting range hood can greatly reduce pollutant levels from burner use (and presumably from cooking as well), performance varies widely across hoods. Increased awareness of the need to ventilate when cooking would substantially reduce in-home exposure to NO2 and ultrafine particles in California homes. Helping consumers select effective hoods, for example by publishing capture efficiency performance ratings, also would help reduce exposure.

  1. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...

  2. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  3. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  4. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  5. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  6. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  7. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B. [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto Tembalang, Semarang, Central Java, Indonesia, 50276 (Indonesia)

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  8. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    International Nuclear Information System (INIS)

    Prasetyaningrum, A.; Ratnawati,; Jos, B.

    2015-01-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O 3 ) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV

  9. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    Science.gov (United States)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  10. Ventilation measurements as an adjunct to radon measurements in buildings

    International Nuclear Information System (INIS)

    Knutson, E.O.; Franklin, H.

    1977-01-01

    The concentration of radon in a building is a function of the radon sources within the building and of the building's ventilation characteristics. To complement its radon measurement program, HASL is currently assessing apparatus and procedures for measuring building ventilation. Results are reported from ventilation measurements made in the laboratory and in a residential building

  11. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    Science.gov (United States)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  12. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Science.gov (United States)

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  13. Interpretation of biological-rate coefficients derived from radionuclide content, radionuclide concentration and specific activity experiments

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Booth, R.S.

    1976-01-01

    Rigorous expressions are derived for the biological-rate coefficients (BRCs) determined from time-dependent measurements of three different dependent variables of radionuclide tracer experiments. These variables, which apply to a single organism, are radionuclide content, radionuclide concentration and specific activity. The BRCs derived from these variables have different mathematical expressions and, for high growth rates, their numerical values can be quite different. The precise mathematical expressions for the BRCs are presented here to aid modelers in selecting the correct parameters for their models and to aid experiments in interpreting their results. The usefulness of these three variables in quantifying elemental uptakes and losses by organisms is discussed. (U.K.)

  14. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  15. Blood (Breath) Alcohol Concentration Rates of College Football Fans on Game Day

    Science.gov (United States)

    Glassman, Tavis; Braun, Robert; Reindl, Diana M.; Whewell, Aubrey

    2011-01-01

    The purpose of this study was to determine the Blood (breath) Alcohol Concentration (BrAC) rates of college football fans on game day. Researchers employed a time-series study design, collecting data at home football games at a large university in the Midwest. Participants included 536 individuals (64.4% male) ages 18-83 (M = 28.44, SD = 12.32).…

  16. Radon concentration in air and external gamma dose rate. Is there a correlation?

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Umisedo, N.K.; Marcos Rizzotto; Hugo Velasco; Valladares, D.L.

    2016-01-01

    We checked the existence of correlations between experimentally determined radon concentration in indoor air and gamma dose rate, in different environments: residences, workplaces in subway stations and radiotherapies, and a gold mine. Except for the mine environment, where a linear correlation (r 2 = 0.86) was obtained with statistical significance, we found no correlations between those quantities. Both radiation sources are originated from natural radionuclides, nonetheless the observation of correlations depends on various conditions, as we discuss here. (author)

  17. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  18. Concentration of 7Be in the lower atmosphere and fallout rate in Tokai

    International Nuclear Information System (INIS)

    Amano, Hikaru; Kasai, Atsushi

    1981-01-01

    Beryllium-7, cosmic ray produced radioactivity, its monthly average concentration in the lower atmosphere and monthly fallout rate were measured in Tokai, Japan. Then, the monthly variations were compared with those of fission products due to nuclear detonations in the atmosphere. The concentration of 7 Be in the lower atmosphere ranged from 0.5 x 10 -1 pCi/m 3 to 2.5 x 10 -1 pCi/m 3 in Tokai between the observed period, 1975 - 1977. The fallout rate of 7 Be vibrated widely, its range was from the detection limits to 1.2 x 10 4 pCi/m 2 . The monthly variations were not always the same with variations of the fission products. Fallout rate of 7 Be depended on the rain strongly. The concentration of 7 Be in the rain was measured, too. Then the range was from 9.2 pCi/l to 1.9 x 10 2 pCi/l between the observed period 1976.9 - 1977.2. (author)

  19. Analysis of the wind data and estimation of the resultant air concentration rates

    International Nuclear Information System (INIS)

    Hu, Shze Jer; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-09-01

    Statistical analyses and comparisons of the meteorological wind data obtained by the propeller and supersonic anemometers for the year of 1987 in the Japan Atomic Energy Research Institute, Tokai, were performed. For wind speeds less than 1 m/s, the propeller readings are generally 0.5 m/s less than those of the supersonic readings. The resultant average air concentration and ground level γ exposure rates due to the radioactive releases for the normal operation of a nuclear plant are over-estimated when calculated using the propeller wind data. As supersonic anemometer can give accurate wind speed to as low as 0.01 m/s, it should be used to measure the low wind speed. The difference in the average air concentrations and γ exposure rates calculated using the two different sets of wind data, is due to the influence of low wind speeds at calm. If the number at calm is large, actual low wind speeds and wind directions should be used in the statistical analysis of atmospheric dispersion to give a more accurate and realistic estimation of the air concentrations and γ exposure rates due to the normal operation of a nuclear plant. (author). 4 refs, 3 figs, 9 tabs

  20. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  1. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    Science.gov (United States)

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  2. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  3. Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge.

    Science.gov (United States)

    Rassias, Athos J; Guyre, Paul M; Yeager, Mark P

    2011-12-01

    We evaluated the differential impact of stress-associated vs high pharmacologic concentrations of hydrocortisone pretreatment on heart rate variability (HRV) during a subsequent systemic inflammatory stimulus. Healthy volunteers were randomized to receive placebo (Control) and hydrocortisone at 1.5 μg/kg per minute (STRESS) or at 3.0 μg/kg per minute (PHARM) as a 6-hour infusion. The STRESS dose was chosen to replicate the condition of physiologic adrenal cortical output during acute systemic stress. The PHARM dose was chosen to induce a supraphysiologic concentration of cortisol. The next day, all subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide). Heart rate variability was analyzed with the statistic approximate entropy (ApEn). A lower ApEn correlates with decreased HRV. At the 3-hour nadir, the decrease in ApEn in the STRESS group was significantly less compared to placebo (P statistically different. We also found that the maximal decrease in ApEn preceded maximal increase in heart rate in all groups. The decrease in R-R interval was maximal at 4 hours, whereas the ApEn nadir was 1 hour earlier at 3 hours. Pretreatment with a stress dose of hydrocortisone but not a higher pharmacologic dose maintained a significantly higher ApEn after endotoxin exposure when compared to a placebo. In addition, decreases in ApEn preceded increases in heart rate. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Natural ventilation for reducing airborne infection in hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Hua [School of Energy and Environment, Southeast University, Nanjing (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yuguo; Ching, W.H.; Sun, H.Q. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Seto, W.H.; Ching, Patricia [Department of Microbiology, Queen Mary Hospital, Hong Kong (China)

    2010-03-15

    High ventilation rate is shown to be effective for reducing cross-infection risk of airborne diseases in hospitals and isolation rooms. Natural ventilation can deliver much higher ventilation rate than mechanical ventilation in an energy-efficient manner. This paper reports a field measurement of naturally ventilated hospital wards in Hong Kong and presents a possibility of using natural ventilation for infection control in hospital wards. Our measurements showed that natural ventilation could achieve high ventilation rates especially when both the windows and the doors were open in a ward. The highest ventilation rate recorded in our study was 69.0 ACH. The airflow pattern and the airflow direction were found to be unstable in some measurements with large openings. Mechanical fans were installed in a ward window to create a negative pressure difference. Measurements showed that the negative pressure difference was negligible with large openings but the overall airflow was controlled in the expected direction. When all the openings were closed and the exhaust fans were turned on, a reasonable negative pressure was created although the air temperature was uncontrolled. The high ventilation rate provided by natural ventilation can reduce cross-infection of airborne diseases, and thus it is recommended for consideration of use in appropriate hospital wards for infection control. Our results also demonstrated a possibility of converting an existing ward using natural ventilation to a temporary isolation room through installing mechanical exhaust fans. (author)

  5. Analysis on present radon ventilation situation of Chinese uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua

    2010-01-01

    Mine Ventilation is the most important way in lowering radon of uranium mines. At present, radon and radon daughter concentration of underground air is 3∼5 times higher than any other air concentration of foreign uranium mines, as the same input for Protective Ventilation between Chinese uranium mines with compaction methodology and international advanced uranium mines. In this passage, through the analysis of Ventilation Radon Reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction, it illuminated the reasons of higher radon and radon daughter concentration in Chinese uranium mines and put forward some problems in three aspects, which are Ventilation Radon Reduction Theory, Ventilation Radon Reduction Measures and Ventilation Management. And to above problems, this passage put forward some proposals and measures about some aspects, such as strengthen examination and verification and monitoring practical situation, making clear ventilation plan, in according to mining sequence strictly, training Ventilation technician forcefully, enhance Ventilation System management, development of Ventilation Radon Reduction technology research in uranium mines and carrying out ventilation equipments as soon as possible in further and so on. (authors)

  6. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  7. Effect Of Ventilation On Chronic Health Risks In Schools And Offices

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-04

    This study provides a risk assessment for chronic health risks from inhalation exposure to indoor air pollutants in offices and schools with a focus how ventilation impacts exposures to, and risks from, volatile organic compounds (VOCs) and particulate matter (PM2.5). We estimate how much health risks could change with varying ventilation rates under two scenarios: (i) halving the measured ventilation rates and (ii) doubling the measured ventilation rates. For the hazard characterization we draw upon prior papers that identified pollutants potentially affecting health with indoor air concentrations responsive to changes in ventilation rates. For exposure assessment we determine representative concentrations of pollutants using data available in current literature and model changes in exposures with changes in ventilation rates. As a metric of disease burden, we use disability adjusted life years (DALYs) to address both cancer and non-cancer effects. We also compare exposures to guidelines published by regulatory agencies to assess chronic health risks. Chronic health risks are driven primarily by particulate matter exposure, with an estimated baseline disease burden of 150 DALYs per 100,000 people in offices and 140 DALYs per 100,000 people in schools. Study results show that PM2.5-related DALYs are not very sensitive to changes in ventilation rates. Filtration is more effective at controlling PM2.5 concentrations and health effects. Non-cancer health effects contribute only a small fraction of the overall chronic health burden of populations in offices and schools (<1 DALY per 100,000 people). Cancer health effects dominate the disease burden in schools (3 DALYs per 100,000) and offices (5 DALYs per 100,000), with formaldehyde being the primary risk driver. In spite of large uncertainties in toxicological data and dose-response modeling, our results support the finding that ventilation rate changes do not have significant impacts on estimated chronic disease

  8. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  9. Arterial oxygen tension and pulmonary ventilation in horses placed in the Anderson Sling suspension system after a period of lateral recumbency and anaesthetised with constant rate infusions of romifidine and ketamine.

    Science.gov (United States)

    François, I; Lalèyê, F-X; Micat, M; Benredouane, K; Portier, K

    2014-09-01

    Some controversy exists over whether or not horses' recovery and cardiopulmonary function are affected by suspension in slings. To measure arterial oxygen tension and pulmonary ventilation in anaesthetised horses placed in a standing position in an Anderson Sling (AS) after a period of right lateral recumbency (RLR). Randomised crossover experimental study. Six Standardbred horses were anaesthetised twice. Catheters were inserted into the right jugular vein and the left carotid artery. After premedication with romifidine, anaesthesia was induced with diazepam and ketamine. Following 50 min in RLR, horses were maintained in either RLR or AS for an additional 60 min through to recovery. Anaesthesia was maintained i.v. with a constant rate infusion of romifidine and ketamine. Heart rate, respiratory rate, mean arterial pressure, expiratory tidal volume, minute volumes and end tidal CO2 were monitored continuously. Venous and arterial bloods were sampled for lactate concentration, creatine kinase activity and blood gas analysis before premedication, after induction, every 20 min for 100 min, as soon as the horse was standing (TR), and 24 h later. The data were averaged within 2 anaesthetic periods: P1, 0-20 min; and P2, 40-100 min. During P2, horses in the RLR group had lower arterial oxygen tension (P = 0.001), higher alveolar-arterial oxygen tension gradient (P = 0.005), higher respiratory rate (P = 0.04) and higher minute volumes (P = 0.04) than horses in the AS group. Arterial CO2 tension and mean arterial pressure increased in the AS group during P2 (P = 0.01 and 0.02 respectively). The recoveries were judged better in the AS group than in the RLR group (P = 0.01). During TR, lactate were higher in the RLR group than in the AS group (P = 0.007). Creatine kinase activities were higher in the AS group at 24 h vs. TR (P = 0.02). Anderson Sling suspension after a period of recumbency improves cardiopulmonary function and recovery quality in horses and

  10. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditio......The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  11. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  12. Lung function studied by servo-controlled ventilator and respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Piiper, J.

    1987-01-01

    The gas exchange function of lungs is studied. The gas concentration, measured by mass spectrometry and the lung volume and rate of change of lung volume are discussed. A servo-controlled ventilator is presented. Several experimental projects performed on anesthetized paralyzed dogs are reported. (M.A.C.) [pt

  13. Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1990-01-01

    Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than 137 Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium x V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with two first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms

  14. Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, S.C.; Evenden, W.G. (Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada))

    Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with two first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.

  15. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies...... that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...

  16. Mechanical ventilator - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...

  17. Learning about ventilators

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000458.htm Learning about ventilators To use the sharing features on this page, ... fixed or changed. How Does Being on a Ventilator Feel? A person receives medicine to remain comfortable ...

  18. Comparison of calculated and measured soil-gas radon concentration and radon exhalation rate

    International Nuclear Information System (INIS)

    Neznal, Martin; Neznal, Matej; Jiranek, Martin

    2000-01-01

    The computer model RADON2D for WINDOWS, which makes it possible to estimate the radon exhalation rate from the ground surface and the distribution of soil-gas radon concentration, was tested using a large set of experimental data coming from four reference areas located in regions with different geological structure. A good agreement between calculated and experimental data was observed. In the majority of cases, a correct description of the real situation was obtained using non-modified experimental input data. (author)

  19. Salivary flow rate, buffer capacity, and urea concentration in adolescents with type 1 diabetes mellitus.

    Science.gov (United States)

    Saes Busato, Ivana Maria; Antoni, Carlos Cesar De; Calcagnotto, Thiago; Ignácio, Sérgio Aparecido; Azevedo-Alanis, Luciana Reis

    2016-12-01

    The objective of the study was to analyze salivary flow rate, urea concentration, and buffer capacity in adolescents with type 1 diabetes mellitus (type 1 DM) in two different stages. This study was performed on adolescents (14-19 years), allocated between two groups: type 1 DM group comprised 32 adolescents with type 1 DM, and non-type 1 DM group comprised 32 nondiabetics. The adolescents in type 1 DM group were evaluated at a baseline (T0) and after 15 months (T1), and those in non-type 1 DM group were only evaluated at T0. Diabetic status was determined by glycosylated hemoglobin (GHb) and capillary glucose tests. Measurement of salivary flow was performed by means of stimulated saliva (SSFR) collection. The buffer capacity (BC) was determined, and analysis of urea salivary concentration was performed using the colorimetric method. At T0, there were significant differences between diabetics and nondiabetics for SSFR and BC (pdiabetics, SSFR was 0.790 mL/min in T0 and 0.881 mL/min in T1 (p>0.05). BC at T0 was 4.8, and at T1, it was 3.9 (p=0.000). Urea concentration mean value had a significant decrease at T1 (28.13) compared with T0 (34.88) (p=0.013). There was a negative correlation between SSFR and urea salivary concentration at both T0 (r=-0.426, p≤0.05) and T1 (r=-0.601, p≤0.01). In adolescents with type 1 DM, hyposalivation at T0 was associated with an increase in urea salivary concentration. At T1, hyposalivation was associated with a reduction in BC, and an increase in salivary urea.

  20. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  1. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  2. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  3. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  4. Demand controlled ventilation in single-family homes; Behovstyret ventilation til enfamiliehuse

    Energy Technology Data Exchange (ETDEWEB)

    Rammer Nielsen, T.; Drivsholm, C.; Rudolph Hansen, M.P.; Kragh, J.

    2009-12-15

    This project investigated two different control strategies: A simple and cheap strategy and an advanced and expensive strategy: 1. Simple control: The ventilation rate is varied only on the whole building level giving an average ventilation rate of either 0.1 l/(s m{sup 2}) or 0.35 l/(s m{sup 2}). The air change rate is controlled by sensors in the air handling unit measuring relative humidity, temperature and CO{sub 2}. The control is based on the CO{sub 2}-concentration and absolute humidity in the supply air and exhaust air. A fixed set point for the difference in CO{sub 2}-concentration between the exhaust and supply is used to decide if the ventilation rate is low or high. As supplement to the CO{sub 2} control the difference in absolute humidity between exhaust and supply is used to assure that the ventilation remain at the high level if there is a high level of humidity in the house. 2. Advanced control: The air change rate is varied dynamically for all living rooms giving an average air change for the house between 0.1 l/(s m{sup 2}) and 0.35 l/(s m{sup 2}). The air change rate in the living rooms is controlled by CO{sub 2}-sensors in each room and dampers in the room supply duct. Relative humidity is measured in the rooms with high moisture production to ensure that the highest air exchange is activated if the relative humidity in one of these rooms is too high. Even though the two strategies have been implemented and tested for a long period of time, only the simple control can be recommended. The simple control ensures that the air quality is almost the same as if the house was ventilated constantly at the high ventilation rate. Also the simple control only requires two CO{sub 2} sensors, two relative humidity sensors and two temperature sensors in the air handling unit. These sensors should be checked from time to time e.g. when filters are exchanged. The simple control is today used in meeting rooms, office rooms and daycare facilities in a modified

  5. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    Science.gov (United States)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  6. The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst during a period of limited ventilation

    Directory of Open Access Journals (Sweden)

    Marek Lang

    2015-05-01

    Full Text Available The evolution of CO2 levels with and without human presence was studied in a selected site (Gallery Chamber of the homothermic zone of the Balcarka Cave (Moravian Karst, Czech Republic during the fall, a period of limited ventilation. There were recognized various factors controlling the cave CO2 levels under different conditions in the exterior and interior. When visitors were absent, CO2 levels were controlled by the advective CO2 fluxes linked to cave airflows and reaching up to ~1.5x10-3 mol s-1. These fluxes exceed by orders of magnitude the exchanged diffusive fluxes (up to 4.8x10-8 mol s-1 and also the natural net flux (from 1.7x10-6 to 6.7x10-6 mol s-1imputing given chamber directly from overburden. The natural net flux, normalized to unitary surface area, was estimated to be 2.8x10-8 to 1.1x10-7 mol m-2 s-1, based on a perpendicular projection area of the chamber of ~ 60 m2. When visitors were present, the anthropogenic CO2 flux into the chamber reached up to 3.5x10-3 mol s-1, which slightly exceeded the advective fluxes. This flux, recalculated per one person, yields the value of 6.7x10-5 mol s-1. The calculations of reachable steady states indicate that anthropogenic fluxes could almost triple the natural CO2 levels if visitors stayed sufficiently long in the cave.

  7. Survival, Fertilization and Developmental Rates of Cryotop-Vitrified Oocyte and Embryo Using Low Concentrated Cryoprotectants

    Directory of Open Access Journals (Sweden)

    A Roozbehi

    2012-10-01

    Full Text Available Background & Aim: The preserving embryos, the risk of multiple pregnancies, the existence of factors in stimulated uterine cycle, are important forces in perfecting embryo cryopreservation. The aim of current study was to assess Survival, Fertilization and Developmental Rates (SRs, FRs, DRs of the mouse oocytes and embryos using cryotop and low concentrated cryoprotectants solutions. Methods: Mouse C57BL/6 oocytes and embryos were collected. Oocytes SRs, FRs, DRs were recorded after cryotop-vitrification/ warming. As well as comparing fresh oocytes and embryos, the data obtained from experimental groups (exp. applying 1.25, 1.0, and 0.75 Molar (M CPAs were analyzed in comparison to those of exp. adopting 1.5 M CPAs (largely-used concentration of EthylenGlycol (EG and Dimethylsulphoxide (DMSO. Results: The data of oocytes exposed to 1.25 M CPAs were in consistency with those exposed to 1.5 M and control group in terms of SR, FR and DR. As fewer concentrations were applied, the more decreased SRs, FRs and DRs were obtained from other experimental groups. The results of embryos were exposed to 1.25 M and 1.0 M was close to those vitrified with 1.5 M and fresh embryos. The results of 0.75 M concentrated CPAs solutions were significantly lower than those of control, 1.5 M and 1.0 M treated groups. Conclusion: CPAs limited reduction to 1.25 M and 1.0 M instead of using 1.5 M, for oocyte and embryo cryotop-vitrification procedure may be a slight adjustment.

  8. Effects of Time-Release Caffeine Containing Supplement on Metabolic Rate, Glycerol Concentration and Performance

    Directory of Open Access Journals (Sweden)

    Adam M. Gonzalez, Jay R. Hoffman, Adam J. Wells, Gerald T. Mangine, Jeremy R. Townsend, Adam R. Jajtner, Ran Wang, Amelia A. Miramonti, Gabriel J. Pruna, Michael B. LaMonica, Jonathan D. Bohner, Mattan W. Hoffman, Leonardo P. Oliveira, David H. Fukuda, Maren S. Fragala, Jeffrey R. Stout

    2015-06-01

    Full Text Available This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF versus a regular caffeine capsule (CAF and a placebo (PL. Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05 in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042 in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86 or metabolic measures (p = 0.17-0.91. Physical reaction time was significantly improved for CAF at hour 5 (p=0.01 compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively and over the 8-hour period (p = 0.04 and p = 0.001, respectively compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004. TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures.

  9. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  10. Conservative fluid management prevents age-associated ventilator induced mortality.

    Science.gov (United States)

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  11. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  12. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  13. The effect of helium on ventilator performance: study of five ventilators and a bedside Pitot tube spirometer.

    Science.gov (United States)

    Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R

    2001-08-01

    To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.

  14. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  15. Data on the natural ventilation performance of windcatcher with anti-short-circuit device (ASCD).

    Science.gov (United States)

    Nejat, Payam; Calautit, John Kaiser; Majid, Muhd Zaimi Abd; Hughes, Ben Richard; Jomehzadeh, Fatemeh

    2016-12-01

    This article presents the datasets which were the results of the study explained in the research paper 'Anti-short-circuit device: a new solution for short-circuiting in windcatcher and improvement of natural ventilation performance' (P. Nejat, J.K. Calautit, M.Z. Abd. Majid, B.R. Hughes, F. Jomehzadeh, 2016) [1] which introduces a new technique to reduce or prevent short-circuiting in a two-sided windcatcher and also lowers the indoor CO2 concentration and improve the ventilation distribution. Here, we provide details of the numerical modeling set-up and data collection method to facilitate reproducibility. The datasets includes indoor airflow, ventilation rates and CO2 concentration data at several points in the flow field. The CAD geometry of the windcatcher models are also included.

  16. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  17. Variation in heart rate and blood lactate concentration in freestyle kytesurfing.

    Science.gov (United States)

    Camps, A; Vercruyssen, F; Brisswalter, J

    2011-06-01

    The aim of this paper was to evaluate the physiological demands of freestyle kitesurfing. Ten elite subjects performed an incremental running test on a treadmill and a three 7 min simulated freestyle heats of kitesurfing in MW (Midwind) condition ranging from 15 to 22 knots. Oxygen uptake (VO(2)) was estimated from the heart rate (HR) recorded during the freestyle trial using the individual HR-VO(2) relationship determined during the incremental test. Blood lactate concentration [Lab] was measured at rest and 3 min after the exercise completion. 3 experienced kitesurfers acted as judges to better simulate competition conditions. Linear relationship was demonstrated between scores and % HR(max) on water (r=-0.764, Pat the end of crossing trial (5.2±0.8 mmol L(-1)). This first analysis of freestyle kitesurfing suggests that the energy demand is sustained by both aerobic and anaerobic metabolism during a MW condition and freestyle event of kitesurfing.

  18. Empirically observed learning rates for concentrating solar power and their responses to regime change

    Science.gov (United States)

    Lilliestam, Johan; Labordena, Mercè; Patt, Anthony; Pfenninger, Stefan

    2017-07-01

    Concentrating solar power (CSP) capacity has expanded slower than other renewable technologies and its costs are still high. Until now, there have been too few CSP projects to derive robust conclusions about its cost development. Here we present an empirical study of the cost development of all operating CSP stations and those under construction, examining the roles of capacity growth, industry continuity, and policy support design. We identify distinct CSP expansion phases, each characterized by different cost pressure in the policy regime and different industry continuity. In 2008-2011, with low cost pressure and following industry discontinuity, costs increased. In the current phase, with high cost pressure and continuous industry development, costs decreased rapidly, with learning rates exceeding 20%. Data for projects under construction suggest that this trend is continuing and accelerating. If support policies and industrial structure are sustained, we see no near-term factors that would hinder further cost decreases.

  19. Evaluation of oestrus observation and conception rates in suckling beef cows using whole milk progesterone concentration

    Directory of Open Access Journals (Sweden)

    D.C. Lourens

    2002-07-01

    Full Text Available A 2-sample regime was used to measure whole milk progesterone concentration on the day of oestrus and insemination (Day 0 and 6 days later (Day 6 in a sample of 50 primiparous and 100 multiparous suckling beef cows. Exposure to teaser bulls and observation by cattlemen identified the occurrence of oestrus. Three sets of criteria used to define ovulatory oestrus were compared : a milk progesterone concentration less than 6 nmol / l on Day 0 ; b milk progesterone less than 6 nmol / l on Day 0 and rising to greater than 6 nmol / l on Day 6; c milk progesterone less than 6 nmol / l on Day 0 and rising to greater than 6 nmol / l on Day 6, or cow diagnosed pregnant to 1st insemination. Using only a single milk sample on Day 0 (criterion a would have resulted in the positive predictive value of heat detection being estimated at 98.7%. Using a paired measurement (criterion b resulted in a significantly lower estimate of 84.7%. The inclusion of cows that conceived despite not showing a marked rise in milk progesterone concentration (criterion c resulted in a more accurate estimate of 89.3%. Use of a 2-sample regime also allowed calculation of conception rates while eliminating the effect of heat detection errors. In the cows sampled, of those in ovulatory oestrus that were inseminated, 73.1% conceived to the 1st insemination. These results demonstrate that artificial insemination within a limited breeding season can be successful if nutrition is optimal and management is intensive. The use of a 2-sample milk progesterone test may be a valuable tool in investigating heat detection and conception problems in beef herds in which artificial insemination is used.

  20. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  1. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  2. External dose rates from gamma rays and activity concentrations in foodstuffs and herbage in eastern Europe

    International Nuclear Information System (INIS)

    Wilkins, B.T.; Dodd, N.J.; Bradley, E.J.

    1986-01-01

    The initial scarcity of reliable information in eastern European countries, coupled with the proximity of the Chernobyl installation, resulted in understandable concern among British nationals living in these areas or visiting them on a short-term basis. Accordingly, arrangements were made by the Foreign and Commonwealth Office (FCO) for the appropriate Embassies to send samples of milk, drinking water, grass and available fruit and vegetables to the Board's laboratories at Chilton for analysis. In addition, simple monitoring equipment was supplied to the Embassies for measurements of external dose rates from gamma rays out of doors. The first set of samples was collected in Moscow on May 3rd 1986. Most consignments arrived at Chilton within 24 hours of collection. Speed was important, not only because of the need for information but because vegetation needed to be sufficiently fresh to permit meaningful measurement. By the end of June 1986, the results of systematic monitoring programmes in eastern Europe were being disseminated more freely, so that frequent sampling by the Embassies was no longer considered necessary. Since that time samples have been received only occasionally from those Embassies where concern still persists. This report summarises the results of measurements and samples taken by June 30th 1986. Data for γ-ray emitting radionuclides in foodstuffs were issued to the FCO in a series of Measurement Reports. Here they are presented together with data for actinide element concentrations in a limited number of samples. Measurements of outdoor external dose rates made by the Embassies are also included

  3. The natural radionuclide concentration and radon exhalation rate of Turkish natural stones

    International Nuclear Information System (INIS)

    Yasar, O.; Yaprak, G.; Guer, F.

    2006-01-01

    Geological materials usually contaminated with naturally occurring radioactive materials (NORM) have become a focus great attention. These NORM under certain conditions can reach hazardous contamination levels. Some contamination levels may be sufficiently severe that precautions must be taken. The Turkey has very important natural stones potential with over 5 billion m 3 marble reserves. According to 2002 giving data the number of Turkish stones export is 303 million US Dollars. In this regards, the present study deals with 120 Turkish natural stones. The studied samples were analyzed and the concentrations in Bq/kg dry weight of radioisotopes were determined by gamma-ray spectrometry using HPGe defector in Bq/kg dry weight. For the measurement of the radon exhalation rate, the 'can technique' using sensitive alpha sensitive LR-115 type II plastic defectors were used. The radium equivalent activity varied from 285 Bq/kg to 325 Bq/kg for granite samples and from 2 Bq/kg to 32 Bq/kg for marble samples. The value of radon exhalation rate ranged from 0.06 Bq/m 2 h - 1 to 0.46 Bq/m 2 h - 1 for garnite samples and from 0.006 Bq/m 2 h - 1 to 0.011 Bq/m 2 h - 1 for marble samples. According to the recommended values and the calculated external hazard index values the samples are acceptable for use as building materials and decoration

  4. Natural depuration rate and concentration of cesium-137 radionuclide in black SEA macro algae

    International Nuclear Information System (INIS)

    Topcuoglu, S.; Kuecuekcezzar, R.; Kut, D.; Esen, N.; Gueven, K.C.

    1996-01-01

    Cesium-137 concentrations in red, brown and green algae have been studied for the calculation of natural depuration rates. The algae species were collected from the same population of the Black Sea stations during the period of 1986-1995. The natural depuration rates are estimated as biological half-lives. The pattern of depuration results represented by a single component for each algae division. The biological half-lives of 137 Cs in red (Phyllophora nervosa), green (Chaetomorpha linum) and brown (cystoceira barbata) algae are estimated to be 18.5, 21.6 and 29.3 months, respectively. 137 Cs and 40 K activity levels and their ratios in algae species in two stations in Black Sea region of Turkey have been determined during the period of 1990-1995. The results showed that the Sinop region was more contaminated than the Sile region on the Black Sea coast of Turkey from the Chernobyl accident. (author). 10 refs., 2 figs., 2 tabs

  5. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  6. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    Science.gov (United States)

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  7. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr-1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 μg/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 μg/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  8. The transmission characteristics of indoor particles under different ventilation conditions

    Directory of Open Access Journals (Sweden)

    Lv Yang

    2017-01-01

    Full Text Available In modern society, ventilation is an important method for removing indoor particles. This study applies the parameter of attenuation index to analyze the effect of the removal of indoor particles in the two typical ventilation strategies called ceiling exhaust and slit exhaust strategy. Experiment was conducted in a chamber and riboflavin particles were used as the indoor particles source, instantaneous microbial detection (IMD used to measure the particulate concentration. Conclusions can be found that air exchange rate is an important factor affecting the indoor particle concentration distribution. In the process of indoor free settling(air exchange rate is 0 h-1, the deposition rate were 0.086 h-1, 0.122 h-1, 0.173 h-1 for the particles of 0.5–1.0 μm, 1.0–3.0μm and 3.0–5.0 μm. When the air exchange rate increased to 2.5 h-1, the differences in the attenuation index is significant. There was also a significant linear relationship between air exchange rate and attenuation index. Furthermore, the effect of the slit exhaust strategy on the removal of coarse particles is more remarkable as the increasing air exchange rate.

  9. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  10. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  11. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  12. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  13. Assessment of ventilation efficiency for the study of indoor air quality; Appreciation de l'efficacite de la ventilation pour l'etude de la qualite de l'air interieur

    Energy Technology Data Exchange (ETDEWEB)

    Akoua, A.A.

    2004-10-15

    An efficient ventilation system provides a good indoor air quality by eliminating air pollutants and ensuring a satisfactory air renewal. Unlike most research works that deal with test cells with controlled boundary conditions, our study focuses on ventilation efficiency in a real environment. In situ experiments are performed and provide the boundary conditions necessary for CFD (Computational Fluid Dynamics) computations. Using CFD for predicting indoor air quality in a real environment is thus analyzed. The influence of permeability on numerical predictions quality is shown. Unfortunately, it is difficult to quantify accurately the air leakages and their airflow rates. Our study proposes a simplified model that includes air infiltration rates in the CFD computations, and that yields satisfactory results. A critical analysis of ventilation efficiency indices is then performed. It is shown that it is currently impossible to evaluate the air change efficiency ( a e ) in an occupied zone. Concerning the air pollutants removal effectiveness, it is shown that the usual index C e is not suited to ventilation systems with variable airflow rates. For such cases, a new formulation of this index is given. The ratio between the airflow rate and the nominal airflow rate of the ventilation system is also taken into consideration. A coupled analysis of this new index and of this airflow rate ratio enables us to assess the air pollutants removal effectiveness while considering the energetic cost of ventilation. We finally show that there is no universal index. The choice of the index depends on the pollutant, on the pollutant concentration, and on the airflow rate. A tool of decision-making aid is thus proposed in order to evaluate the air pollutants removal effectiveness for various ventilation systems. This tool is flexible and rather simple to use. (author)

  14. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions.......This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  15. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  16. Growth of mussels Mytilus edulis at algal (Rhodomonas salina) concentrations below and above saturation level for reduced filtration rate

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Pleissner, Daniel; Larsen, Poul Scheel

    2013-01-01

    Average filtration and growth rates of groups of juvenile Mytilus edulis (n =2545 of 22-35 mm shell length) were measured at different concentrations of an algal cell monoculture in 9 laboratory experiments of duration 14-30 days, 4 experiments below and 5 above the limit of incipient saturation...... concentration (Csat ≈ 6000-7000 Rhodomonas salina cells ml-1). From a nearly constant filtration rate (F ≈ 30 ml min-1 for a 30 mm shell length) at measured algal concentrations below Csat the steady-state filtration rate decreased approximately as 1/C for increasing algal concentrations (C) above Csat...... is exceeded and then as partial valve closure and reduced filtration and growth rates along with production of pseudofaeces. A survey of naturally occurring phytoplankton biomass in the sea shows that this is generally below Csat except for the short spring bloom periods; hence mussels generally feed...

  17. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  18. Constraining Quaternary ice covers and erosion rates using cosmogenic 26Al/10Be nuclide concentrations

    Science.gov (United States)

    Knudsen, Mads Faurschou; Egholm, David Lundbek

    2018-02-01

    Paired cosmogenic nuclides are often used to constrain the exposure/burial history of landforms repeatedly covered by ice during the Quaternary, including tors, high-elevation surfaces, and steep alpine summits in the circum-Arctic regions. The approach generally exploits the different production rates and half-lives of 10Be and 26Al to infer past exposure/burial histories. However, the two-stage minimum-limiting exposure and burial model regularly used to interpret the nuclides ignores the effect of variable erosion rates, which potentially may bias the interpretation. In this study, we use a Monte Carlo model approach to investigate systematically how the exposure/burial and erosion history, including variable erosion and the timing of erosion events, influence concentrations of 10Be and 26Al. The results show that low 26Al/10Be ratios are not uniquely associated with prolonged burial under ice, but may as well reflect ice covers that were limited to the coldest part of the late Pleistocene combined with recent exhumation of the sample, e.g. due to glacial plucking during the last glacial period. As an example, we simulate published 26Al/10Be data from Svalbard and show that it is possible that the steep alpine summits experienced ice-free conditions during large parts of the late Pleistocene and varying amounts of glacial erosion. This scenario, which contrasts with the original interpretation of more-or-less continuous burial under non-erosive ice over the last ∼1 Myr, thus challenge the conventional interpretation of such data. On the other hand, high 26Al/10Be ratios do not necessarily reflect limited burial under ice, which is the common interpretation of high ratios. In fact, high 26Al/10Be ratios may also reflect extensive burial under ice, combined with a change from burial under erosive ice, which brought the sample close to the surface, to burial under non-erosive ice at some point during the mid-Pleistocene. Importantly, by allowing for variable

  19. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis.

    Science.gov (United States)

    Kimura, Fumiharu

    2016-04-28

    Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.

  20. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors. In m....... In most health-care environments, harmful microorganisms and infectious aerosols may exist in relatively high concentration. They are particularly harmful to patients due to reduced immunity, and to those with open wounds.......Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  1. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition...... transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept...

  2. Styret naturlig ventilation

    DEFF Research Database (Denmark)

    Morsing, S.; Strøm, J.S.

    Publikationen præsenterer et generelt dimensioneringsgrundlag for naturlig ventilation i husdyrstalde. Det er kontrolleret ved forsøg i slagtesvinestalde, hvor det ligeledes er undersøgt hvilken temperaturstabilitet, der kan opnås ved naturlig ventilation, samt produktions- og adfærdsmæssige...

  3. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Lstiburek, J. [Building Science Corporation (BSC), Somerville, MA (United States); Bergey, D. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  4. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  5. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  6. Realtime mine ventilation simulation

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1997-01-01

    This paper describes the development of a Windows based, interactive mine ventilation simulation software program at the Waste Isolation Pilot Plant (WIPP). To enhance the operation of the underground ventilation system, Westinghouse Electric Corporation developed the program called WIPPVENT. While WIPPVENT includes most of the functions of the commercially available simulation program VNETPC and uses the same subroutine to calculate airflow distributions, the user interface has been completely rewritten as a Windows application with screen graphics. WIPPVENT is designed to interact with WIPP ventilation monitoring systems through the sitewise Central monitoring System. Data can be continuously collected from the Underground Ventilation Remote Monitoring and Control System (e.g., air quantity and differential pressure) and the Mine Weather Stations (psychrometric data). Furthermore, WIPPVENT incorporates regulator characteristic curves specific to the site. The program utilizes this data to create and continuously update a REAL-TIME ventilation model. This paper discusses the design, key features, and interactive capabilities of WIPPVENT

  7. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine.

    Science.gov (United States)

    Batchinsky, Andriy I; Burkett, Samuel E; Zanders, Thomas B; Chung, Kevin K; Regn, Dara D; Jordan, Bryan S; Necsoiu, Corina; Nguyen, Ruth; Hanson, Margaret A; Morris, Michael J; Cancio, Leopoldo C

    2011-10-01

    The role of airway pressure release ventilation in the management of early smoke inhalation injury has not been studied. We compared the effects of airway pressure release ventilation and conventional mechanical ventilation on oxygenation in a porcine model of acute respiratory distress syndrome induced by wood smoke inhalation. Prospective animal study. Government laboratory animal intensive care unit. Thirty-three Yorkshire pigs. Smoke inhalation injury. Anesthetized female Yorkshire pigs (n = 33) inhaled room-temperature pine-bark smoke. Before injury, the pigs were randomized to receive conventional mechanical ventilation (n = 15) or airway pressure release ventilation (n = 12) for 48 hrs after smoke inhalation. As acute respiratory distress syndrome developed (PaO2/Fio2 ratio conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2/Fio2 ratio, tidal volume, respiratory rate, mean airway pressure, plateau pressure, and hemodynamic variables were recorded. Survival was assessed using Kaplan-Meier analysis. PaO2/Fio2 ratio was lower in airway pressure release ventilation vs. conventional mechanical ventilation pigs at 12, 18, and 24 hrs (p conventional mechanical ventilation animals between 30 and 48 hrs post injury (p animals between 6 and 48 hrs (p conventional mechanical ventilation and airway pressure release ventilation pigs. In this model of acute respiratory distress syndrome caused by severe smoke inhalation in swine, airway pressure release ventilation-treated animals developed acute respiratory distress syndrome faster than conventional mechanical ventilation-treated animals, showing a lower PaO2/Fio2 ratio at 12, 18, and 24 hrs after injury. At other time points, PaO2/Fio2 ratio was not different between conventional mechanical ventilation and airway pressure release ventilation.

  8. Ventilation in homes infested by house-dust mites.

    Science.gov (United States)

    Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L

    1995-02-01

    Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.

  9. Studies on transpiration rates and tritium concentration in transpired water in some plant species at Kaiga site

    International Nuclear Information System (INIS)

    Selvi, S.B.; Ravi, P.M.; Hegde, A.G.

    2005-01-01

    Transpiration is the driving force for uptake of water and hence that of tritiated water from environment. Transpiration rates and tritium concentration in transpired water in some plants at Kaiga site were estimated. Good correlation was observed between transpiration rates with humidity, temperature and leaf surface area. Transpiration rates varied seasonally and diurnally due to the influence of interdependent parameters such as temperature, humidity, water availability, etc. The ratio between the tritium concentrations in transpired plant water to that in air moisture ranged from 0.1 to 0.2. (author)

  10. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    Directory of Open Access Journals (Sweden)

    Davies Mark W

    2006-02-01

    Full Text Available Abstract Background The loss of perfluorocarbon (PFC vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates. Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77 and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47% to 27.3 mL (91% of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p -1 (ANOVA with Bonferroni's multiple comparison test, p -1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation.

  11. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    Science.gov (United States)

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  12. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  13. Factors Predicting Ventilator Dependence in Patients with Ventilator-Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Tseng

    2012-01-01

    Full Text Available Objectives. To determine risk factors associated with ventilator dependence in patients with ventilator-associated pneumonia (VAP. Study Design. A retrospective study was conducted at Chang Gung Memorial Hospital, Kaohsiung, from January 1, 2007 to January 31, 2008. Methods. This study evaluated 163 adult patients (aged ≥18 years. Eligibility was evaluated according to the criterion for VAP, Sequential Organ Failure Assessment (SOFA score, Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II score. Oxygenation index, underlying comorbidities, septic shock status, previous tracheostomy status, and factors related to pneumonia were collected for analysis. Results. Of the 163 VAP patients in the study, 90 patients survived, yielding a mortality rate of 44.8%. Among the 90 surviving patients, only 36 (40% had been weaned off ventilators at the time of discharge. Multivariate logistic regression analysis was used to identify underlying factors such as congestive cardiac failure (P=0.009, initial high oxygenation index value (P=0.04, increased SOFA scores (P=0.01, and increased APACHE II scores (P=0.02 as independent predictors of ventilator dependence. Results from the Kaplan-Meier method indicate that initial therapy with antibiotics could increase the ventilator weaning rate (log Rank test, P<0.001. Conclusions. Preexisting cardiopulmonary function, high APACHE II and SOFA scores, and high oxygenation index were the strongest predictors of ventilator dependence. Initial empiric antibiotic treatment can improve ventilator weaning rates at the time of discharge.

  14. Determination of deuterium concentrations in JET plasmas from fusion reaction rate measurements

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Balet, B.; Cordey, J.G.; Morgan, P.D.; Sadler, G.; Belle, P. van; Conroy, S.; Elevant, T.

    1989-01-01

    The concentration of deuterium in the central regions of JET plasmas, expressed as a fraction of the electron concentration (n d /n e ), has been determined using four different methods involving neutron detection. These measurements are found to be consistent and agree within experimental errors with values deduced from Z eff measurements using visible bremsstrahlung radiation. (author) 11 refs., 1 fig., 1 tab

  15. Improved sulphate removal rates at increased sulphide concentration in the sulphidogenic bioreactor

    CSIR Research Space (South Africa)

    Greben, HA

    2005-07-01

    Full Text Available The product of the biological sulphate reduction is sulphide. High concentrations of molecular H2S(g) can be inhibitory for microbial activity, especially at a reactor pH of 6 to 7. This paper focuses on the effect of high sulphide concentrations...

  16. Uranium, Thorium and Potassium concentrations and volumetric heat production rates at the eastern border of the Parana basin

    International Nuclear Information System (INIS)

    Andrade, Telma C.Q.; Ribeiro, Fernando B.

    1997-01-01

    Uranium, thorium and potassium concentrations were measured and volumetric heat production rates were calculated for rocks from the exposed basement at the eastern-southeastern border of the Parana Basin between 23 deg S and 32 deg S. Heat generating element concentration data available in the literature were also used when possible, for volumetric heat production calculations. The uranium concentrations vary from below determination limit (0.51 ppm) and 16 ppm whereas the thorium concentrations vary from below the determination limit (1.26 ppm) and 68 ppm, and K concentrations vary between 0.08% and 5.6%. Volumetric heat production rates vary between 0.07 μW/m 3 to 6.2 μW/m 3 , and the obtained results show a variable heat generation rate with high heat producing bodies scattered along this Parana Basin border. The higher observed values concentrate in the Ribeira fold belt at about 23 deg S and between 30 deg S and 32 deg S in the Down Feliciano fold belt. Isolated high heat production rates can also be observed between 26 deg S and 28 deg S. (author). 11 refs., 3 tabs

  17. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent...... temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1......% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation....

  18. Preliminary Assessment of Growth Rates on Different Concentration of Microalgae Scenedesmus sp. in Industrial Meat Food Processing Wastewater

    Directory of Open Access Journals (Sweden)

    Latiffi Nur Atikah Ahmad

    2017-01-01

    Full Text Available This study is aimed to evaluate and access the growth rates and biomass productivity in different concentrations of microalgae Scenedesmus sp. using Industrial Meat Food Processing Wastewater as a media. The focus of this study is to determine the best concentrations of microalgae Scenedesmus sp. in raw wastewater in terms of kinetics of cells growth rates. The study verified that concentration of 1×106 cells/ml of microalgae gives the highest specific growth rates of biomass at 0.4488 day-1 and 1720 cells/ml/day compare to the other concentrations, while the lowest occurred at concentration of 1×103 cells/ml at 0.4108 day-1 and 14.9 cells/ml/day. The result shows the different concentration of microalgae Scenedesmus sp. culturing in Industrial Food Processing Wastewater influence the cells growth of biomass and the optimum were obtained at concentration of 1×106 cells/ml which suggested use for Industrial Meat Food Processing Wastewater Treatment purposed. With this finding, it should be seemly to adopt and applied efficiently in treating the wastewater especially for Scenedesmus sp. type of microalgae.

  19. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  20. The Effects of Ventilation in Homes on Health

    DEFF Research Database (Denmark)

    Wargocki, Pawel

    2013-01-01

    and many of them suffer from deficient experimental design, as well as a lack of proper characterization of actual exposures occurring indoors. Based on the available data, in the reviewed studies, it seems likely that health risks may occur when ventilation rates are below 0.4 air changes per hour...... with existing ventilation systems this positive effect was less evident, probably due to poor performance of the system (too low ventilation rates and/or poor maintenance). Studies are recommended in which exposures are much better characterized (by for example measuring the pollutants indicated by the WHO...... Guidelines for Indoor Air Quality and improving ventilation measurements). Exposures should also be controlled using different ventilation methods for comparison. Future studies should also advance the understanding of how ventilation systems should be operated to achieve optimal performance. These data...

  1. Academic Emergency Medicine Physicians’ Knowledge of Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Susan R. Wilcox

    2016-05-01

    Full Text Available Introduction: Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM education or clinical practice. The objective of this study was to quantify EM attendings’ education, experience, and knowledge regarding mechanical ventilation in the emergency department. Methods: We developed a survey of academic EM attendings’ educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings’ scores on the assessment instrument and their training, education, and comfort with ventilation. Results: Of 394 EM attendings surveyed, 211 responded (53.6%. Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46% reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one’s own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians’ comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. Conclusion: EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians’ performance on an assessment tool for mechanical ventilation is

  2. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near......Emission of volatile organic compounds (VOCs) from materials is traditionally determined from tests carried out in small-scale test chambers. However, a difference in scale may lead to a difference in the measured emission rate in a small-scale test chamber and the actual emission rate in a full...

  3. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  4. Effects of natural and forced basement ventilation on radon levels in single-family dwellings. Final report, May 90-Aug 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-06-01

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton University research houses over several seasons and under different building operating conditions show the functional dependence of radon entry rate on basement depressurization. The work clarifies the role of natural ventilation in reducing indoor radon concentrations. The work shows conclusively that natural ventilation can decrease radon levels two ways: (1) by simple dilution, and (2) by providing a pressure break (defined as any opening in the building shell that reduces the outdoor/indoor differential pressure). This reduces building depressurization and thus the amount of radon-contaminated soil gas that is drawn into the building

  5. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study.

    Science.gov (United States)

    Eom, Joong Sik; Lee, Mi-Suk; Chun, Hee-Kyung; Choi, Hee Jung; Jung, Sun-Young; Kim, Yeon-Sook; Yoon, Seon Jin; Kwak, Yee Gyung; Oh, Gang-Bok; Jeon, Min-Hyok; Park, Sun-Young; Koo, Hyun-Sook; Ju, Young-Su; Lee, Jin Seo

    2014-01-01

    For prevention of ventilator-associated pneumonia (VAP), a bundle approach was applied to patients receiving mechanical ventilation in intensive care units. The incidence of VAP and the preventive efficacy of the VAP bundle were investigated. A quasi-experimental study was conducted in adult intensive care units of 6 university hospitals with similar VAP rates. We implemented the VAP bundle between March 2011 and June 2011, then compared the rate of VAP after implementation of the VAP bundle with the rate in the previous 8 months. Our ventilator bundle included head of bed elevation, peptic ulcer disease prophylaxis, deep venous thrombosis prophylaxis, and oral decontamination with chlorhexidine 0.12%. Continuous aspiration of subglottic secretions was an option. Implementation of the VAP bundle reduced the VAP rate from a mean of 4.08 cases per 1,000 ventilator-days to 1.16 cases per 1,000 ventilator-days. The incidence density ratio (rate) was 0.28 (95% confidence interval, 0.275-0.292). Implementing the appropriate VAP bundle significantly decreased the incidence of VAP in patients with mechanical ventilation. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Numerical simulation research on gas migration with Y type ventilation

    Science.gov (United States)

    Gou, Yanan; Han, Xuezheng

    2018-01-01

    The ventilation way of the working face has a great influence to goaf flow field and gas migration, the existing U-shaped ventilation face wind serious overrun, Y type ventilation mode is put forward, and the mathematic control equation of the gas moving rule is established. Put the Gaozhuang coal mine west five mining area as the model, set up calculation model. And the gas concentration is simulated, the simulation results show that the Y type ventilation ways can intercept goaf gas into the corner on the working plane and return air lane, effectively avoid the work of top corner gas accumulation.

  7. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  8. A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2009-03-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results.

  9. Natural-basement ventilation as a radon-mitigation technique. Final report Jun 89-Feb 91

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-04-01

    The report documents a study of natural basement ventilation in two research houses during both the summer cooling season and the winter heating season. (NOTE: Natural basement ventilation has always been recommended as a way to reduce radon levels in houses. However, its efficacy has never been documented. It has generally been assumed to be a very inefficient mitigation strategy since it was believed that dilution was the mechanism by which radon levels were reduced.) Ventilation rates, environmental and house operating parameters, and radon levels have been monitored; it can be concluded that natural ventilation can reduce radon levels two ways: (1) by simple dilution, and (2) although less obvious, by providing a pressure break that reduces basement depressurization and thus the amount of radon-contaminated soil gas drawn into the house. Thus, basement ventilation can be a much more effective mitigation strategy than was previously believed. It might be especially useful in houses with low radon concentrations (of the order of 10 pCi/L) or those with low levels that cannot be mitigated cost-effectively with conventional technology

  10. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  11. Computational modeling of particle transport and distribution emitted from a Laserjet printer in a ventilated room with different ventilation configurations

    International Nuclear Information System (INIS)

    Ansaripour, Mehrzad; Abdolzadeh, Morteza; Sargazizadeh, Saleh

    2016-01-01

    Highlights: • The distribution of emitted particles form a laserjet printer was studied in the breathing zone. • Effects of different ventilation configurations on the breathing zone concentration were investigated. • Mixing ventilation system has a low mean particle concentration in the breathing zone. - Abstract: In the present research, computational modeling of particle transport and distribution emitted from a Laserjet printer was carried out in a ventilated room. A seated manikin was integrated into the study room and the manikin was evaluated in two cases: heated and unheated. Effects of different ventilation configurations of the room on the particle distribution were studied, including three displacement ventilation systems and a mixing ventilation system. The printer was located on different sides of the manikin and the particle concentrations in the breathing zone of the manikin due to the printer’s particles were evaluated in all the ventilation configurations. The averaged particle concentration in the breathing zone of the manikin was calculated and validated with the experimental and numerical data available in the literature. The results of the present study showed that in case of the heated manikin, the particle concentration due to the printer pollutants is significant in the breathing zone of the manikin. The results also showed that when the printer is located on the front side of the manikin, the particle concentration in the breathing zone is quite high in most of the used ventilation configurations. Furthermore, it was found that the mixing ventilation system has a lower mean particle concentration in the breathing zone compared to the most displacement ventilation systems.

  12. Current concepts of protective ventilation during general anaesthesia

    NARCIS (Netherlands)

    Serpa Neto, Ary; Schultz, Marcus J.; Slutsky, Arthur S.

    2015-01-01

    Mechanical ventilation with high tidal volumes (VT) has been common practice in operating theatres because this strategy recruits collapsed lung tissue and improves ventilation-perfusion mismatch, thus decreasing the need for high inspired oxygen concentrations. Positive end-expiratory pressure

  13. ESCLOUD: A computer program to calculate the air concentration, deposition rate and external dose rate from a continuous discharge of radioactive material to atmosphere

    International Nuclear Information System (INIS)

    Jones, J.A.

    1980-03-01

    Radioactive material may be discharged to atmosphere in small quantities during the normal operation of a nuclear installation as part of a considered waste management practice. Estimates of the individual and collective dose equivalent rates resulting from such a discharge are required in a number of contexts: for example, in assessing compliance with dose limits, in estimating the radiological impact of the discharge and as an input into optimisation studies. The suite of programs which has been developed to undertake such calculations is made up of a number of independent modules one of which, ESCLOUD, is described in this report. The ESCLOUD program evaluates, as a function of distance and direction from the release point, the air concentration, deposition rate and external β and γ doses from airborne and deposited activity. The air concentration and deposition rate can be used as input to other modules for calculating inhalation and ingestion doses. (author)

  14. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  15. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  16. Rate and selectivity modification in Fischer-Tropsch synthesis over charcoal supported molybdenum by forced concentration cycling

    International Nuclear Information System (INIS)

    Dun, J.W.; Gulari, E.

    1985-01-01

    Forced concentration cycling of the feed between pure CO and pure H/sub 2/ was used to successfully change both the selectivities and reactivities of promoted and unpromoted charcoal supported molybdenum catalysts in Fischer-Tropsch synthesis. It was found that with the unpromoted catalyst the rate enhancement increases with temperature and selectivity shifts towards methane. At the lower temperatures concentration cycling increases selectivity to ethane and higher hydrocarbons to levels only achievable with promised catalysts. Periodic operation with the potassium promoted catalyst results in small rate enhancements but the olefin to paraffin ratio is dramatically changed without changing the carbon number distribution

  17. Identification of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents, Using a PSO and GAs

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2010-08-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm and a genetic algorithm (GA which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results. Furthermore, the PSO and the GA are used to identify the natural ventilation parameters in a greenhouse. In all cases, identification goal is successfully achieved using the PSO and compared with that obtained using the GA. For the problem at hand, it is found that the PSO outperforms the GA.

  18. Assessment of the effectiveness of ventilation types for reducing the occupational exposure to bioaerosols in health care staffs

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Jafari

    2015-11-01

    Full Text Available Background & Objectives : Hospital indoor air contains a wide range of airborne pathogenic bioaerosols which have a significant impact on health care staff’ health and welfare. The aim of this study was to assess the effects of ventilation system types on occupational exposure of the health care staffs to airborne bioaerosols in the isolation room based on the patient bed arrangements and the standing locations of the health care staff. Methods: Personal exposures were measured based on five given types of ventilation system, 2 patient bed arrangements (at a corner and in the middle of the room, and two different standing locations for the health care staff (standing close to the patient’s bed, and down a side section of the bed. For personal sampling, filtration method recommended by th e American conference of governmental industrial hygienists(ACGIH was used. Result: The highest exposure to airborne bioaerosols was observed when the ventilation system was switched off. There were significant decreases in the bioaerosols concentration after using all types of ventilation system (P value 0.05. Conclusions : The most effective ventilation system for decreasing health care staff’ exposures in the isolation room was associated with supplying of air from a circular grill located on the northern wall and exhausting it through a linear slot located on the southern wall (type 1 with the ventilation rate of 12 air changes per hour.

  19. Students' Ideas about Reaction Rate and Its Relationship with Concentration or Pressure

    Science.gov (United States)

    Cakmakci, Gultekin; Leach, John; Donnelly, James

    2006-01-01

    This cross-sectional study identifies key conceptual difficulties experienced by upper secondary school and pre-service chemistry teachers (N = 191) in the area of reaction rates. Students' ideas about reaction rates were elicited through a series of written tasks and individual interviews. In this paper, students' ideas related to reaction rate…

  20. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room

    Energy Technology Data Exchange (ETDEWEB)

    He, Qibin; Gao, Naiping; Zhu, Tong; Wu, Jiazheng [Institute of Refrigeration and Thermal Engineering, School of Mechanical Engineering, Tongji University, Siping Road 1239, Shanghai (China); Niu, Jianlei [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (China)

    2011-02-15

    This paper investigated the transmission of respiratory droplets between two seated occupants equipped with one type of personalized ventilation (PV) device using round movable panel (RMP) in an office room. The office was ventilated by three different total volume (TV) ventilation strategies, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD) system respectively as background ventilation methods. Concentrations of particles with aerodynamic diameters of 0.8 {mu}m, 5 {mu}m, and 16 {mu}m as well as tracer gas were numerically studied in the Eulerian frame. Two indexes, i.e. intake fraction (IF) and concentration uniformity index R{sub C} were introduced to evaluate the performance of ventilation systems. It was found that without PV, DV performed best concern protecting the exposed manikin from the pollutants exhaled by the polluting manikin. In MV when the exposed manikin opened RMP the inhaled air quality could always be improved. In DV and UFAD application of RMP might sometimes, depending on the personalized airflow rate, increase the exposure of the others to the exhaled droplets of tracer gas, 0.8 {mu}m particles, and 5 {mu}m particles from the infected occupants. Application of PV could reduce R{sub C} for all the three TV systems of 0.8 {mu}m and 5 {mu}m particles. PV enhanced mixing degree of particles under DV and UFAD based conditions much stronger than under MV based ones. PV could increase the average concentration in the occupied zone of the exposed manikin as well as provide clean personalized airflow. Whether inhaled air quality could be improved depended on the balance of pros and cons of PV. (author)

  1. What Is a Ventilator?

    Science.gov (United States)

    ... who are on ventilators for shorter periods. The advantage of this tube is that it can be ... other disease or condition. VAP is treated with antibiotics. You may need special antibiotics if the VAP ...

  2. Survival after Pneumocystis jirovecii pneumonia requiring ventilation ...

    African Journals Online (AJOL)

    Pneumocystis pneumonia (PCP) in patients with the human immunodeficiency virus (HIV) is associated with a high mortality rate, which increases substantially with the need for mechanical ventilation. Local experience of patients with PCP admitted to the intensive care unit has revealed mortality rates close to 100%.

  3. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  4. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  5. [Effect of high magnesium ion concentration on the electron transport rate and proton exchange in thylakoid membranes in higher plants].

    Science.gov (United States)

    Ignat'ev, A R; Khorobrykh, S A; Ivanov, B N

    2001-01-01

    The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.

  6. Vascular Endothelial Growth Factor Concentration in Chronic Subdural Hematoma Fluid Is Related to Computed Tomography Appearance and Exudation Rate

    Science.gov (United States)

    Weigel, Ralf; Hohenstein, Axel

    2014-01-01

    Abstract Chronic subdural hematoma (CSH) is characterized by a net increase of volume over time. Major underlying mechanisms appear to be hemorrhagic episodes and a continuous exudation, which may be studied using labeled proteins to yield an exudation rate in a given patient. We tested the hypothesis that the concentration of vascular endothelial growth factor (VEGF) in hematoma fluid correlates with the rate of exudation. Concentration of VEGF was determined in 51 consecutive patients with CSH by the sandwich immune enzyme-linked immunosorbent assay technique. Mean values were correlated with exudation rates taken from the literature according to the appearance of CSH on computed tomography (CT) images. The CT appearance of each CSH was classified as hypodense, isodense, hyperdense, or mixed density. Mean VEGF concentration was highest in mixed-density hematomas (22,403±4173 pg/mL; mean±standard error of the mean; n=27), followed by isodense (9715±1287 pg/mL; n=9) and hypodense (5955±610 pg/mL; n=18) hematomas. Only 1 patient with hyperdense hematoma fulfilled the inclusion criteria, and the concentration of VEGF found in this patient was 24,200 pg/mL. There was a statistically significant correlation between VEGF concentrations and exudation rates in the four classes of CT appearance (r=0.98). The current report is the first to suggest a pathophysiological link between the VEGF concentration and the exudation rate underlying the steady increase of hematoma volume and CT appearance.With this finding, the current report adds another piece of evidence in favor of the pathophysiological role of VEGF in the development of CSH, including mechanisms contributing to hematoma growth and CT appearance. PMID:24245657

  7. Minimum ventilation systems and their effects on the initial stage of turkey production

    Directory of Open Access Journals (Sweden)

    AS Mendes

    2013-03-01

    Full Text Available This study aimed at evaluating the live performance of turkeys during the initial stage of production (1-26 days of age and to map the environmental variables inside turkey houses, such as temperature, relative humidity, CO2 concentration, at two distinct minimum ventilation systems. House 1 (H1 was equipped with a negative-pressure ventilation system and House 2 (H2 was equipped with a positive-pressure ventilation system. This study was performed in commercial poultry houses, located in Francisco Beltrão, Paraná, Brazil, in June, 2008. A number of 14,000 turkeys toms at the same age, provided by the same local hatchery and were housed at a stocking density of 23 birds m-2. Three 13 m² boxes with 300 turkeys each were placed inside the poultry houses. All treatments were assigned for the birds inside each of the three boxes. The poultry barns were virtually divided in eight equally distributed in areas where the environmental variables were recorded. The performance parameters measured were weight gain, feed conversion and mortality rate, recorded weekly. Analysis of variance and F-tests were performed to compare results within different environmental conditions, using MINITAB 14 statistical software. The ventilation systems did not significantly influence CO2 concentrations (p = 0.489, whereas temperature (p = 0.016 and relative humidity (p = 0.0001 and feed conversion (p = 0.001 were significantly affected by ventilation system. Temperature and relative humidity in H2 (positive pressure ventilation system was found to be less aversive than those in H1 (negative pressure system. Also, bids in H2 presented lower feed conversions than those in H1.

  8. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions.

    Science.gov (United States)

    Rackes, A; Ben-David, T; Waring, M S

    2018-04-23

    This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Hu, T.A.

    2007-01-01

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  10. Influence of duration and rate of pulse rise of the applied voltage on ozone concentration in the barrier glow discharge

    International Nuclear Information System (INIS)

    Krasnyj, V.V.; Klosovski, A.V.; Knysh, A.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The barrier glow discharge between two planar electrodes, covered with dielectric, is studied under high-voltage pulsed power supply. Wide applications of such type of discharges, in particular, for ozone production, stimulated a number of investigations in this direction. In this work we investigated the dependence of ozone concentration on the duration and the rate of pulse rise of the applied voltage. The thyristor converter circuit with the shortening of input pulses on the base of the saturable throttle was used for the realization of this task. The output pulses with amplitude up to 15 kV, repetition frequency of 1 kHz, pulse duration of 0.3 μs (or 7 μs) and the rate of pulse rise of 0.1 μs were generated with this scheme. Measurements of the ozone concentration produced in the air mixture have shown that its value increased by factor two with variation of the rate of pulse rise from 0.5 μs to 0.1 μs (for pulse duration of 7 μs). The dependence of the ozone concentration on the variation of air mixture pressure in the discharge gap of reactor was investigated also. It was shown proportional increase of the output concentration of ozone with increasing the pressure value. Spectroscopic measurements carried out in the ultraviolet spectrum made it possible to analyze changing the concentration of ozone and nitric components. (author)

  11. Effects of locust bean gum and mono- and diglyceride concentrations on particle size and melting rates of ice cream.

    Science.gov (United States)

    Cropper, S L; Kocaoglu-Vurma, N A; Tharp, B W; Harper, W J

    2013-06-01

    The objective of this study was to determine how varying concentrations of the stabilizer, locust bean gum (LBG), and different levels of the emulsifier, mono- and diglycerides (MDGs), influenced fat aggregation and melting characteristics of ice cream. Ice creams were made containing MDGs and LBG singly and in combination at concentrations ranging between 0.0% to 0.14% and 0.0% to 0.23%, respectively. Particle size analysis, conducted on both the mixes and ice cream, and melting rate testing on the ice cream were used to determine fat aggregation. No significant differences (P ice cream mixes. However, higher concentrations of both LBG and MDG in the ice creams resulted in values that were larger than the control. This study also found an increase in the particle size values when MDG levels were held constant and LBG amounts were increased in the ice cream. Ice creams with higher concentrations of MDG and LBG together had the greatest difference in the rate of melting than the control. The melting rate decreased with increasing LBG concentrations at constant MDG levels. These results illustrated that fat aggregation may not only be affected by emulsifiers, but that stabilizers may play a role in contributing to the destabilization of fat globules. © 2013 Institute of Food Technologists®

  12. Cryopreserving turkey semen in straws and nitrogen vapour using DMSO or DMA: effects of cryoprotectant concentration, freezing rate and thawing rate on post-thaw semen quality.

    Science.gov (United States)

    Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S

    2016-04-01

    1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.

  13. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    Science.gov (United States)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  14. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  15. Analysis of radon reduction by ventilation in uranium mines in China

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie

    2011-01-01

    Mine ventilation is the most important way to reduce radon in uranium mines. At present, the concentrations of radon and its daughters in underground air is 3-5 times higher than those in other countries, at the same protection conditions. In this paper, through the analysis of radon reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction measures, the reasons for higher radon and radon daughter concentration in Chinese uranium mines are discussed and some problems are put forward in three aspects: radon reduction ventilation theory, measures and management. Based on above problems, this paper puts forward some proposals and measures, such as strengthening examination and verification and monitoring practical situation, making clear ventilation plan, training ventilation technician, enhancing ventilation system management, developing radon reduction ventilation research and putting ventilation equipment in place as soon as possible in future. (authors)

  16. Mobile communication devices causing interference in invasive and noninvasive ventilators.

    Science.gov (United States)

    Dang, Bao P; Nel, Pierre R; Gjevre, John A

    2007-06-01

    The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of

  17. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  18. Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate

    CSIR Research Space (South Africa)

    Scogings, PF

    2014-01-01

    Full Text Available Carbon-based secondary metabolites (CBSMs) such as tannins are assumed to function as plant defences against herbivores. CBSMs are thought to be inversely related to growth rate and nutrient concentrations because a physiological trade-off exists...

  19. EVALUATION TOOL OF CLIMATE POTENTIAL FOR VENTILATIVE COOLING

    DEFF Research Database (Denmark)

    Belleri, Annamaria; Psomas, Theofanis Ch.; Heiselberg, Per Kvols

    2015-01-01

    . Within IEA Annex 62 project, national experts are working on the development of a climate evaluation tool, which aims at assessing the potential of ventilative cooling by taking into account also building envelope thermal properties, internal gains and ventilation needs. The analysis is based on a single......-zone thermal model applied to user-input climatic data on hourly basis. The tool identifies the percentage of hours when natural ventilation can be exploited to assure minimum air change rates required by state of the art research, standards and regulations and the percentage of hours when direct ventilative...

  20. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  1. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  2. Accumulation of 99Tc in duckweed Lemna minor L. as a function of growth rate and 99Tc concentration

    International Nuclear Information System (INIS)

    Hattink, J.; Wolterbeek, H.Th.

    2001-01-01

    This study focuses on the question of whether short-term studies can be used to forecast the accumulation of the long-lived fission product 99 Tc in duckweed, Lemna minor L., grown in the field; in other words, are the accumulation parameters independent of changing growth rates typical of natural populations of duckweed. Two processes determine the 99 Tc accumulation: (i) uptake and release of 99 TcO 4 - , characterised by a concentration factor, K d , and (ii) first-order reduction and complexation of Tc VII , characterised by k red . At various 99 Tc concentrations, the growth, total Tc and TcO 4 - accumulation were monitored over 10 days; parameters were fitted and compared with earlier results. Both K d and k red turn out to be independent of time, concentration and growth rate up to a concentration of 10 -6 mol l -1 99 TcO 4 - . Concentrations above this level result in toxic effects. The Tc accumulation in field populations of duckweed at Tc concentrations which generally occur in the environment can be forecasted by using the results from short-term experiments

  3. Exposure of health care workers and occupants to coughed air in a hospital room with displacement air distribution: impact of ventilation rate and distance from coughing patient

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Kostadinov, Kamen

    above background concentration (ppm), for the three measured distances was at 6 h-1. PCL decreased with distance. The exposure of the second patient was low when the doctor was at 0.55 or 1.1 m downstream the cough (blocking effect), but was quite high when at 2.8 m. 6 h-1, recommended in present...

  4. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    Science.gov (United States)

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  5. Investigation of anti-Müllerian hormone concentrations in relation to natural conception rate and time to pregnancy.

    Science.gov (United States)

    Korsholm, Anne-Sofie; Petersen, Kathrine Birch; Bentzen, Janne Gasseholm; Hilsted, Linda Maria; Andersen, Anders Nyboe; Hvidman, Helene Westring

    2018-05-01

    The objectives of this study were to investigate whether anti-Müllerian hormone (AMH) concentrations can predict pregnancy rates and time to pregnancy (TTP) in women attempting to conceive naturally/having an unplanned conception, and whether there is a lower AMH threshold compatible with natural conception. This prospective cohort study included 260 women aged 25-42 years in two subcohorts: (A) healthcare workers at Rigshospitalet (2008-2010), and (B) women consulting the Fertility Assessment and Counselling Clinic (2011-2014), Rigshospitalet, Denmark. Pregnancy rates and TTP at 2-year follow-up were stratified into AMH groups: low: 33 pmol/l. Pregnancy rates increased with increasing AMH: 60.1% (low) versus 70.0% (intermediate) versus 78.3% (high) (P = 0.03). The highest pregnancy rate (84.1%) was seen in regular cycling women with high AMH. TTP was reduced in women with high AMH compared with intermediate or low AMH (stepwise trend test P = 0.01). Natural conceptions were observed with AMH concentrations down to 1.2 pmol/l. In conclusion, high AMH, especially in ovulatory women, was associated with higher pregnancy rates. Nonetheless, TTP reflected a large variation in fecundity within similar AMH concentrations and natural conceptions occurred with AMH down to 1.2 pmol/l. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Concentration and entry rate of amino acids in buffalo calves fed on two planes of crude protein

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.; Varma, A.; Ranjhan, S.K.

    1974-01-01

    Amino acid entry rates into the body pool have been estimated in buffalo calves using a single injection isotope dilution technique. The animals received 2 levels of crude protein, 13 percent lower and 19 percent higher than NRC recommendation. The concentrations of free amino acid in plasma were 5.49 and 7.17 mg/100 ml in animals fed on low and high crude protein diet, respectively. There was significant differences in the plasma amino acid concentration and entry rates between the groups. Amino acid entry rates were 79.17 and 117.78 mg per min in groups fed on low and high plane of crude protein respectively, showing that availability of amino acid is better in animals given ratio high in crude protein contents. (author)

  7. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  8. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Walker, Iain; Sherman, Max

    2011-01-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as "dose") as the metric to evaluate the effectiveness and air quality...... implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant...... when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we...

  9. Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense juice

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Santos

    Full Text Available Summary The aim of this study was to evaluate the rheological behavior of malay apple, a traditional Amazonian fruit with high bioactive properties, at different temperatures and soluble solids concentrations. The experiments were carried out in a Brookfield R/S Plus rheometer with concentric cylinders geometry. Power Law, Herschel-Bulkley, Mizrahi-Berk, and Sisko rheological models were fitted to the experimental data. The malay apple juice (pulp and skin showed a pseudoplastic behavior for all temperatures and concentrations with flow behavior indexes lower than 1. The temperature effect on the samples’ apparent viscosity was analyzed by the Arrhenius equation. The activation energy increased with a decrease in the soluble solids concentration, showing that the lower the concentration, the greater the temperature influence on the apparent viscosity. The soluble solids effect was described by the exponential equation. The exponential factor increased with the temperature increasing, showing that the higher the temperature, the greater the effect of the soluble solids concentration on samples’ apparent viscosity. Finally, a triparametric mathematical model combining temperature, concentration, and shear rate was proposed aiming to evaluate its effects on the samples’ apparent viscosity and has accurately adjusted to the data with high correlation index R2.

  10. Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone

    Digital Repository Service at National Institute of Oceanography (India)

    Devol, A; Uhlenhopp, A; Naqvi, S.W.A; Brandes, J.A; Jayakumar, D.A; Naik, H.; Gaurin, S.; Codispoti, L.A.; Yoshinari, T.

    Rates of canonical, i.e. heterotrophic, water-column denitrification were measured by sup(15)N incubation techniques at a number of coastal and open ocean stations in the Arabian Sea. Measurements of N2 :Ar gas ratios were also made to obtain...

  11. Fine and Coarse Particle Mass Concentrations and Emission Rates in the Workplace of a Detergent Industry

    Czech Academy of Sciences Publication Activity Database

    Glytsos, T.; Ondráček, Jakub; Džumbová, Lucie; Eleftheriadis, K.; Lazaridis, M.

    2014-01-01

    Roč. 23, č. 6 (2014), s. 881-889 ISSN 1420-326X Institutional support: RVO:67985858 Keywords : emission rates * PM 10 * PM2,5 * mass balance model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.225, year: 2014

  12. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the

  13. The effect of salinity on growth rate and osmolyte concentration of ...

    African Journals Online (AJOL)

    Although at a slower rate, growth is maintained in seawater cultures supplemented with nutrients. Differences were found in carbohydrate content between cultures in different growth media. The highest carbohydrate content was observed in cultures growing in Zarrouk medium supplemented with 4 NaCl and in seawater ...

  14. Clinical challenges in mechanical ventilation.

    Science.gov (United States)

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  16. Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems

    Science.gov (United States)

    2017-02-22

    Endotracheal tubes, high-volume, low-pressure, tracheal wall injury 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...ventilators to the LOX devices. Ventilator settings were as follows : respiratory rate 35 breaths/min, inspiratory time 0.8 seconds, tidal volume 450 mL

  17. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  18. Tempts to determine radon entry rate and air exchange rate variable in time from the time course of indoor radon concentration

    International Nuclear Information System (INIS)

    Thomas, J.

    1996-01-01

    For the study and explanation of the diurnal variability of the indoor radon concentration a(t) [Bq/m 3 ], which is proportional to the ratio of the radon entry rate A [Bq/h] and the air exchange rate k [1/h], it would be of advantage to know separately the diurnal variability of both determining quantities A(t) and k(t). To measure directly and continuously the radon entry rate A(t) is possible only in special studies (mostly in experimental rooms) and also continuous measuring of the air exchange rate k(t) is possible also only in special studies for a short time. But continuously measuring radon meters are now common, do not trouble people in normal living regime during day and night. The goal of this endeavour would be the evaluation of the time courses of both determining quantities from the time courses of the indoor radon concentration directly without additional experimental work and so a better utilisation of such measurements. (author)

  19. Effect of a different concentrate-forage sequence on digesta passage rate, faeces traits and milk features of dairy cows

    Directory of Open Access Journals (Sweden)

    L. Sarti

    2010-04-01

    Full Text Available To ascertain the effects of a different feed sequence, which could modify digestion rate and sites as well as metabolic - endocrine status and milk features, 6 lactating dairy cows have received the same diet with a different time of concentrate administration when close to the two daily forage meals: 30’ before or 60’ after them. Cows were tied in a barn with controlled temperature, humidity and light, individually fed and monitored for: daily dry matter intake, milk yield and its features at 2 milkings, concentrate passage rate and faecal traits. The results have showed that DMI, feeding behaviour, milk yield and milk features were not significantly affected (except fat content, increased when forage was supplied as first feed. The digesta passage rate was also different: concentrate escaped more rapidly from the rumen when fed before forage or 4 hours after them. This effect has not modified the faeces, but some endocrine and /or metabolic changes can be hypothesized, because milk fat content was increased when concentrate was supplied after forage.

  20. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  1. Growth under elevated CO2 concentration affects the temperature response of photosynthetic rate

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Šigut, Ladislav; Klem, Karel; Urban, Otmar

    2013-01-01

    Roč. 6, č. 1 (2013), s. 43-52 ISSN 1803-2451 R&D Projects: GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA ČR GA13-28093S Institutional support: RVO:67179843 Keywords : CO2 assimilation rate * Fagus sylvatica * chlorophyll fluorescence * Picea abies * Rubisco Subject RIV: ED - Physiology http://dx.doi.org/10.11118/beskyd201306010043

  2. Effect of milk replacer and concentrate intake on growth rate, feeding behaviour and systemic metabolite concentrations of pre-weaned bull calves of two dairy breeds.

    Science.gov (United States)

    Byrne, C J; Fair, S; English, A M; Johnston, D; Lonergan, P; Kenny, D A

    2017-09-01

    Early-life nutrition affects calf development and thus subsequent performance. The aim of this study was to examine the effect plane of nutrition on growth, feeding behaviour and systemic metabolite concentrations of artificially reared dairy bull calves. Holstein-Friesian (F; n=42) and Jersey (J; n=25) bull calves with a mean±SD age (14±4.7 v. 27±7.2 days) and BW (47±5.5 v. 33±4.7 kg) were offered a high, medium or low plane of nutrition for 8 weeks using an electronic feeding system which recorded a range of feed-related events. Calves were weighed weekly and plasma samples were collected via jugular venipuncture on weeks 1, 4 and 7 relative to the start of the trial period. The calves offered a high plane of nutrition had the greatest growth rate. However, the increased consumption of milk replacer led to a reduction in feed efficiency. Holstein-Friesian calves offered a low plane of nutrition had the greatest number of daily unrewarded visits to the feeder (Pcalves on a low plane of nutrition (Pcalves increased before weaning, concomitant with an increase in concentrate consumption. Urea concentrations were unaffected by plane of nutrition within either breed. Jersey calves on a low plane of nutrition tended to have lower triglycerides than those on a high plane (P=0.08), but greater than those on a medium plane (P=0.08). Holstein-Friesian calves offered a high plane of nutrition tended to have greater triglyceride concentrations than those on a medium plane (P=0.08). Triglycerides increased from the start to the end of the feeding period (Pfeeding behaviour and metabolic response comparable with a high plane of nutrition in pre-weaned bull calves of both F and J breeds.

  3. Crystal-face growth rate: role of the neighbouring concentration; Vitesse de croissance d'une face cristalline: role de la concentration qui regne a son voisinage

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R

    1967-07-01

    A study has been made of the phenomena occurring in the neighbourhood of a growing crystal-face, with the help of several methods based on interferometric observation. If the system is considered at a given moment, it is possible to express the growth rate of the crystal in two ways: 1) using the origin of the solute contributing to the growth, by application of Fick's law modified in certain cases by a correction factor involving the absolute value of the concentration near the crystal face. 2) directly, using the supersaturation in the crystal-face neighbourhood. On the other hand, if an attempt is made to take into account the changes in growth rate with time, it is seen that this rate is not dependent on diffusion phenomena, but that the convection currents in the solution play an important role. (author) [French] Les phenomenes qui ont lieu dans la solution au voisinage d'un cristal en voie de croissance ont ete etudies grace a plusieurs methodes d'observation interferometriques. Si l'on considere la preparation a un instant donne, il est possible d'exprimer la vitesse de croissance du cristal de deux manieres: 1) a partir de la provenance du solute necessaire a la croissance, par application de l'equation de Fick moyennant, dans certains cas, un facteur correctif faisant intervenir la valeur absolue de la concentration au voisinage de la face, 2) directement a partir de la sursaturation qui regne pres de la face. Par contre, si l'on essaie de rendre compte de l'evolution de la vitesse de croissance au cours du temps, on voit que celle-ci n'est pas commandee par les phenomenes de diffusion, mais que les courants de convection qui existent dons la solution jouent un role important. (auteur)

  4. Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation......Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... contaminant sources, this entrainment improves the indoor air quality. Measurements of exposure due to a passive contaminant source show a significant dependence on the flow field as well as on the contaminant source location. Poor system performance is found in the case of a passive contaminant released...

  5. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  6. Isopleths of surface concentration and surface exposure rate due to a radioactive cloud released from a stack

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Yabuta, Hajimu; Katagiri, Hiroshi; Obata, Kazuichi; Kokubu, Morinobu

    1982-03-01

    Various calculations are made to estimate the distributions of concentration and γ-exposure rate due to a radioactive cloud released from a point source to the atmosphere. In this report, the isopleths of concentration and γ-exposure rate which were calculated are given in graphs to enable rapid prediction of the influence of released radioactive material in the emergency situation. Recently there are facilities which are equipped with a system to display the calculation results on CRT; but such practice is rather rare. By placing the calculated isopleths of reduction scale 1/25000 or 1/50000 on the usual map, any facilities without the CRT system can readily estimate the influence of an accidental release. The graphs of isopleths are given with the release height (11 values of 0 to 200 m at about 20 m intervals) and the atmospheric stability (6 classes) as parameters. Calculations of γ-exposure rates were made using the computer code GAMPUL developed by T. Hayashi and T. Shiraishi. In the calculation of radioactive concentrations and γ-exposure rates, the vertical diffusion depths, σsub(z), exceeding 1000 m are taken to be 1000 m according to the Meteorological Guide for the Safety Analysis of Power Reactor (J.AEC). The comparison between with and without this limitation in σsub(z) is made in the case of downwind axial surface distributions. (author)

  7. Influence of solids concentration on the sedimentation rate of the mud in the aggregate industry

    Directory of Open Access Journals (Sweden)

    Benigno Leyva-de la Cruz

    2016-12-01

    Full Text Available The objective of this investigation is to determine, for the mud resulting from the wash process in the Jobo community arid industry in Sagua de Tánamo, the impact of solids percent on the theoretical sedimentation velocity that is predicted by the Stokes velocity Law. Samples of the discharge pipeline and the mud sedimentation area were analyzed from granulometric, density and solids concentration points of view. The solids percentage variable (S was analyzed in four scenarios (4, 12, 20 and 28 % and time (t was evaluated at intervals of 20 minutes for 5 hours. The behavior of mud sedimentation was characterized through the sedimentation velocity. The results indicate that the Stokes velocity law does not apply for estimating the mud sedimentation velocity with a 95% confidence. Therefore, a correction function is obtained for the Stokes velocity law expressed through the polynomial mathematical model of second degree.

  8. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  9. Natural Ventilation Effectiveness of Round Wall-Mounted Vent Caps in Residential Kitchens

    Directory of Open Access Journals (Sweden)

    Yi-Pin Lin

    2018-05-01

    Full Text Available This study explores the effect of different numbers of wall-mounted vent caps and their installation locations on the indoor air environment in residential kitchens, for which limited information is available. Wind tunnel tests were performed to study the induced ventilation rates of a vent cap, and the impact of vent caps on the natural ventilation efficiency in residential kitchens was examined using computational fluid dynamics (CFD numerical simulations. The results were then applied to determine the appropriate quantity of vent caps and their proper installation location. The wind tunnel test results indicated that outdoor winds with speeds of 0–6 m/s that flow parallel to the wall with a vent cap induce indoor air to exit through the cap with ventilation rates of 0–20 m3/h; when the wind blows perpendicular to the wall, outdoor air with 0–31.9 m3/h flows indoors. CFD numerical simulations showed that the installation of kitchen vent caps can reduce the average carbon monoxide concentration in the cook’s breathing zone. A sufficient quantity of vent caps and the proper installation location are required to ensure the natural ventilation effectiveness of wall-mounted vent caps.

  10. Public protection strategies in the event of a nuclear reactor accident: multicompartment ventilation model for shelters

    International Nuclear Information System (INIS)

    Aldrich, D.C.; Ericson, D.M. Jr.

    1978-01-01

    A multicompartment ventilation model has been presented for the calculation of airborne radioactive material concentrations internal to structures. The model was used to estimate the potential effectiveness of sheltering in reducing the dose due to inhaled radionuclides. The sensitivity of the model to parameter values and protection strategies was discussed. Using ''best estimate'' values for the model parameters, this analysis indicated that sheltered individuals received a reduction of 35 percent in the dose from inhaled radionuclides. Larger reductions would be possible if lower values of the ventilation rate n, could be achieved by either tighter building construction or emergency sealing of openings in the structure. Such emergency means could include taping windows, placing wet paper over cracks, etc. Further analysis indicated that the strategy of opening doors and windows, turning on ventilating systems, etc., in an attempt to ''air-out'' the structure after the cloud of radioactive material had passed will most likely not contribute significantly to reduction in dose due to inhaled radionuclides unless very low initial ventilation rates are achieved. Although the available data did not allow quantitative predictions of dose reductions afforded by basements or other appropriately sealed-off rooms, preliminary analysis indicated qualitatively that they could be significant

  11. Incidence of the geometric parameters and of flow in the primary ventilation rate and of carbon monoxide emissions in burning atmospherics of medium and high pressure

    International Nuclear Information System (INIS)

    Amell A, Andres; Hernandez V, Jaime; Cortes T, Jaime

    2000-01-01

    In this kind of atmospheric burners, high-pressure gas supply and Venturi geometry guarantee a good primary air entrance for combustion. In this project we analyze the most important burner geometric parameters (outlet diameter, injection diameter and mixer geometry) and gas flux conditions (supply pressure) that have an influence over primary aeration rate. The results of this investigation will contribute with the methodology design improvement, focused to use this kind of burners in our country

  12. Natural ventilation for the prevention of airborne contagion.

    Science.gov (United States)

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p natural ventilation exceeded mechanical (p ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. Opening windows and

  13. Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle.

    Science.gov (United States)

    Zaydfudim, Victor; Dossett, Lesly A; Starmer, John M; Arbogast, Patrick G; Feurer, Irene D; Ray, Wayne A; May, Addison K; Pinson, C Wright

    2009-07-01

    Ventilator-associated pneumonia (VAP) causes significant morbidity and mortality in critically ill surgical patients. Recent studies suggest that the success of preventive measures is dependent on compliance with ventilator bundle parameters. Implementation of an electronic dashboard will improve compliance with the bundle parameters and reduce rates of VAP in our surgical intensive care unit (SICU). Time series analysis of VAP rates between January 2005 and July 2008, with dashboard implementation in July 2007. Multidisciplinary SICU at a tertiary-care referral center with a stable case mix during the study period. Patients admitted to the SICU between January 2005 and July 2008. Infection control data were used to establish rates of VAP and total ventilator days. For the time series analysis, VAP rates were calculated as quarterly VAP events per 1000 ventilator days. Ventilator bundle compliance was analyzed after dashboard implementation. Differences between expected and observed VAP rates based on time series analysis were used to estimate the effect of intervention. Average compliance with the ventilator bundle improved from 39% in August 2007 to 89% in July 2008 (P dashboard (P = .01). Quarterly VAP rates were significantly reduced in the November 2007 through January 2008 and February through April 2008 periods (P dashboard improved compliance with ventilator bundle measures and is associated with reduced rates of VAP in our SICU.

  14. Ventilation-perfusion distribution in normal subjects.

    Science.gov (United States)

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  15. Ventilation of radioactive enclosures

    International Nuclear Information System (INIS)

    Caminade, F.; Laurent, H.

    1957-01-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m 3 ). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [fr

  16. Mechanical ventilation strategies.

    Science.gov (United States)

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Ventilator associated pneumonia].

    Science.gov (United States)

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  18. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  19. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  20. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  1. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.; Lagos, Leonel; Tansel, Berrin

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperatures of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.

  2. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  3. Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise: A Self-controlled Study in Chronotropically Competent Subjects

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2015-01-01

    Full Text Available Background: Dual sensor (DS for rate adaption was supposed to be more physiological. To evaluate its superiority, the DS (accelerometer [ACC] and minute ventilation [MV] and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing. Methods: This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant. Twenty-one patients came to the 1-month follow-up visit. Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode. For these patients, sensor response factors were left at default settings (ACC = 8, MV = 3 and sensor indicated rates (SIRs for DS, ACC and MV sensor were retrieved from the pacemaker memories, along with measured sinus node (SN rates from the beginning to 1-minute after the end of the treadmill test, and compared among study groups. Repeated measures analysis of variance and profile analysis, as well as variance analysis of randomized block designs, were used for statistical analysis. Results: Fifteen patients (15/21 were determined to be chronotropically competent. The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate: ACC vs. SN, MV vs. SN, DS vs. SN, respectively, 34.84, 17.60, 16.15 beats/min, though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs. SN P-adjusted < 0.001; MV vs. SN P-adjusted = 0.002; DS vs. SN P-adjusted = 0.005. However, both in the range of 1 st minute and first 3 minutes of exercise, only the DS SIR profile did not differ from sinus rates (P-adjusted = 0.09, 0.90, respectively. Conclusions: The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor. Further study is needed to

  4. Unit-level voluntary turnover rates and customer service quality: implications of group cohesiveness, newcomer concentration, and size.

    Science.gov (United States)

    Hausknecht, John P; Trevor, Charlie O; Howard, Michael J

    2009-07-01

    Despite substantial growth in the service industry and emerging work on turnover consequences, little research examines how unit-level turnover rates affect essential customer-related outcomes. The authors propose an operational disruption framework to explain why voluntary turnover impairs customers' service quality perceptions. On the basis of a sample of 75 work units and data from 5,631 employee surveys, 59,602 customer surveys, and organizational records, results indicate that unit-level voluntary turnover rates are negatively related to service quality perceptions. The authors also examine potential boundary conditions related to the disruption framework. Of 3 moderators studied (group cohesiveness, group size, and newcomer concentration), results show that turnover's negative effects on service quality are more pronounced in larger units and in those with a greater concentration of newcomers.

  5. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  6. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  7. Behovstyret ventilation til enfamiliehuse

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian; Hansen, Mads Peter Rudolph

    Muligheden for behovsstyret ventilation i enfamiliehuse er undersøgt. To strategier er afprøvet i praksis: En relativ simpel og billig strategi og en relativ avanceret og dyr strategi. Den simple strategi regulerer luftskiftet ensartet for alle rum mellem et lavt eller højt niveau. Den avancerede...... ventilation efter gældende krav. Desuden kræver den simple regulering kun få sensorer og er således væsentlig billigere og enklere at implementere end den avancerede strategi....

  8. Design a Wearable Device for Blood Oxygen Concentration and Temporal Heart Beat Rate

    Science.gov (United States)

    Myint, Cho Zin; Barsoum, Nader; Ing, Wong Kiing

    2010-06-01

    The wireless network technology is increasingly important in healthcare as a result of the aging population and the tendency to acquire chronic disease such as heart attack, high blood pressure amongst the elderly. A wireless sensor network system that has the capability to monitor physiological sign such as SpO2 (Saturation of Arterial Oxygen) and heart beat rate in real-time from the human's body is highlighted in this study. This research is to design a prototype sensor network hardware, which consists of microcontroller PIC18F series and transceiver unit. The sensor is corporate into a wearable body sensor network which is small in size and easy to use. The sensor allows a non invasive, real time method to provide information regarding the health of the body. This enables a more efficient and economical means for managing the health care of the population.

  9. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    Science.gov (United States)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  10. Simulation of coal low-temperature oxidation heating process in gob with “U+L” ventilation

    Directory of Open Access Journals (Sweden)

    Zhou Pei Ling

    2016-01-01

    Full Text Available In a gob with U + L ventilation, a tail roadway exists, which has important effects on the oxidation heating process and gas concentration in gob areas. Research on the heating process and gas concentration in the “U+L” ventilation can provide the basis for the prevention of spontaneous combustion, thus, the regularities of the oxidation heating process and gas concentration in gob areas were researched by simulation. Results showed that compared with U ventilation, U + L ventilation caused the high temperature zone and high temperature points in the gob areas to increase in depth and width and to be influenced by the distance between the crossheading of the tail roadway and workface. The heating rate of the high-temperature point in the gob with tail roadway was 1.5 times of that in gob without tail roadway, but was unaffected by the location of the tail roadway. Tail roadway had diversion effects on the airflow, especially near return side and the maximum reduction of gas concentration can be 0.36%.

  11. Ventilation Systems Operating Experience Review for Fusion Applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1999-01-01

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection

  12. Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation.

    Science.gov (United States)

    Lembke-Jene, Lester; Tiedemann, Ralf; Nürnberg, Dirk; Gong, Xun; Lohmann, Gerrit

    2018-05-22

    The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early-Middle Holocene (EMH) threshold or "tipping point." Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results ( i ) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and ( ii ) provide constraints on the high-latitude North Pacific's influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions. Copyright © 2018 the Author(s). Published by PNAS.

  13. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.

    Science.gov (United States)

    Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius

    2014-03-01

    Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.

  14. The mineralogical phase transformation of invisible gold-concentrate by microwave heating, and enhancement of their gold leaching rate

    Science.gov (United States)

    Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung

    2015-04-01

    In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.

  15. Ventilator associated pneumonia and infection control

    NARCIS (Netherlands)

    Alp, E.; Voss, A.

    2006-01-01

    Ventilator associated pneumonia (VAP) is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20-75% according to the study population. Aspiration of colonized pathogenic microorganisms on

  16. Boundary conditions for natural supply ventilation

    NARCIS (Netherlands)

    Jansen, D.W.L.; Loomans, M.G.L.C.; Wit, de M.H.; Zeiler, W.; Seppänen, O.; Säteri, J.

    2007-01-01

    The development of an air jet from a controlled natural ventilation grill for different outdoor conditions is studied. Extensive laboratory measurements are taken in different situations, while the air flow rate through the grill is kept constant. The grill setting and supply temperature are varied.

  17. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Science.gov (United States)

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (pVentilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.

  18. Ventilation system for 99Mo production apparatus

    International Nuclear Information System (INIS)

    Izumo, Mishiroku; Okane, Shougo; Sorita, Takami; Aoyama, Saburou

    1978-04-01

    In production of 20 Ci 99 Mo from 235 U fission, about 120 Ci of radioiodine ( 131 I, 132 I, and 133 I) is involved. To remove airborne radioiodine from the exhaust air from production apparatus and minimize radioiodine release to the atmosphere, the ventilation system is equipped with 2 units of Model-FD charcoal filter (KI 3 -Impregnated charcoal 2 inch thick of Barnebey-Cheney Co.). From September 1976 to December 1977, 21 runs of 99 Mo production involving airborne radioiodine were carried out. The ventilation system was operated continuously for the whole 15 months period; variation in removal efficiency of airborne radioiodine from the exhaust air stream was observed. In the runs valuable experiences were gained in operation and maintenance of the ventilation system including activated charcoal filter and health-physics management of such facility. Following are the results: (1) Airborne radioiodine from 99 Mo production apparatus is reduced to 10 -3 % of the original quantity. (2) When the ventilation system is operated at a maximum air flow rate through the filter, the average efficiency during 15 months is over 98%. (3) Airborne radioiodine released from 99 Mo production apparatus to the ventilation system is less than 5% particulate iodine and alkyl iodines and more than 95% inorganic iodine. (4) Airborne radioiodine released from the stack is less than 28 μCi/run, which is below the limit in regulations on Radioisotope Production Laboratory. (auth.)

  19. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  20. Flow measurement in mechanical ventilation: a review.

    Science.gov (United States)

    Schena, Emiliano; Massaroni, Carlo; Saccomandi, Paola; Cecchini, Stefano

    2015-03-01

    Accurate monitoring of flow rate and volume exchanges is essential to minimize ventilator-induced lung injury. Mechanical ventilators employ flowmeters to estimate the amount of gases delivered to patients and use the flow signal as a feedback to adjust the desired amount of gas to be delivered. Since flowmeters play a crucial role in this field, they are required to fulfill strict criteria in terms of dynamic and static characteristics. Therefore, mechanical ventilators are equipped with only the following kinds of flowmeters: linear pneumotachographs, fixed and variable orifice meters, hot wire anemometers, and ultrasonic flowmeters. This paper provides an overview of these sensors. Their working principles are described together with their relevant advantages and disadvantages. Furthermore, the most promising emerging approaches for flowmeters design (i.e., fiber optic technology and three dimensional micro-fabrication) are briefly reviewed showing their potential for this application. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  2. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  3. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  4. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  5. Risk factors associated with development of ventilator associated pneumonia.

    Science.gov (United States)

    Noor, Ahmed; Hussain, Syed Fayyaz

    2005-02-01

    To assess the risk factors associated with development of ventilator associated pneumonia (VAP). A case control study. Intensive Care Unit (ICU) at the Aga Khan University Hospital, Karachi, between January 1999 and June 2000. All patients with assisted mechanical ventilation were assessed for the development of VAP. Risk factors associated with development of VAP were determined. Adult patients who developed pneumonia, 48 hours after ventilation, were called cases while those who did not develop pneumonia were called controls. Seventy (28%) out of 250 mechanically ventilated patients developed VAP (rate of VAP was 26 cases per 1000 ventilator days). Shock during first 48 hours of ventilation (odds ratio (OR), 5.95; 95% confidence interval (CI), 2.83-12.52), transport out of ICU during mechanical ventilation (OR, 6.0; 95% CI, 2.92-12.37), re-intubation (OR, 4.23; 95% CI, 2.53-9.85), prior episode of aspiration of gastric content (OR, 3.07; 95% CI, 1.35-7.01), and use of antibiotics prior to intubation (OR,2.55; 95% CI, 1.20-5.41) were found to be independently associated with a higher risk of developing VAP. Gram negative organisms and Staphylococcus aureus were responsible for over 90% of cases. Patients with VAP had higher crude mortality rate (57.1%) compared with controls (32.2%). Ventilator associated pneumonia is associated with a high mortality. This study has identified risk factors associated with VAP.

  6. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The prop