WorldWideScience

Sample records for concentration biodiesel blend

  1. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    Science.gov (United States)

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  2. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  3. A Complementary Biodiesel Blend from Soapnut Oil and Free Fatty Acids

    Directory of Open Access Journals (Sweden)

    Lu-Yen Chen

    2012-08-01

    Full Text Available Blends of biodiesels produced from soapnut oil and high-oleic free fatty acids (FFAs, which are potential non-edible oil feedstocks, were investigated with respect to their fuel properties. The soapnut oil methyl esters (SNME had satisfactory fuel properties with the exception of its high cold filter plugging point. In contrast, the biodiesel from the FFAs had favorable fuel properties such as a low cold filter plugging point of −6 °C; however, it exhibits poor oxidation stability with an induction period (IP of 0.2 h. The complementary blend of the SNME and the FFA-based biodiesel at various weight ratios was studied to improve the fuel properties. As a result, the biodiesel blend at a weight ratio of 70:30 can successfully meet all the biodiesel specifications, except the marginal oxidation stability. Furthermore, the effectiveness of N,N’-di-sec-butyl-p-phenylenediamine at the concentration between 100 and 500 ppm on the improvement in the oxidation stability of the biodiesel blend was examined. The relationship between the IP values associated with the consumption of antioxidants in the biodiesel blends was described by first-order reaction rate kinetics. In addition, the natural logarithm of IP (ln IP at various concentrations of antioxidant presented a linear relation with the test temperature. The IP at ambient temperature can be predicted based on the extrapolation of the temperature dependence relation.

  4. Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: Impact on carbonyl compound emissions

    International Nuclear Information System (INIS)

    Fontaras, Georgios; Karavalakis, Georgios; Kousoulidou, Marina; Ntziachristos, Leonidas; Bakeas, Evangelos; Stournas, Stamoulis; Samaras, Zissis

    2010-01-01

    Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone. - Biodiesel application, may increase the levels of certain pollutants such as carbonyl compounds which are associated with both environmental and health risks.

  5. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  6. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants

    International Nuclear Information System (INIS)

    Chen, Yi-Hung; Chen, Jhih-Hong; Luo, Yu-Min; Shang, Neng-Chou; Chang, Cheng-Hsin; Chang, Ching-Yuan; Chiang, Pen-Chi; Shie, Je-Lueng

    2011-01-01

    The feasibility of biodiesel production from jatropha (Jatropha curcas) oil was investigated with respect to the biodiesel blending properties and its oxidation stability with antioxidants. The JME (jatropha oil methyl esters) had the cetane number of 54, cold filter plugging point of -2 o C, density of 881 kg/m 3 at 15 o C, ester content of 99.4 wt.%, iodine value of 96.55 g I 2 /100 g, kinematic viscosity of 4.33 mm 2 /s at 40 o C, and oxidation stability of 3.86 h. Furthermore, the JME was blended with palm oil biodiesel and soybean oil biodiesel at various weight ratios and evaluated for fuel properties as compared to the relevant specifications. In addition, several antioxidants at concentrations between 100 and 1000 ppm were studied for their potential to improve the oxidation stability of the JME. The relationship between the IP (induction period) in the measurement of the oxidation stability associated with the antioxidant consumption in the JME was described by first-order reaction rate kinetics. Moreover, the ln IP (natural logarithm of the IP) at various concentrations of pyrogallol showed a linear relationship with the test temperature. The oxidation stability at ambient temperatures was predicted on the basis of an extrapolation of the temperature-dependent relationship. -- Highlights: → Jatropha oil methyl esters had satisfactory biodiesel properties except for the oxidation stability. → The oxidation stability and cold filter plugging point of the jatropha-based biodiesel blends cannot meet the EN 14214 requirements simultaneously. → The addition of pyrogallol was recommended for the stabilization of the jatropha oil methyl esters with a concentration of 100-250 ppm.

  7. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  8. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  9. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  10. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  11. Evaporation and stability of biodiesel and blends with diesel in ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zeyu; Hollebone, Bruce P.; Wang, Zhendi; Yang, Chun; Landriault, Mike [Emergencies Science and Technology Section, Environment Canada (Canada)], email: bruce.hollebone@ec.gc.ca

    2011-07-01

    This study investigates the weathering behavior of biodiesel fuels or fuel blends with diesel in ambient conditions. The goal of this study is to reveal the influencing factors on biodiesel storage stability, and weathering and evaporation rates. Samples of Fatty Acid Methyl Ester (FAME) based biodiesel compounds, ultra-low sulfur diesel blends, and petroleum diesels were prepared separately for testing. After weathering the samples for 190 days, a series of chemical procedures, including hydrocarbon extraction and gas chromatography, were conducted to reveal the aging process of the mixtures. Due to their high boiling points, biodiesel concentrations in FAME compounds generally demonstrated lower evaporation rates than petroleum diesels, which showed a fast and high mass loss. Moreover, it was shown that adding biodiesel components to fuel blends did not affect the evaporation of diesel hydrocarbon. In general, FAME compounds exhibited good storage stability under ambient weathering.

  12. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  13. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  14. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  15. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  16. Effects of blending on the properties of diesel and palm biodiesel

    Science.gov (United States)

    Bukkarapu, Kiran Raj; Srinivas Rahul, T.; Kundla, Sivaji; Vishnu Vardhan, G.

    2018-03-01

    Palm biodiesel is blended to diesel in different volume percentages to improve certain properties. This would help in having a good understanding of the dependence of the diesel properties on the biodiesel proportion. The properties of interest in the present work are density, kinematic viscosity, flash point and fire point of the blends which are determined and compared to petrodiesel. It is observed that the kinematic viscosity and density of the diesel increase with the palm biodiesel proportion and it is not preferable. Blends with higher palm content possess higher flash point and fire point. Apparently, blending worsens the conditions and hence might be of no use when compared to diesel, but when compared to neat palm biodiesel, blending helped in pulling down the density, viscosity, fire point and flash point of the latter. Using regression analysis and the properties data of respective blends, correlations are developed to predict the properties of diesel and biodiesel blends known the percentage of biodiesel added to diesel, which are validated using biodiesel and diesel blends which are not used as an input to develop them.

  17. Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan Lin

    2013-09-01

    Full Text Available Biodiesel produced from vegetable oils, animal fats and algae oil is a renewable, environmentally friendly and clean alternative fuel that reduces pollutants and greenhouse gas emissions in marine applications. This study investigates the influence of biodiesel blend on the characteristics of residual and distillate marine fuels. Adequate correlation equations are applied to calculate the fuel properties of the blended marine fuels with biodiesel. Residual marine fuel RMA has inferior fuel characteristics compared with distillate marine fuel DMA and biodiesel. The flash point of marine fuel RMA could be increased by 20% if blended with 20 vol% biodiesel. The sulfur content of residual marine fuel could meet the requirement of the 2008 MARPOL Annex VI Amendment by blending it with 23.0 vol% biodiesel. In addition, the kinematic viscosity of residual marine fuel could be reduced by 12.9% and the carbon residue by 23.6% if 20 vol% and 25 vol% biodiesel are used, respectively. Residual marine fuel blended with 20 vol% biodiesel decreases its lower heating value by 1.9%. Moreover, the fuel properties of residual marine fuel are found to improve more significantly with biodiesel blending than those of distillate marine fuel.

  18. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  19. Oxidation stability of rapeseed biodiesel/petroleum diesel blends

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Anderson, James E.; Mueller, Sherry A.

    2016-01-01

    of the oxidation of a biodiesel fuel blend consisting of 30% (v/v) rapeseed methyl ester in petroleum diesel (B30) was conducted at 70 and 90 °C with three aeration rates. Oxidation rates increased with increasing temperature as indicated by decreases in induction period (Rancimat), concentrations of unsaturated...

  20. Determination of the density and the viscosities of biodiesel-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Ertan; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-12-15

    In this study, commercially available two different diesel fuels were blended with the biodiesels produced from six different vegetable oils (sunflower, canola, soybean, cottonseed, corn oils and waste palm oil). The blends (B2, B5, B10, B20, B50 and B75) were prepared on a volume basis. The key fuel properties such as density and viscosities of the blends were measured by following ASTM test methods. Generalized equations for predicting the density and viscosities for the blends were given and a mixing equation, originally proposed by Arrhenius and described by Grunberg and Nissan, was used to predict the viscosities of the blends. For all blends, it was found that there is an excellent agreement between the measured and estimated values of the density and viscosities. According to the results, the density and viscosities of the blends increased with the increase of biodiesel concentration in the fuel blend. (author)

  1. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends

    International Nuclear Information System (INIS)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-01-01

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  2. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Haiying Tang; Steven O. Salley; K.Y. Simon Ng [Wayne State University, Detroit, MI (United States). Department of Chemical Engineering and Materials Science

    2008-10-15

    The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4{sup o}C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides. 45 refs., 11 figs., 2 tabs.

  3. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  4. Effects of low concentration biodiesel blends application on modern passenger cars. Part 3: Impact on PAH, nitro-PAH, and oxy-PAH emissions

    International Nuclear Information System (INIS)

    Karavalakis, Georgios; Fontaras, Georgios; Ampatzoglou, Dimitrios; Kousoulidou, Marina; Stournas, Stamoulis; Samaras, Zissis; Bakeas, Evangelos

    2010-01-01

    This study explores the impact of five different types of methyl esters on polycyclic aromatic hydrocarbon (PAH), nitrated-PAH and oxygenated PAH emissions. The measurements were conducted on a chassis dynamometer, according to the European regulation. Each of the five different biodiesels was blended with EN590 diesel at a proportion of 10-90% v/v (10% biodiesel concentration). The vehicle was a Euro 3 compliant common-rail diesel passenger car. Emission measurements were performed over the NEDC and compared with those of the real traffic-based Artemis driving cycles. The experimental results showed that the addition of biodiesel led to some important increases in low molecular-weight PAHs (phenanthrene and anthracene) and to both increases and reductions in large PAHs which are characterised by their carcinogenic and mutagenic properties. Nitro-PAHs were found to reduce with biodiesel whereas oxy-PAH emissions presented important increases with the biodiesel blends. The impact of biodiesel source material was particularly clear on the formation of PAH compounds. It was found that most PAH emissions decreased as the average load and speed of the driving cycle increased. Cold-start conditions negatively influenced the formation of most PAH compounds. A similar trend was observed with particulate alkane emissions. - This investigation is a contribution to the understanding the impact of different biodiesels on the formation of PAHs, nitro-PAHs and oxy-PAHs over different driving conditions.

  5. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  6. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  7. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  8. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  9. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  10. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine

    Directory of Open Access Journals (Sweden)

    C. Syed Aalam

    2017-12-01

    Full Text Available In this paper, aluminium oxide nanoparticles (ANPs were added to Mahua biodiesel blend (MME20 in different proportions to investigate the effects on a four stroke, single cylinder, common rail direct injection (CRDI diesel engine. The ANPs were doped in different proportions with the Mahua biodiesel blend (MME20 using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB as the cationic surfactant. The experiments were conducted in a CRDI diesel engine at a constant speed of 1500 rpm using different ANP-blended biodiesel fuel (MME20 + ANP50 and MME20 + ANP100 and the results were compared with those of neat diesel and Mahua biodiesel blend (MME20. The experimental results exposed a substantial enhancement in the brake thermal efficiency and a marginal reduction in the harmful pollutants (such as CO, HC and smoke for the nanoparticles blended biodiesel.

  11. Influence of oxygen enrichment on compression ignition engines using biodiesel blends

    Directory of Open Access Journals (Sweden)

    Vaiyapuri Senthil Murugan

    2017-01-01

    Full Text Available The influence of oxygen enrichment on performance and emission characteristics of a single cylinder diesel engine operated with biodiesel blends have been investigated in this work. The methyl ester of jatropha biodiesel was selected as bio-diesel and four blends (B10, B20, B30, and B40 were selected for experimental investigations. The performance and emission characteristics were obtained for the these blends along with three oxygen enrichment flow rates (1, 3, and 5 L per minute using an oxygen cylinder at the air intake in the diesel engine. The performance and emission characteristics were studied and compared with the diesel and biodiesel. It was observed that, oxygen enrichment enhances the brake thermal efficiency, HC, CO, and smoke. B10 biodiesel with 5 L per minute oxygen enrichment was found to be the best fuel for biodiesel operation.

  12. Thermal behavior of diesel/biodiesel blends of biodiesel obtained from buriti oil=Comportamento térmico de blendas de diesel/biodiesel de biodiesel obtido a partir do óleo de buriti

    Directory of Open Access Journals (Sweden)

    Alexandre Gustavo Soares do Prado

    2012-04-01

    Full Text Available Biodiesel has been obtained from methanolysis of buriti oil. This biodiesel was added in fossil diesel in order to obtain diesel/biodiesel blends. Thermal analysis of blends were carried on 30-600oC range at rate of 10oC min.-1. Kinetic parameters such as activation energy (Ea, pre-exponential factor (A, Gibbs energy (≠G, enthalpy (≠H and entropy (≠S of activation were determined by using Coats–Redfern equation. The Ea, ≠H and ≠G values presented a linear increase with biodiesel amount added in blends. The heat of combustion of diesel/biodiesel blends was determined, and it was observed that the heat of combustion decreased with the addition of biodiesel in diesel/biodiesel blends.O biodiesel foi obtido a partir de metanólise de óleo de buriti. O biodiesel foi adicionado ao diesel fóssil a fim de obter misturas de biodiesel/diesel. Análises térmica das misturas foram realizadas entre 30-600°C com uma taxa de aquecimento de 10ºC min.-1. Parâmetros cinéticos como a energia de ativação (Ea, fator pré-exponencial (A, energia livre de Gibbs (≠G, entalpia (≠H e entropia de ativação (≠S foram determinadas usando equação de Coats-Redfern. Os valores de Ea, ≠H and ≠G apresentaram aumento linear com a quantidade de biodiesel adicionado na mistura. O calor de combustão de misturas de biodiesel/diesel foi determinada, e foi observado que o calor de combustão diminuiu com a adição de biodiesel no diesel e nas misturas de biodiesel.

  13. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

    International Nuclear Information System (INIS)

    Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfü; Aydın, Hüseyin

    2017-01-01

    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene. - Highlights: • Effects of kerosene and diesel addition to biodiesel in a diesel engine were investigated. • B80&K10 and B80&K10&D10 were tested and comparisons have been made with D2. • Similar fuel properties and combustion parameters have been found for all fuels. • Heat release initiated earlier for B80&K10 and B80&K10&D10. • CO and NOx emissions are lowered for B80&K10 and B80&K10&D10.

  14. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    Science.gov (United States)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  15. Investigation of Oxidation stability of Pongamia Biodiesel and its blends

    Directory of Open Access Journals (Sweden)

    Gaurav Dwivedi

    2016-03-01

    Full Text Available Biodiesel from Pongamia oil is one of the promising non edible sources in India. But the main problem of using Pongamia biodiesel as fuel is its poor stability characteristics. Poor stability leads to gum formation which further leads to a storage problem of these fuels for a longer period of time. This paper investigates the methodology of improving the stability characteristics of Pongamia biodiesel by blending with diesel and use of the antioxidant Pyrogallol. The experimental investigation shows that blending with diesel and using of antioxidant Pyrogallol improves the stability characteristics of Pongamia biodiesel significantly. Results of the study show that the optimum amount of antioxidant (PY for pure PB20 is 300 ppm to maintain the oxidation stability specification and blending of diesel with Pongamia shows that PB10 requires no additive to maintain its stability characteristics.

  16. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    Science.gov (United States)

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  17. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  18. Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW column

    Directory of Open Access Journals (Sweden)

    Sakhre Vandana

    2016-03-01

    Full Text Available The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (% which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (% limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

  19. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  20. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  1. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel

    Directory of Open Access Journals (Sweden)

    Soha S.M. Mostafa

    2017-05-01

    In this study, the feasibility of biodiesel production from microalga Spirulina platensis has been investigated. The physico–chemical characteristics of the produced biodiesel were studied according to the standards methods of analysis (ASTM and evaluated according to their fuel properties as compared to Egyptian petro-diesel. Blends of microalgae biodiesel and petro-diesel (B2, B5, B10 and B20 were prepared on a volume basis and their physico–chemical characteristics have been also studied. The obtained results showed that; with the increase of biodiesel concentration in the blends; the viscosity, density, total acid number, initial boiling point, calorific value, flash point, cetane number and diesel index increase. While the pour point, cloud point, carbon residue and sulfur, ash and water contents decrease. The observed properties of the blends were within the recommended petro-diesel standard specifications and they are in favor of better engine performance.

  2. Effect of first and second generation biodiesel blends on engine performance and emission

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au [School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702 (Australia); Islam, Rubayat, E-mail: rubayat12@yahoo.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  3. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Kamrak, Juthamas; Kongsombut, Benjapol; Grehan, Gerard; Saengkaew, Sawitree; Kim, Kyo-Seon; Charinpanitkul, Tawatchai

    2009-01-01

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 μm at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa.

  4. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    Full Text Available Fossil fuel resources are being depleted day by day and its use affects the environment adversely. Renewable energy is one of the alternate for sustainable development and biodiesel is one of the suitable alternate which can replace the diesel. The major hurdles in the successful commercialization of biodiesel are high feedstock cost and conversion technology to reduce viscosity. The choice of raw material and biodiesel production method must depend upon techno-economical view. There are some specific regions for different types of oil availability. It is therefore required to produce biodiesel from the mixture of oils to fulfill the requirements of energy demand in a particular country according to its suitability and availability of feedstock. Karanja and Linseed crops  are abundantly available in India. Biodiesel was produced from a mixture of Karanja and Linseed oils by alkaline transesterification. In this experimental study, biodiesel blends of 10%, 20% and 30% were used with diesel in a diesel engine at a constant speed of 1500 rpm with varying brake powers (loads from 0.5 kW to 3.5kW to evaluate brake thermal efficiency, brake specific fuel consumption,  brake specific energy consumption, exhaust gas temperature, mechanical efficiency, volumetric efficiency, air fuel ratio and smoke opacity. They were compared with diesel and found satisfactory. BTE was found to be  28.76% for B10 at 3.5kW load.  Smoke opacity was also found to be reduced with all blends. Smoke opacity was found to be reduced up to 10.23% for B10 biodiesel blend as compared to that of diesel at 3.5kW. Experimental investigation  has revealed that  biodiesel produced from a mixture of Karanja and Linseed oils can be successfully used in diesel engines without any engine modification  and B10 was found to be an optimum biodiesel blend in terms of brake thermal efficiency. Article History: Received April 14th 2016; Received in revised form June 25th 2016; Accepted

  5. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  6. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Kamrak, Juthamas; Kongsombut, Benjapol; Charinpanitkul, Tawatchai [Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330 (Thailand); Grehan, Gerard; Saengkaew, Sawitree [LESP/UMR CNRS6614/INSA et Universite de Rouen, BP 12, avenue de l' universite, 76801, Saint Etienne du Rouvray (France); Kim, Kyo-Seon [Department of Chemical Engineering, Faculty of Engineering, Kangwon National University, Chuncheon (Korea)

    2009-10-15

    Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 {mu}m at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa. (author)

  7. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  8. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  9. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  10. Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel

    International Nuclear Information System (INIS)

    Zhu, Lei; Xiao, Yao; Cheung, C.S.; Guan, Chun; Huang, Zhen

    2016-01-01

    Highlights: • BP blends have fast combustion process at high temperature. • BP blends improve brake thermal efficiency of biodiesel. • Particle mass and number concentration could be reduced by pentanol addition. • Diameter of the primary particle is minimized by pentanol addition. • The addition of 10% pentanol is recommended as a suitable replacement ratio. - Abstract: The combustion, gaseous and particulate emissions of a diesel engine fueled with biodiesel–pentanol (BP) blends were investigated under different engine loads. The results indicate that with the increased pentanol fraction, the start of combustion is delayed. All of the BP blends provide faster combustion than biodiesel and diesel fuel from CA10 to CA90. The faster combustion of BP blends leads to a higher BTE than that of biodiesel and diesel fuel in most cases. The particle mass and number concentrations are reduced by the addition of pentanol in biodiesel in most test conditions, due to the higher oxygen concentration for the fuel/air stoichiometry, longer ignition delay for fuel/air mixing, and lower viscosity for the improvement of atomization. The R−(C=O)O−R′ group in biodiesel is less efficient in suppressing the soot precursor’s formation than the R−OH group in pentanol. The diameter of the primary particles is reduced with the increased addition of pentanol. The particulate emission of BP10 have higher oxidation reactivity that that of BP20 and BP30. Base on this study, pentanol–biodiesel can be considered as an acceptable alternative fuel for diesel engines due to its improved combustion performance and reduced particulate emissions.

  11. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  12. Aerobic Biodegradation Kinetics And Mineralization Of Six Petrodiesel/Soybean-Biodiesel Blends

    Science.gov (United States)

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo ...

  13. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, Abdullah; Ashraful, A.M.; Arslan, A.; Rashedul, H.K.; Monirul, I.M.

    2016-01-01

    Highlights: • All of biodiesel blends were given higher BSFC than diesel fuel, except for CIB10. • Diesel produces higher BP and BTE as compared to PB and CIB blends. • CO and HC emissions of PB blends were reduced more than diesel and CIB blends. • PB blends contained lower metal compositions compared to diesel and CIB blends. • PB20 showed lower worn scar surfaces area compared to diesel and biodiesel blends. - Abstract: A running automobile engine produces more friction and wear between its sliding components than an idle one, and thus requires lubrication to reduce this frictional effect. Biodiesel is an alternative diesel fuel that is produced from renewable resources. Energy studies conducted over the last two decades focused on solutions to problems of rising fossil fuel price, increasing dependency on foreign energy sources, and worsening environmental concerns. Palm oil biodiesel is mostly used in Malaysia. This study conducted engine performance and emission tests with a single-cylinder diesel engine fueled with palm and Calophyllum inophyllum biodiesel blends (PB10, PB20, PB30, CIB10, CIB20, and CIB30) at a full-load engine speed range of 1000–2400 rpm, and then compared the results with those of diesel fuel. Friction and wear tests were conducted using the four-ball tester with different temperatures at 40 and 80 kg load conditions and a constant speed of 1800 rpm. The average brake specific fuel consumption increased from 7.96% to 10.15% while operating on 10%, 20%, and 30% blends of palm and C. inophyllum biodiesel. The respective average brake powers for PB20 and PB30 were 9.31% and 12.93% lower compared with that for diesel fuel. PB20 produced relatively lower CO and HC emissions than the diesel and biodiesel blends. Diesel produced low amounts of NO_X emission, and the CIB blend produced a lower frictional coefficient compared with the diesel and PB blends. PB30 showed high average FTP and low average WSD, both of which enhanced

  14. Identification and fingerprinting of biodiesel blends by solid phase extraction and gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; China Univ. of Geosciences, Wuhan (China). School of Environmental Studies; Hollebone, B.; Wang, Z.; Yang, C.; Landriault, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division

    2009-07-01

    Interest in biodiesel as a replacement for petroleum diesel fuel is growing. In North America, biodiesels are produced by the methyl esterification of plant and animal triglycerides, resulting in complex mixtures composed of fatty acid methyl esters (FAMEs). It is important for both environmental forensic and remediation purposes to determine diesel and biodiesel origins, and the biodiesel content when it is blended with conventional petroleum diesel. This paper reported on a study that combined 2 methods to determine biodiesel levels in blended fuels. Micro-column fractionation of FAMEs involving solid phase extraction (SPE) was combined with gas chromatography-mass spectrometry (GC/MS) to achieve detailed chemical fingerprinting of blends, including the identification and quantification of individual aliphatic hydrocarbons, aromatic hydrocarbons, fatty acid alkyl esters, and free sterols. Fractionation of the fuel samples was optimized for separation of fatty acid esters, free sterols from petroleum hydrocarbons into 4 fractions, notably aliphatic, aromatic, fatty-acid ester and polar components. A sum of the FAME components was used to determine an unknown blend level in freshly-prepared samples. This study showed that this method has great potential for identifying biodiesel in diesel fuel blends and could form the basis of a method for biodiesel-contaminated environmental samples. 28 refs., 5 tabs., 4 figs.

  15. Identification and fingerprinting of biodiesel blends by solid phase extraction and gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Yang, Z.; China Univ. of Geosciences, Wuhan; Hollebone, B.; Wang, Z.; Yang, C.; Landriault, M.

    2009-01-01

    Interest in biodiesel as a replacement for petroleum diesel fuel is growing. In North America, biodiesels are produced by the methyl esterification of plant and animal triglycerides, resulting in complex mixtures composed of fatty acid methyl esters (FAMEs). It is important for both environmental forensic and remediation purposes to determine diesel and biodiesel origins, and the biodiesel content when it is blended with conventional petroleum diesel. This paper reported on a study that combined 2 methods to determine biodiesel levels in blended fuels. Micro-column fractionation of FAMEs involving solid phase extraction (SPE) was combined with gas chromatography-mass spectrometry (GC/MS) to achieve detailed chemical fingerprinting of blends, including the identification and quantification of individual aliphatic hydrocarbons, aromatic hydrocarbons, fatty acid alkyl esters, and free sterols. Fractionation of the fuel samples was optimized for separation of fatty acid esters, free sterols from petroleum hydrocarbons into 4 fractions, notably aliphatic, aromatic, fatty-acid ester and polar components. A sum of the FAME components was used to determine an unknown blend level in freshly-prepared samples. This study showed that this method has great potential for identifying biodiesel in diesel fuel blends and could form the basis of a method for biodiesel-contaminated environmental samples. 28 refs., 5 tabs., 4 figs.

  16. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  17. Performance and Emission Analysis of a Diesel Engine Using Linseed Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    M. M. Tunio

    2018-06-01

    Full Text Available The core object of this study is to examine the suitability of linseeds for biodiesel production. The performance of an engine at different proportions of linseed blends with petro-diesel and the amount of emissions rate were investigated. Initially, linseed biodiesel was produced through transesterification process, and then it was mixed with petro-diesel fuel (D100 blends at volumetric ratios of 10% (LB10, 20% (LB20, and 30% (LB30. The properties of linseed biodiesel and its blends were investigated and compared with petro-diesel properties with reference to ASTM standards. It has been observed that the fuel properties of produced biodiesel are within ASTM permissible limits. The specific fuel consumption (SFC of LB10 blend has been found lesser compared to LB20 and LB30. SFC of D100 is slightly less than that of all the blends. The brake thermal efficiency (BTE of LB30 is greater than that of pure diesel D100 at maximum load and greater than that of LB10 and LB20. The heat dissipation rate in all linseed blends is found to have been less than that of D100. Carbon monoxide, carbon dioxide and NOx emissions of linseed blends are mostly lower in comparison with D100’s. Among all blends, LB10 was found more suitable alternative fuel for diesel engines and can be blended with petro diesel without engine modifications. It can be concluded that cultivation and production of linseed in Pakistan is very promising, therefore, it is recommended that proper exploitation and use of linseed for energy production may be encouraged through pertinent agencies of Pakistan.

  18. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Polezer, Gabriela; Borillo, Guilherme C.; Brown, Andrew; Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G.; Nalin, Marcelo; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A.; Marchi, Mary Rosa R. de; Saldiva, Paulo H.N.; Pauliquevis, Theotonio; Godoi, Ana Flavia L.

    2016-01-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP"E"S"R) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP"E"S"R results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm"−"1 and 1600 cm"−"1 indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of PM emission

  19. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Polezer, Gabriela; Borillo, Guilherme C. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Brown, Andrew [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Nalin, Marcelo [LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Penteado Neto, Renato A. [Vehicle Emissions Laboratory, Institute of Technology for Development (LACTEC), Curitiba, PR (Brazil); Marchi, Mary Rosa R. de [Analytical Chemistry Department, Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Saldiva, Paulo H.N. [Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo (Brazil); Pauliquevis, Theotonio [Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema (Brazil); Godoi, Ana Flavia L. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil)

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP{sup ESR}) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP{sup ESR} results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm{sup −1} and 1600 cm{sup −1} indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of

  20. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  1. Biodegradation of biodiesel/diesel blends by Candida viswanathii

    African Journals Online (AJOL)

    USER

    2009-06-17

    diesel blends and neat biodiesel since it preferable ... alkanes and aromatic compounds obtained from the ... technique based on the action of microorganisms, which turn hazardous contaminants into non toxic substances.

  2. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  3. Comparative analysis of emission characteristics and noise test of an I.C. engine using different biodiesel blends

    Science.gov (United States)

    Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin

    2017-12-01

    Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.

  4. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  6. Vibration and acoustic characteristics of a city-car engine fueled with biodiesel blends

    International Nuclear Information System (INIS)

    Chiatti, Giancarlo; Chiavola, Ornella; Palmieri, Fulvio

    2017-01-01

    Highlights: • Investigation on the impact of UCO bends on the engine vibro-acoustic behavior. • The engine is mainly used in micro-cars in urban areas. • Data analysis to select the vibration/acoustic components related to the combustion. • Indicators used to evaluate the effect of blends on vibration and noise radiation. - Abstract: A number of studies have demonstrated that biodiesel is a more environmentally sustainable fuel than petroleum-derived fuels since it is a renewable source of energy and it allows to reduce undesired exhaust emissions (e.g. unburned HC, CO and particulate matter). However, specialized literature highlights there is still the need to further investigate performance, emissions and NVH characteristics of engines equipped with up-to-date technologies fueled with biodiesel blend. The aim of the present paper is to investigate the vibro-acoustic behavior of a small displacement engine, mainly employed in micro-cars, fueled with blends of distilled biodiesel (obtained from used cooking oil) and ultra low sulfur diesel fuel up to 40% by volume. Demands for reducing chemical and noise pollutions, traffic congestion and parking difficulties in urban areas make the micro-cars one of the possible solutions for the future urban environment, especially if the engine is fueled with biodiesel blends for their potential of reducing the pollutant emissions. An original methodology developed by the authors for in-cylinder pressure characterization via non-intrusive measurements is here applied to evaluate the impact of biodiesel content on the combustion process and therefore on engine vibration and noise emissions. The data processing in frequency domain allowed to extract the components mainly related to the combustion events. Concerning vibration signals: for all blends, the vibration amplitudes increases with the increase of engine speed values; B40 is characterized by highest values of RMS of accelerometer signal almost in the complete

  7. Study of the Effects of Ethanol As an Additive with a Blend of Poultry Litter Biodiesel and Alumina Nanoparticles on a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2017-12-01

    Full Text Available With the increasing population and rise in industrialization, the demand for petroleum reserves is increasing almost daily. This is causing depletion of the non-renewable energy resources. This work aims to find an alternative fuel for diesel engines. The use of poultry litter oil biodiesel obtained from poultry industry waste, which is a non-edible source for biodiesel, is very encouraging as an alternative fuel for diesel engines. The aim of this study is to observe and maximize the performance of poultry litter oil biodiesel by adding alumina nanoparticles and ethanol. The biodiesel is prepared with acid and the base catalysed transesterification of poultry litter oil with methanol using concentrated sulphuric acid and potassium hydroxide as catalysts. The experimentation is carried out on a CI engine with three different blends - B20 biodiesel blend, B20 biodiesel blend with 30 mg/L alumina nanoparticles, and B20 biodiesel blend with 30 mg/L alumina nanoparticles and 15 ml/L ethanol. The performance, combustion and emission characteristics of all three blends are compared with neat diesel. The results of the experiment show that ethanol as an additive improves the combustion and performance characteristics. It increases the brake thermal efficiency and peak cylinder pressure. It also reduces CO and UBHC emissions and there is a marginal increase in NOx emissions as compared to neat diesel.

  8. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  9. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  10. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); INCT de Energia e Ambiente, Universidade Federal da Bahia, 40.170-280, Salvador, Bahia (Brazil); Couto, Marcelo B.; Filho, Miguel Andrade; Assis, Julio C.R.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Almeida, Selmo Q. [Departamento de Engenharia e Arquitetura, Universidade Salvador - UNIFACS, Av. Cardeal da Silva 132, 40.220-141, Salvador, Bahia (Brazil); Souza, Giancarlos S. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA, Rua Emidio de Morais S/N, 40.625-650, Salvador, Bahia (Brazil)

    2010-04-15

    Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow. (author)

  11. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    International Nuclear Information System (INIS)

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van

    2012-01-01

    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  12. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  13. Prediction Primary Available Blend Biodiesel of Waste Oil from Aurantiochytrium sp. for General Diesel Engines

    Directory of Open Access Journals (Sweden)

    Shu-Yao Tsai

    2018-01-01

    Full Text Available Chemical and enzyme transesterification were compared by discussing preliminary transesterification of waste oil of Aurantiochytrium sp., which was then used in transesterification for the primary available blend biodiesel for a general diesel engine in this study. We made progress on the winterized characteristics of the waste oil’s biodiesel of Aurantiochytrium sp. and its biodiesel, which included the reactivity parameters and properties. This approach led to the development of a novel idea for the evaluation of kinetic parameters of winterization, along with obtaining the suitable operation and storage conditions of biodiesel. Therefore, the waste oil of Aurantiochytrium sp. could be developed for biodiesel production and successfully made into a suitable blend diesel. Overall, we acquired the best condition of mixtures and the highly mixed rate of petrodiesel: biodiesel = 80 : 20 (activation energy of winterization 21.32 kJ/mol; onset temperature of winterization -4.15 °C; heat of combustion 43.15 MJ/kg; kinematic viscosity 3.51 mm2/s; flash point 67.5 °C, which was an appropriate blend biodiesel from the waste oil’s biodiesel of Aurantiochytrium sp.

  14. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection

    International Nuclear Information System (INIS)

    Mangus, Michael; Kiani, Farshid; Mattson, Jonathan; Tabakh, Daniel; Petka, James; Depcik, Christopher; Peltier, Edward; Stagg-Williams, Susan

    2015-01-01

    Researchers across the globe are searching for energy sources to replace the petroleum-based fuels used by the transportation sector. A fuel of particular interest is biodiesel, produced from a diverse variety of feedstock oils with differing fuel properties that alter the operation and emissions of the engines using them. As biodiesel may be mixed with petroleum-based diesel, the fuel being used by a diesel engine may vary by both biodiesel blend percentage and source. Therefore, the influence of biodiesel properties as a function of blend is important to understand. In this study, four biodiesels, produced from palm, jatropha, soybean, and beef tallow, are tested with blends of petroleum diesel at ratios of 5%, 10%, 20%, and 50% biodiesel content. The results are compared with tests of neat diesel and each biodiesel. Using electronic injection, timing is modulated to normalize combustion phasing for all fuels tested to directly investigate the effects of biodiesel on combustion. Results indicate that fuel viscosity, energy content, and molecular structure have distinct influences on combustion that must be considered for engine calibration. When adjusted for combustion timing, biodiesel blends also showed a general decrease in NO x emissions compared to ultra-low sulfur diesel. - Highlights: • Biodiesel injection timing is adjusted to remove cetane number effect on combustion. • When combustion is normalized, biodiesel NO x emissions are lower than those of ULSD. • Four distinct biodiesels used in blends from 0% to 100% biodiesel/ULSD fraction. • Correlating fuel properties to combustion/emissions is useful for engine calibration

  15. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    Science.gov (United States)

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO 2 -emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  17. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend

    International Nuclear Information System (INIS)

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L.; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-01-01

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 μm

  18. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Ashraful, A.M.

    2016-01-01

    Highlights: • Ignition improver additives makes the biodiesel-alcohol blends more thermally stable. • Density and cetane number improved significantly with EHN mixing. • BP and BSFC improved by adding ignition improver additives. • Nitric oxides and smoke of the EHN treated blends decreased. • CO and HC increased slightly with EHN addition. - Abstract: Pentanol is a long chain alcohol produced from renewable sources and considered as a promising biofuel as a blending component with diesel or biodiesel blends. However, the lower cetane number of alcohols is a limitation, and it is important to increase the overall cetane number of biodiesel fuel blends for efficient combustion and lower emission. In this consideration, ignition improver additive 2-ethylhexyl nitrate (EHN) were used at a proportion of 1000 and 2000 ppm to diesel-biodiesel-pentanol blends. Experiments were conducted in a single cylinder; water-cooled DI diesel engine operated at full throttle and varying speed condition. The thermal stability of the modified ternary fuel blends was evaluated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis, and the physic-chemical properties of the fuel as well as engine characteristics were studied and compared. The addition of EHN to ternary fuel blends enhanced the cetane number significantly without any significant adverse effect on the other properties. TGA and DSC analysis reported about the improvement of thermal characteristics of the modified blends. It was found that, implementing ignition improver make the diesel-biodiesel-alcohol blends more thermally stable. Also, the brake specific fuel consumption (BSFC), nitric oxides (NO) and smoke emission reduced remarkably with the addition of EHN. Introducing EHN to diesel-biodiesel-alcohol blends increased the cetane number, shorten the ignition delay by increasing the diffusion rate and improve combustion. Hence, the NO and BSFC reduced while, carbon

  19. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment

    Energy Technology Data Exchange (ETDEWEB)

    Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering

    2010-07-01

    Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.

  20. Laboratory Oxidation Stability Study on B10 Biodiesel Blends

    Energy Technology Data Exchange (ETDEWEB)

    Engelen, B. [and others

    2013-11-15

    A laboratory oxidation stability study has been completed jointly by CONCAWE and DGMK on three biodiesel blends containing 10% v/v (B10) Fatty Acid Methyl Ester (FAME). The results of the study are compared to measurements from an in-vehicle storage stability study on similar B10 diesel fuels that had been conducted previously in a Joint Industry Study. This laboratory study monitored the oxidation stability of the three B10 blends during six weeks of laboratory storage under ambient (25C) and elevated temperature (43C) conditions. Various test methods were used to monitor oxidation stability changes in the B10 diesel fuel blends including electrical conductivity, viscosity, Rancimat oxidation stability (EN 15751), PetroOxy oxidation stability (EN 16091), acid number (EN 14104), Delta Total Acid Number (Delta TAN), and peroxide number (ISO 3960). Elemental analyses by ICP were also completed on the FAME and B10 blends at the start and end of the laboratory study. The concentrations of dissolved metals were very low in all cases except for silicon which was found to be between about 600-700 ppb in the B10 blends. A limited study was also conducted on one neat FAME sample (B100) to investigate the effect of air/oxygen exposure on the rate of decrease in oxidation stability.

  1. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends

    International Nuclear Information System (INIS)

    Tesfa, B.; Gu, F.; Mishra, R.; Ball, A.D.

    2013-01-01

    Highlights: • Lower heating values of neat biodiesel and its blends were measured experimentally. • Lower heating value prediction models were developed based on the density and viscosity values of the fuel. • The predication models were validated by measured values and previous models. • The prediction models were used to predict the lower heating value of 24 biodiesel feedstock types produced globally. • The effects of lower heating vale on brake specific fuel consumption and thermal efficiency were investigated. - Abstract: The heating value of fuel is one of its most important physical properties, and is used for the design and numerical simulation of combustion processes within internal combustion (IC) engines. Recently, there has been a significant increase in the use of dual fuel and blended fuels in compression ignition (CI) engines. Most of the blended fuels include biodiesel as one of the constituents and hence the objective of this study is to investigate the effect of biodiesel content to lower heating value (LHV) and to develop new LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity. Furthermore, this study also investigated the effects of the LHV on CI engines performance parameters experimentally. To achieve the above mentioned objectives density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc.) were measured as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine experimental work was conducted on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on the experimental results, models were developed which have the capability to predict the LHV corresponding to different fractions, densities and viscosities of

  2. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  3. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  4. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  5. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Dhar, Atul; Gupta, Jai Gopal; Kim, Woong Il; Choi, Kibong; Lee, Chang Sik; Park, Sungwook

    2015-01-01

    Highlights: • Effect of FIP on microscopic spray characteristics. • Effect of FIP and SOI timing on CRDI engine performance, emissions and combustion. • Fuel injection duration shortened, peak injection rate increased with increasing FIP. • SMD (D 32 ) and AMD (D 10 ) of fuel droplets decreased for lower biodiesel blends. • Increase in biodiesel blend ratio and FIP, fuel injection duration decreased. - Abstract: In this investigation, effect of 10%, 20% and 50% Karanja biodiesel blends on injection rate, atomization, engine performance, emissions and combustion characteristics of common rail direct injection (CRDI) type fuel injection system were evaluated in a single cylinder research engine at 300, 500, 750 and 1000 bar fuel injection pressures at different start of injection timings and constant engine speed of 1500 rpm. The duration of fuel injection slightly decreased with increasing blend ratio of biodiesel (Karanja Oil Methyl Ester: KOME) and significantly decreased with increasing fuel injection pressure. The injection rate profile and Sauter mean diameter (D 32 ) of the fuel droplets are influenced by the injection pressure. Increasing fuel injection pressure generally improves the thermal efficiency of the test fuels. Sauter mean diameter (D 32 ) and arithmetic mean diameter (D 10 ) decreased with decreasing Karanja biodiesel content in the blend and significantly increased for higher blends due to relatively higher fuel density and viscosity. Maximum thermal efficiency was observed at the same injection timing for biodiesel blends and mineral diesel. Lower Karanja biodiesel blends (up to 20%) showed lower brake specific hydrocarbon (BSHC) and carbon monoxide (BSCO) emissions in comparison to mineral diesel. For lower Karanja biodiesel blends, combustion duration was shorter than mineral diesel however at higher fuel injection pressures, combustion duration of 50% blend was longer than mineral diesel. Up to 10% Karanja biodiesel blends in a CRDI

  6. Improvement of biodiesel methanol blends

    Directory of Open Access Journals (Sweden)

    Y. Datta Bharadwaz

    2016-06-01

    Full Text Available The main objective of this work was to improve the performance of biodiesel–methanol blends in a VCR engine by using optimized engine parameters. For optimization of the engine, operational parameters such as compression ratio, fuel blend, and load are taken as factors, whereas performance parameters such as brake thermal efficiency (Bth and brake specific fuel consumption (Bsfc and emission parameters such as carbon monoxide (CO, unburnt hydrocarbons (HC, Nitric oxides (NOx and smoke are taken as responses. Experimentation is carried out as per the design of experiments of the response surface methodology. Optimization of engine operational parameters is carried out using Derringers Desirability approach. From the results obtained it is inferred that the VCR engine has maximum performance and minimum emissions at 18 compression ratio, 5% fuel blend and at 9.03 kg of load. At this optimized operating conditions of the engine the responses such as brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburnt hydrocarbons, nitric oxide, and smoke are found to be 31.95%, 0.37 kg/kW h, 0.036%, 5 ppm, 531.23 ppm and 15.35% respectively. It is finally observed from the mathematical models and experimental data that biodiesel methanol blends have maximum efficiency and minimum emissions at optimized engine parameters.

  7. Abnormalities in the male reproductive system after exposure to diesel and biodiesel blend.

    Science.gov (United States)

    Kisin, Elena R; Yanamala, Naveena; Farcas, Mariana T; Gutkin, Dmitriy W; Shurin, Michael R; Kagan, Valerian E; Bugarski, Aleksandar D; Shvedova, Anna A

    2015-03-01

    Altering the fuel source from petroleum-based ultralow sulfur diesel to biodiesel and its blends is considered by many to be a sustainable choice for controlling exposures to particulate material. As the exhaust of biodiesel/diesel blends is composed of a combination of combustion products of polycyclic aromatic hydrocarbons and fatty acid methyl esters, we hypothesize that 50% biodiesel/diesel blend (BD50) exposure could induce harmful outcomes because of its ability to trigger oxidative damage. Here, adverse effects were compared in murine male reproductive organs after pharyngeal aspiration with particles generated by engine fueled with BD50 or neat petroleum diesel (D100). When compared with D100, exposure to BD50 significantly altered sperm integrity, including concentration, motility, and morphological abnormalities, as well as increasing testosterone levels in testes during the time course postexposure. Serum level of luteinizing hormone was significantly depleted only after BD50 exposure. Moreover, we observed that exposure to BD50 significantly increased sperm DNA fragmentation and the upregulation of inflammatory cytokines in the serum and testes on Day 7 postexposure when compared with D100. Histological evaluation of testes sections from BD50 exposure indicated more noticeable interstitial edema, degenerating spermatocytes, and dystrophic seminiferous tubules with arrested spermatogenesis. Significant differences in the level of oxidative stress assessed by accumulation of lipid peroxidation products and depletion of glutathione were detected on exposure to respirable BD50 and D100. Taken together, these results indicate that exposure of mice to inhalable BD50 caused more pronounced adverse effects on male reproductive function than diesel. © 2014 Wiley Periodicals, Inc.

  8. Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application

    Directory of Open Access Journals (Sweden)

    Ee Sann Tan

    2015-11-01

    Full Text Available Biodiesel is defined as domestic renewable energy resource, which can be derived from natural oils through the transesterification. The implementation of biodiesel is essential due to the energy depletion crisis and the impact on exacerbating environment caused by rapid consumption of conventional diesel. Waste cooking oil (WCO was used as the raw material to produce biodiesel in order to reduce wastes polluting the environment. This paper studies the technical potential of WCO biodiesel to be used as an alternative fuel for microturbine. The ASTM D6751 and ASTM D2881 standards were selected as references to evaluate the compatibility with distillate to be used as a microturbine fuel. The performance and emission tests were conducted employing a 30 kW microturbine, without any modification, using biodiesel and distillate blends up to maximum of 20% biodiesel mixing ratio. It was found that the thermal efficiency peaked at 20% biodiesel blend with distillate, despite the fact that biodiesel had a lower calorific value and a higher fuel consumption. The emission test results showed reduction of CO emission by increasing the WCO biodiesel mixing ratio, while NOx emission was dependent on the exhaust gas temperature. In conclusion, biodiesel derived from WCO has the potential to substitute distillate in the microturbine application.

  9. Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine

    International Nuclear Information System (INIS)

    Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Ashraful, A.M.; Mobarak, H.M.

    2014-01-01

    Highlights: • Palm, coconut and their combined biodiesel blend (PB15CB15) was studied. • Characterization and effect on engine performance and emission was analyzed. • Combined blend improves BP, BSFC and NOx emission compared to coconut. • Combined blend improves CO, HC emissions and BTE compared to palm. - Abstract: Biodiesel is a renewable and sustainable alternative fossil fuel that is derived from vegetable oils and animal fats. This study investigates the production, characterization, and effect of biodiesel blends from two prominent feedstocks, namely, palm and coconut (PB30 and CB30), on engines. To aggregate the advantages of high ignition quality of palm and high oxygen content of coconut, combined blend of this two biodiesels (PB15CB15) is examined to evaluate its effect on engine performance and emission characteristics. Biodiesels are produced using the alkali catalyzed transesterification process. Various physicochemical properties are measured and compared with the ASTM D6751 standard. A 10 kW, horizontal, single-cylinder, four-stroke, and direct-injection diesel engine is employed under a full load and varying speed conditions. Biodiesel blends produce a low brake torque and high brake-specific fuel consumption (BSFC). However, all emissions, except for NOx, are significantly reduced. PB15CB15 improves brake torque and power output while reducing BSFC and NOx emissions when compared with CB30. Meanwhile, compared with PB30, PB15CB15 reduces CO and HC emissions while improving brake thermal efficiency. The experimental analysis reveals that the combined blend of palm and coconut oil shows superior performance and emission over individual coconut and palm biodiesel blends

  10. Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion

    Directory of Open Access Journals (Sweden)

    Dimitrios N Tziourtzioumis

    2017-07-01

    Full Text Available Differences in the evolution of combustion in a single cylinder, DI (direct injection diesel engine fuelled by B20 were observed upon processing of the respective indicator diagrams. Aiming to further investigate the effects of biodiesel on the engine injection and combustion process, the injection characteristics of B0, B20, B40, B60, B80 and B100 were measured at low injection pressure and visualized at low and standard injection pressures. The fuel atomization characteristics were investigated in terms of mean droplet velocity, Sauter mean diameter, droplet velocity and diameter distributions by using a spray visualization system and Laser Doppler Velocimetry. The jet break-up characteristics are mainly influenced by the Weber number, which is lower for biodiesel, mainly due to its higher surface tension. Thus, Sauter mean diameter (SMD of sprays with biodiesel blended-fuel is higher. Volume mean diameter (VMD and arithmetic mean diameter (AMD values also increase with blending ratio. Kinematic viscosity and surface tension become higher as the biodiesel blending ratio increases. The SMD, VMD and AMD of diesel and biodiesel blended fuels decreased with an increase in the axial distance from spray tip. Comparison of estimated fuel burning rates for 60,000 droplets’ samples points to a decrease in mean fuel burning rate for B20 and higher blends.

  11. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  12. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    Putzig, Mollie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  13. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  14. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  15. Locomotive emissions measurements for various blends of biodiesel fuel.

    Science.gov (United States)

    2014-12-01

    The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. The : emission tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1 Plus GE Dash9-44CW, using t...

  16. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis

    International Nuclear Information System (INIS)

    López, I.; Quintana, C.E.; Ruiz, J.J.; Cruz-Peragón, F.; Dorado, M.P.

    2014-01-01

    Highlights: • Olive–pomace oil (OPO) biodiesel constitute a new second-generation biofuel. • Exergy efficiency and performance of OPO biodiesel, straight and blended with diesel fuel was evaluated. • OPO biodiesel, straight and blended, provided similar performance parameters. • OPO biodiesel, straight and blended, provided similar exergy efficiency compared to diesel fuel. • OPO biodiesel, straight and blended, provided no exergy cost increment compared to diesel fuel. - Abstract: Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment

  17. Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil

    International Nuclear Information System (INIS)

    Salaheldeen, Mohammed; Aroua, M.K.; Mariod, A.A.; Cheng, Sit Foon; Abdelrahman, Malik A.; Atabani, A.E.

    2015-01-01

    Highlights: • Properties of M. peregrina biodiesel are determined for the first time. • Biodiesel was produced easily by alkaline transesterification in one step. • The effect of diesel on the properties of biodiesel was examined. • M. peregrina is a potential crop for sustainable production of biodiesel. - Abstract: Moringaceae is a monogeneric family with a single genus i.e. Moringa. This family includes 13 species. All these species are known as medicinal, nutritional and water purification agents. This study reports, for the first time, on characterization of the biodiesel derived from crude Moringaperegrina seed oil and its blends with diesel. The crude oil was converted to biodiesel by the transesterification reaction, catalyzed by potassium hydroxide. High ester content (97.79%) was obtained. M. peregrina biodiesel exhibited high oxidative stability (24.48 h). Moreover, the major fuel properties of M. peregrina biodiesel conformed to the ASTM D6751 standards. However, kinematic viscosity (4.6758 mm 2 /s), density (876.2 kg/m 3 ) and flash point (156.5 °C) were found higher than that of diesel fuel. In addition, the calorific value of M. peregrina biodiesel (40.119 MJ/kg) was lower than the diesel fuel. The fuel properties of M. peregrina biodiesel were enhanced significantly by blending with diesel fuel. In conclusion, M. peregrina is a suitable feedstock for sustainable production of biodiesel only blended up to 20% with diesel fuel, considering the edibility of all other parts of this tree

  18. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  19. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  20. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    Science.gov (United States)

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Impact of Biodiesel Blends and Di-Ethyl-Ether on the Cold Starting Performance of a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Adrian Clenci

    2016-04-01

    Full Text Available The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. Many studies have been conducted to assess the impact of biodiesel use on engine performances. Most of them were carried out in positive temperature conditions. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. Since diesel engine behavior at negative temperatures is an important quality criterion of the engine’s operation, one goal of this paper is to assess the starting performance at −20 °C of a common automotive compression ignition engine, fueled with different blends of fossil diesel fuel and biodiesel. Results showed that increasing the biodiesel blend ratio generated a great deterioration in engine startability. Another goal of this study was to determine the biodiesel blend ratio limit at which the engine would not start at −20 °C and, subsequently, to investigate the impact of Di-Ethyl-Ether (DEE injection into the intake duct on the engine’s startability, which was found to be recovered.

  2. Karanja (Pongamia pinnata) biodiesel blend B5 as internal combustion engine fuel

    OpenAIRE

    Boruah, Dibakor

    2014-01-01

    In this study, fuel characteristics of biodiesel abstracted from Karanja (Pongamia pinnata) were evaluated and compared with petroleum diesel. Various fuel properties such as density, viscosity, calorific value, ash content, cloud point, pour points, induction period and flash point were evaluated according to ASTM standards. A (5% v/v) blend of biodiesel and petroleum diesel were used to run a diesel engine and their performances were investigated and compared in terms of fuel power, indicat...

  3. Effect of antioxidant on the oxidation stability and combustion–performance–emission characteristics of a diesel engine fueled with diesel–biodiesel blend

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.; How, H.G.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Alexandrian laurel or Calophyllum inophyllum biodiesel blend fulfill the ASTM (D7467) specification. • Addition of antioxidant to biodiesel higher the oxidation stability. • Antioxidant treated blends showed lower NO X and BSFC compared to untreated blend. • Antioxidant treated blends showed higher CO, HC and smoke compared to untreated blend. - Abstract: Alexandrian laurel or Calophyllum inophyllum oil is recently considered one of the most anticipated nonconsumable or nonedible biodiesel sources. An attempt has been made in this study to increase the oxidation stability and investigate the engine performance, emission, and combustion characteristics of a diesel engine by adding 1% (by vol.) of two antioxidants, such as 2,6-Di-tert.-butyl-4-methylphenol and 2,2′-methylenebis (4-methyl-6-tert-butylphenol), in higher percentages of C. inophyllum biodiesel (CB30) with diesel fuel (B0). The experiment was performed on a single-cylinder, water-cooled, direct-injection diesel engine for this purpose. The addition of both antioxidants increased the oxidation stability without significantly changing other physicochemical properties. Results also show that the antioxidants enhanced the start of combustion of biodiesel, which resulted in a short ignition delay. The peak pressure and the peak heat release rate during premixed combustion phase of pure CB30 and its modified blend with antioxidant were higher than those of B0. Both antioxidant blends showed higher brake power, higher brake thermal efficiency, and lower brake specific fuel consumption than pure CB30. Both antioxidants significantly reduced NO X emission; however, CO, HC, and smoke opacity were slightly higher than those of CB30. Based on this study, Alexandrian laurel or C. inophyllum biodiesel blend (CB30) with antioxidant can be used as an alternative fuel in a diesel engine without modifications.

  4. Study of the Rancimat test method in measuring the oxidation stability of biodiesel ester and blends

    Energy Technology Data Exchange (ETDEWEB)

    Berthiaume, D.; Tremblay, A. [Oleotek Inc., Thetford Mines, PQ (Canada)

    2006-11-15

    This paper provided details of a study conducted to examine the oxidation stability of biodiesel blends. The study tested samples of canola oil, soybean oil, fish oil, yellow grease, and tallow. The EN 14112 (Rancimat) method was used to compare oxidation stability results obtained in previous tests conducted in the United States and Europe. The aim of the study was also to evaluate the influence of peroxide value (PV), acid value (AV) and feedstock source on the the oxidative stability of different samples. The study also evaluated the possibility of developing a validated test method developed from the EN 14112 methods to specifically consider biodiesel blends. Results of the study indicated that the Rancimat method was not suitable for measuring the oxidation stability of biodiesels blended with petrodiesels. No direct correlation between oxidative stability and PV or AV was observed. It was concluded that fatty acid distribution was not a principal factor in causing changes in oxidation stability. 22 refs., 3 tabs., 1 fig.

  5. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  6. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  7. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  8. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends.

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  9. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  10. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Directory of Open Access Journals (Sweden)

    Lucía Botella

    2018-04-01

    Full Text Available The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons, middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  11. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    Science.gov (United States)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here. PMID:29675406

  12. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends

    Directory of Open Access Journals (Sweden)

    Mustafa Atakan Akar

    2016-02-01

    Full Text Available In this study, fuel properties, engine performance, and emission characteristics of diesel fuel, false flax biodiesel, and their blends with butanol have been evaluated. Blend ratios used in this study were diesel–biodiesel–butanol (70% diesel–20% biodiesel–10% butanol and 60% diesel–20% biodiesel–20% butanol by volume and biodiesel–diesel (20% biodiesel–80% diesel and 100% biodiesel by volume. Experiments showed that 10% alcohol addition to diesel and biodiesel fuels caused a decrease in torque value up to 8.57%. When butanol ratio raised to 20%, torque value decreased to an average of 12.7% and power values decreased to an average of 13.57%. Specific fuel consumption increased to an average of 10.63% and 12.80% with 10% and 20% butanol addition, respectively. Alcohol addiction into conventional diesel and biodiesel fuel slightly increased NOX emissions. Supplement of alcohol decreased CO and CO2 emissions when it was entrained to diesel and increased it when it was added to biodiesel. It means that addition of alcohol to diesel changed CO and CO2 emissions.

  13. An experimental investigation of PAH emissions from a heavy duty diesel engine fuelled with biodiesel and its blend

    International Nuclear Information System (INIS)

    Shah, A. N.; Shan, G.E.Y.; Wei, T.J.; Hua, L.Z.

    2008-01-01

    For the comparison of emission of polycyclic aromatic hydrocarbons (PAHs) from diesel biodiesel and its 20% blend with diesel, and their carcinogenic potencies, an experimental study has been conducted on a turbocharged, intercooled and direct injection diesel engine. Total PAHs (solid and gas) from diesel, B20 and B100 at low load were more than those at high loads. Total PAH emissions from the test fuels at the rated speed were more than those at maximum torque speed. Benzo[a] pyrene (BaP) brake specific emission of biodiesel is less than that of diesel. LMW-PAH emissions for the test fuels are all higher than those of MMW and HMW PAH. Biodiesel and B20 reduce both the total Benzo[a] pyrene equivalent concentration (BaP/sub eq/) and the total mean-PAHs as compared to commercial diesel fuel. BSFC of the engine increased but its brake power decreased in the cases of B20 and biodiesel. (author)

  14. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    Science.gov (United States)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  15. Investigation of friction and wear characteristics of palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Both wear and friction decrease with the increase of biodiesel concentration. ► Wear and friction appear to decrease more at the range of 10–20% biodiesel in diesel blend. ► The wear of steel ball in biodiesel (B100) was 20% lower than that in diesel (B0). ► Lubricity in terms of wear and friction decreases with the increase of rotating speed. - Abstract: Use of biodiesel in automobile engine is creating tribology related new challenges. The present study aims to assess the friction and wear characteristics of palm biodiesel at different concentration level by using four-ball wear machine. The investigated fuels were biodiesel (B100), diesel (B0) and three different biodiesel blends such as B10 (10% biodiesel in diesel), B20, B50. Tests were conducted at 75 °C under a normal load of 40 kg for 1 h at four different speeds viz, 600, 900, 1200 and 1500 rpm. Worn surfaces of the balls were examined by SEM. Results showed that wear and friction decreased with the increase of biodiesel concentration. The wear of steel ball in B100 was appeared to be 20% lower than that in diesel (B0)

  16. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    Science.gov (United States)

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Production and application of biodiesel from waste cooking oil

    Science.gov (United States)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  18. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors

    International Nuclear Information System (INIS)

    Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A.; Wakil, M.A.; Ashraful, A.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Calophyllum inophyllum biodiesel blends were evaluated using antioxidants. • Blend fuel properties met the ASTM D7467 specification. • Usage of antioxidants provided good stabilization with improved BP and BSFC. • Treated blends showed lower NOx but higher CO and HC compared to untreated blend. - Abstract: Biodiesel having higher unsaturation possesses lower oxidation stability, which needs treatment of oxidation inhibitors or antioxidants. It is expected that antioxidants may affect the clean burning characteristic of biodiesel. Calophyllum inophyllum Linn oil is one of the promising non-edible based feedstock which consists of mostly unsaturated fatty acids. This paper presents an experimental investigation of the antioxidant addition effect on engine performance and emission characteristics. Biodiesel (CIBD) was produced by one step esterification using sulfuric acid (H 2 SO 4 ) as catalyst and one step transesterification using potassium hydroxide (KOH) as a catalyst. Two monophenolic, 2(3)-tert-Butyl-4-methoxyphenol (BHA) and 2,6-di-tert-butyl-4-methylphenol (BHT) and one diphenolic, 2-tert-butylbenzene-1,4-diol (TBHQ) were added at 2000 ppm concentration to 20% CIBD (CIB20). The addition of antioxidants increased oxidation stability without causing any significant negative effect of physicochemical properties. TBHQ showed the greatest capability in increasing stability of CIB20. The tests were carried out using a 55 kW 2.5 L four-cylinder diesel engine at constant load varying speed condition. The performance results indicate that CIB20 showed 1.36% lower mean brake power (BP) and 4.90% higher mean brake specific fuel consumption (BSFC) compared to diesel. The addition of antioxidants increased BP and reduced BSFC slightly. Emission results show that CIB20 increased NOx but decreased CO and HC emission. Antioxidants reduced 1.6–3.6% NOx emission, but increased both CO and HC emission compared to CIB20. However, the level was below the

  19. Efficacy of specific gravity as a tool for prediction of biodiesel-petroleum diesel blend ratio

    Science.gov (United States)

    Prediction of volumetric biodiesel/petrodiesel blend ratio (VBD) from specific gravity (SG) data was the subject of the current investigation. Fatty acid methyl esters obtained from soybean, palm, and rapeseed oils along with chicken fat (SME-1, SME-2, PME, RME, and CFME) were blended (0 to 20 volum...

  20. Biodiesel Handling and Use Guide (Fifth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty. K.; Yanowitz, J.

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  1. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  2. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel

    International Nuclear Information System (INIS)

    Pereira, Roberto G.; Oliveira, Jorge L.; Oliveira, Paulo Cesar P.; Oliveira, Cesar D.; Fellows, Carlos E.; Piamba, Oscar E.

    2007-01-01

    The present work describes an experimental investigation concerning the electric energy generation using blends of diesel and soybean biodiesel. The soybean biodiesel was produced by a transesterification process of the soybean oil using methanol in the presence of a catalyst (KOH). The properties (density, flash point, viscosity, pour point, cetane index, copper strip corrosion, conradson carbon residue and ash content) of the diesel and soybean biodiesel were determined. The exhaust emissions of gases (CO, CO 2 ,C x H y ,O 2 , NO, NO x and SO 2 ) were also measured. The results show that for all the mixtures tested, the electric energy generation was assured without problems. It has also been observed that the emissions of CO, C x H y and SO 2 decrease in the case of diesel-soybean biodiesel blends. The temperatures of the exhaust gases and the emissions of NO and NO x are similar to or less than those of diesel. (author)

  3. Power generation and gaseous emissions performance of an internal combustion engine fed with blends of soybean and beef tallow biodiesel.

    Science.gov (United States)

    Schirmer, Waldir Nagel; Gauer, Mayara Ananda; Tomaz, Edson; Rodrigues, Paulo Rogério Pinto; de Souza, Samuel Nelson Melegari; Chaves, Luiz Inácio; Villetti, Lucas; Olanyk, Luciano Zart; Cabral, Alexandre Rodrigues

    2016-01-01

    This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.

  4. The dynamic model on the impact of biodiesel blend mandate (B5) on Malaysian palm oil domestic demand: A preliminary finding

    Science.gov (United States)

    Abidin, Norhaslinda Zainal; Applanaidu, Shri-Dewi; Sapiri, Hasimah

    2014-12-01

    Over the last ten years, world biofuels production has increased dramatically. The biodiesel demand is driven by the increases in fossil fuel prices, government policy mandates, income from gross domestic product and population growth. In the European Union, biofuel consumption is mostly driven by blending mandates in both France and Germany. In the case of Malaysia, biodiesel has started to be exported since 2006. The B5 of 5% blend of palm oil based biodiesel into diesel in all government vehicles was implemented in February 2009 and it is expected to be implemented nationwide in the nearest time. How will the blend mandate will project growth in the domestic demand of palm oil in Malaysia? To analyze this issue, a system dynamics model was constructed to evaluate the impact of blend mandate implementation on the palm oil domestic demand influence. The base run of simulation analysis indicates that the trend of domestic demand will increase until 2030 in parallel with the implementation of 5 percent of biodiesel mandate. Finally, this study depicts that system dynamics is a useful tool to gain insight and to experiment with the impact of changes in blend mandate implementation on the future growth of Malaysian palm oil domestic demand sector.

  5. Quality improvement of biodiesel blends using different promising fuel additives to reduce fuel consumption and NO emission from CI engine

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Rashed, M.M.; Shahin, M.M.; Masjuki, H.H.; Kalam, M.A.; Kamruzzaman, M.; Rashedul, H.K.

    2017-01-01

    Highlights: • Pentanol, EHN and DTBP are promising fuel additives for improving properties of biodiesel blends. • The utilization of additives improved the properties such as the cetane number, viscosity and oxidation stability. • BSFC, NO and smoke of the EHN and DTBP treated blends are improved by the addition of fuel additives. • Cylinder pressure and Heat Release Rate are enhanced with EHN and DTBP addition. - Abstract: Considering the low cetane number of biodiesel blends and alcohols, ignition promoter additives 2-ethylhexyl nitrate (EHN) and di-tertiary-butyl peroxide (DTBP) was used in this study at a proportion of 1000 and 2000 ppm to diesel-biodiesel-pentanol blends. Five carbon pentanol was used at a proportion of 10% with 20% jatropha biodiesel-70% diesel blends and engine testing was carried out in a single cylinder DI diesel engine. The fuel properties, engine performance, emission and combustion were studied and mainly the effects of two most widely used ignition promoter on the engine behaviour were compared and analyzed. Experimental results indicated that, the fuel properties like density (0.36–1.45%), viscosity (0.26–3.77%), oxidation stability (5.5–26.4%), cetane number (2–14.58%) are improved remarkably with a moderate change in calorific value for the pentanol and ignition promoter treated biodiesel blends depending on the proportion used and for different benchmark. The brake power (BP) is developed very slightly (0.66–1.52%), which is still below than that of diesel, however, the brake specific energy consumption (BSEC) decreased significantly (0.92–5.84%). Although mixing of pentanol increased the nitric oxide (NO) (2.15% than JB20) with reducing the hydrocarbon (HC), carbon monoxide (CO) and smoke, however, the addition of EHN and DTBP reduced the NO (2–4.62%) and smoke (3.45–15.5%) emissions showing higher CO (1.3–9.15%) and HC (5.1–17.87%) emission based on percentage of ignition promoter used. The NO emission

  6. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luis Busi; Chiaranda, Helen Simone; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2013-06-01

    Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m(2) that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.

  7. Biodiesel production from Kutkura (Meyna spinosa Roxb. Ex.) fruit seed oil: Its characterization and engine performance evaluation with 10% and 20% blends

    International Nuclear Information System (INIS)

    Kakati, J.; Gogoi, T.K.

    2016-01-01

    Highlights: • Biodiesel is produced from Kutkura seed oil and its fatty acid composition is determined. • Important fuel properties of biodiesel derived from Kutkura seed oil are evaluated. • Properties of Kutkura seed oil and biodiesel are compared with other tree seed biodiesels. • Engine performance of 10% (B10) and 20% (B20) blending of Kutkura biodiesel is reported. • B10 and B20 showed better performance than conventional diesel fuel. - Abstract: Kutkura (Meyna spinosa Roxb.) is a plant species in the genus Meyna from the Rubiaceae family. Kutkura fruits are food items; the fruits and the leaves of the Kutkura plant are also used in traditional medicine. In this article, biodiesel produced from Kutkura fruit seed oil is characterized and compared with other tree seed based biodiesels. Oil content in Kutkura fruit seed was found 35.45%. Free fatty acid (FFA) content in the oil was 3.1%, hence base catalyzed transesterification was used directly for biodiesel production from Kutkura fruit seed oil. Kutkura fruit seed oil contained 7.187% palmitic, 5.382% stearic, 30.251% oleic and 52.553% linoleic acid. Calorific value, kinematic viscosity and density of Kutkura fruit seed oil were found 38.169 MJ/kg, 28.92 mm"2/s and 922.5 kg/m"3 respectively. However, after transesterification, these properties improved to 39.717 MJ/kg, 5.601 mm"2/s and 885.3 kg/m"3 respectively in case of the Kutkura fatty acid methyl ester (FAME). Apart from water content, all other properties of Kutkura FAME met the ASTM (D6751) and (EN14214) standards. Blending of Kutkura FAME with diesel up to 20% (vol.) however reduced water content down to an acceptable level of 0.038 wt.%. The kinematic viscosity also reduced to the level of conventional diesel after blending. Further, an engine performance study with biodiesel blends (B10 and B20) showed almost similar fuel consumption rate with diesel. Engine brake thermal efficiency (BTE) was more while the smoke emission was less with B

  8. Performance of generating group diesel fed with different blends of soybean biodiesel; Desempenho de um grupo gerador diesel alimentado com diferentes misturas de biodiesel de oleo de soja

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Elton Fialho dos; Amaral, Paulo Augusto Pedroso; Cunha, Joao Paulo Barreto; Freitas, Sueli Martins; Queiroz, Helio de Souza [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Anapolis], E-mail: bcunha_2@hotmail.com

    2010-07-01

    The replacement of diesel with biofuels or blends with diesel that is the most focused today to supply the shortage of petroleum based fuels. In Brazil the trend that biodiesel be used with regular diesel is increasing. As a result feasibility studies are becoming more necessary. The objective of this study was to evaluate use of biodiesel in different concentrations with diesel (B3, B5, B10, B20, B50 and B100) in a generating group diesel. Assays for quantification of the hourly consumption of fuel and emission of noise in different variants of the engine had been carried out. This was conducted through the electrical charge, connected to the generating group, and carried out through the analysis of the degree of Bosch blackening of the gases of exhaustion in the different concentrations. The equations of regression had good correlation with the real data. In conclusion the electric charge applied to the group generator increases proportionately with the time consumption and the emission of noise. However Biodiesel (B100) is different in comparison to other mixtures in the Bosch blackening test, presenting a lesser emission in relation to the other mixtures. (author)

  9. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  10. Role of biodiesel-diesel blends in alteration of particulate matter emanated by diesel engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Shahid, E.M.

    2015-01-01

    The current study is focused on the investigation of the role of biodiesel in the alteration of particulate matter (PM) composition emitted from a direct injection-compression ignition. Two important blends of biodiesel with commercial diesel known as B20 (20% biodiesel and 80% diesel by volume) and B50 were used for the comparative analysis of their pollutants with those of 100% or traditional diesel (D). The experiments were performed under the auspices of the Chinese 8-mode steady-state cycle on a test bench by coupling the engine with an AC electrical dynamometer. As per experimental results, over-50 nm aerosols were abated by 8.7-47% and 6-51% with B20 and B50, respectively, on account of lofty nitrogen dioxide to nitrogen oxides (NO2/NO) ratios. In case of B50, sub-50 nm aerosols and sulphates were higher at maximum load modes of the test, owing to adsorption phenomenon of inorganic nuclei leading to heterogeneous nucleation. Moreover, trace metal emissions (TME) were substantially reduced reflecting the reduction rates of 42-57% and 64-80% with B20 and B50, respectively, relative to baseline measurements taken with diesel. In addition to this, individual elements such as Ca and Fe were greatly minimised, while Na was enhanced with biodiesel blended fuels. (author)

  11. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis

    Directory of Open Access Journals (Sweden)

    G. Sakthivel

    2015-03-01

    Full Text Available The ever increasing demand and depletion of fossil fuels had an adverse impact on environmental pollution. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM technique for the selection of optimum fuel blend in fish oil biodiesel for the IC engine. The proposed model, Analytical Network Process (ANP is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS and VlseKriterijumska Optimizacija I Kompromisno Resenje (in Serbian (VIKOR to evaluate the optimum blend. Evaluation of suitable blend is based on the exploratory analysis of the performance, emission and combustion parameters of the single cylinder, constant speed direct injection diesel engine at different load conditions. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS and VIKOR are used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP with TOPSIS and VIKOR. The obtained preference order of the blends for ANP-VIKOR and ANP-TOPSIS are B20 > Diesel > B40 > B60 > B80 > B100 and B20 > B40 > Diesel > B60 > B80 > B100 respectively. Hence by comparing both these methods, B20 is selected as the best blend to operate the internal combustion engines. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R& D engineers to meet the fuel economy and emission norms to empower the green revolution.

  12. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  13. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties

    Energy Technology Data Exchange (ETDEWEB)

    Trakarnpruk, Wimonrat; Porntangjitlikit, Suriya [Petrochemistry and Polymer Science, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-07-15

    Biodiesel was prepared from palm oil by transesterification with methanol in the presence of 1.5%K loaded-calcined Mg-Al hydrotalcite. Fatty acid methyl esters content of 96.9% and methyl ester yield of 86.6% were achieved using a 30:1 methanol to oil molar ratio at 100{sup o}C for 6 h and 7 wt% catalyst. The biodiesel was characterized and its impact on elastomer properties was evaluated. The compatibility of B10 diesel blend (10% biodiesel) with six types of elastomers commonly found in fuel systems (NBR, HNBR, NBR/PVC, acrylic rubber, co-polymer FKM, and terpolymer FKM) were investigated. The physical properties of elastomers after immersion in tested fuels (for 22, 670, and 1008 h at 100{sup o}C) were measured according to American Society of Testing and Materials (ASTM). These include swelling (mass change and volume change), hardness, tensile and elongation, as well as the dynamic mechanical property. The results showed that properties of NBR, NBR/PVC and acrylic rubber were affected more than other elastomers. This is due to the absorption and dissolving of biodiesel by rubber in these samples. Co-polymer FKM and terpolymer FKM which are fluoroelastomers show little property change. (author)

  14. Effects of a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine

    International Nuclear Information System (INIS)

    Tziourtzioumis, Dimitrios; Stamatelos, Anastassios

    2012-01-01

    Highlights: ► We demonstrate how the fuel injection system responds to different fuel properties. ► Improvements to the ECU maps of the engine are suggested. ► These allow operation at high biodiesel blends without loss in engine performance. ► Continued operation with high biodiesel fuel blend, resulted in fuel pump failure. - Abstract: The results of steady state and transient engine bench tests of a 2.0l common-rail passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. The macroscopic steady-state performance and emissions of the same engine has already been presented elsewhere. The current study demonstrates how the engine management system responds to different fuel properties, with focus to the fuel system dynamics and the engine’s transient response. A set of characteristic transient operation points was selected for the tests. Data acquisition of engine ECU variables was made by means of INCA software/ETAS Mac2 interface. Additional data acquisition regarding engine performance was based on external sensors. The results indicate significant differences in fuel system dynamics and transient engine operation with the B70 blend at high fuel flow rates. Certain modifications to engine ECU maps and control parameters are proposed, aimed at improvement of transient performance of modern engines run on high percentage biodiesel blends. However, a high pressure pump failure that was observed after prolonged operation with the B70 blend, hints to the use of more conservative biodiesel blending in fuel.

  15. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  16. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  17. Base catalyzed transesterification of acid treated vegetable oil blend for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar Ali [Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak 31750 (Malaysia)

    2010-10-15

    Biodiesel can be produced from low cost non-edible oils and fats. However, most of these sources are of high free fatty acid content which requires two stage transesterification to reduce the acid value and produce biodiesel. The acid treatment step is usually followed by base transesterification since the latter can yield higher conversions of methyl esters at shorter reaction time when compared with acid catalyzed reaction. In the current study, base transesterification in the second stage of biodiesel synthesis is studied for a blend of crude palm/crude rubber seed oil that had been characterized and treated with acid esterification. Optimum conditions for the reaction were established and effect of each variable was investigated. The base catalyzed transesterification favored a temperature of 55 C with methanol/oil molar ratio of 8/1 and potassium hydroxide at 2% (ww{sup -1}) (oil basis). The conversion of methyl esters exceeded 98% after 5 h and the product quality was verified to match that for biodiesel with international standards. (author)

  18. The influence of temperature on the rheology of biodiesel and on the biodiesel-glycerin-ethanol blend - doi: 10.4025/actascitechnol.v34i1.8067

    Directory of Open Access Journals (Sweden)

    Andrés José Cocato Steluti

    2011-11-01

    Full Text Available After transesterification reaction, biodiesel and glycerin (the resulting co-product, coupled to reaction excesses and impurities, make up two distinct phases that must be separated. The use of ethanol as a transesterificating agent impairs the above-mentioned separation due to the greater affinity of ethyl esters (biodiesel from ethanol to glycerin. Current research provides an analysis of the influence of temperature on the rheology of biodiesel and the bio-diesel-glycerin-ethanol blend. Rheology behavior is highly important not merely in issues involving, for instance, discharging and pumping, but also as a factor that should be evaluated within the process of separation of the biodiesel-glycerin phases by decantation and centrifugation.

  19. Evaluation of biodiesel fuel and oxidation catalyst in an underground metal mine : revised final report

    Energy Technology Data Exchange (ETDEWEB)

    Watts, W.F. Jr.; Spears, M.; Johnson, J. [Minnesota Univ., St. Paul, MN (United States); Birch, E.; Cantrell, B.K. [National Inst, for Occupational Safety and Health, Morgantown, VW (United States); Grenier, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada); Walker, J. [Ortech International, Mississauga, ON (Canada); Bagley, S. [Michigan Technological Univ., Houghton, MI (United States); Maskery, D.; Stachulak, J.S.; Conard, B.R. [Inco Ltd., Toronto, ON (Canada)

    1998-09-24

    The impact of blended biodiesel fuel and modern diesel oxidation catalyst (DOC) on air quality and diesel emissions were evaluated. The study was conducted in October 1997 at Inco's Creighton Mine in Sudbury, Ontario. The concentration of diesel particulate matter (DPM) and exhaust gas emissions in a non-producing test section were characterized. A diesel-powered scoop was operated on low sulfur, number 2 diesel fuel (D2) during the first week of the evaluation. The scoop was operated on 58 per cent (by mass) blend of soy methyl ester (SME) biodiesel fuel and a low sulfur D2 during the second week. A pair of identical, advanced design DOC equipped the scoop. The changes in exhaust emissions and an estimation of the operating costs of a test vehicle fueled with blended biodiesel were determined and represented the objectives of the study. A summary of the data collected for the determination in the difference in gaseous and particulate matter concentrations attributable to the use of a blended biodiesel fuel and catalyst was presented. The Emissions Assisted Maintenance Procedure (EAMP) was used to determine the day-to-day variation in emissions. The DOCs performed as expected and there were no major changes in engine emissions. An increase in nitrogen dioxide concentrations was noted, and carbon monoxide was effectively removed. The combination of the blended biodiesel fuel and DOCs used in this study decreased total carbon emissions by approximately 21 per cent, as indicated by air samples collected in the test section. During both weeks, sulphur dioxide levels were low. In an underground mine, the use of biodiesel fuel un combination with DOCs represents a passive control option. Cost is an obstacle, biodiesel selling for 3.00 to 3.50 American dollars per gallon. It is estimated that using a 50 per cent blended biodiesel fuel would cost between 2.00 and 2.25 American dollars per gallon. 35 refs., 18 tabs., 10 figs.

  20. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels

    International Nuclear Information System (INIS)

    Lee, Wen-Jhy; Liu, Yi-Cheng; Mwangi, Francis Kimani; Chen, Wei-Hsin; Lin, Sheng-Lun; Fukushima, Yasuhiro; Liao, Chao-Ning; Wang, Lin-Chi

    2011-01-01

    Biomass based oxygenated fuels have been identified as possible replacement of fossil fuel due to pollutant emission reduction and decrease in over-reliance on fossil fuel energy. In this study, 4 v% water-containing ethanol was mixed with (65-90%) diesel using (5-30%) biodiesel (BD) and 1 v% butanol as stabilizer and co-solvent respectively. The fuels were tested against those of biodiesel-diesel fuel blends to investigate the effect of addition of water-containing ethanol for their energy efficiencies and pollutant emissions in a diesel-fueled engine generator. Experimental results indicated that the fuel blend mix containing 4 v% of water-containing ethanol, 1 v% butanol and 5-30 v% of biodiesel yielded stable blends after 30 days standing. BD1041 blend of fuel, which composed of 10 v% biodiesel, 4 v% of water-containing ethanol and 1 v% butanol demonstrated -0.45 to 1.6% increase in brake-specific fuel consumption (BSFC, mL kW -1 h -1 ) as compared to conventional diesel. The better engine performance of BD1041 was as a result of complete combustion, and lower reaction temperature based on the water cooling effect, which reduced emissions to 2.8-6.0% for NO x , 12.6-23.7% particulate matter (PM), 20.4-23.8% total polycyclic aromatic hydrocarbons (PAHs), and 30.8-42.9% total BaPeq between idle mode and 3.2 kW power output of the diesel engine generator. The study indicated that blending diesel with water-containing ethanol could achieve the goal of more green sustainability. -- Highlights: → Water-containing ethanol was mixed with diesel using biodiesel and butanol as stabilizer and co-solvent, respectively. → Fuel blends with 4 v% water-containing ethanol, 1 v% butanol, 5-30 v% biodiesel and conventional diesel yielded a stable blended fuel after more than 30 days. → Due to more complete combustion and water quench effect, target fuel BD1041 was gave good energy performance and significant reduction of PM, NO x , total PAH and total BaPeq emissions.

  1. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  2. Comparative Study of Biofuel and Biodiesel Blend with Mineral Diesel Using One-Dimensional Simulation

    International Nuclear Information System (INIS)

    Rahim, Rafidah; Mamat, Rizalman; Taib, Mohd Yusof

    2012-01-01

    This study is intended to perform one-dimensional simulation for four cylinders diesel engine by using various type of fuels and blend. The testing of biofuels properties conducted according to ASTM standards. The physical properties of the fuel are investigated in chemical laboratory which comprises of flash point, kinematic viscosity, density, cloud and pour point, acid value and moisture content. There are three types of fuels used throughout the study, which are straight vegetable oil (SVO), biodiesel 20% blend (B20) and biodiesel 5% blend (B5). Then, the properties data from the experiment will be used in the simulation GT Power software. Simulation tests have been run with the aim of obtaining comparative measures of torque, power, specific fuel consumption and volumetric efficiency. The results is use to evaluate and analyze the performance of diesel engine running with the mentioned fuels above. The comparison performances for each fuel have been discussed. There is no significant difference in the engine performance when fueled with B5 and diesel. There is only about one percent lower of B5 and four percent higher of B20 and SVO compare to diesel fuel.

  3. Thermal stability of biodiesel and its blends: A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2011-01-15

    The vegetable oil, fats and their biodiesel suffer with the drawback of deterioration of its quality during long term storage unlike petroleum diesel due to large number of environmental and other factors making the fuel stability and quality questionable. There are various types of stabilities like oxidation, storage and thermal, playing key roles in making the fuel unstable. The present paper is an attempt to review the work done so far on the thermal stability of biodiesel and their blends with diesel under different conditions. The mechanism of thermal deterioration of vegetable oils, various methods of stability measurement including a new proposed method based on Karl Fischer coulometer, an alternative to conventional Rancimat test has been discussed. No correlations have been found in the literature among the results of various methods used. The effect of antioxidants on the stability parameters has also been discussed. TGA/DTA has been found as an effective method to check the deterioration of oil with respect to temperature using activation energy and order of reaction as the parameter to monitor the deterioration of oil. (author)

  4. Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.

    2011-01-01

    Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.

  5. Optimization of transesterification reaction conditions for the production of biodiesel from oil blend of castor bean and soybean; Otimizacao das condicoes reacionais de transesterizacao para producao de biodiesel a partir de mistura de oleos de mamona e soja

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ana Katerine de Carvalho Lima; Lima, Milena Gouveia Oliveira de; Pontes, Luiz Antonio M.; Teixeira, Leonardo S.G. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Almeida, Daniel Freire; Costa, Tales Santana Martins; Menezes; Mateus Della Cella; Santos, Iran Talis Viana; Almeida, Selmo Q. [Universidade Salvador (UNIFACS), BA (Brazil)

    2012-07-01

    Biodiesel is an alternative fuel to diesel oil, and industrially obtained by the transesterification of triglycerides of fatty acids from vegetable oils and/or animal fats. Currently, the main raw material used to produce biodiesel in Brazil is soybean oil. The inclusion of other raw materials from different cultures in this sector is important and aims to reduce dependence on a single oilseed, assign specific characteristics to the product and encourage the development of family farming. The use of blends of soybean oil and castor for biodiesel may prove an important strategy to minimize the negative effects and maximize the positives of each oilseed. In this work, we carried out an experimental study using full factorial design 2{sup 4}, to increase the conversion of esters, by conventional transesterification, using as feedstock a blend of oils containing 20% castor and 80% soybean. The aim of this study was to evaluate the influence of mixing ratio of oil: methanol, KOH concentration, temperature and reaction time in biodiesel production. It was found that the variation of these parameters affected the conversion of esters and quality of biodiesel produced. Conversions above 95% were obtained, and the best conversion was 99.05% at 25 deg C in a reaction time of 20 minutes using 2% KOH as a catalyst and a molar ratio methanol/oil 12:1. In order to reduce the costs of the process with respect to amount of methanol used without affecting the conversion of esters, we identified a second set of process conditions, which used the same conditions of temperature, reaction time and catalyst concentration and a different molar ratio methanol/oil (6:1) which gave a conversion of esters of 98.59%. (author)

  6. Tratamento de águas contaminadas por diesel/biodiesel utilizando processo Fenton Treatment of water contaminated by diesel/biodiesel using Fenton process

    Directory of Open Access Journals (Sweden)

    Teofani Koslides Mitre

    2012-06-01

    Full Text Available A contaminação de águas por misturas diesel/biodiesel pode causar grandes impactos ambientais, relacionados à presença de compostos orgânicos recalcitrantes e tóxicos, inviabilizando o uso de processos biológicos de tratamento. A avaliação da biodegradabilidade, nas proporções B0, B25, B50, B75 e B100 (os números especificam o percentual em massa de biodiesel na mistura, indicou que a adição de biodiesel em teores acima de 50% aumenta a biodegradabilidade, alcançando 60 e 80% para B50 e B75, respectivamente. Na aplicação do processo Fenton, a remoção da matéria orgânica foi superior a 80% em todas as misturas, exceto para B0, que apresentou remoção máxima de 50%. A oxidação por Fenton se ajustou a um modelo cinético de pseudo-segunda ordem em relação à concentração de matéria orgânica, e resultou em aumento da biodegradabilidade de até 150%.Waters contaminated with diesel/biodiesel and their blends can cause major environmental impacts, due to the presence of toxic and recalcitrant organic compounds, which invalidate the use of biological treatment processes. Evaluation of biodegradability of the blends B0, B25, B50, B75 and B100 (the numbers specify the mass percentage of biodiesel in the blend indicated that the addition of biodiesel at concentrations above 50% increased biodegradation, reaching 60 and 80% for B50 and B75, respectively. When the Fenton process was used, removal of organic matter was greater than 80 % in all blends, except for B0, which showed maximum removal of 60%. Oxidation by Fenton was fitted with a pseudo-second order kinetic model in relation to the concentration of organic matter and resulted in increased biodegradation of up to 150%.

  7. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  8. Uso da cromatografia gasosa bidimensional abrangente (GC×GC na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino

    Directory of Open Access Journals (Sweden)

    Maria Silvana A Moraes

    2011-01-01

    Full Text Available The growth of biodiesel market and the implementation of regulations related to biodiesel production and biodiesel/diesel blending has encouraged the development of appropriate analytical methods to control the composition of this type of mixture. In this study, an evaluation of the potential of GC×GC for the characterization of samples of beef tallow biodiesel and the composition of blends of biodiesel/diesel is presented. The methodology was applied to beef tallow biodiesel and its mixtures with petrodiesel, ranging from B2 to B50. Results allowed not only the identification and quantification of the biodiesel esters, but also the biodiesel percentage in biodiesel/diesel blends.

  9. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  10. Exergy and Energy Analysis of Combustion of Blended Levels of Biodiesel, Ethanol and Diesel Fuel in a DI Diesel Engine

    International Nuclear Information System (INIS)

    Khoobbakht, Golmohammad; Akram, A.; Karimi, Mahmoud; Najafi, G.

    2016-01-01

    Highlights: • Exergy analysis showed that thermal efficiency of diesel engine was 36.61%. • Energy loss and work output rates were 71.36 kW and 41.22 kW, respectively. • Exergy efficiency increased with increasing engine load and speed. • Exergy efficiency increased with increasing biodiesel and bioethanol. • 0.17 L of biodiesel, 0.08 L of ethanol in 1 L of diesel at 1900 rpm and 94% load had maximum exergy efficiency. - Abstract: In this study, the first and second laws of thermodynamics are employed to analyze the energy and energy in a four-cylinder, direct injection diesel engine using blended levels of biodiesel and ethanol in diesel fuel. Also investigated the effect of operating factors of engine load and speed as well as blended levels of biodiesel and ethanol in diesel fuel on the exergy efficiency. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on central composite rotatable design (CCRD) of response surface methodology (RSM). The resultant quadratic models of the response surface methodology were helpful to predict the response parameter (exergy efficiency) further to identify the significant interactions between the input factors on the responses. The results depicted that the exergy efficiency decreased with increasing percent by volume biodiesel and ethanol fuel. The fuel blend of 0.17 L biodiesel and 0.08 L of ethanol added to 1 L of diesel (equivalent with D80B14E6) at 1900 rpm and 94% load was realized have the most exergy efficiency. The results of energy and exergy analyses showed that 43.09% of fuel exergy was destructed and the average thermal efficiency was approximately 36.61%, and the exergetic efficiency was approximately 33.81%.

  11. Ecological Impact of Biodiesel Use

    International Nuclear Information System (INIS)

    Gulbis, V.; Shmigins, R.

    2005-01-01

    Full text: The paper presents a study of biodiesel application and its ecological impacts. Our study is based on the comparison of exhaust emission composition produced by the combustion of rapeseed oil methyl ester (RME) and conventional diesel fuel (DD) and its blends in a direct injection diesel engine XD2P (YTT). The engine was tested in biofuels laboratory of LUA Motor Vehicle Institute. Fuelling the engine with biodiesel and biodiesel/diesel blend reduced oxides of nitrogen by 17.5% (100RME) and by 5.6% (35RME) and carbon monoxide by 49.8% (100RME) and by 45.3% (35RME). Fuelling the engine with biodiesel and different biodiesel/diesel blends reduced the absorbtion coefficient by 33.9% (5RME), by 44.3% (20RME) and by 51.2% (100RME) on free acceleration regime. In these tests soot reduced by 28...76.7% at full opened throttle position with 100RME. (Authors)

  12. Effect of oxygenate additive on diesel engine fuel consumption and emissions operating with biodiesel-diesel blend at idling conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, F. Y.; Mamat, R.; Noor, M. M.; Yusri, I. M.

    2017-10-01

    Biodiesel is promising alternative fuel to run the automotive engine but idling is the main problem to run the vehicles in a big city. Vehicles running with idling condition cause higher fuel supply and higher emission level due to being having fuel residues in the exhaust. The purpose of this study is to evaluate the impact of alcohol additive on fuel consumption and emissions parameters under idling conditions when a multicylinder diesel engine operates with the diesel-biodiesel blend. The study found that using 5% butanol as an additive with B5 (5% Palm biodiesel + 95% diesel) blends fuel lowers brake specific fuel consumption and CO emissions by 38% and 20% respectively. But the addition of butanol increases NOx and CO2 emissions. Based on the result it can be said that 5% butanol can be used in a diesel engine with B5 without any engine modifications to tackle the idling problem.

  13. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  14. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  15. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  16. Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Eberlin, Livia S; Abdelnur, Patricia V; Passero, Alan; de Sa, Gilberto F; Daroda, Romeu J; de Souza, Vanderlea; Eberlin, Marcos N

    2009-08-01

    High performance thin layer chromatography (HPTLC) combined with on-spot detection and characterization via easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is applied to the analysis of biodiesel (B100) and biodiesel-petrodiesel blends (BX). HPTLC provides chromatographic resolution of major components whereas EASI-MS allows on-spot characterization performed directly on the HPTLC surface at ambient conditions. Constituents (M) are detected by EASI-MS in a one component-one ion fashion as either [M + Na](+) or [M + H](+). For both B100 and BX samples, typical profiles of fatty acid methyl esters (FAME) detected as [FAME + Na](+) ions allow biodiesel typification. The spectrum of the petrodiesel spot displays a homologous series of protonated alkyl pyridines which are characteristic for petrofuels (natural markers). The spectrum for residual or admixture oil spots is characterized by sodiated triglycerides [TAG + Na](+). The application of HPTLC to analyze B100 and BX samples and its combination with EASI-MS for on-spot characterization and quality control is demonstrated.

  17. First performance assessment of blends of jatropha, palm oil and soya bean biodiesel with kerosene as fuel for domestic purposes in rural-Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Quansah, E.; Preko, K.; Amekudzi, L.K. [Department of Physics, Kwame Nkrumah, University of Science and Technology (KNUST), University Post Office, PMB Kumasi (Ghana)

    2011-07-01

    Performance assessments of jatropha, palm oil and soya bean based biodiesel were carried out to investigate their potential use as conventional substitute for kerosene for domestic purposes in rural- Ghana. The assessments were done by comparing some of the combustion characteristics of blends of the biodiesel with kerosene. The blends were categorised as B100 (100% biodiesel), B80 (80% biodiesel and 20% kerosene), B60 (60% biodiesel and 40% kerosene), B40 (40% biodiesel and 60% kerosene), B20 (20% biodiesel and 80% kerosene) and B0 (pure kerosene). The results showed that the calorific values of the B100s were less than that of the B0 and decreasing in the order of jatropha, soya bean and palm oil. The wick wastage results for both the B100s and B0, revealed higher rates in the WTL than the BB even though the BB recorded low fuel consumption rates than the WTL for both B100s and B0. Similarly, the luminous intensity test with the B100s showed low values in WTL than the BB in a decreasing order of jatropha, soya bean and palm oil. However, B0 recorded higher luminous intensity values that were quite comparable in both WTL and BB.

  18. Thermally assisted sensor for conformity assessment of biodiesel production

    Science.gov (United States)

    Kawano, M. S.; Kamikawachi, R. C.; Fabris, J. L.; Muller, M.

    2015-02-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel-oil samples, and 0.007% v/v and 0.22% v/v for biodiesel-methanol samples, respectively.

  19. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  20. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  1. Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges

    Directory of Open Access Journals (Sweden)

    Thanh Xuan NguyenThi

    2018-05-01

    Full Text Available Density and compressibility are primordial parameters for the optimization of diesel engine operation. With this objective, these properties were reported for waste cooking oil biodiesel and its blends (5% and 10% by volume mixed with diesel. The density measurements were performed over expanded ranges of pressure (0.1 to 140 MPa and temperature (293.15 to 353.15 K compatible with engine applications. The isothermal compressibility was estimated within the same experimental range by density differentiation. The Fatty Acid Methyl Esters (FAMEs profile of the biodiesel was determined using a Gas Chromatography–Mass Spectrometry (GC-MS technique. The storage stability of the biodiesel was assessed in terms of the reproducibility of the measured properties. The transferability of this biodiesel fuel was discussed on the basis of the standards specifications that support their use in fuel engines. Additionally, this original set of data represents meaningful information to develop new approaches or to evaluate the predictive capability of models previously developed.

  2. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends

    International Nuclear Information System (INIS)

    Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A.

    2014-01-01

    Highlights: • Environmental benefits of JB blends were found but adverse impact on NO x . • Addition of 0.15% (m) DPPD in JB20, average reduction in NO up to 16.54%. • In some cases, engine power is reduced with DPPD additive. • Emissions of HC and CO for JB blends with DPPD were lower compared to diesel. • Addition of DPPD in JB blends reduction of EGT was found. - Abstract: Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the road. The use of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. However, most researchers have reported that they produce higher NO x emissions compared to diesel, which is a deterrent to the expansion of the market for these fuels. Several proposed pathways try to account for NO x formation during the combustion process. Among them, the Fenimore mechanism explains that fuel radicals formed during the combustion process react with nitrogen from the air to form NO x . It could be proposed that if these radical reactions could be terminated, the NO x formation rate for biodiesel combustion would decrease. An experimental study was conducted on a four-cylinder diesel engine to evaluate the performance and emission characteristics of Jatropha biodiesel blends (JB5, JB10, JB15 and JB20) with and without the addition of N,N′-diphenyl-1,4-phenylenediamine (DPPD) antioxidant. For each tested fuel, the engine performance and emissions were measured at engine speeds 1000–4000 rpm at an interval of 500 rpm under the full throttle condition. The results showed that this antioxidant additive could reduce NO x emissions significantly with a slight penalty in terms of engine power and Brake Specific Fuel Consumption (BSFC) as well as CO and HC emissions. However, when compared to diesel combustion, the emissions of HC and CO with the addition of the DPPD additive were found to be nearly the same or lower. By the

  3. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-01-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  4. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    Science.gov (United States)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-06-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  5. Characterising vehicle emissions from the burning of biodiesel made from vegetable oil

    International Nuclear Information System (INIS)

    Zou, L.; Atkinson, S.

    2003-01-01

    Biodiesel manufactured from canola oil was blended with diesel and used as fuel in two diesel vehicles. This study aimed to test the emissions of diesel engines using blends of 100%, 80%, 60%, 40%, 20% biodiesel and 100% petroleum diesel, and characterise the particulate matter and gaseous emissions, with particular attention to levels of polycyclic aromatic hydrocarbons (PAHs) which are harmful to humans. A real time dust monitor was also used to monitor the continuous dust emissions during the entire testing cycle. The ECE(Euro 2) drive cycle was used for all emission tests. It was found that the particle concentration was up to 33% less when the engine burnt 100% biodiesel, compared to 100% diesel. Particle emission reduced with increased percentages of biodiesel in the fuel blends. Reductions of NOx, HC and CO were limited to about 10% when biodiesel was burned. Levels of CO, emissions from the use of biodiesel and diesel were similar. Eighteen EPA priority PAHs were targeted, with only 6 species detected in the gaseous phase from the samples. 9 PAHs were detected in particulate phases at much lower levels than gaseous PAHs. Some marked reductions were observed for less toxic gaseous PAHs such as naphthalene when burning 100% biodiesel, but the particulate PAH emissions, which have more implications to adverse health effects, were virtually unchanged and did not show a statistically significant reduction. These findings are useful to gain an understanding of the emissions and environmental impacts of biodiesel (Author)

  6. A study of production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends as a potential biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    A.E. Atabani

    2014-12-01

    Full Text Available Globally, more than 350 oil-bearing crops are known as potential biodiesel feedstocks. This study reports on production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends with diesel. The effect of Manketti biodiesel (B5 on engine and emissions performance was also investigated. The cloud, pour and cold filter plugging points of the produced biodiesel were measured at 1, 3 and 5 °C, respectively. However, the kinematic viscosity of the biodiesel generated was found to be 8.34 mm2/s which was higher than the limit described by ASTM D6751 and EN 14214. This can be attributed to the high kinematic viscosity of the parent oil (132.75 mm2/s. Nevertheless, blending with diesel improved this attribute. Moreover, it is observed that at all engine speeds, B5 produced lower brake power (1.18% and higher brake specific fuel consumption (2.26% compared to B0 (neat diesel. B5 increased the CO and HC emissions by 32.27% and 37.5%, respectively, compared to B0. However, B0 produced 5.26% higher NO emissions than B5.

  7. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  8. Effects of a biodiesel blend on energy distribution and exhaust emissions of a small CI engine

    International Nuclear Information System (INIS)

    Magno, Agnese; Mancaruso, Ezio; Vaglieco, Bianca Maria

    2015-01-01

    Highlights: • B20 does not affect the brake thermal efficiency and the engine energetic flows with respect to diesel fuel. • B20 is characterized by lower combustion noise than diesel fuel. • B20 emits lower CO, HC and PM in the most of the operating conditions. • A definite trend of NO x emissions for B20 with respect to diesel fuel was not found. • B20 emits more nuclei particles than diesel fuel. - Abstract: This paper investigates the energy distribution and the waste heat energy characteristics of a compression ignition engine for micro-cogeneration applications, at different engine speeds and loads. The experimental activity was carried out on a three-cylinder, 1028 cc, common-rail engine. Tests were performed with diesel fuel and a 20% v/v biodiesel blend (B20). The quantity and the quality of the waste heat energy were studied through energy and exergy analyses, respectively. Combustion characteristics were investigated by means of indicating data. Gaseous emissions were measured and particles were characterized in terms of number and size at exhaust. It was found out that the addition of 20% v/v of RME to diesel fuel does not affect significantly the brake fuel conversion efficiency and the energetic flows. On the other hand, biodiesel blend allows to reduce the combustion noise and the pollutants emissions in most of the operating conditions. A proper phasing of the injection strategy for the biodiesel blend could further reduce the exhaust emissions, mainly at high engine speeds. The results presented in this paper could be useful for the development of diesel engine based micro-cogeneration systems working at different engine speeds and loads

  9. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  10. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  11. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  12. Experimental investigation of evaporation rate and emission studies of diesel engine fuelled with blends of used vegetable oil biodiesel and producer gas

    Directory of Open Access Journals (Sweden)

    Nanjappan Balakrishnan

    2015-01-01

    Full Text Available An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.

  13. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Liou, Yi-Jyun [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Cheng, Man-Ting [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erh-Jen Road, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Chemical and Materials Engineering, Cheng Shiu University, 840, Chengcing Road, Kaohsiung 83347, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, Chiayi 60036, Taiwan (China); Lai, Jim-Shoung [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. Black-Right-Pointing-Pointer Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. Black-Right-Pointing-Pointer Increasing load results in modest increases in both the total particle number concentrations and sizes. Black-Right-Pointing-Pointer The effects of semivolatile materials are strongest at idle, during which nonvolatile cores <16 nm were observed. Black-Right-Pointing-Pointer The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of biodiesel blend and load. - Abstract: Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC + DPF) under steady modes. For a given load, the total particle number concentrations (N{sub TOT}) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N{sub TOT} and mode diameters increase modestly with increasing load of above 25%. The N{sub TOT} at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N{sub TOT} post the DOC + DPF are comparable to typical ambient levels of

  14. The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions

    International Nuclear Information System (INIS)

    Chai, Ming; Lu, Mingming; Liang, Fuyan; Tzillah, Aisha; Dendramis, Nancy; Watson, Libya

    2013-01-01

    In this study, emissions of carbonyl compounds from the use B50 and B100 were measured with a non-road diesel generator. A total of 25 carbonyl compounds were identified in the exhaust, including 10 with laboratory-synthesized standards. Formaldehyde, acetaldehyde, and acrolein were found as the most abundant carbonyl compounds emitted for both diesel and biodiesel. The sulphur content of diesel fuels and the source of biodiesel fuels were not found to have a significant impact on the emission of carbonyl compounds. The overall maximum incremental reactivity (MIR) was the highest at 0 kW and slightly increased from 25 to 75 kW. The MIR of B100 was the highest, followed by diesel and B50, which is consistent with the emission rates of total carbonyl compounds. This suggests that the use of biodiesel blends may be more beneficial to the environment than using pure biodiesel. -- Highlights: •Carbonyl compound emission from biodiesel blends combustion on a non-road generator. •25 compounds were identified, including 10 by laboratory-synthesized standards. •Sources of biodiesel have insignificant impacts on carbonyl compounds emission. •Sulphur contents have insignificant impacts on carbonyl compounds emission. •MIR of emitted carbonyls decreases in the following order: B100, diesel, B50. -- The study found that B50 resulted in lower total carbonyl emission rates and ozone formation potential resultant from these compounds, whereas both increased with B100

  15. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Fazal, M.A.; Khan, Abdul Faheem; Fayaz, H.; Varman, M.

    2013-01-01

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NO x emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  16. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate – Methyl Laurate Blend as a Surrogate Biodiesel System

    Directory of Open Access Journals (Sweden)

    Tjokorde Walmiki Samadhi

    2017-05-01

    Full Text Available This research investigates the feasibility of methyl oleate-methyl laurate blend as a surrogate biodiesel system which represents jatropha-coconut oil biodiesel, a potentially suitable formulation for tropical climate, to quantify the efficacy of antioxidant additives in terms of their kinetic parameters. This blend was tested by the Rancimat EN14112 standard method. The Rancimat tests results were used to determine the primary oxidation induction period (OIP and first-order rate constants and activation energies. Addition of BHT and EcotiveTM antioxidants reduces the rate constants (k, h-1 between 15 to 90% in the 50-200 ppm dose range, with EcotiveTM producing significantly lower k values. Higher dose reduces the rate constant, while oleate/laurate ratio produces no significant impact. Antioxidants increase the oxidation activation energy (Ea, kJ/mol by 180 to almost 400% relative to the non-antioxidant value of 27.0 kJ/mol. EcotiveTM exhibits lower Ea, implying that its higher efficacy stems from a better steric hindrance as apparent from its higher pre-exponential factors. The ability to quantify oxidation kinetic parameters is indicative of the usefulness of methyl oleate-laurate pure FAME blend as a biodiesel surrogate offering better measurement accuracy due to the absence of pre-existing antioxidants in the test samples. Copyright © 2017 BCREC GROUP. All rights reserved Received: 6th July 2016; Revised: 7th December 2016; Accepted: 30th January 2017 How to Cite: Samadhi, T.W., Hirotsu, T., Goto, S. (2017. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate-Methyl Laurate Blend as a Surrogate Biodiesel System. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 157-166 (doi:10.9767/bcrec.12.2.861.157-166 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.861.157-166

  17. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine

    International Nuclear Information System (INIS)

    Dhar, Atul; Agarwal, Avinash Kumar

    2015-01-01

    Highlights: • Effect of multiple injections on CRDI engine performance, emission and combustion. • Effect of multiple injections, injection pressures and injection timings on biodiesel. • Lower biodiesel blends showed lower BSCO, BSHC but higher BSNOx emissions. • Maximum cylinder pressure at higher FIP was higher at same SOPI and SOMI. • Combustion duration of KOME50 was higher than mineral diesel. - Abstract: Pilot and post injections are being used in modern diesel engines for improving engine performance in addition to meeting stringent emission norms. Biodiesel produced from different feedstocks is gaining global recognition as partial replacement for mineral diesel in compression ignition (CI) engines. In this study, 10%, 20% and 50% Karanja biodiesel blends were used for investigation of pilot injections, injection pressures and injection timings on biodiesel blends. Experiments were carried out in a single cylinder CRDI research engine in multiple injection mode at 500 and 1000 bar fuel injection pressure (FIP) under varying start of pilot injection (SOPI) and start of main injection (SOMI) timings. Brake specific fuel consumption (BSFC) increased with increasing Karanja biodiesel concentration in test fuels however brake thermal efficiency (BTE) of biodiesel blends was slightly higher than mineral diesel. Lower biodiesel blends showed lower brake specific carbon monoxide (BSCO) and brake specific hydrocarbon (BSHC) emissions than mineral diesel. Brake specific nitrogen oxides (BSNOx) emissions from KOME20 and KOME10 were higher than mineral diesel. Combustion duration of KOME50 was also higher than mineral diesel

  18. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    International Nuclear Information System (INIS)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-01

    Highlights: ► The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. ► Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. ► Increasing load results in modest increases in both the total particle number concentrations and sizes. ► The effects of semivolatile materials are strongest at idle, during which nonvolatile cores TOT ) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N TOT and mode diameters increase modestly with increasing load of above 25%. The N TOT at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N TOT post the DOC + DPF are comparable to typical ambient levels of ∼10 4 cm −3 . This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the aftertreatment is highly favored.

  19. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine

    International Nuclear Information System (INIS)

    Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, Ch.; Sakellaropoulos, F.

    2003-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions. (Author)

  20. Biodiesel as a motor fuel price stabilization mechanism

    International Nuclear Information System (INIS)

    Serra, Teresa; Gil, José M.

    2012-01-01

    This article studies the capacity of biofuels to reduce motor fuel price fluctuations. For this purpose, we study dependence between crude oil and biodiesel blend prices in Spain. Copula models are used for this purpose. Results suggest that the practice of blending biodiesel with diesel can protect consumers against extreme crude oil price increases. - Highlights: ► We study the capacity of biofuels to reduce fuel price fluctuations. ► We focus on Spanish biodiesel market. ► Biodiesel and crude oil price dependence is studied using copula functions. ► Biodiesel can protect consumers against extreme crude oil price increases.

  1. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  2. Experimental investigation of a multicylinder unmodified diesel engine performance, emission, and heat loss characteristics using different biodiesel blends: rollout of B10 in Malaysia.

    Science.gov (United States)

    Abedin, M J; Masjuki, H H; Kalam, M A; Varman, M; Arbab, M I; Fattah, I M Rizwanul; Masum, B M

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  3. Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel

    Directory of Open Access Journals (Sweden)

    Mohammed EL-Kasaby

    2013-06-01

    Full Text Available Jatropha-curcas as a non-edible methyl ester biodiesel fuel source is used to run single cylinder, variable compression ratio, and four-stroke diesel engine. Combustion characteristics as well as engine performance are measured for different biodiesel – diesel blends. It has been shown that B50 (50% of biodiesel in a mixture of biodiesel and diesel fuel gives the highest peak pressure at 1750 rpm, while B10 gives the highest peak pressure at low speed, 1000 rpm. B50 shows upper brake torque, while B0 shows the highest volumetric efficiency. B50 shows also, the highest BSFC by about (12.5–25% compared with diesel fuel. B10 gives the highest brake thermal efficiency. B50 to B30 show nearly the lowest CO concentration, besides CO concentration is the highest at both idle and high running speeds. Exhaust temperature and NOx are maximum for B50. Delay period is measured and correlated for different blends. Modified empirical formulae are obtained for each blend. The delay period is found to be decreased with the increase of cylinder pressure, temperature and equivalence ratio.

  4. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  5. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    Science.gov (United States)

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (pdifferentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol)

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...

  7. Pengaruh Persentase Biodiesel Minyak Nyamplung – Solar terhadap Karakteristik Pembakaran Droplet

    Directory of Open Access Journals (Sweden)

    Misbach Udin

    2017-05-01

    Full Text Available The aim of this research is to investigate the effect of biodiesel percentage on the droplet combustion characteristic of calophyllum inophyllum biodiesel-diesel fuel blended. The combustion characteristic included ignition delay time, flame visualization, burning rate, and flame temperature. Testing was conducted using fuel blended with biodiesel percentage of 0%, 10%, 30%, 50% and 100%. The fuel was dripped and shaped a droplet that placed on the tip of thermocouple junction and ignited using a heater. The result shown that the ignition delay time increase with increasing biodiesel percentage due to its high flash point temperature and low volatility. Furthermore, burning rate and flame temperature increase with the increasing biodiesel percentage in the blended. These phenomena related to more microexplosion occurrence in the droplet combustion of fuel blended with higher biodiesel content. The last result shown that combustion of diesel fuel droplet has the highest flame dimension, related to its low burning rate and faster vapor diffusion rate.

  8. Thermally assisted sensor for conformity assessment of biodiesel production

    International Nuclear Information System (INIS)

    Kawano, M S; Kamikawachi, R C; Fabris, J L; Muller, M

    2015-01-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel–oil samples, and 0.007% v/v and 0.22% v/v for biodiesel–methanol samples, respectively. (paper)

  9. The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Mažeika, Marius

    2014-01-01

    Highlights: • Ethanol–diesel–biodiesel blends were tested at the same air–fuel ratios and three ranges of speed. • The fuel oxygen mass content reflects changes in the autoignition delay more predictably than the cetane number does. • Using of composite blend E15B suggests the brake thermal efficiency the same as the normal diesel fuel. • Adding of ethanol to diesel fuel reduces the NO x emission for richer air–fuel mixtures at all engine speeds. • The ethanol effect on CO, HC emissions and smoke opacity depends on the air–fuel ratio and engine speed. - Abstract: The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on start of injection, autoignition delay, combustion and maximum heat release rate, engine performance efficiency and emissions of the exhaust when operating over a wide range of loads and speeds. The test results were analysed and compared with a base diesel engine running at the same air–fuel ratios of λ = 5.5, 3.0 and 1.5 corresponding to light, medium and high loads. The same air–fuel ratios predict that the energy content delivered per each engine cycle will be almost the same for various ethanol–diesel–biodiesel blends that eliminate some side effects and improve analyses of the test results. A new approach revealed an important role of the fuel bound oxygen, which reflects changes of the autoignition delay more predictably than the cetane number does. The influence of the fuel oxygen on maximum heat release rate, maximum combustion pressure, NO x , CO emissions and smoke opacity

  10. Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions.

    Science.gov (United States)

    Karavalakis, Georgios; Boutsika, Vasiliki; Stournas, Stamoulis; Bakeas, Evangelos

    2011-01-15

    In the present study, the effects of different biodiesel blends on the unregulated emissions of a Euro 4 compliant passenger car were examined. Two fresh and two oxidized biodiesel fuels of different source materials were blended with an ultra low sulphur automotive diesel fuel at proportions of 10, 20, and 30% v/v. Emission measurements were conducted on a chassis dynamometer with a constant volume sampling (CVS) technique, over the New European Driving Cycle (NEDC) and the Artemis driving cycles. The experimental results revealed that the addition of biodiesel led to important increases in most carbonyl compounds. Sharp increases were observed with the use of the oxidized biodiesel blends, especially those prepared from used frying oil methyl esters. Similar to carbonyl emissions, most PAH compounds increased with the addition of the oxidized biodiesel blends. It can be assumed that the presence of polymerization products and cyclic acids, along with the degree of unsaturation were the main factors that influenced carbonyl and PAH emissions profile. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  12. Biodiesel Fuel Technology for Military Application

    National Research Council Canada - National Science Library

    Frame, Edwin

    1997-01-01

    This program addressed the effects of biodiesel (methyl soyate) and blends of biodiesel with petrofuels on fuel system component and material compatibility, fuel storage stability, and fuel lubricity...

  13. Marine biodiesel use in the Puget Sound

    International Nuclear Information System (INIS)

    Davidson, N.

    2008-01-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs

  14. Marine biodiesel use in the Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, N. [Northwest Biofuels Association, Portland, OR (United States)

    2008-07-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs.

  15. Three years operational experience with biodiesel

    International Nuclear Information System (INIS)

    Murphy, J.

    2008-01-01

    TSI Terminal Systems Inc. is the largest container terminal operator in Canada, and has an annual payroll exceeding $150 million. The company started a biodiesel test program with the Canadian Bioenergy Corporation in order to assess the emission reduction impacts of using biodiesel. The pilot was tested with 6 different pieces of equipment used at the terminal over an initial period of 3 weeks. Emissions testing was then conducted for different biodiesel blend levels and compared with baseline data in relation to particulate matter, total hydrocarbons, carbon monoxide (CO), carbon dioxide (CO 2 ), and nitrous oxides (NO x ). Results of the tests confirmed that the biodiesel blends significantly reduced emissions at the terminal and confirmed the operability of biodiesel. Overall emissions were reduced by 30 per cent. The fuel is now being used in all the company's equipment. The use of the biodiesel has not resulted in any engine failures or power losses. tabs., figs

  16. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  17. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  18. Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel

    International Nuclear Information System (INIS)

    Bueno, Andre Valente; Velasquez, Jose Antonio; Milanez, Luiz Fernando

    2011-01-01

    The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.

  19. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    Science.gov (United States)

    Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.

  20. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    Science.gov (United States)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties

  1. Experimental Investigation of a Multicylinder Unmodified Diesel Engine Performance, Emission, and Heat Loss Characteristics Using Different Biodiesel Blends: Rollout of B10 in Malaysia

    Directory of Open Access Journals (Sweden)

    M. J. Abedin

    2014-01-01

    Full Text Available This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ‘‘energy flows’’ across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  2. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  3. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  4. Investigation of Atomization and Combustion Performance of Renewable Biofuels and the Effects of Ethanol Blending in Biodiesel

    Science.gov (United States)

    Silver, Adam Gregory

    This thesis presents results from an experimental investigation of the macroscopic and microscopic atomization and combustion behavior of B99 biodiesel, ethanol, B99-ethanol blends, methanol, and an F-76-Algae biodiesel blend. In addition, conventional F-76 and Diesel #2 sprays were characterized as a base case to compare with. The physical properties and chemical composition of each fuel were measured in order to characterize and predict atomization performance. A variety of B99-ethanol fuel blends were used which demonstrate a tradeoff between lower density, surface tension, and viscosity with a decrease in the air to liquid ratio. A plain jet air-blast atomizer was used for both non-reacting and reacting tests. The flow rates for the alternative fuels were set by matching the power input provided by the baseline fossil fuels in order to simulate use as a drop in replacement. For this study, phase Doppler interferometry is employed to gain information on drop size, SMD, velocity, and volume flux distribution across the spray plume. A high speed camera is used to gather high speed cinematography of the sprays for observing breakup characteristics and providing additional insight. Reacting flow tests captured NOx, CO, and UHC emissions along with high speed footage used to predict soot levels based on flame luminosity. The results illustrate how the fuel type impacts the atomization and spray characteristics. The air-blast atomizer resulted in similar atomization performance among the DF2, F-76, and the F-76/Algae blend. While methanol and ethanol are not suitable candidates for this air-blast configuration and B99 produces significantly larger droplets, the addition of ethanol decreased drop sizes for all B99-ethanol blends by approximately 5 microns. In regards to reacting conditions, increased ethanol blending to B99 consistently lowered NOx emissions while decreasing combustion efficiency. Overall, lower NOx and CO emissions were achieved with the fuel blends

  5. Qualidade de biodiesel de soja, mamona e blendas durante armazenamento

    Directory of Open Access Journals (Sweden)

    Marco Aurélio R. Melo

    2016-12-01

    analysis, specifications for both biodiesel and blends met the requirements of the limits allowed by the Technical Regulation No. 14/2012 of the National Agency of Petroleum (ANP. Exception of the oxidative stability analysis (M0, M20, M30 and M40, the acid value after 60 days (M50, after 90 days (M40 and M50, 120 days (M100 and kinematic viscosity (M40, M50 and M100 with values outside the limits established by the standard. The fluid-dynamic properties show similar behavior for blends methyl biodiesels and thus these concentrations methyl castor biodiesel acts as a natural additive to the methyl soybean biodiesel. By the method EN 14112 was found that M50 blend is more resistant to oxidation during storage process 120 days.

  6. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  7. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  8. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project.

    Science.gov (United States)

    Lankoff, Anna; Brzoska, Kamil; Czarnocka, Joanna; Kowalska, Magdalena; Lisowska, Halina; Mruk, Remigiusz; Øvrevik, Johan; Wegierek-Ciuk, Aneta; Zuberek, Mariusz; Kruszewski, Marcin

    2017-08-01

    Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.

  9. Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminary study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lujan, J.M.; Tormos, B.; Salvador, F.J.; Gargar, K. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2009-06-15

    The present work consists of introducing the tests and facilities used to perform a comparative analysis of a diesel engine working with different blends of biodiesel fuel during the New European Driving Cycle. Furthermore, as a preliminary study, it was interesting to know the effects of biodiesel fuel on a common-rail high pressure injection system, those more useful in modern light duty diesel engines, as a consequence of its different physicochemical properties compared with conventional diesel fuel. As the real goal of the study is to compare fairly performance and emissions from the engine, it was essential to know any injection effects owed to fuel's own characteristics that finally would affect those parameters that will be evaluated. A complete fuel characterization for diesel and biodiesel fuels, as the EN 590 and the EN 14214 standard specifications, was performed in order to quantify the differences between both fuels. A priori, it could be thought that viscosity and density values will be the most significant parameters capable of altering the injection rate. As positive results, it was obtained that the common-rail high pressure injection system was totally blind in the injection rate measurements, even the significant differences between both fuels, taking into account the counterbalancing effects generated by two parameters mentioned before. The second part of the study deals with engine performance and pollutant emissions on an unmodified common-rail turbocharged diesel engine running with biodiesel fuel blends during the New European Driving Cycle. (author)

  10. Biodiesel update

    International Nuclear Information System (INIS)

    Bee, K.

    1998-01-01

    Compared to gasoline driven spark ignition engines, diesel engines are more efficient and emit less CO 2 and CO. The use of mono-alkyl esters of long chain fatty acids derived from renewable lipid feed stocks such as vegetable oils or animal fats for use in compression ignition (diesel) engines was described. Production of this biodiesel product was illustrated. The raw materials for biodiesel include vegetable oil or animal fat, alcohol (methanol or ethanol), and a catalyst such as sodium hydroxide or potassium hydroxide. As far as uses are concerned, biodiesels can be used as a pure fuel, as a blending stock with petrodiesel, or in low levels with petrodiesel, indeed, anywhere where no. 1 or no. 2 petrodiesel is used. Details of the technical attributes of biodiesel were provided. The superior ability of biodiesel over petrodiesel to reduce particulates, carbon monoxide and unburned hydrocarbons was documented. A case study of using biodiesel fuel in an underground mine was part of the demonstration. 20 refs., 6 tabs

  11. Performance evaluation of a direct injection engine using different blends of soybeans methyl biodiesel; Avaliacao do desempenho de um motor de injecao direta utlizando diferentes misturas de biodiesel metilico de soja

    Energy Technology Data Exchange (ETDEWEB)

    Nietiedt, G.H.; Schlosser, J.F.; Uhry, D.; Casali, A.L.; Ribas, R.L. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)], email: gustavoheller@hotmail.com

    2011-07-01

    The diesel fuel is used widely in the country and the world. However, growing environmental awareness leads to a larger demand for renewable energy resources. The pioneering in the use of ethanol makes Brazil also consolidate itself in the use of the biodiesel in larger scales, in replacement or as a blend with mineral diesel. Thus, this work aimed to evaluate the use of soybeans methyl biodiesel blends and diesel in an ignition compression engine with fuel direct injection. The tests were performed on a dynamometer bench, using the blends B10, B20 and B100 in comparison to the commercial diesel (B5). The engine performance was analyzed by tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44,62 kW; 234,87 g/kW.h{sup -1}); B10 (44,73 kW; 233,78 g/kW.h{sup -1}); B20 (44,40 kW; 236,20 g/kW.h{sup -1}) e B100 (43,40 kW; 263,63 g/kW.h{sup -1}). The best performance happened on the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels. (author)

  12. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  13. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  14. Evaluation of biodiesel fuel and a diesel oxidation catalyst in an underground metal mine : Part 3 : Biological and chemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, S.T. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Biological Sciences; Gratz, L.D. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Mechanical Engineering-Engineering Mechanics

    1998-07-24

    A collaborative, international, multidisciplinary effort led to the evaluation of the effects of using a 50 per cent biodiesel fuel blend and an advanced-type diesel oxidation catalyst (DOC) on underground metal mine air quality. The location selected for the field trials was the Creighton Mine 3 in Sudbury, Ontario, operated by Inco. Specifically, part 3 of the study evaluated the effects of using a biodiesel blend fuel on potentially health-related diesel particulate matter (DPM) components, with a special emphasis on polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and mutagenic activity. High volume sampler filters containing submicrometer particles were examined, and comparisons made for DPM and DPM component concentrations. The downwind concentrations of DPM were reduced by 20 per cent with the use of the blend biodiesel fuel as compared with the number 2 diesel fuel with an advanced-type DOC. Significant reductions in solids (up to 30 per cent) and up to 75 per cent in the case of mutagenic activity were noted. Significant reductions in the DPM components potentially harmful to human health should result from the use of this blended fuel combined with an advanced-type DOC in an underground environment. 23 refs., 19 tabs.

  15. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  16. Overview on the current trends in biodiesel production

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z.

    2011-01-01

    Research highlights: → Various method for the production of biodiesel from vegetable oil were reviewed. → Such as direct use and blending, microemulsion, pyrolysis and transesterification. → The advantages and disadvantages of the different biodiesel-production methods are also discussed. → Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  17. Overview on the current trends in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusuf, N.N.A.N. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Kamarudin, S.K., E-mail: ctie@eng.ukm.m [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaakub, Z. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-07-15

    Research highlights: {yields} Various method for the production of biodiesel from vegetable oil were reviewed. {yields} Such as direct use and blending, microemulsion, pyrolysis and transesterification. {yields} The advantages and disadvantages of the different biodiesel-production methods are also discussed. {yields} Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  18. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  19. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  20. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, Talal

    2014-01-01

    Biodiesel is a recognized replacement for diesel fuel in compressed ignition engines due to its significant environmental benefits. The purpose of this study is to investigate the engine performance and emissions produced from Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in compressed ignition engine. The biodiesel production process and properties are discussed and a comparison of the three biodiesels as well as diesel fuel is undertaken. After that, engine performance and emissions testing was conducted using biodiesel blends 10%, 20%, 30% and 50% in a diesel engine at full throttle load. The engine performance shows that those biodiesel blends are suitable for use in diesel engines. A 10% biodiesel blend shows the best engine performance in terms of engine torque, engine power, fuel consumption and brake thermal efficiency among the all blending ratios for the three biodiesel blends. Biodiesel blends have also shown a significant reduction in CO 2 , CO and smoke opacity with a slight increase in NO x emissions. - Highlights: • The properties of JCME, CPME and CIME fulfill ASTM standard. • Engine performance and emission was conducted for JCME, CPME and CIME. • The B10 is the best engine performance and reduce in exhaust emission

  1. Biodiesel fuel costs and environmental issues when powering railway locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Abdul; Ziemer, Norbert; Tatara, Robert; Moraga, Reinaldo; Mirman, Clifford; Vohra, Promod

    2010-09-15

    Issues for adopting biodiesel fuel, instead of petrodiesel, to power railroad locomotives are engine performance and emissions, fuel infrastructure, and fuel cost. These are evaluated for B2 through B100 blends. Biodiesel's solvent action on fuel systems is addressed. With biodiesel, hydrocarbon, carbon monoxide, and particulate emissions are unchanged or reduced. Nitrogen oxides are elevated but it is believed that engine alterations can minimize these emissions. A Transportation Model, using data from a major railway, has demonstrated that refueling depots can be fully supplied with biodiesel at a pricing premium of 1% to 26%, depending on blend and geographical location.

  2. Biodiesel production through hydrodynamic cavitation and performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amit; Verma, Ashish; Kachhwaha, S.S.; Maji, S. [Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi 110042 (India)

    2010-03-15

    This paper presents the details of development of a biodiesel production test rig based on hydrodynamic cavitation followed by results of experimental investigation carried out on a four cylinder, direct injection water cooled diesel engine operating on diesel and biodiesel blend of Citrullus colocyntis (Thumba) oil. The experiment covers a wide range of engine rpm. Results show that biodiesel of Thumba oil produced through hydrodynamic cavitation technique can be used as an alternative fuel with better performance and lower emissions compared to diesel. The most significant conclusions are that (1) Biodiesel production through hydrodynamic cavitation technique seems to be a simple, efficient, time saving, eco-friendly and industrially viable process. (2) 30% biodiesel blend of Thumba oil shows relatively higher brake power, brake thermal efficiency, reduced bsfc and smoke opacity with favourable p-{theta} diagram as compared to diesel. (author)

  3. Formation of Biofilms and Biocorrosion on AISI-1020 Carbon Steel Exposed to Aqueous Systems Containing Different Concentrations of a Diesel/Biodiesel Mixture

    Directory of Open Access Journals (Sweden)

    Ivanilda Ramos de Melo

    2011-01-01

    Full Text Available Environmental and economic concerns accelerated biofuels research and industrial production. Many countries have been using diesel and biodiesel blends as fuels justifying research on biofilms formation and metals corrosion. Cylinders made of AISI-1020 carbon steel with an exposed area of 1587 mm2, water, and water associated with B3 fuel (diesel/biodiesel blend at 97 : 3 v/v were used.The formation of biofilms was detected, and biocorrosion was detected on AISI-1020. The results showed a variation in sessile microflora during the experiments. In the biofilms, a significant concentration of aerobic, anaerobic, IOB, Pseudomonas aeruginosa, and sulfate-reducing bacteria was observed. The corrosion rates varied between 0.45±0.01 and 0.12±0.01 mm/year, depending on the experimental conditions. The main corrosion products identified were various forms of FeOOH, magnetite, and all forms of FexSy. In systems where there were high levels of sulfate reducing bacteria, corrosion pits were observed. In addition, the aliphatic hydrocarbons present in the fluid containing 10% B3 were totally degraded.

  4. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  5. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States); Magara-Gomez, Kento T. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Environmental Engineering Department, Pontificia Bolivariana University-Bucaramanga, Km 7 Vía Piedecuesta, Bucaramanga (Colombia); Olson, Michael R. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Okuda, Tomoaki [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Walz, Kenneth A. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Madison Area Technical College, 3550 Anderson Street, Madison, WI 53704 (United States); Schauer, James J. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Kleeman, Michael J., E-mail: mjkleeman@ucdavis.edu [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States)

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  6. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.; Kleeman, Michael J.

    2015-01-01

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  7. The economic impact of Canadian biodiesel production on Canadian grains, oilseeds and livestock producers : final report

    International Nuclear Information System (INIS)

    Stiefelmeyer, K.; Mussell, A.; Moore, T.L.; Liu, D.

    2006-05-01

    This study was conducted to provide the Canadian Canola Growers Association with an understanding of the economic effects of a mandated use of biodiesel blends produced in Canada, focusing on canola and canola oil. A literature review was performed to determine what has been found elsewhere in terms of biodiesel. An overview of the feedstock markets was also conducted along with an empirical analysis to determine likely feedstock purchasing behaviour under biodiesel blend requirements. The analysis also considered the rendered animal fats industry. The objectives were to identify the economic impacts of biodiesel development; determine the nature of markets for candidate feedstocks that could be used in manufacturing biodiesel; estimate the economic effects of a 2 per cent biodiesel blend requirement in petroleum diesel; estimate the economic effects of a 5 per cent biodiesel blend requirement in petroleum diesel; and, determine the ultimate impact on the Canadian canola industry of the mandated biodiesel blend. It was shown that biodiesel can be made from a range of feedstocks and that the 2 key factors influencing the success of biodiesel manufacturing facilities were feedstock prices and feedstock availability. The key competitors facing canola oil in the biodiesel market are rendered oils, rendered animal fats, palm oil, and soybean oil. Canola and soybean oil are likely to be relatively high cost feedstocks for biodiesel production, while yellow grease, tallow, and palm oil would be better priced as feed for industrial uses. Two conceptions of market dynamic were considered. In the first, the feedstock prices remained constant, while in the other the feedstock prices fluctuated with volume consumed. It was concluded that if total fat and oil supplies are fixed at historic levels, biodiesel blend requirements of just over 2 per cent are feasible. It was concluded that a cluster of widely available, low-priced feedstocks for biodiesel production exists. These

  8. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  9. Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  10. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø

    2011-01-01

    cells (HUVECs). Viability and production of reactive oxygen species (ROS) were investigated in all cell types. We collected particles from combustion of D(100) and 20% (w/w) blends of animal fat or rapeseed oil methyl esters in light-duty vehicle engines complying with Euro2 or Euro4 standards......Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial....... Particles emitted from the Euro4 engine were smaller in size and more potent than particles emitted from the Euro2 engine with respect to ROS production and DNA damage, but similarly potent concerning cytokine mRNA expression. Particles emitted from combustion of biodiesel blends were larger in size...

  11. Combustion phenomenon, performance and emissions of a diesel engine with aviation turbine JP-8 fuel and rapeseed biodiesel blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2015-01-01

    Highlights: • The 5 vol% RME added to JP-8 fuel improved lubricity 1.7 times according corrected wear scar diameter, μm. • The reverse trends revealed in the autoignition delay when operating with identical fuel blends J10 and B10. • The brake thermal efficiency increased by 1.0–3.6% when running on bio-fuels J5–J30 at speed of 2200 rpm. • The NO_x emissions increased by 5.2% when operating on bio-jet fuel J30 at full load and speed of 2200 rpm. • CO, HC emissions and smoke decreased with biofuel J20 and higher blends at both speeds of 1400 and 2200 rpm. - Abstract: The article presents the test results of an engine operating with diesel fuel (B5), turbine type JP-8 fuel and its 5 vol%, 10 vol%, 20 vol%, and 30 vol% blends with rapeseed oil methyl ester (RME). Additional fuel blend B10 was prepared by pouring 10 vol% of RME to diesel fuel to extend interpretation of the test results. The purpose of this study was to examine the effects of using jet-biodiesel fuel blends J5, J10, J20, J30, and B10 on the start of injection, ignition delay, combustion history, heat release, engine performance, and exhaust emissions. The engine performance parameters were examined at light 15% (1400 rpm) and 10% (2200 rpm), medium 50%, and high 100% loads and the two speeds: 1400 rpm at which maximum torque occurs and a rated speed of 2200 rpm. The autoignition delay and maximum heat release rate decreased, maximum cylinder pressure, and pressure gradients increased, whereas brake specific fuel consumption changed little and brake thermal efficiency was 1.0–3.6% higher when running with fuel blends J5 to J30 at rated speed compared with the data measured with neat jet fuel. The NO_x emissions increased slightly, but the CO, THC emissions, and smoke opacity boosted up significantly when using jet fuel blend J10 with a smooth reduction of unburned hydrocarbons for jet-biodiesel fuel blends with higher CN ratings. Operation at a full (100%) load with fuel blend J10

  12. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Science.gov (United States)

    2010-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No label...

  13. Regional life cycle assessment of soybean derived biodiesel for transportation fleets

    International Nuclear Information System (INIS)

    Xue Xiaobo; Collinge, William O.; Shrake, Scott O.; Bilec, Melissa M.; Landis, Amy E.

    2012-01-01

    Although the life cycle environmental impacts of biofuels have been recently reported, studies that focus on specific regions and use real fleet data for the use phase are still lacking. In Pennsylvania, the Penn Security Fuels Initiative required 2% biodiesel (B2), effective on January 1, 2010, with higher blending levels required in the future if production thresholds are met. This study quantifies the environmental impacts of biodiesel blends to meet increasing regional biodiesel demand. A process life cycle model was developed using data collected from collaboration with Pennsylvania Department of Transportation. For PennDOT, both in-state and out-of-state production scenarios were analyzed to estimate the possible environmental impacts of biodiesel blends. The results show that fertilizer usage in the agricultural phase, soy oil extraction and refining, feedstock and fuel transportation, and fuel combustion in the use phase are main contributors to biodiesel’s life cycle environmental impacts for all blends. Comparing biodiesels with ultra low sulfur diesel, significant environmental tradeoffs exist between global warming potential and eutrophication. For Pennsylvania, an in-state farming and processing preference has the lowest environmental impacts for B5. However, the limited area of farmlands in Pennsylvania may not satisfy the state’s biodiesel needs with higher blending levels. - Highlights: ► This study quantifies the environmental impacts of biodiesel policy in Pennsylvania. ► Fertilizer usage, soy oil refining and fuel combustion are the main contributing stages. ► Environmental tradeoffs exist between global warming and eutrophication impact categories. ► In-state farming and processing has the lowest environmental impact at current production levels.

  14. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    Leduc, Sylvain; Natarajan, Karthikeyan; McCallum, Ian; Obersteiner, Michael; Dotzauer, Erik

    2009-01-01

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  15. WSF Biodiesel Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  16. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    Science.gov (United States)

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  17. Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine

    International Nuclear Information System (INIS)

    Arbab, M.I.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Imtenan, S.; Sajjad, H.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Properties limitation of biodiesel has been overcome using multiple biodiesel blends. • New biodiesel was developed using biodiesel–biodiesel optimum blend. • Engine performance and emission was tested with the newly developed biodiesels. • New biodiesels showed better engine performance than other tested fuels. - Abstract: Fossil fuel depletion, global warming with rapid changes in climate, and increases in oil prices have motivated scientists to search for alternative fuel. Biodiesel can be an effective solution despite some limitations, such as poor fuel properties and engine performance. From this perspective, experiments were carried out to improve fuel properties and engine performance by using a binary blend of palm and coconut biodiesel at an optimized ratio. MATLAB optimization tool was used to determine this blend ratio. A new biodiesel was developed and represented by PC (optimum blend of palm and coconut biodiesel). Engine performance and emission were tested under a full load at variable speed condition by using a 20% blend of each biodiesel with petroleum diesel, and the results were compared with petroleum diesel under both turbocharged and non-turbocharged conditions. PC20 (blend of 20% PC biodiesel and 80% petroleum diesel) showed the highest engine power with lower brake-specific fuel consumption than the other tested fuels in the presence of a turbocharger. The emissions of PC20 were lower than those of all other tested fuels. The experimental analysis reveals that PC showed superior performance and emission over palm biodiesel blend

  18. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  19. Potential use of eucalyptus biodiesel in compressed ignition engine

    Directory of Open Access Journals (Sweden)

    Puneet Verma

    2016-03-01

    Full Text Available The increased population has resulted in extra use of conventional sources of fuels due to which there is risk of extinction of fossil fuels’ resources especially petroleum diesel. Biodiesel is emerging as an excellent alternative choice across the world as a direct replacement for diesel fuel in vehicle engines. Biodiesel offers a great choice. It is mainly derived from vegetable oils, animal fats and algae. Hence in this paper effort has been made to find out feasibility of biodiesel obtained from eucalyptus oil and its impact on diesel engine. Higher viscosity is a major issue while using vegetable oil directly in engine which can be removed by converting it into biodiesel by the process of transesterification. Various fuel properties like calorific value, flash point and cetane value of biodiesel and biodiesel–diesel blends of different proportions were evaluated and found to be comparable with petroleum diesel. The result of investigation shows that Brake Specific Fuel Consumption (BSFC for two different samples of B10 blend of eucalyptus biodiesel is 2.34% and 2.93% lower than that for diesel. Brake Thermal Efficiency (BTE for B10 blends was found to be 0.52% and 0.94% lower than that for diesel. Emission characteristics show that Smoke Opacity improves for both samples, smoke is found to be 64.5% and 62.5% cleaner than that of diesel. Out of all blends B10 was found to be a suitable alternative to conventional diesel fuel to control air pollution without much significant effect on engine performance. On comparing both samples, biodiesel prepared from sample A of eucalyptus oil was found to be superior in all aspects of performance and emission.

  20. Prospects for Anaerobic Biodegradation of Biofuels (Ethanol and Biodiesel) and Proposed Biofuels (n-Propanol, iso-Propanol, n-Butanol, and 2,5-Dimethylfuran) in Aquifer Sediments

    Science.gov (United States)

    Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...

  1. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    OpenAIRE

    Meilita Tryana Sembiring; Sukardi Sukardi; Ani Suryani; Muhammad Romli

    2015-01-01

    Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters). It is because the selling price (referring to Mean of Platts Singapore) is always lower than the production cost. Biodiesel production is influenced by raw materials and p...

  2. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  3. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Reyes; M.A. Sepulveda [University of Concepcion (Chile). Department of Mechanization and Energy, Faculty of Agricultural Engineering

    2006-09-15

    Power response and level of particulate emissions were assessed for blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel. Crude Biodiesel and refined Biodiesel or methyl ester, were made from salmon oil with high content of free fatty acids, throughout a process of acid esterification followed by alkaline transesterification. Blends of Diesel-crude Biodiesel and Diesel-refined Biodiesel were tested in a diesel engine to measure simultaneously the dynamometric response and the particulate material (PM-10) emission performance. The results indicate a maximum power loss of about 3.5% and also near 50% of PM-10 reduction with respect to diesel when a 100% of refined Biodiesel is used. For blends with less content of either crude Biodiesel or refined Biodiesel, the observed power losses are lower but at the same time lower reduction in PM-10 emissions are attained. 21 refs., 4 figs., 2 tabs.

  4. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  5. Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone

    Directory of Open Access Journals (Sweden)

    Pouya Mohammadi

    2014-03-01

    Full Text Available Due to the fast fossil fuel depletion and at the same time global warming phenomenon anticipated for the next coming years, the necessity of developing alternative fuels e.g. biofuels (i.e. bioethanol, biodiesel, biogas and etc. has turned into an important concern. Recently, the application of the bio-solvency properties of biodiesel for recycling waste polymers has been highlighted. However, the impact of polymer dissolution on cold flow characteristics of biodiesel was never investigated. The present study was set to explore the impact of different solvents in stabilizing biodiesel-polymer solution. Among them, acetone was proved to be the best fuel stabilizer. Subsequently, cold flow characteristic i.e. cloud point, of the biodiesel-polymer-acetone fuel was found to have improved (decreased due to the inclusion of acetone. Finally, flash point analysis of the fuel blends containing acetone was done to ensured high safety of the fuel blend by dramatically increasing the flash point values of biodiesel-polymer fuel blends.

  6. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    Science.gov (United States)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  7. PENINGKATAN KUALITAS DAN PROSES PEMBUATAN BIODIESEL DARI BLENDING MINYAK KELAPA SAWIT (PALM OIL DAN MINYAK KELAPA (COCONUT OIL DAN BANTUAN GELOMBANG ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Hantoro Satriadi

    2015-01-01

    Full Text Available Keterbatasan solar sebagai sumber energi bahan bakunya tidak dapat diperbaharui menuntut adanya bahan baku alternatif yang dapat diperbaharui dan ramah lingkungan untuk pembuatan biodiesel. Reaksi utama produksi biodiesel adalah esterifikasi dan transestirifikasi yang berlangsung lambat dan membutuhkan banyak katalis dan alkohol. Reaksi yang terjadi belum sempurna dan belum memenuhi standar SNI dan ASTM. Untuk memperbaiki mutu biodiesel serta menghasilkan yield maksimal, maka dilakukan blending bahan baku antara minyak kelapa sawit dan minyak kelapa dan dengan bantuan gelombang ultrasonic. Penelitian ini bertujuan untuk mempelajari pengaruh variabel perbandingan volume minyak kelapa sawit dan minyak kelapa, perbandingan volume methanolminyak, dan persentase berat katalis terhadap minyak terhadap hasil atau yield biodiesel. Alat utama yang digunakan adalah reaktor yang dilengkapi pembangkit gelombang ultrasonic dengan temperature 60 oC, tekanan 1 atm, volume 3 liter, dan frekuensi 28 kHz. Variabel proses pada penelitian ini adalah perbandingan volume minyak sawit dan kelapa 2:1, 3:1, dan 4:1, pebandingan volume metanol-minyak 0,2:1, 0,25:1, dan 0,3:1, dan persentase berat katalis KOH terhadap minyak 0,3%, 0,5%, dan 0,7%. Hasil penelitian didapat konversi tertinggi dicapai pada variabel perbandingan volume minyak sawit dan kelapa 3:1, perbandingan volume metanol/minyak 0,25:1, dan persentase berat katalis terhadap minyak dengan yield 97,26%.[A Improvement of Quality and Process for Biodiesel Production from Palm Oil and Coconut Oil Blends with Ultrasound Assisted] Limitations of solar energy as a source of raw material cannot be renewed demands for alternative raw materials that are renewable and environmentally friendly for the manufacture of biodiesel. The main production of biodiesel reaction is esterification and transestirifikasi which runs slow and requires a lot of alcohol and a catalyst. Reactions that happen yet perfect, and has not met

  8. Experimental investigation of pistacia lentiscus biodiesel as a fuel for direct injection diesel engine

    International Nuclear Information System (INIS)

    Khiari, K.; Awad, S.; Loubar, K.; Tarabet, L.; Mahmoud, R.; Tazerout, M.

    2016-01-01

    Highlights: • Biodiesel is prepared from Pistacia Lentiscus oil. • Biodiesel yield is 94% when using 6:1 methanol/oil and 1% KOH catalyst at 50 °C. • BSFC and NOx emissions have increased with the use of biodiesel and its blends. • Biodiesel reduces significantly HC, CO and particulate emissions at high engine load. - Abstract: Biodiesel is currently seen as an interesting substitute for diesel fuel due to the continuing depletion of petroleum reserves and the environment pollution emerging from exhaust emissions. The present work is an experimental study conducted on a DI diesel engine running with either pistacia lentiscus (PL) biodiesel or its blends with conventional diesel fuel. PL biodiesel is obtained by converting PL seed oil via a single-step homogenous alkali catalyzed transesterification process. The PL biodiesel physicochemical properties, which are measured via standard methods, are similar to those of diesel fuel. A single cylinder, naturally aspirated DI diesel engine is operated at 1500 rpm with either PL biodiesel or its blends with diesel fuel for several ratios (50, 30 and 5 by v%) and engine load conditions. The combustion parameters, performance and pollutant emissions of PL biodiesel and its blends are compared with those of diesel fuel. The results show that the thermal efficiency is 3% higher for PL biodiesel than for diesel fuel. The emission levels of carbon monoxide (CO), unburned hydrocarbon (HC) and particulate matter are considerably reduced at full engine load (around 25%, 45% and 17% respectively). On the other hand, the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions increase (around 10% and 4% respectively).

  9. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  10. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  11. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  12. Desempenho de motor diesel com misturas de biodiesel de óleo de girassol Performance of diesel engine fuelled with sunflower biodiesel blends

    Directory of Open Access Journals (Sweden)

    Ila Maria Corrêa

    2008-06-01

    Full Text Available Objetivou-se, neste trabalho avaliar o uso de misturas de biodiesel de girassol (Helianthus annuus L. e diesel no desempenho de um motor de ignição por compressão, injeção direta. Os ensaios foram realizados em bancada dinamométrica utilizando-se as misturas B5, B10, B20 e B100 em comparação ao diesel (D. Foi analisado o desempenho do motor através da tomada de potência (TDP com cada combustível, e analisado o óleo lubrificante do motor antes e após 96 horas de uso com B100. Os resultados obtidos foram: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. Concluiu-se que o uso das misturas B5, B10, B20 e B100 proporcionou redução de no máximo 2,2 % na potência na TDP e um aumento máximo de 7,3 %, no consumo específico de combustível. A análise do óleo lubrificante, antes e após o uso com B100, detectou alterações aceitáveis, sendo a viscosidade, a presença de água e o teor de ferro os parâmetros mais expressivamente alterados.This work aimed to evaluate the use of sunflower biodiesel (Helianthus annuus L. blends in a CI engine, direct injection. The test procedure was carried out in a dynamometer bench that determined the performance of engine through power take-off (PTO with use of diesel and sunflower biodiesel blends (B5, B10, B20 and B100. The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kW; 271 g/kW.h; B5 (40,3 kW; 271 g/kW.h; B10 (39,8 kW; 277 g/kW.h; B20 (40,0 kW; 277 g/kW.h e B100 (39,8 kW; 291 g/kW.h. One conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analysis of the lubricating oil before and after the use of B100 showed acceptable alterations and the viscosity, water content and level of iron were the most affected parameters.

  13. French bio-diesel demand and promoting measures analysis by 2010

    International Nuclear Information System (INIS)

    Bernard, F.

    2008-02-01

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  14. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  15. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  16. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  17. Biodiesel research progress 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S. [ed.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  18. Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends

    Directory of Open Access Journals (Sweden)

    S. M. Ashrafur Rahman

    2018-03-01

    Full Text Available Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%, only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be

  19. French bio-diesel demand and promoting measures analysis by 2010; Analyse de la demande et des mesures de promotion francaises du biodiesel a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, F

    2008-02-15

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  20. Analysis of power tiller noise using diesel-biodiesel fuel blends

    Directory of Open Access Journals (Sweden)

    N Keramat Siavash

    2015-09-01

    Full Text Available Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular self-ignition of the fuel. Therefore, being able to extract combustion noise from the overall noise would be of prime interest. This would allow engineers to relate the sound quality back to the combustion parameters. The residual noise produced by various sources, is referred to as mechanical noise. Since diesel engine noise radiation is associated with the operators’ and pedestrians’ discomfort, more and more attention to being paid to it. The main sources of noise generation in a diesel engine are exhaust system, mechanical processes such as valve train and combustion that prevail over the other two. In the present work, experimental tests were conducted on a single cylinder diesel engine in order to investigate the combustion noise radiation during stationary state for various diesel and biodiesel fuel blends. Materials and Methods: The engine used in the current study is an ASHTAD DF120-RA70 that is a single cylinder 4 stroke water cooled diesel engine and its nominal power is 7.5 hp at 2200 rpm. The experiment has been done at three positions (Left ear of operator, 1.5 and 7.5 meter away from exhaust based on ISO-5131 and SAE-J1174 standards. For engine speed measurement the detector Lurton 2364 was utilized with a measurement accuracy of 0.001 rpm. To obtain the highest accuracy, contact mode of detector was used. The engine noise was measured by HT157 sound level meter and was digitalized and saved with Sound View software. HT157 uses alow impedance

  1. Improved oxidative stability of biodiesel fuels : antioxidant research and development.

    Science.gov (United States)

    2011-01-01

    Biodiesel is a domestic, renewable fuel that is gaining wide acceptance, especially in Europe. : When blended with conventional petroleum diesel, biodiesel reduces hydrocarbon, particulate : and carbon monoxide emissions, while having minimal to no e...

  2. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    Science.gov (United States)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  4. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  5. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  6. French bio-diesel demand and promoting measures analysis by 2010; Analyse de la demande et des mesures de promotion francaises du biodiesel a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, F

    2008-02-15

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  7. Performance of Jatropha Oil Blends in RD270 Two Cylinders Four ...

    African Journals Online (AJOL)

    The performance characteristics of RD270 two cylinder, four stroke diesel engine fuelled with jatropha oil and its blend with diesel are presented in this paper. The jatropha biodiesel was obtained from National Research Institutes for Chemical Technology, Zaria, Nigeria. The produced biodiesel was blended with neat ...

  8. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  9. Obtention and characterization of biodiesel; Obtencao e caracterizacao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonidas B.O. dos; Caitano, Moises; Aranda, Donato A.G.; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    Biodiesel is an ester resulting from the transesterification reaction of an alcohol and an oil obtained from biomass. The products of the transesterification are an ester and the glycerol. The biodiesel and the petroleum commercial diesel have similar properties, and they can be mixed and used in diesel motors. The use of biodiesel will allow a better exploration of the energetic potential of our cultures. The biodiesel has some advantages compared to others combustibles, such as adaptability to usual diesel motors and non-generation of NO{sub x} and SO{sub x} compounds. Many experiments with biodiesel have been made in Brazil since the 70's. This work made samples of biodiesel by transesterification batch reactions to many blends of soybean oil and residual fry oil, at room temperature, using mechanical mixture or magnetic agitation by a magnetic stirrer, using as catalysts sodium methoxide and potassium hydroxide. For each obtained sample tests to determine the Acidity Index (ABNT-MB-74), Saponification Index (ABNT-MB-75), Iodine Wijz Index (ABNT-MB- 77), thermal analysis by DTA and TG (TA Instruments SDT 2960, 30 to 800 deg C, 10 deg C/min at nitrogen atmosphere) and rheological test (Haake RS 150 Rheo Stress rheometer) were done. (author)

  10. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  11. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  12. Role of biodiesel with nanoadditives in port owned trucks and other vehicles for emission reduction

    Directory of Open Access Journals (Sweden)

    Misra Atulya

    2017-01-01

    Full Text Available Biodiesel is presently available all over the world and can be produced from several types of biomass. Biodiesel fuels are gaining more and more importance as an attractive alternate fuel in various transport sectors due to their renewable nature and lower pollution impact. However, the ports and the shipping sector are still in the early stage of orientation towards biofuels. In the present work, an experimental investigation on the use of diesterol blend (a mixture of diesel, ethanol with biodiesel with cerium oxide as a nanoadditive (D80JBD15E4S1 + cerium oxide in a compression ignition engine is performed to assess the emission characteristics. The results reveal that the presence of the cerium oxide nanoparticle changes the reaction patterns and heat transfer rate that reduces both the CO and CO2 percentage concentration in the exhaust gas appreciably. Further, the reduction in CO2 emission in the port of Chennai is quantified considering the replacement of neat diesel with those of modified diesel blend in port owned trucks and vehicles.

  13. Stabilization of Neem Oil Biodiesel with Corn Silk Extract during Long-term Storage.

    Science.gov (United States)

    Ali, Rehab Farouk M; El-Anany, Ayman M

    2017-02-01

    The current study aimed to evaluate the antioxidant efficiency of different extracts of corn silk. In addition, the impact of corn silk extract on oxidative stability of neem biodiesel during storage was studied. The highest phenolics, DPPH radical scavenging and reducing power activities were recorded for methanol-water extract. The longest oxidation stability (10 h) was observed for biodiesel samples blended with 1000 ppm of corn silk extract (CSE). At the end of storage period the induction time of biodiesel samples mixed with 1000 ppm of CSE or butylated hydroxytoluene (BHT) were about 6.72 and 5.63 times as high as in biodiesel samples without antioxidants. Biodiesel samples blended with 1000 ppm of CSE had the lowest acidity at the end of storage period. Peroxide value of biodiesel samples containing 1000 ppm of CSE was about 4.28 times as low as in control sample without antioxidants.

  14. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy

    Science.gov (United States)

    Palou, Anna; Miró, Aira; Blanco, Marcelo; Larraz, Rafael; Gómez, José Francisco; Martínez, Teresa; González, Josep Maria; Alcalà, Manel

    2017-06-01

    Even when the feasibility of using near infrared (NIR) spectroscopy combined with partial least squares (PLS) regression for prediction of physico-chemical properties of biodiesel/diesel blends has been widely demonstrated, inclusion in the calibration sets of the whole variability of diesel samples from diverse production origins still remains as an important challenge when constructing the models. This work presents a useful strategy for the systematic selection of calibration sets of samples of biodiesel/diesel blends from diverse origins, based on a binary code, principal components analysis (PCA) and the Kennard-Stones algorithm. Results show that using this methodology the models can keep their robustness over time. PLS calculations have been done using a specialized chemometric software as well as the software of the NIR instrument installed in plant, and both produced RMSEP under reproducibility values of the reference methods. The models have been proved for on-line simultaneous determination of seven properties: density, cetane index, fatty acid methyl esters (FAME) content, cloud point, boiling point at 95% of recovery, flash point and sulphur.

  15. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  16. Experimental assessment of toxic phorbol ester in oil, biodiesel and seed cake of Jatropha curcas and use of biodiesel in diesel engine

    International Nuclear Information System (INIS)

    Prasad, Lalit; Pradhan, Subhalaxmi; Das, L.M.; Naik, S.N.

    2012-01-01

    Highlights: ► In the present study toxic phorbol esters were detected in oil and seed cake of Jatropha curcas but not detected in biodiesel using high performance liquid chromatography (HPLC). ► The quantity of phorbol esters in Jatropha curcas oil and cake were amounted to be 2.12 ± 0.02 mg/g and 0.6 ± 0.01 mg/g respectively. ► As jatropha oil is a potential source for biodiesel preparation, huge amount of oil and cake will be generated and hence need to be handled carefully. ► Upon engine study exhaust pollutant such as hydrocarbon, smoke opacity and carbon monoxide reduced substantially. - Abstract: The present study deals with estimation of toxic phorbol esters in Jatropha curcas oil, cake and biodiesel and performance emission of different blends of biodiesel in diesel engine. The jatropha seed was collected from Chattishgarh, India and oil content of the seed kernel was 56.5%, determined by soxhlet apparatus. The oil was subjected to biodiesel preparation by twin step method of acid esterification followed by alkali transesterification. The total conversion of jatropha oil methyl ester (JOME) after reaction was 96.05% from proton nuclear magnetic resonance ( 1 H NMR) studies. The phorbol esters content of oil, cake and biodiesel was determined by high performance liquid chromatography (HPLC, Waters). The phorbol esters content of the oil was more (2.26 ± 0.01 mg/g) than the cake (0.6 ± 0.01 mg/g) but no phorbol esters peak was detected in biodiesel. The performance and emission study of the fuel blends (JB2, JB5 and JB10) with conventional diesel were tested for their use as substitute fuel for a single cylinder direct injection diesel engine at constant speed (1500 rpm). The emissions such as CO, HC and smoke opacity decreased whereas NO x and BSCF increased with biodiesel blends.

  17. Biodiesel Performance with Modern Engines. Cooperative Research and Development Final Report, CRADA Number CRD-05-153

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel quality and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.

  18. Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Teoh, Y.H.; How, H.G.

    2016-01-01

    Highlights: • The fuel properties of higher alcohol blended biodiesel were improved. • Higher alcohol shows remarkable increase in the BP, BTE and decrease the BSFC. • Alcohols mixed with biodiesel diminishes HC, CO and smoke significantly. • CO 2 emissions of pentanol blended fuel decreases at maximum speed. • Higher alcohol blended biodiesel showed improved combustion. - Abstract: Pentanol is a long-chain alcohol with five carbons in its molecular structure and is produced from renewable feedstock, which may help to improve the challenging problems of energy security and environmental issues. In this investigation, the performance, emission, and combustion characteristics of a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine were evaluated by using 10%, 15%, and 20% pentanol and Calophyllum inophyllum (CI) biodiesel blends in diesel under different speed conditions. The fuel properties of the blended fuels were measured and compared. Combustion attributes, such as cylinder pressure and heat-release rate, were also analyzed. Results indicated that increasing the proportion of pentanol in biodiesel blends improved the fuel properties compared with 20% blend of CI biodiesel (CI 20). The modified blends of pentanol showed reduced brake-specific fuel consumption with higher brake thermal efficiency and brake power than CI 20. Although the modified test blends showed a slightly higher nitric oxide emission, the carbon monoxide emission and unburned hydrocarbon emission for 15% and 20% blends of pentanol showed even better reduction than CI 20. Smoke emission was also reduced significantly. The carbon dioxide emission of the test blends were reduced at the maximum speed condition compared to CI 20. In terms of combustion, the modified test fuels exhibited a significant improvement, thus indicating better performance and emission. This study concluded that the 15% and 20% blends of biodiesel, diesel, and pentanol can optimize engine

  19. Modelos de regressão multivariada empregando seleção de intervalos para a quantificação do biodiesel em blendas biodiesel/diesel

    Directory of Open Access Journals (Sweden)

    Marco Flôres Ferrão

    2010-01-01

    Full Text Available No presente trabalho foram analisados e comparados modelos de regressão multivariados por mínimos quadrados parciais porintervalo (iPLS e por mínimos quadrados parciais por exclusão (biPLS que selecionaram regiões do espectro mais adequadas,retirando informações não relevantes e otimizando o modelo de calibração, a fim de determinar a concentração de biodiesel emblendas de biodiesel/diesel a partir de dados obtidos por espectroscopia no infravermelho por reflectância total atenuada (HATRFTIR.Foram utilizadas 45 amostras de blendas biodiesel/diesel com concentrações de 8 a 30% de biodiesel e os espectros foramadquiridos em dois distintos espectrofotômetros e misturados aleatoriamente para a realização dos modelos, onde foram construídosmodelos para calibração utilizando 2/3 dos espectros das amostras obtendo assim os valores de RMSECV, e o restante dos espectrosforam empregados no conjunto de previsão, obtendo então os valores de RMSEP. Os dados espectrais foram autoescalados (AUTOou centrados na média (MEAN, com ou sem o emprego da correção multiplicativa de sinal (MSC. A utilização dos métodos deseleção das faixas espectrais aplicados aos espectros por ATR se mostrou viável para a quantificação do biodiesel nas blendas, sendoque a utilização da espectroscopia no infravermelho apresenta vantagens como à necessidade de pequena quantidade de amostra ebaixo tempo de análise, além de ser um procedimento não destrutivo e não gerador de resíduos, otimizando assim o processo emquestão.Abstract In the present work multivariate regressionmodels using interval partial least square (iPLS and backwardinterval partial least square (biPLS had been analyzed andcompared. iPLS and biPLS models had been developed todetermine the concentration of biodiesel in blends ofbiodiesel/diesel using infrared spectroscopy signals. 45samples with concentrations in range 8-30% of biodiesel, andtwo distinct spectrophotometers were

  20. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel)

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Robert O. [Food and Industrial Oils Research, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604-3999 (United States)

    2005-06-25

    Biodiesel, an alternative diesel fuel derived from transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. When exposed to air during storage, autoxidation of biodiesel can cause degradation of fuel quality by adversely affecting properties such as kinematic viscosity, acid value and peroxide value. One approach for increasing resistance of fatty derivatives against autoxidation is to treat them with oxidation inhibitors (antioxidants). This study examines the effectiveness of five such antioxidants, tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PrG) and {alpha}-Tocopherol in mixtures with soybean oil fatty acid methyl esters (SME). Antioxidant activity in terms of increasing oxidation onset temperature (OT) was determined by non-isothermal pressurized-differential scanning calorimetry (P-DSC). Analyses were conducted in static (zero gas flow) and dynamic (positive gas flow) mode under 2000 kPa (290 psig) pressure and 5 {sup o}C/min heating scan rate. Results showed that PrG, BHT and BHA were most effective and {alpha}-Tocopherol least effective in increasing OT. Increasing antioxidant loading (concentration) showed sharp increases in activity for loadings up to 1000 ppm followed by smaller increases in activity at higher loadings. Phase equilibrium studies were also conducted to test physical compatibility of antioxidants in SME-No. 2 diesel fuel (D2) blends. Overall, this study recommends BHA or TBHQ (loadings up to 3000 ppm) for safeguarding biodiesel from effects of autoxidation during storage. BHT is also suitable at relatively low loadings (210 ppm after blending). PrG showed some compatibility problems and may not be readily soluble in blends with larger SME ratios. Although {alpha}-Tocopherol showed very good compatibility in blends, it was significantly less effective than the synthetic antioxidants screened in this

  1. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  2. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  3. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  4. Using comprehensive two-dimensional gas chromatography for the analysis of oxygenates in middle distillates I. Determination of the nature of biodiesels blend in diesel fuel.

    Science.gov (United States)

    Adam, Frédérick; Bertoncini, Fabrice; Coupard, Vincent; Charon, Nadège; Thiébaut, Didier; Espinat, Didier; Hennion, Marie-Claire

    2008-04-04

    In the current energetic context (increasing consumption of vehicle fuels, greenhouse gas emission etc.) government policies lead to mandatory introduction in fossil fuels of fuels resulting from renewable sources of energy such as biomass. Blending of fatty acid alkyl esters from vegetable oils (also known as biodiesel) with conventional diesel fuel is one of the solutions technologically available; B5 blends (up to 5%w/w esters in fossil fuel) are marketed over Europe. Therefore, for quality control as well as for forensic reasons, it is of major importance to monitor the biodiesel origin (i.e. the fatty acid ester distribution) and its content when it is blend with petroleum diesel. This paper reports a comprehensive two-dimensional gas chromatography (GC x GC) method that was developed for the individual quantitation of fatty acid esters in middle distillates matrices. Several first and the second dimension columns have been investigated and their performances to achieve (i) a group type separation of hydrocarbons and (ii) individual identification and quantitation of fatty acid ester blend with diesel are reported and discussed. Finally, comparison of quantitative GC x GC results with reference methods demonstrates the benefits of GC x GC approach which enables fast and reliable individual quantitation of fatty acid esters in one single run. Results show that under developed chromatographic conditions, quantitative group type analysis of hydrocarbons is also possible, meaning that simultaneous quantification of hydrocarbons and fatty acid esters can be achieved in one single run.

  5. Performance and emissions characteristics of biodiesel from soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Faculty of Technical Education

    2005-07-15

    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO{sub 2} emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO{sub x}. (author)

  6. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  7. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  8. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Anker Degn; Jensen, Peter Arendt

    2013-01-01

    The utilization of bio-fuels, such as biodiesel, is expected to contribute significantly towards the planned 10% of renewable energy within the EU transport sector by 2020. Increased biodiesel blend percentages may change engine exit flue gas ash composition and affect the long-term performance...... of cleaning technologies, such as oxidation catalysts and diesel particulate filters. In this work the performance of a commercial catalyst has been studied for conversion of diesel particulate matter (SRM 2975) at 10% O2, in the presence of salts simulating ash species derived from engine oil and biodiesel...... the temperature at which the oxidation rate peaked from 662 ± 1 °C to 526 ± 19 °C. The introduction of biodiesel ash species such as Na2CO3, K2CO3 or K3PO4 decreased the peak conversion temperature further (422 ± 12; 404 ± 4 and 423 ± 7 °C), with a limited dependence on ash concentration. A deterioration...

  9. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    International Nuclear Information System (INIS)

    Bugarski, A.D.; Shi, X.C.

    2009-01-01

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m 3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  10. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  11. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  12. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  13. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles

    Science.gov (United States)

    AbstractContext: Biodiesel and biodiesel-blend fuels offer a renewable alternative to petroleum diesel, but few data are available concerning the carcinogenic potential of biodiesel exhausts. Objectives: We compared the formation of covalent DNA adducts by the in vitro metabol...

  14. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Science.gov (United States)

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  15. Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data.

    Science.gov (United States)

    de Oliveira, Rodrigo Rocha; de Lima, Kássio Michell Gomes; Tauler, Romà; de Juan, Anna

    2014-07-01

    This study describes two applications of a variant of the multivariate curve resolution alternating least squares (MCR-ALS) method with a correlation constraint. The first application describes the use of MCR-ALS for the determination of biodiesel concentrations in biodiesel blends using near infrared (NIR) spectroscopic data. In the second application, the proposed method allowed the determination of the synthetic antioxidant N,N'-Di-sec-butyl-p-phenylenediamine (PDA) present in biodiesel mixtures from different vegetable sources using UV-visible spectroscopy. Well established multivariate regression algorithm, partial least squares (PLS), were calculated for comparison of the quantification performance in the models developed in both applications. The correlation constraint has been adapted to handle the presence of batch-to-batch matrix effects due to ageing effects, which might occur when different groups of samples were used to build a calibration model in the first application. Different data set configurations and diverse modes of application of the correlation constraint are explored and guidelines are given to cope with different type of analytical problems, such as the correction of matrix effects among biodiesel samples, where MCR-ALS outperformed PLS reducing the relative error of prediction RE (%) from 9.82% to 4.85% in the first application, or the determination of minor compound with overlapped weak spectroscopic signals, where MCR-ALS gave higher (RE (%)=3.16%) for prediction of PDA compared to PLS (RE (%)=1.99%), but with the advantage of recovering the related pure spectral profile of analytes and interferences. The obtained results show the potential of the MCR-ALS method with correlation constraint to be adapted to diverse data set configurations and analytical problems related to the determination of biodiesel mixtures and added compounds therein. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Attributional and consequential environmental assessment of using waste cooking oil- and poultry fat-based biodiesel blends in urban buses: a real-world operation condition study

    Directory of Open Access Journals (Sweden)

    Mohammad Rajaeifar

    2017-09-01

    Full Text Available Urban public transportation sector in general is heavily dependent on fossil-oriented fuels, e.g., diesel. Given the fact that a major proportion of urban pollution and the consequent threats towards public health are attributed to this sector, serious efforts at both technical and political levels have been being made to introduce less-polluting fueling regimes, e.g., partial replacement of diesel with biodiesel. In line with that, the present study was aimed at evaluating the emissions attributed to 5% blends of waste cooking oil (WCO and poultry fat (PF biodiesel fuels (i.e., B5-WCO and B5-PF fuel blends when used in urban buses during idle operation mode. Moreover, the attributional and consequential environmental impacts of using these fuel blends were also investigated through a well to wheel life cycle assessment (LCA by considering the real-world condition combustion data using ten urban buses. The findings of the ALCA revealed that the application of 1 L B5-WCO fuel blend could potentially reduce the environmental burdens in human health, ecosystem quality, and resources damage categories compared with using the B5-PF fuel blend. The situation was opposite for climate change damage category in which using 1 L B5-PF fuel blend had a lower impact on the environment. Overall, the environmental hotspots in the B5-WCO and B5-PF life cycles were identified as the combustion stage as well as the diesel production and transportation. From the consequential perspective, using 1 L B5-WCO fuel blend could potentially decrease the environmental burdens in human health, ecosystem quality, and resources damage categories. While, the situation was different for climate change damage category where using 1 L B5-PF fuel blend could have a lower impact on the environment. In conclusion, using B5-WCO fuel blend as an alternative for diesel could be an environmentally-friendly decision for the Iranian urban transportation sector at the policy level as long

  17. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  18. Global sale of green air travel supported using biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, D.A. [Auckland (New Zealand)

    2003-02-01

    The technical feasibility of operating commercial aircraft on low concentration biodiesel in kerosene blends is reviewed. Although the analysis is preliminary, it seems plausible that a biodiesel component could be introduced without significant modification to aircraft, airport infrastructure, and flight operations. The use of a biodiesel component, even for only a subset of flight operations, would open the possibility of giving all passengers, the world over, regardless of route, the option to pay a premium to make their journey on 'green' fuel (actually biodiesel). In this way, the airline industry could recover the additional cost of biodiesel in comparison to kerosene. The costs associated with such a scheme are estimated, as is consumer demand. Although the analysis is preliminary, the scheme appears commercially viable. From a humanitarian and/or environmental perspective, marketing flight on biodiesel as 'green air travel' is problematic. On the one hand, the use of biodiesel in aviation would reduce addition of carbon dioxide to the atmosphere and foster development of sustainable technology. On the other hand, it would require that agricultural resources be dedicated to air travel, nominally a luxury, in a world where agricultural resources appear destined to come under increasing strain merely to satisfy humanity's basic food and energy needs. A preliminary discussion of these issues is presented. It is hoped that this can serve as the starting point for further discussion, at an international level, to reach consensus on whether marketing of flight on biodiesel as 'green air travel' should be allowed to proceed, or whether it should be declared unethical. (author)

  19. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  20. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  1. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    Science.gov (United States)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  2. Soot accumulation in diesel particulate filters using ULSD and B20 biodiesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Charbonneau, P.; Wallace, J.S. [Toronto Univ., ON (Canada)

    2009-07-01

    Soot accumulation in a diesel particulate filter was investigated using a newly developed dissection method that loads and dissects diesel particulate filters (DPFs). In particular, this study examined the differences in soot accumulation between ultra-low sulphur diesel (ULSD) and a B20 biodiesel blend. DPFs loaded for exposure times of 1, 2, 5 and 10 hours. Scanning electron microscopy (SEM) was used to analyze the samples of the filter substrate. The differences in particulate size and number distribution between fuels were attributed to performance differences in DPFs. ULSD loaded filters experienced increased loading and a greater pressure drop across the filters. According to SEM images, the soot cake was a relatively shallow feature increasing in density to form discrete coarse agglomerates and cakes. It was concluded that this newly developed methodology has potential for future studies in DPF loading.

  3. Accelerated oxidation processes is biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  4. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    Full Text Available Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by the transport sector alone (Mard et al., 2012. The combustion products cause global warming, which is caused of emissions like carbon monoxide (CO, sulfur dioxide (SO2 and nitrogen oxides (NOX. Thus it is essential that low emission alternative fuels to be developed for useing in diesel engines. Many researchers have concluded that biodiesel holds promise as an alternative fuel for diesel engines. Biodiesel is oxygenated, biodegradable, non-toxic, and environmentally friendly (Qi et al., 2010. Materials and Methods: In this study transesterification method was used to produce biodiesel, because of its simplicity in biodiesel production process and holding the highest conversion efficiency. Transesterification of poultry fat oil and the properties of the fuels: Fatty acid methyl ester of poultry fat oil was prepared by transesterification of oil with methanol in the presence of KOH as catalyst. The fuel properties of poultry fat oil methyl ester and diesel fuel were determined. These properties are presented in Table 1. Tests of engine performance and emissions: After securing the qualitative characteristics of produced biodiesel, different biodiesel fuels of 5%, 10%, 15%, and 20% blended with diesel fuel were prepared. A schematic diagram of the engine setup is shown in Fig.1. The MF-399 tractor engine was used in the tests. The basic specifications of the engine are shown in Table 3. The engine was loaded with an electromagnetic dynamometer. The Σ5 model dynamometer manufactured by NJ-FROMENT was used to measure the power and the torque of the tractor engine. The speed range and capacity of this device are shown in Table 2. A FTO Flow Meter, manufactured by American FLOWTECH Company, was used to measure the fuel consumption

  5. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    Science.gov (United States)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  6. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    Science.gov (United States)

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  7. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color

  8. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  9. Data on kinetic, energy and emission performance of biodiesel from waste frying oil

    Directory of Open Access Journals (Sweden)

    Silverio Catureba da Silva Filho

    2018-06-01

    Full Text Available The data presented in this article are related to the research article “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city” (Silva Filho et al., 2018 [1]. This article presents the variation of the concentration of waste frying oil (WFO with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO2 and SO2 have been measured to verify their greenhouse effect and energy efficiency. Keywords: Biodiesel, Kinetic curves, Greenhouse gas emission, Energy efficiency

  10. Biodegradation of gas-to-liquids synthetic diesel, biodiesel and their blends

    Directory of Open Access Journals (Sweden)

    Randal M.C. Albertus

    2015-02-01

    Full Text Available Volhoubare en hernubare alternatiewe vir petroleumbrandstowwe word ondersoek vanweë die toenemende aanvraag na brandstof in die vervoerbedryf. Sintetiese brandstowwe soos diesel word van natuurlike gas en steenkool geproduseer, via die Fischer-Tropschsinteseproses. Biodiesel kan ’n aantreklike alternatief vir petroleumgebaseerde diesel wees omdat die fisiese eienskappe daarvan soortgelyk is aan dié van petrodiesel en dit vervoer en gestoor kan word deur van bestaande infrastruktuur gebruik te maak. Die biodegradeerbaarheid van sintetiese diesel en biodieselmengsels is ondersoek deur van respirometrie gebruik te maak. Die doel was om vas te stel of biodiesel die biodegradeerbaarheid van die mengsels kan bevorder in vergelyking met sintetiese petrodiesel. Bykomend is ’n model ontwikkel om die biodegradeerbaarheid van die diesel en diesel-/biodieselmengsels te voorspel deur benutting van die molekulȇre samestelling van die brandstowwe en die BIOWIN V.4.10, EPISuite-voorspellingsagteware. Die byvoeging van biodiesel tot sintetiese diesel het die biodegradeerbaarheid van die mengsels bevorder. Die byvoeging van minder as 1% biodiesel het die biodegraderingsklassifikasie vanaf inherent biodegradeerbaar tot geredelik biodegradeerbaar verbeter. Die byvoeging van biodiesel tot petroleumgebaseerde diesel kan gebruik word om die ontwikkeling van hernubare alternatiewe aan te moedig, aangesien die mengsels beter biodegradeer as petroleumdiesel. Die voordele van biodiesel om die remediëring van koolwaterstofkontaminasie te bevorder, is ook bevestig.

  11. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2017-04-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  12. ANALYSIS OF COCONUT ETHYL ESTER (BIODIESEL) AND ...

    African Journals Online (AJOL)

    eobe

    Energy is an indispensable and significant issue of world concern. ... both metal parts of diesel engine whereas biodiesel from other ... study reported on the blend characterization and ... weighing balance was used to measure the weight of.

  13. Assessment of the biodiesel distribution infrastructure in Canada

    International Nuclear Information System (INIS)

    Lagace, C.

    2007-08-01

    Canada's biodiesel industry is in its infancy, and must work to achieve the demand needed to ensure its development. This assessment of Canada's biodiesel distribution infrastructure was conducted to recommend the most efficient infrastructure pathway for effective biodiesel distribution. The study focused on the establishment of a link between biodiesel supplies and end-users. The current Canadian biodiesel industry was discussed, and future market potentials were outlined. The Canadian distillate product distribution infrastructure was discussed. Technical considerations and compliance issues were reviewed. The following 2 scenarios were used to estimate adaptations and costs for the Canadian market: (1) the use of primary terminals to ensure quality control of biodiesel, and (2) storage in secondary terminals where biodiesel blends are prepared before being transported to retail outlets. The study showed that relevant laboratory training programs are needed as well as proficiency testing programs in order to ensure adequate quality control of biodiesel. Standards for biodiesel distribution are needed, as well as specifications for the heating oil market. It was concluded that this document may prove useful in developing government policy objectives and identifying further research needs. 21 refs., 12 tabs., 13 figs

  14. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas; Agarwal, Avinash K.

    2015-09-07

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures

  15. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  16. Validasi Spesifikasi Campuran Biodiesel-Solar Hasil Pengukuran dengan Metode Perhitungan Sederhana

    Directory of Open Access Journals (Sweden)

    Soni S. Wirawan

    2007-09-01

    Full Text Available Biodiesel is a fuel derived from vegetable oil or animal fats that can be used as an additive to or entirely replace conventional petroleum diesel fuel. In most cases, biodiesel is mixed with conventional diesel because of the higher cost of biodiesel, product availability and engine compatibility issues. In Indonesia, the decree No. 3675K/24/DJM/2006 regarding the quality and specification of diesel oil type Solsr 48 and Solar 51 has been issued this decree regulates the use of FAME (fatty acid methyl ester up to the maximum of 10 percent of the volume of automotive diesel fuel with which it is to be blended. The cost to measure the properlles of fuel is expensive and time consuming, therefore it is important to develop a simple method to predict those blending properties. This paper presents the development of a simple calculation method for the validation of blend palm biodiesel-mineral diesel specification (density, viscosity, cetane number and lubricity which has been measured in the author's previous study The result shows that the lubricity and viscosity shows a higher average error value (difference value between calculation and measurement result of 1.66% and 1.35%, whereas density and cetane number shows lower average error values of 0.06 and 0.6%. The average error value less than 2% is still acceptable.

  17. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  18. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  19. Investigating the engine vibration in MF285 tractor effected by different blends of biodiesel fuel using statistical methods and ANFIS

    Directory of Open Access Journals (Sweden)

    A Safrangian

    2017-05-01

    Full Text Available Introduction Vibrations include a wide range of engineering sciences and discuss from different aspects. One of the aspects is related to various types of engines vibrations, which are often used as power sources in agriculture. The created vibrations can cause lack of comfort and reduce effective work and have bad influence on the health and safety. One of the important parameters of the diesel engine that has the ability to create vibration and knocking is the type of fuel. In this study, the effects of different blends of biodiesel, bioethanol and diesel on the engine vibration were investigated. As a result, a blend of fuels such as synthetic fuel that creates less vibration engine can be identified and introduced. Materials and Methods In this study, canola oil and methanol alcohol with purity of 99.99% and the molar ratio of 6:1 and sodium hydroxide catalyst with 1% by weight of oil were used for biodiesel production. Reactor configurations include: maintaining the temperature at 50 ° C, the reaction time of 5 minutes and the intensity of mixing (8000 rpm, and pump flow, 0.83 liters per minute. A Massey Ferguson (MF 285 tractor with single differential (2WD, built in 2012 at Tractor factory of Iran was used for the experiment. To measure the engine vibration signals, an oscillator with model of VM120 British MONITRAN was used. Vibration signals were measured at three levels of engine speed (2000, 1600, 1000 rpm in three directions (X, Y, Z. The analysis performed by two methods in this study: statistical data analysis and data analysis using Adaptive neuro-fuzzy inference system (ANFIS. Statistical analysis of data: a factorial experiment of 10×3 based on completely randomized design with three replications was used in each direction of X, Y and Z that conducted separately. Data were compiled and analyzed by SPSS 19 software. Ten levels of fuel were including of biodiesel (5, 15 and 25% and bioethanol (2, 4 and 6%, and diesel fuel. Data

  20. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  1. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  2. Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends.

    Science.gov (United States)

    Chen, Shui-Jen; Tsai, Jen-Hsiung; Chang-Chien, Guo-Ping; Huang, Kuo-Lin; Wang, Lin-Chi; Lin, Wen-Yinn; Lin, Chih-Chung; Yeh, C Kuei-Jyum

    2017-10-05

    Few studies have been performed up to now on the emission factors and congener profiles of persistent organic pollutants (POPs) emitted from off-road diesel engines. This investigation elucidates the emission factors and congener profiles of various POPs, namely polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), in the exhausts of a diesel generator fueled with different waste cooking oil-based biodiesel (WCO-based biodiesel) blends. The PCDD/Fs contributed 87.2% of total dioxin-like toxicity (PCDD/Fs+PCBs+PBDD/Fs) in the exhaust, while the PCBs and PBDD/Fs only contributed 8.2% and 4.6%, respectively. Compared with petroleum diesel, B20 (20vol% WCO-based biodiesel+80vol% diesel) reduced total toxicity by 46.5% for PCDD/Fs, 47.1% for PCBs, and 24.5% for PBDD/Fs, while B40 (40vol% WCO-based biodiesel+60vol% diesel) reduced it by 89.5% for PCDD/Fs, 57.1% for PCBs, and 63.2% for PBDD/Fs in POP emission factors. The use of WCO-based biodiesel not only solves the problem of waste oil disposal, but also lowers POP emissions from diesel generators. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    Science.gov (United States)

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  4. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  5. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    Science.gov (United States)

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biodiesel Production from Castor Oil and Its Application in Diesel Engine

    Directory of Open Access Journals (Sweden)

    S Ismail

    2014-12-01

    Full Text Available In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.

  7. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  8. A Study of the Use of Jatropha Oil Blends in Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic

  9. The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine

    International Nuclear Information System (INIS)

    Lešnik, Luka; Biluš, Ignacijo

    2016-01-01

    Highlights: • Sub-models for parameter determination can be derived using experimental results. • Proposed sub-models can be used for calculation of model parameters. • Biodiesel fuel reduces emissions compared to diesel fuel on full engine load. • Usage of biodiesel fuel slow down the emission formation rate. • Oxygen content in biodiesel fuel decreases the amount of formatted CO emissions. - Abstract: This study presents the influence of biodiesel fuel and blends with mineral diesel fuel on diesel engine performance, the combustion process, and the formation of emissions. The study was conducted numerically and experimentally. The aim of the study was to test the possibility of replacing mineral diesel fuel with biodiesel fuel made from rapeseed oil. Pure biodiesel fuel and three blends of biodiesel fuel with mineral diesel fuel were tested experimentally for that purpose on a heavy-duty bus diesel engine. The engine’s performance, in-cylinder pressure, fuel consumption, and the amount of produced NO_x and CO emissions were monitored during experimental measurements, which were repeated numerically using the AVL BOOST simulation program. New empirical sub-models are proposed for determining a combustion model and emission models parameters. The proposed sub-models allow the determination of necessary combustion and emission model parameters regarding the properties of the tested fuel and the engine speed. When increasing the percentage of biodiesel fuel within the fuel blends, the reduction in engine torque and brake mean effective pressures are obtained for most of the test regimes. The reduction is caused due to the lower calorific value of the biodiesel fuel. Higher oxygen content in biodiesel fuel contributes to a better oxidation process within the combustion chamber when running on pure biodiesel or its blends. Better oxidation further results in a reduction of the formatted carbon and nitrogen oxides. The reduction of carbon emission is also

  10. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo

    2013-01-01

    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  11. Mahua (Madhuca Indica oil: A potential source for biodiesel production in India

    Directory of Open Access Journals (Sweden)

    Utkarsh

    2016-09-01

    Full Text Available The economic development of a country is highly dependent on the supply of fossil fuels which are constrained by its limited availability and pollution characteristics. India is among the world’s fourth-largest petroleum consumer due to which the vehicular emissions increased eight times over the last two decades. Due to the environmental awareness and depletion of fossil fuel reserves, attention has been given to find an alternative energy source. Among the alternatives existing, Biodiesel is the one which is less polluting and eco-friendly. So it can be used in industrial, commercial, agricultural and other sectors as a substitute for diesel. Biodiesel can be produced from crude vegetable oil, non-edible oil, frying oils (waste, animal tallow and algae by a process of chemical reaction called Transesterification. Biodiesel is also known as methyl or ethyl esters of the feedstock from which it is produced. It is miscible with diesel oil which allows the use of blends of petro diesel and biodiesel in any percentage. The C.I. engines fuelled with biodiesel perform more or less in the same fashion as that with the conventional fuel. Comparative to diesel, biodiesel has high Cetane number and lower compressibility. Additionally, the heat release rate of biodiesel is slightly lower than diesel owing to low calorific value, low volatility and high viscosity. The problem of high viscosity can be eradicated by transesterification process and by adding additives which help us to store the biodiesel for a longer duration of time without any decay. Exhaust emissions are significantly reduced with the use of biodiesel or its blends. The present paper investigates the potential of Mahua (Madhuca Indica oil for biodiesel production as it can be extracted from seeds of Mahua tree which are indigenous to India. It can grow even in dry regions and are found abundantly in several parts of India

  12. Oilseed rape as feedstock for biodiesel production in relation to the environment and human health

    Directory of Open Access Journals (Sweden)

    Marek Angelovič

    2013-05-01

    Full Text Available Oilseed rape is one of the most important crops in cultivation process. A current developmental trend in non-food rapeseed production on agricultural land shows that this new course is irreversible and is a great opportunity for agriculture. Non-food rapeseed production is focused on the production of biodiesel. Biodiesel has good environmental properties. Lower emissions are produced by the combustion of biodiesel than for diesel. In content of exhaust gas is observed a significant decrease of polycyclic aromatic hydrocarbons, particulate matter and etc. The analysis of the literary knowledge on impacts of biodiesel on exhaust emissions, on regulated emissions, shows a reduction of 10.1% for particulate matter, of 21.1% for hydrocarbons, and 11.0% for carbon monoxide with the use of B20. Nitrogen oxides (NOx increased by 2.0%. Biodiesel was introduced into the European market in the 1988s as B100. The use of blends with content up to 5% biodiesel has no significant impact on the emissions and their toxicity. An increased mutagenicity was observed with blends containing 20%. Nevertheless, increased mutagenic effects were observed under specific conditions. Accordingly, the problem concerning blends of diesel fuel with biodiesel (B20 should be investigated with high priority. No comprehensive risk assessment for diesel engine emissions from biodiesel and its blends is possible In regard to a comprehensive hazard characterization it is urged to develop a panel of standardized and internationally accepted protocols which allow a reliable assessment of possible health hazards which may arise from the combustion of new fuels compared to conventional diesel fuel. These methods should be robust and should reflect the various health hazards associated with diesel engine emissions to supplement data on regulated emissions. Methods for the generation of the exhaust and sample preparation should be harmonized. There is sufficient evidence supporting a

  13. Consumption and combustion efficiency in a generator engine using biodiesel; Consumo e eficiencia de combustao em um motor gerador utilizando biodisel

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Joao Paulo Barreto; Delmond, Josue G.; Couto, Rodney Ferreira; Neiva Filho, Neyber Cristiano; Reis, Elton F. dos [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], Email: bcunha_2@hotmail.com

    2011-07-01

    Due to the increasing demand for biodiesel, associated to the aim of reduction in pollutants emissions, technical feasibility studies are increasingly needed. This study aimed to evaluate the use of biodiesel in different concentrations (B5, B10, B20, B50, B75 and B100) in a diesel generator set, with an engine with 3,73 KW four-stroke with direct injection. Assays were performed to quantify the hourly fuel consumption and emission of gases under different conditions of engine operation, through demands of electrical loads (500 W, 1.000W, 1.500W, 2,000 W and off) connected to the generator group. A completely randomized design was used with 5x6 factorial arrangement of treatment, six of biodiesel blends and five electric load demands, with three repetitions. The results demonstrated that the mixtures showed a significant difference in fuel consumption and combustion efficiency, and revealed that the use of biodiesel in higher concentrations in general provided a combustion process more efficient compared to conventional diesel. (author)

  14. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO_x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO_x emissions compared to diesel under lean burning conditions.

  15. Biodiesel intercity passenger rail revenue service test.

    Science.gov (United States)

    2013-10-01

    Amtrak, with the support of the Federal Railroad Administration, operated a P-32 passenger locomotive in revenue service for a : period of 12 months, on a blend of 20 percent pure biodiesel and 80 percent #2 ultra-low sulfur diesel (ULSD) fuel. The G...

  16. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  17. Production, optimization and quality assessment of biodiesel from Ricinus communis L. oil

    Directory of Open Access Journals (Sweden)

    Maryam Ijaz

    2016-04-01

    Full Text Available At present, biodiesel is gaining tremendous attention due to its eco-friendly nature and is possible substitute for diesel fuel. Biodiesel as renewable energy source can be produced from edible and non-edible feedstock. Non-edible resources are preferred to circumvent for food competition. In the present study FAME was produced from Ricinus communis L. oil by transesterification with methanol and ethanol in the presence of potassium hydroxide. The practical optimal condition for the production of biodiesel from castor bean was found to be: methanol/oil molar ratio, 6:1; temperature, 60 °C; time, 45 min; catalyst concentration 0.32 g. Quality assessment of biodiesel showed comparable results with ASTM standards. The values of specific gravity (SG were 0.5, kinematic viscosity 2.45 cSt, acid values 0.13 mg KOH/g, carbon residue 0.03%, flash point 119 °C, fire point 125 °C, cloud point −10 °C and pour point −20 °C of Ricinus FAME, respectively. Based on our data, it is suggested that to overcome prevailing energy crisis this non-edible plant is useful for production of biodiesel, which is an alternate to fossil fuel and may be used alone or in blend with HSD in engine combustion.

  18. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    Science.gov (United States)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  19. Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index.

    Science.gov (United States)

    Lapuerta, Magín; Rodríguez-Fernández, José; Armas, Octavio

    2010-09-01

    Biodiesel fuels (methyl or ethyl esters derived from vegetables oils and animal fats) are currently being used as a means to diminish the crude oil dependency and to limit the greenhouse gas emissions of the transportation sector. However, their physical properties are different from traditional fossil fuels, this making uncertain their effect on new, electronically controlled vehicles. Density is one of those properties, and its implications go even further. First, because governments are expected to boost the use of high-biodiesel content blends, but biodiesel fuels are denser than fossil ones. In consequence, their blending proportion is indirectly restricted in order not to exceed the maximum density limit established in fuel quality standards. Second, because an accurate knowledge of biodiesel density permits the estimation of other properties such as the Cetane Number, whose direct measurement is complex and presents low repeatability and low reproducibility. In this study we compile densities of methyl and ethyl esters published in literature, and proposed equations to convert them to 15 degrees C and to predict the biodiesel density based on its chain length and unsaturation degree. Both expressions were validated for a wide range of commercial biodiesel fuels. Using the latter, we define a term called Biodiesel Cetane Index, which predicts with high accuracy the Biodiesel Cetane Number. Finally, simple calculations prove that the introduction of high-biodiesel content blends in the fuel market would force the refineries to reduce the density of their fossil fuels. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  1. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    Science.gov (United States)

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  2. Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst

    International Nuclear Information System (INIS)

    Mahesh, Sneha E.; Ramanathan, Anand; Begum, K.M. Meera S.; Narayanan, Anantharaman

    2015-01-01

    Highlights: • KBr impregnated CaO has been used as heterogeneous catalyst. • Efficient use of waste cooking oil as feedstock. • Response Surface Methodology was used to optimize process parameters. - Abstract: This research paper deals with the synthesis of a heterogeneous catalyst (KBr/CaO) from commercial calcium oxide and potassium bromide by wet impregnation method. This solid catalyst was tested for transesterification of waste cooking oil (WCO). The synthesized catalyst was characterized by Fourier Transform Infrared spectrometry (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. Transesterification reaction parameters were varied to obtain the maximum yield of biodiesel. Response Surface Methodology (RSM) using Central Composite Design (CCD) was employed to study the effect of the process variables like methanol to oil ratio, catalyst loading and reaction time. The optimum conditions obtained using regression models were found to be 12:1 methanol: oil ratio, 3 wt% catalyst loading and 1.8 h reaction time. The composition of FAME was determined using Gas Chromatography–Mass Spectrometry (GC–MS). The performance and emission characteristics for various blends of biodiesel (B10, B20, B50 and B100) were investigated in a four stroke direct injection diesel engine. The results indicated that the brake thermal efficiency, particulate matter, unburned hydrocarbons, carbon monoxide emissions reduced with increased concentration of biodiesel in the fuel blends, whereas the specific fuel consumption, NO x emissions and exhaust gas temperature increased

  3. Effect of temperature on tribological properties of palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature. (author)

  4. Performance characteristics of rubber seed oil biodiesel

    Science.gov (United States)

    Liu, P.; Qin, M.; Wu, J.; Chen, B. S.

    2018-01-01

    The lubricity, ignition quality, oxidative stability, low temperature flow property and elastomeric compatibility of rubber seed oil biodiesel(RSM) were evaluated and compared with conventional petro-diesel. The results indicated that RSM and its blends with petro-diesel possessed outstanding lubricity manifested by sharp decrease in wear scar diameters in the high-frequency reciprocating rig(HFRR) testing. They also provided acceptable flammability and cold flow property,although the cetane numbers (CN) and cold filter plugging points(CFPP) of biodiesel blends slightly decreased with increasing contents of petro-diesel. However, RSM proved to be very susceptible to oxidation at elevated temperatures during prolonged oxidation durations, characterized by increased peroxide values, viscosity, acid values and isooctane insolubles. The oxidation stability of RSM could be significantly improved by antioxidants such as BD100, a phenol antioxidant produced by Ciba corporation. Furthermore, RSM provided poor compatibility with some elastomeric rubbers such as polyacrylate, nitrile-butadiene and chloroprene, but was well compatible with the hydrogenated nitrile-butadiene elastomer.

  5. Mistura de biodiesel de sebo bovino em motor diesel durante 600 horas Blend of biodiesel from beef tallow in a diesel engine during 600 hours of tests

    Directory of Open Access Journals (Sweden)

    Ila Maria Corrêa

    2011-07-01

    Full Text Available O biodiesel de sebo bovino é considerado uma alternativa de baixo custo e de grande disponibilidade por ser resíduo da produção agropecuária brasileira, que é uma das maiores do mundo. Raros são os trabalhos que mostram a utilização do biodiesel de sebo bovino em motores diesel. Assim, o objetivo deste trabalho foi verificar o efeito da mistura de biodiesel bovino na proporção de 5% ao óleo diesel comercial no desempenho do motor, possíveis consequências internas no motor e nas características do óleo lubrificante após o uso prolongado em motor diesel. Foram realizados ensaios em bancada dinamométrica utilizando um trator agrícola. O desempenho do motor foi determinado através da tomada de potência (TDP. O motor foi operado por 600h durante as quais foi determinada a potência, o consumo de combustível e analisadas as amostras de óleo lubrificante a cada 100h. Ao final do ensaio, o motor foi aberto e inspecionado. A análise do óleo lubrificante mostrou nível de contaminação crítico a partir das 400h, mas a inspeção visual do motor não detectou nenhum desgaste interno. O motor funcionou normalmente, embora tenha ocorrido tendência de redução na potência e aumento de consumo de combustível ao longo das 600h.Biodiesel from beef tallow has been considered a low-cost and high availability alternative due to be residue from the Brazilian livestock production, one of the world's largest. Papers that show the use of biodiesel from beef tallow in diesel engine are rare. The aim of this study was to investigate the effect of blend of biodiesel from beef tallow (B5 in commercial diesel oil on engine performance, analyzing possible internal consequences and characteristics of lubricating oil after the prolonged use in a diesel engine. Engine performance was evaluated through tractor power take off (PTO tests. The engine was operated for 600 hours. Power and fuel consumption were measured. Samples of lubricating oil were

  6. Preliminary assessment of biodiesel generation from meat industry residues in Baja California, Mexico

    International Nuclear Information System (INIS)

    Toscano, Lydia; Montero, Gisela; Stoytcheva, Margarita; Campbell, Hector; Lambert, Alejandro

    2011-01-01

    Oil derived fuels constituted a main energy source during the last fifty years, although their high price limited their accessibility. Prospective studies indicated that economic and environmental problems promoted biodiesel production using biomass and residues like animal fat, along with meat and bones, among others. The regional inventory of the available fat in meat industry, as well as the estimation of the biodiesel potential production demonstrated that the biodiesel generated from animal fat, combined with diesel from oil in a 2% biodiesel blend could power 25% of the trucks and passenger vehicles registered in 2007 in Baja California, Mexico. (author)

  7. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  8. Biodiesel production technologies: review

    Directory of Open Access Journals (Sweden)

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  9. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    S Abbasi

    2018-03-01

    Full Text Available Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel about combustion, performance and emission parameters of engines. One of the parameters that have been less discussed is energy balance. In providing alternative fuels, biodiesel from waste cooking oil due to its low cost compared with biodiesel from plant oils, is the promising option. The properties of biodiesel and diesel fuels, in general, show many similarities, and therefore, biodiesel is rated as a realistic fuel as an alternative to diesel. The conversion of waste cooking oil into methyl esters through the transesterification process approximately reduces the molecular weight to one-third, reduces the viscosity by about one-seventh, reduces the flash point slightly and increases the volatility marginally, and reduces pour point considerably (Demirbas, 2009. In this study, effect of different percentages of biodiesel from waste cooking oil were investigated. Energy distribution study identify the energy losses ways in order to find the reduction solutions of them. Materials and Methods Renewable fuel used in this study consists of biodiesel produced from waste cooking oil by transesterification process (Table 1. Five diesel-biodiesel fuel blends with values of 0, 12, 22, 32 and 42 percent of biodiesel that are signs for B0, B12, B22, B32 and B42, respectively. The test engine was a diesel engine, single-cylinder, four-stroke, compression ignition and air¬cooled, series 3LD510 in the laboratory of renewable energies of agricultural faculty, Tarbiat Modarres

  10. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Abdalrahman B. Fadhil

    2012-06-01

    Full Text Available Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction time were optimized. The study raveled that, 0.50% KOH w/w of oil; a 6:1 methanol to oil molar ratio; a reaction temperature of 60°C and a duration of 1h were the optimal conditions because they resulted in high biodiesel yield. Fuel properties of the products were assessed and found better than those of the parent oil. Furthermore, they met the specified limits according to the ASTM standards. Thin layer chromatography was used as a simple technique to monitor the transesterification of the oil. Blending of the optimal biodiesel sample with petro diesel using specified volume percentages was done as well. The results indicated that biodiesel had slight effect on the values of the assessed properties.

  11. RSM based optimization of chemical and enzymatic transesterification of palm oil: biodiesel production and assessment of exhaust emission levels.

    Science.gov (United States)

    Mumtaz, Muhammad Waseem; Mukhtar, Hamid; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.

  12. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  13. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  14. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  15. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  16. Investigation of palm methyl-ester bio-diesel with additive on performance and emission characteristics of a diesel engine under 8-mode testing cycle

    Directory of Open Access Journals (Sweden)

    S. Senthilkumar

    2015-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its same diesel-like fuel properties and compatibility with petroleum-based diesel fueled engines. Therefore, in this paper the prospects and opportunities of using various blends of methyl esters of palm oil as fuel in an engine with and without the effect of multi-functional fuel additive (MFA, Multi DM 32 are studied to arrive at an optimum blend of bio-diesel best suited for low emissions and minimal power drop. Experimental tests were conducted on a four stroke, three cylinder and naturally aspirated D.I. Diesel engine with diesel and various blend percentages of 20%, 40%, 45%, and 50% under the 8 mode testing cycle. The effect of fuel additive was tested out on the optimum blend ratio of the bio-diesel so as to achieve further reduced emissions. Comparison of results shows that, 73% reduction in hydrocarbon emission, 46% reduction in carbon monoxide emission, and around 1% reduction in carbon dioxide emission characteristics. So it is observed that the blend ratio of 40% bio-diesel with MFA fuel additive creates reduced emission and minimal power drop due to effective combustion even when the calorific value is comparatively lower due to its higher cetane number.

  17. An optimal U.S. biodiesel fuel subsidy

    International Nuclear Information System (INIS)

    Wu Huiting; Colson, Gregory; Escalante, Cesar; Wetzstein, Michael

    2012-01-01

    Enhanced environmental quality, fuel security, and economic development, along with reduced prices of blended diesel, are often used as justifications for a U.S. federal excise tax exemption on biodiesel fuels. However, the possible effect of increased overall consumption of fuel in response to lower total prices, mitigating the environmental and fuel security benefits, are generally not considered. Taking this price response into account, the optimal U.S biodiesel subsidy is derived. Estimated values of the optimal subsidy are close to the recently expired subsidy, revealing the subsidy's environmental and security benefits. However, further positive environmental and security benefits from the biodiesel tax-exemption subsidy may be obtained if the subsidy is combined with a federal excise tax on petroleum diesel. - Highlights: ► Taking price response into account, the optimal theoretical U.S biodiesel subsidy is derived. ► Estimated values of the optimal subsidy are close to the recently expired subsidy, revealing the subsidy's environmental and security benefits. ► Further positive environmental and security benefits from the biodiesel tax-exemption subsidy may be obtained if the subsidy is combined with a federal excise tax on petroleum diesel.

  18. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends)

    OpenAIRE

    Z. Jurac; L. Pomenić

    2013-01-01

    Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that r...

  19. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture

    International Nuclear Information System (INIS)

    Can, Özer

    2014-01-01

    Highlights: • High quality biodiesel fuels can be produced by using different waste cooking oils. • Biodiesel fuel blends (in 5 and 10% vol) can be used without any negative effects. • Effects of biodiesel addition on the combustion and exhaust emissions were investigated. - Abstract: In this study, a mixture of biodiesel fuels produced from two different kinds of waste cooking oils was blended in 5% and 10% with No. 2 diesel fuel. The biodiesel/No. 2 diesel fuel blends were tested in a single-cylinder, direct injection, four-stroke, natural aspirated diesel engine under four different engine loads (BMEP 0.48–0.36–0.24–0.12 MPa) and 2200 rpm engine speed. Despite of the earlier start of injection, the detailed combustion and engine performance results showed that the ignition delay with the biodiesel addition was decreased for the all engine loads with the earlier combustion timings due to higher cetane number of biodiesel fuel. Meanwhile the maximum heat release rate and the in-cylinder pressure rise rate were slightly decreased and the combustion duration was generally increased with the biodiesel addition. However, significant changings were not observed on the maximum in-cylinder pressures. In addition, it was observed that the indicated mean effective pressure values were slightly varied depending on the start of combustion timing and the center of heat release location. It was found that 5% and 10% biodiesel fuel addition resulted in slightly increment on break specific fuel consumption (up to 4%) and reduction on break thermal efficiency (up to 2.8%). The biodiesel additions also increased NO x emissions up to 8.7% and decreased smoke and total hydrocarbon emissions for the all engine loads. Although there were no significant changes on CO emissions at the low and medium engine loads, some reductions were observed at the full engine load. Also, CO 2 emissions were slightly increased for the all engine loads

  20. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    Science.gov (United States)

    Omidvarborna, Hamid

    , while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.

  1. AN EXPERIMENTAL INVESTIGATION ON OXIDATIVE STABILITY OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    Mustafa ÇANAKÇI

    2004-02-01

    Full Text Available Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feed stocks such as vegetable oil and animal fats. These feed stocks are reacted with an alcohol to produce alkyl monoesters. The obtained ester can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This paper reports the results of accelerated oxidation tests on biodiesel. These tests show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are also explored. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq O2/kg, the acid value and viscosity increase monotonically as oxidation proceeds.

  2. Experimental investigation of the impact of using alcohol- biodiesel-diesel blending fuel on combustion of single cylinder CI engine

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.; Awad, Omar. I.

    2016-11-01

    The effect of alcohol addition has been experimentally in vestgated in the current study by blending it with diesel and palm based biodiesel on the combustion of a compression ignition engine. The experiment was run by single-cylinder, naturally aspirated, direct injection, four-stroke diesel engine. Based on the pressure-crank angle data collected from the pressure transducer and crank angle encoder, the combustion analysis such as incylinder pressure, incylinder temperature, energy release rate, cumulative energy release and ignition delay are analysed. In this comparative study, the effects of alcohols namely butanol BU20 (20% butanol addition on the commercially available diesel biodiesel emulsion) is compared and evaluated with pure diesel (D100). The results revealed that the the ignition delay for BU20 is longer as compared to that of D100 in all engine speeds and loads compared. Besides, the incylinder temperatures were rudecued with the butanol addition. The energy release rate for BU20 was higher than that for diesel, whereas the peak positions concerning the energy release rate for BU20 was discovered at 2400 rpm. Therefore addition of butanol will have positive role on the NOx emissions and stability of the engine due to its higher latent heat of vaporization.

  3. Mackerel biodiesel production from the wastewater containing fish oil

    International Nuclear Information System (INIS)

    Wu, Y.P.; Huang, H.M.; Lin, Y.F.; Huang, W.D.; Huang, Y.J.

    2014-01-01

    Marine fish such as mackerel are important for coastal fisheries in Taiwan. Nearly 60,000 tons of mackerel are produced in Suao, I-lan, Taiwan every year. In this study, oil from the discarded parts of mackerel fish contained in wastewater stream were used as the raw material to produce biodiesel through transesterification reaction. The major fuel properties of MB (mackerel biodiesel), including the iodine value, dynamic viscosity, flash point, and heat value, were determined and compared with sunflower seed oil methyl ester (SFM), JCB (Jatropha curcas biodiesel), and premium diesel (D). MB had a higher iodine value, dynamic viscosity, density, and flash point, but a lower heat value, than did D. MB was also used as fuel in a regular diesel engine to verify its emission characteristics. The MB fuel used for exhaust emission test included pure MB (MB100) and a 20% MB blend with premium diesel (MB20). The exhaust emission of MB was also compared with the exhaust emissions of D and JCB. The results showed that MB20 provided a significant reduction in NO, NO x , and SO 2 emissions under varied engine loads, and required no engine modification. - Highlights: • Biodiesel was produced from wastewater containing mackerel fish oil. • Mackerel biodiesel is compared with Jatropha biodiesel and sunflower seed biodiesel. • MBE (mackerel biodiesel) was found to contain higher amount of unsaturated fatty acids. • Mackerel biodiesel, diesel, and Jatropha biodiesel emissions are compared

  4. Characteristics of a tractor engine using mineral and biodiesel fuels blended with rapeseed oil Características de um motor de trator alimentado com combustíveis mineral e biodisel misturados com óleo de colza

    Directory of Open Access Journals (Sweden)

    Tone Godeša

    2010-10-01

    Full Text Available One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel, rapeseed oil methyl ester - biodiesel (B100 and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO. Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50% gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.Uma das características mais desfavoráveis dos óleos vegetais crus usados como combustível é a alta viscosidade. Para melhorar este ponto fraco, o óleo pode ser misturado com diesel mineral ou biodiesel. Este estudo foi desenvolvido para avaliar como o uso de diesel mineral ou biodiesel misturado a oleo de colza (Brassica napus extraído por pressão a frio afeta a potência do motor, o torque e o consumo de combustível, empregando um trator equipado com injeção direta, sistema de refrigeração de água e um motor de três cilindros. Os combustíveis utilizados foram o diesel padrão (diesel, éster metílico de óleo de sementes de colza - biodiesel (B100 e suas misturas com 10, 30 e 50 % vol. de óleo de semente de colza pressionado a frio (RO. Maiores proporções de RO nas misturas de diesel praticamente não tiveram efeito sobre o torque

  5. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    Science.gov (United States)

    Viswanathan, Karthickeyan

    2018-05-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  6. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    Science.gov (United States)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  7. Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil Adam

    2018-06-01

    Full Text Available In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel source from rubber seed oil (RSO is explored. However, a mixture with a high saturation content feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB or palm biodiesel (PB and varying percentage mixtures of these two feedstock oils biodiesel (RPB were evaluated on combustion performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP of 1.18–2.97% and lower brake specific fuel consumption (BSFC of 0.85–3.69%, smoke opacity (11.89–14.19%, carbon monoxide (CO of 2.48–6.93%, hydrocarbon (HC of 2.36–9.34%, and Nitrogen oxide (NO emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR of RPB blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion angles (SOC of RB and RPB blends were from −13 to −15 °C and from −13.2 to −15.6 crank angle degree (°CA before top dead center (BTDC, but the combustion delays were 6–8 °C and 5.4–7.8 °C shorter when compared to diesel fuel which were −10 °C BTDC and 11 °C, respectively. It can be concluded that RPB blends showed better performance and emissions over the individual rubber seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

  8. Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Mohammadi, Pouya; Khoshnevisan, Benyamin; Rajaeifar, Mohammad Ali; Pakzad, Mohsen

    2017-01-01

    Highlights: • Exergoeconomic and exergoenvironmental analyses were applied for a DI diesel engine. • Increasing engine load remarkably decreased the unit cost of shaft work exergy. • Increasing engine speed increased the unit environmental impact of work exergy. • The applied approaches could not detect any spectacular difference among the fuels. - Abstract: In the present study, a DI diesel engine operating on various diesel/biodiesel blends containing different amounts of polymer waste was thermodynamically scrutinized using two exergy-based methods, i.e., exergoeconomic and exergoenvironmental analyses for the first time. Exergoeconomic and exergoenvironmental parameters were calculated for five fuel blends utilized throughout this study at different engine loads and speeds. These approaches were used to make decisions on fuel composition and engine operational conditions by taking into account the financial and environmental issues. The results showed that the exergoeconomic and exergoenvironmental parameters varied profoundly with engine load and speed. In general, increasing engine load remarkably decreased the unit cost and the unit environmental impact of the shaft work exergy, while enhancing engine speed acted oppositely. More specifically, the lowest unit cost and unit environmental impact of full load work exergy were found to be 36.08 USD/MJ and 32.03 mPts/GJ for neat diesel and B 5 containing 75 g EPS/L biodiesel, respectively, both at engine speed of 1600 min −1 . Moreover, the exergoeconomic and exergoenvironmental factors of the diesel engine were very poor due to the higher thermodynamic losses occurring during the combustion process. Although the maximum exergetic efficiency of the diesel engine was obtained for B 5 including 50 g EPS/L biodiesel, the exergoeconomic and exergoenvironmental analyses could not detect any spectacular differences among the fuel blends applied. Overall, using biodiesel in neat or blended form appeared to be

  9. History and policy of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Pousa, Gabriella P.A.G.; Santos, Andre L.F.; Suarez, Paulo A.Z.

    2007-01-01

    Historically, during petroleum shortage, vegetable oils and their derivatives have been proposed as alternatives to petroleum diesel fuel. Since 1930, different approaches have been proposed by Brazilian's universities and research institutes, including the use of neat vegetable oils (pure or in blends) or their derivatives, such as hydrocarbons obtained by thermal-catalytic cracking and fatty acids' methyl or ethyl esters (nowadays known as 'biodiesel') produced by alcoholysis. Recently, the external dependence on imported diesel fuel and the present petroleum crisis have increased the discussion in Brazil in the sense of starting to use alternatives to diesel fuel, biodiesel being the main alternative for a large petroleum diesel substitution program

  10. Emission Characteristics and Egr Application of Blended Fuels with Bdf and Oxygenate (dmm) in a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).

  11. Impacts of production and use of biodiesel of the Sergipe state, Brazil; Impactos da producao e uso de biodiesel no estado de Sergipe

    Energy Technology Data Exchange (ETDEWEB)

    Vital Brazil, Osiris Ashton; Silva, Maria Susana; Souza, Angela Maria de [Sergipe Parque Tecnologico (SergipeTec), Aracaju, SE (Brazil); Vaz, Vitor Hugo Silva [Faculdade Sao Luis de Franca, Aracaju, SE (Brazil)

    2008-07-01

    The law 11.097/05, establishes that from January 2008 is binding the mixture of 2% biodiesel in diesel (B2) and the same law provides that in 2013 makes it mandatory to blend diesel with 5% biodiesel (B5). This article is motivated by actions that have been developed in the state of Sergipe for the production and use of biodiesel as established by law. The objective of the article is to discuss the impacts of the production and use of biodiesel in Sergipe, specifically seeks to examine the economic impacts in agricultural production and energy matrix state. The discussion of the impacts of biodiesel in the state of Sergipe, is dealt with in this Arctic addresses the demand for oil for the state to become high enough to B2 and B5 in the coming years, the impact of this oil in the energy matrix of the state. This initial discussion projected targets of protection both for agriculture and for the Industrialization of the state. (author)

  12. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    Science.gov (United States)

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc.

  13. Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: A critical review

    International Nuclear Information System (INIS)

    Ramkumar, S.; Kirubakaran, V.

    2016-01-01

    Highlights: • The C.V of biodiesel is less than diesel of about 10% on volume and 15% on mass basis. • Most forms of biodiesel and its blends with diesel have higher viscosity than diesel. • Biodiesel’s cost and by-product reduce its feasibility as a substitute fuel. • TGA & DCS of Pungamia Oil shows that Thermal cracking is an alternate to Biodiesel. - Abstract: The awareness about using eco friendly fuels like biodiesel is increasing every day. The Increase in global warming and energy crises due to fossil fuel has accelerated the search of bio fuels. Biodiesel is a promising fuel; it is available in a wide range in every part of the world. Most of the studies reveal that the performance of biodiesel is better than that of diesel. Except NOx, the major emissions are high in the case of fossil fuels. This paper reviews the performance and emission characteristics of biodiesel in C.I engines. The paper also reviews the influence of engine modifications, various additives, and various proportions of blends of biodiesel with diesel. The physical and thermal characteristics of biodiesel have a great influence in the performance and emission, and they are tabulated in this paper. This paper also attempts feasibility of admitting vegetable oil in IC engine through Thermal Cracking. Preliminary investigation shows encouraging results and reported in this paper.

  14. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    Science.gov (United States)

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be

  15. Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study.

    Science.gov (United States)

    DeMello, Jared A; Carmichael, Catherine A; Peacock, Emily E; Nelson, Robert K; Samuel Arey, J; Reddy, Christopher M

    2007-07-01

    Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, the behavior of biodiesel, or blends of biodiesel with fossil diesel, in the marine environment have yet to be fully understood. Hence, we performed a series of initial laboratory experiments and simple calculations to evaluate the microbial and environmental fate of FAMEs. Aerobic seawater microcosms spiked with biodiesel or mixtures of biodiesel and fossil diesel revealed that the FAMEs were degraded at roughly the same rate as n-alkanes, and more rapidly than other hydrocarbon components. The residues extracted from these different microcosms became indistinguishable within weeks. Preliminary results from physical-chemical calculations suggest that FAMEs in biodiesel mixtures will not affect the evaporation rates of spilled petroleum hydrocarbons but may stabilize oil droplets in the water column and thereby facilitate transport.

  16. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  17. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  18. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, B.; Mishra, R.; Gu, F. [Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom); Powles, N. [Chemistry and Forensic Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH (United Kingdom)

    2010-12-15

    Biodiesel is a promising non-toxic and biodegradable alternative fuel used in the transport sector. Nevertheless, the higher viscosity and density of biodiesel poses some acute problems when it is used it in unmodified engine. Taking this into consideration, this study has been focused towards two objectives. The first objective is to identify the effect of temperature on density and viscosity for a variety of biodiesels and also to develop a correlation between density and viscosity for these biodiesels. The second objective is to investigate and quantify the effects of density and viscosity of the biodiesels and their blends on various components of the engine fuel supply system such as fuel pump, fuel filters and fuel injector. To achieve first objective density and viscosity of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel blends (0B, 5B, 10B, 20B, 50B, 75B, and 100B) were tested at different temperatures using EN ISO 3675:1998 and EN ISO 3104:1996 standards. For both density and viscosity new correlations were developed and compared with published literature. A new correlation between biodiesel density and biodiesel viscosity was also developed. The second objective was achieved by using analytical models showing the effects of density and viscosity on the performance of fuel supply system. These effects were quantified over a wide range of engine operating conditions. It can be seen that the higher density and viscosity of biodiesel have a significant impact on the performance of fuel pumps and fuel filters as well as on air-fuel mixing behaviour of compression ignition (CI) engine. (author)

  19. Desempenho e emissões de um motor-gerador ciclo diesel sob diferentes concentrações de biodiesel de soja Performance and emissions of a diesel engine-generator cycle under different concentrations of soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Elton F. dos Reis

    2013-05-01

    Full Text Available No cenário atual brasileiro de constantes quedas de energia e iminência de uma crise no setor elétrico, a utilização de grupos geradores tem sido bastante comum no meio rural e os bicombustíveis, como o biodiesel, representam uma opção para diversificação da matriz energética. Este trabalho objetivou avaliar o uso do biodiesel de soja em diferentes concentrações em um motor de ciclo diesel sob diferentes demandas de cargas do motor. Foram utilizadas as concentrações: 5% (B5, 10% (B10, 20% (B20, 50% (B50, 75% (B75 e 100% de biodiesel (B100 em um grupo gerador a diesel, com motor de 5 Hp de quatro tempos, em diferentes condições de operação do motor, por meio de demandas de cargas elétricas: 500, 1.000, 1.500, 2.000 W e desligadas conectadas ao grupo gerador. Foram realizados ensaios para quantificação do consumo horário de combustível e da emissão de gases. As variáveis sofreram influência significativa conforme foram alteradas as cargas elétricas e as misturas de combustível. O uso do biodiesel em concentrações maiores reduz consideravelmente a emissão da maioria dos gases poluentes e se tem praticamente anulada a emissão de enxofre para concentrações acima de 65% de biodiesel.In the current scenario of constant power drops in Brazil and an imminent crisis in the electricity sector, the use of generators and biofuels such as biodiesel has been quite common in rural areas represents an option for diversification of the energy matrix. This study evaluated the use of soybean biodiesel in different concentrations in a diesel engine cycle under different demands of engine loads. Concentrations used were: 5% (B5, 10% (B10, 20% (B20, 50% (B50, 75% (B75 and 100% biodiesel (B100 in a diesel generator with engine of 5 Hp of four-stroke under different operating conditions of the engine, through the demands of electrical loads: 500, 1.000, 1.500, 2.000 W and off connected to the generator. Tests were conducted to quantify

  20. Cottonseed oil for biodiesel production; Oleo de algodao para a producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna L.M.T.; Park, Kil J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: annalets@feagri.unicamp.br; Ferrari, Roseli A; Miguel, Ana M.R.O. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)], Emails: roseliferrari@ital.sp.gov.br, anarauen@ital.sp.gov.br, kil@feagri.unicamp.br

    2009-07-01

    Crude cottonseed oil is an alternative for biodiesel production, mostly in Mato Grosso State, where its production is the biggest of Brazil. Even being an acid oil, esterification reaction, followed by transesterification, could make possible the biodiesel production. In this study, crude cottonseed oil obtained from expelled process was reacted to evaluate molar ration and catalyst concentration effects in biodiesel yield. Molar ratio varied from 3 to 15 moles of ethanol to 1 mol of oil, and catalyst, from 1 to 5% by oil mass. Statistic analysis showed that none of studied variables was significant, for the values range. Biodiesel yield had a maximum of 88%, for molar ratio of 4.7 and 4.42% of catalyst concentration. A combination of oil with high free fatty acid content and ethanol as alcohol, affected the separation between esters and glycerol. (author)

  1. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  2. Determination of Crosslink Concentration by Mooney-Rivlin Equation for Vulcanized NR/ SBR Blend and its Influence on Mechanical Properties

    International Nuclear Information System (INIS)

    Azreen Izzati Dzulkifli; Che Mohd Som Said; Han, C.C.

    2015-01-01

    Crosslink concentration is an important property affecting the major characteristic of cured rubber. The crosslink concentration was determined using Mooney-Rivlin equation due to its simple and reliable method. Cured natural rubber and styrene butadiene rubber blend (NR/SBR) with different crosslink concentrations were obtained with different blend ratios of 100/0, 80/20, 70/30, 60/40, 50/50, 40/60 and 0/100. The crosslink concentrations were determined using Mooney-Rivlin Equation and its influence on International Rubber Hardness Tester (IRHD), tensile strength and rebound resilience of NR/ SBR blend vulcanizates was investigated. The results showed different blend ratios had an influence on the crosslink concentration of the NR/ SBR blend vulcanizates. Obtained data showed that high NR content in NR/ SBR blend increased the crosslink concentration. The highest crosslink concentration recorded was for 100/0 blend ratio which was 0.0498 mol kg"-"1 RH while the lowest was 0.0295 mol kg"-"1 RH for 0/100 blend ratio. The study on the influence of crosslink concentration on IRHD, tensile strength and rebound resilience of NR/ SBR blend vulcanizates showed that the mechanical properties increased linearly with the crosslink concentration. High NR content in NR/ SBR blends resulted in higher crosslink concentration which improved the performance of mechanical properties for NR/ SBR blend. (author)

  3. Revisión de las emisiones de material particulado por la cumbustión de diesel y biodiesel

    Directory of Open Access Journals (Sweden)

    Néstor Y. Rojas

    2004-11-01

    Full Text Available Este artículo presenta una revisión de estudios comparativos entre las emisiones de material particulado por la combustión de diesel de petróleo, biodiesel y mezclas de los dos combustibles, basados no sólo en la concentración másica de las partículas emitidas, sino también en la distribución de su tamaño, concentración y composición química. Finalmente, se presenta la necesidad del país de realizar una caracterización completa de las emisiones de material particulado por la combustión de diesel, biodiesel de aceite de palma y mezclas de los dos, dadas las características particulares de estos combustibles en Colombia. La revisión fue presentada en el I Seminario Internacional de Biocombustibles, Universidad Nacional de Colombia, agosto 4 al 6 de 2004. / This paper shows a review of studies comparing particulate emissions from diesel engines running on diesel, biodiesel and their blends, based not only on particle mass concentrations, but also on particle number concentrations and particulate chemical composition. Finally, it summarizes the need for thoroughly characterizing particulate matter emissions in studies comparing Colombian diesel and biodiesel from palm oil (or other oil-producing Colombian species.

  4. Potential utilization of biodiesel as alternative fuel for compression ignition engine in Malaysia

    Science.gov (United States)

    Wahab, M. A.; Ma'arof, M. I. N.; Ahmad, I. N.; Husain, H.

    2017-10-01

    Biodiesel is a type of fuel which is derived from various sources of vegetable plants and waste fuels. Today, numerous biodiesels have been engineered to be at par or even better in term of performance in comparison to pure diesel. Therefore, biodiesel has shown a promising sign as one of the best candidate in overcoming total dependency on pure diesel. This paper gives review on various tests and experiments conducted on biodiesel in order to highlight the potentials given by this particular fuel. In addition, providing the supporting evidences to further endorse for a mass usage of biodiesel in Malaysia - simultaneously, driving the country to become a potential global biodiesel producer in the near future. The reviewed studies were obtained mainly via indexed journals and online libraries. Conclusively, every test and study for every blend of biodiesel had shown consistent positive results in regards to performance and in overcoming emission related issues. Thus, providing the evidence that biodiesel is highly reliable. Malaysia as a semi-agricultural nation could take the advantage in becoming one of the leading global biodiesel producers. Nevertheless, this will requires total cooperation of every concerned government bodies and authorities.

  5. Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism

    DEFF Research Database (Denmark)

    Ng, Hoon Kiat; Gan, Suyin; Ng, Jo-Han

    2013-01-01

    This computational fluid dynamics (CFD) study is performed to investigate the combustion characteristics and emissions formation processes of biodiesel fuels in a light-duty diesel engine. A compact reaction mechanism with 80 species and 303 reactions is used to account for the effects of chemical...... kinetics. Here, the mechanism is capable of emulating biodiesel–diesel mixture of different blending levels and biodiesel produced from different feedstock. The integrated CFD-kinetic model was validated against a test matrix which covers the entire saturated–unsaturated methyl ester range typical...... of biodiesel fuels, as well as the biodiesel–diesel blending levels. The simulated cases were then validated for in-cylinder pressure profiles and peak pressure values/timings. Errors in the peak pressure values did not exceed 1%, while the variations in peak pressure timings were kept within 1.5 crank angle...

  6. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  7. Pricing model for biodiesel feedstock. A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Pohit, Sanjib; Biswas, Pradip Kumar; Kumar, Rajesh; Goswami, Anandajit

    2010-01-01

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. (author)

  8. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  9. Economics of biodiesel production in the context of fulfilling 20% blending with petro-diesel in Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan

    2014-01-01

    The dependency on imported petro-diesel along with the escalating price are adversely affecting the national economy of Nepal. As an alternative fuel, prospects of biodiesel production for partial substitution of petro-diesel are felt necessary to reduce the dependency on fossil fuel. This article...... outlines the economics of biodiesel production in the country. Three different cases are developed for the economic analysis in the chain of biodiesel production, which are aimed to overview the influences of yield of plant, cost of cultivation, and price of raw oilseeds to the production cost of biodiesel....... The study concludes that the biodiesel production is economically viable with a plant yield greater than 2 kg/plant and with the price of oil seeds lower than 0.22 USD/kg, which has a positive return on investment. With the yield lower than 2 kg/plant, the production cost of biodiesel cannot compete...

  10. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  11. Utilization of some non-edible oil for biodiesel production ...

    African Journals Online (AJOL)

    In this work, the production of biodiesel from four sources of non-edible oils, namely jatropha, animal fat, waste vegetable oil and castor oil was carried out. It was done using an acid esterification process followed by alkali transesterification in the laboratory. Subsequently the physicochemical properties for four blends B100 ...

  12. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  13. Effect of Di-Tertiary Butyl Peroxide on the performance, combustion and emission characteristics of ethanol blended cotton seed methyl ester fuelled automotive diesel engine

    International Nuclear Information System (INIS)

    Kumar, K. Senthil; Raj, R. Thundil Karuppa

    2016-01-01

    Highlights: • Effect of di-tertiary butyl peroxide on ethanol blended biodiesel is investigated. • Cetane enhanced ethanol up to 10% can be blended with cotton seed biodiesel. • Nitrogen oxides emissions are lower for cetane enhanced ethanol biodiesels. • Performance characteristics of cetane improved ethanol biodiesels are reasonable. • Cetane enhanced ethanol blended biodiesel is an promising renewable energy source. - Abstract: An experimental study is carried out to examine and analyze the influence of Di-Tertiary Butyl Peroxide in bioethanol diesel blends on the performance, combustion and emission characteristics in a single cylinder, 4-stroke, naturally aspirated, automotive diesel engine for variable speed at full load conditions. Esterified cotton seed oil of 5% by volume is emulsified with 95% pure diesel to get the base fuel (BE0) for the experiments. Bioethanol diesel blends are produced from base fuel by adding 5% and 10% pure ethanol on a volumetric basis to obtain BE5 and BE10 respectively. The bioethanol fuels are low in Cetane number and hence Di-Tertiary Butyl Peroxide a Cetane enhancer is added by 0.4% by volume to produce BE5CN0.4% and BE10CN0.4% emulsions respectively. It is found from the experiments carried out, that an inverse trend exists between brake thermal efficiency and percentage of ethanol in base fuel. This is due to the lower calorific value of ethanol and an improvement in brake thermal efficiency is observed with ignition improver added blends. The presence of Cetane improver significantly reduced oxides of nitrogen and unburned hydro carbon emissions for overall engine speed and carbon monoxide emissions for low to medium speed range.

  14. Role of salt concentration in blend polymer for energy storage conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com [Centre for Physical Sciences, Central university of Punjab, Bathinda-151001. INDIA (India); Sadiq, M. [Department of Physics, I.I.T. (BHU), Varanasi-India (India)

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO, PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.

  15. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the

  16. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    Science.gov (United States)

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  17. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    OpenAIRE

    S Abbasi; H Bahrami; B Ghobadian; M Kiani Deh Kiani

    2018-01-01

    Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel a...

  18. Performance evaluation of a diesel engine using biodiesel

    International Nuclear Information System (INIS)

    Shahid, E.M.; Jamal, Y.

    2011-01-01

    This article is a comparative study of use of mineral diesel and biodiesel derived from cotton seed oil of Pakistani origin. The main problems associated with biodiesel are, its very high viscosity and specific gravity, which are due to long chain triglyceride esters with free fatty acids. The esters are converted into simple structure mono-glycerides esters via transesterification process. The experiments were carried out using blends of diesel and biodiesel with different ratios, to investigate the performance characteristics of engine and exhaust emissions. The experimental results show that the engine using B100 resulting in about 10% higher brake specific fuel consumption and about 10% lower brake thermal efficiency as compared to the use of B0. The engine emissions were almost free from SO/sub x/, having reduced amount of CO, CO/sub 2/0, and THC, but having higher amount of NOx, when B100 was used as fuel. The fuel is becoming more popular due to the reduction in nasty pollutant emissions. (author)

  19. Environmental impacts of Jatropha curcas biodiesel in India.

    Science.gov (United States)

    Gmünder, Simon; Singh, Reena; Pfister, Stephan; Adheloya, Alok; Zah, Rainer

    2012-01-01

    In the context of energy security, rural development and climate change, India actively promotes the cultivation of Jatropha curcas, a biodiesel feedstock which has been identified as suitable for achieving the Indian target of 20% biofuel blending by 2017. In this paper, we present results concerning the range of environmental impacts of different Jatropha curcas cultivation systems. Moreover, nine agronomic trials in Andhra Pradesh are analysed, in which the yield was measured as a function of different inputs such as water, fertilizer, pesticides, and arbuscular mycorrhizal fungi. Further, the environmental impact of the whole Jatropha curcas biodiesel value chain is benchmarked with fossil diesel, following the ISO 14040/44 life cycle assessment procedure. Overall, this study shows that the use of Jatropha curcas biodiesel generally reduces the global warming potential and the nonrenewable energy demand as compared to fossil diesel. On the other hand, the environmental impacts on acidification, ecotoxicity, eutrophication, and water depletion all showed increases. Key for reducing the environmental impact of Jatropha curcas biodiesel is the resource efficiency during crop cultivation (especially mineral fertilizer application) and the optimal site selection of the Jatropha curcas plantations.

  20. Quality assessment of biodiesels obtained from pure cooking oils of some feedstocks and their waste oils

    International Nuclear Information System (INIS)

    Khan, I.; Ansari, T.M.; Manzoor, S.

    2017-01-01

    Biodiesel being a renewable energy resource possesses compositional variability based on the type of feedstock. Biodiesel is considered a cleaner burning fuel and can be used as pure B100 or blended with petro-diesel. In this study, biodiesel was prepared from pure cooking oils (soybean oil, canola oil, sunflower oil, corn oil) and their waste frying oils by base-catalyzed transesterification with methanol in presence of sodium hydroxide. The optimized experimental parameters were applied to achieve the maximum yield of biodiesel. Various fuel properties like kinematic viscosity, flash point, pour point, cloud point, total acid number, specific gravity, water and sediments, conradson carbon residue, sulfur contents, phosphorous contents, sulphated ash, cetane and copper corrosion were determined and found comparable to ASTM standards. Pure cooking oils, their waste frying oils and prepared biodiesels were characterized by FT-IR. The study showed that the biodiesel derived from waste frying oils can be a promising alternative of the biodiesel from pure cooking oils. (author)

  1. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  2. B2, B7 or B10: Which palm-based blend mandate wise to be chosen in Malaysia?

    Science.gov (United States)

    Applanaidu, Shri-Dewi; Abidin, Norhaslinda Zainal; Ali, Anizah Md.

    2015-12-01

    The diminishing fossil energy resources, coupled with heightened interest in the abatement of greenhouse gas emissions and concerns about energy security have motivated Malaysia to produce palm-based biodiesel and it has been started to be exported since 2006. In line with this issue, the government in Malaysia launched the palm-based biodiesel blending mandate of five percent (B5) in the federal administration of Putrajaya on 1st June 2011. This was then followed by four states: Malacca on July 11, Negeri Sembilan on August 1, Kuala Lumpur on September 1 and Selangor on October 1 of the same year but it is yet to be implemented nationwide. However what is the wise blend mandate to be chosen? Thus, this paper seeks to examine the possible impact of various blend mandates implementation (B2, B7 and B10) on the palm oil industry market variables (stock and price) since the main aim of biodiesel industry in Malaysia is to reduce domestic palm oil stock to below one million tones and provide a floor price to support Crude Palm Oil (CPO) prices at RM2,000 per tonne. A structural econometric model consisting of nine structural equations and three identities was proposed in this study. The model has been estimated by two stage least squares (2SLS) method using annual data for the period 1976-2013. The study indicates that counterfactual simulation of a decrease from B5 to B2 predicts a decrease (11.2 per cent) in CPO domestic consumption for biodiesel usage, 731.02 per cent reduction in CPO stock and an increase of 27.41 percent in domestic price of CPO. However the increase in the blend mandate from B5 to B7 and B10 suggest that domestic consumption of CPO for biodiesel purpose increase 7.40 and 18.55 percent respectively. The interesting findings in this study suggest that no matter whether Malaysian government increase or decrease the blend mandate the increase in the price of CPO are the same with an increase of is 27.41 percent. Hence, this study suggests that the

  3. B2, B7 or B10: Which palm-based blend mandate wise to be chosen in Malaysia?

    Energy Technology Data Exchange (ETDEWEB)

    Applanaidu, Shri-Dewi, E-mail: dewi@uum.edu.my; Ali, Anizah Md., E-mail: anizah@uum.edu.my [Department of Economics and Agribusiness, School of Economics, Finance & Banking, UUM (Malaysia); Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my [Department of Decision Sciences, School of Quantitative Sciences, UUM (Malaysia)

    2015-12-11

    The diminishing fossil energy resources, coupled with heightened interest in the abatement of greenhouse gas emissions and concerns about energy security have motivated Malaysia to produce palm-based biodiesel and it has been started to be exported since 2006. In line with this issue, the government in Malaysia launched the palm-based biodiesel blending mandate of five percent (B5) in the federal administration of Putrajaya on 1{sup st} June 2011. This was then followed by four states: Malacca on July 11, Negeri Sembilan on August 1, Kuala Lumpur on September 1 and Selangor on October 1 of the same year but it is yet to be implemented nationwide. However what is the wise blend mandate to be chosen? Thus, this paper seeks to examine the possible impact of various blend mandates implementation (B2, B7 and B10) on the palm oil industry market variables (stock and price) since the main aim of biodiesel industry in Malaysia is to reduce domestic palm oil stock to below one million tones and provide a floor price to support Crude Palm Oil (CPO) prices at RM2,000 per tonne. A structural econometric model consisting of nine structural equations and three identities was proposed in this study. The model has been estimated by two stage least squares (2SLS) method using annual data for the period 1976-2013. The study indicates that counterfactual simulation of a decrease from B5 to B2 predicts a decrease (11.2 per cent) in CPO domestic consumption for biodiesel usage, 731.02 per cent reduction in CPO stock and an increase of 27.41 percent in domestic price of CPO. However the increase in the blend mandate from B5 to B7 and B10 suggest that domestic consumption of CPO for biodiesel purpose increase 7.40 and 18.55 percent respectively. The interesting findings in this study suggest that no matter whether Malaysian government increase or decrease the blend mandate the increase in the price of CPO are the same with an increase of is 27.41 percent. Hence, this study suggests that

  4. B2, B7 or B10: Which palm-based blend mandate wise to be chosen in Malaysia?

    International Nuclear Information System (INIS)

    Applanaidu, Shri-Dewi; Ali, Anizah Md.; Abidin, Norhaslinda Zainal

    2015-01-01

    The diminishing fossil energy resources, coupled with heightened interest in the abatement of greenhouse gas emissions and concerns about energy security have motivated Malaysia to produce palm-based biodiesel and it has been started to be exported since 2006. In line with this issue, the government in Malaysia launched the palm-based biodiesel blending mandate of five percent (B5) in the federal administration of Putrajaya on 1 st June 2011. This was then followed by four states: Malacca on July 11, Negeri Sembilan on August 1, Kuala Lumpur on September 1 and Selangor on October 1 of the same year but it is yet to be implemented nationwide. However what is the wise blend mandate to be chosen? Thus, this paper seeks to examine the possible impact of various blend mandates implementation (B2, B7 and B10) on the palm oil industry market variables (stock and price) since the main aim of biodiesel industry in Malaysia is to reduce domestic palm oil stock to below one million tones and provide a floor price to support Crude Palm Oil (CPO) prices at RM2,000 per tonne. A structural econometric model consisting of nine structural equations and three identities was proposed in this study. The model has been estimated by two stage least squares (2SLS) method using annual data for the period 1976-2013. The study indicates that counterfactual simulation of a decrease from B5 to B2 predicts a decrease (11.2 per cent) in CPO domestic consumption for biodiesel usage, 731.02 per cent reduction in CPO stock and an increase of 27.41 percent in domestic price of CPO. However the increase in the blend mandate from B5 to B7 and B10 suggest that domestic consumption of CPO for biodiesel purpose increase 7.40 and 18.55 percent respectively. The interesting findings in this study suggest that no matter whether Malaysian government increase or decrease the blend mandate the increase in the price of CPO are the same with an increase of is 27.41 percent. Hence, this study suggests that the

  5. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  6. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  7. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  8. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  9. Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6

    Energy Technology Data Exchange (ETDEWEB)

    Kinast, J. A.

    2003-03-01

    In a project sponsored by the National Renewable Energy Laboratory, the Institute of Gas Technology is conducting an investigation of biodiesels produced from vegetable and animal based feedstocks. This subcontract report presents their findings.

  10. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  11. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

    1998-05-01

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

  12. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  13. Properties, performance, and applications of biofuel blends: a review

    Directory of Open Access Journals (Sweden)

    Husam Al-Mashhadani

    2017-08-01

    Full Text Available Biofuels such as ethanol and biodiesel derived from living plants or animal matter can be used directly in their neat forms or as blends with their fossil counterparts in internal combustion engines. Although the properties and performance of neat biofuels have been extensively reported, this is not the case for many blends. The purpose of this review is to analyze different forms of biofuel blends that are under research and development comparing their utility and performance in the two primary classes of engines, i.e., spark ignition and compression ignition engines. The fuel properties, performance and emission characteristics, advantages and disadvantages of various fuel blends are compared and discussed. The analysis reveals certain blends possess better overall fuel properties and yield better overall performance than the neat or fossil forms.

  14. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology

    International Nuclear Information System (INIS)

    Dharma, S.; Masjuki, H.H.; Ong, Hwai Chyuan; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I.

    2016-01-01

    Highlights: • Jatropha curcas and Ceiba pentandra are potential feedstock for biodiesel. • Optimization of biodiesel production by response surface methodology. • Jatropha curcas–Ceiba pentandra mixed biodiesel yield was 93.33%. • The properties of mixed biodiesel fulfill ASTM (D6751) standard. - Abstract: Exploring and improvement of biodiesel production from non-edible vegetable oil is one of the effective ways to solve limited amount of traditional raw materials and their high prices. The main objective of this study is to optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box–Behnken experimental design. Based on the results, the optimum operating parameters for transesterification of the J50C50 oil mixture at 60 °C over a period of 2 h are as follows: methanol-to-oil ratio: 30%, agitation speed: 1300 rpm and catalyst concentration: 0.5 wt.%. These optimum operating parameters gives the highest yield for the J50C50 biodiesel with a value of 93.33%. The results show that there is a significant improvement in the physicochemical properties of the J50C50 biodiesel after optimization, whereby the kinematic viscosity at 40 °C, density at 15 °C, calorific value, acid value and oxidation stability is 3.950 mm"2/s, 831.2 kg/m"3, 40.929 MJ/kg, 0.025 mg KOH/g and 10.01 h, respectively. The physicochemical properties of the optimized J50C50 biodiesel fulfill the requirements given in the ASTM (D6751) and (EN14214) standards.

  15. Degradation of physical properties of different elastomers upon exposure to palm biodiesel

    International Nuclear Information System (INIS)

    Haseeb, A.S.M.A.; Jun, T.S.; Fazal, M.A.; Masjuki, H.H.

    2011-01-01

    Biodiesel, as an alternative fuel, is gradually receiving more popularity for use in internal combustion engines. However questions continue to arise with regard to its compatibility with elastomeric materials. The present work aims to investigate the comparative degradation of physical properties for different elastomers [e.g. ethylene propylene diene monomer (EPDM), silicone rubber (SR), polychloroprene (CR), polytetrafluroethylene (PTFE) and nitrile rubber (NBR)] upon exposure to diesel and palm biodiesel. Static immersion tests in B0(diesel), B10 (10% biodiesel in diesel), B20, B50 and B100(biodiesel) were carried out at room temperature (25 o C) for 1000 h. Different physical properties like, changes in weight and volume, hardness and tensile strength were measured at every 250 h of immersion time. Compositional changes in biodiesel due to exposure of different elastomers were investigated by Gas chromatography mass spectroscopy (GCMS). The overall sequence of compatible elastomers in palm biodiesel is found to be PTFE > SR > NBR > EPDM > CR. -- Research highlights: → Biodiesel and its blends swelled polychloroprene (CR) and nitrile rubber (NBR) to a greater extent than did diesel. → Although PTFE seems to be the most compatible elastomer among those tested, it undergoes a slight reduction of main constituents. →The overall sequence of compatible elastomers in palm biodiesel is PTFE > SR > NBR > EPDM > CR.

  16. Effective utilization of B20 blend with diethyl ether and ethanol as oxygenated additives

    Directory of Open Access Journals (Sweden)

    Upadrasta-Satya Vara-Prasad

    2011-01-01

    Full Text Available In the recent times' fatty acid methyl ester popularly called as biodiesel has become more prominent alternate fuel for compression ignition engines based on a single fuel concept. Since, use of neat biodiesel on a large scale is raising certain difficulties and is being adopted in a blended form with petro-diesel fuel and B20 blend has become standardized. However, the HC and NOx emissions of B20 are still on the higher side. Present work aims at experimental evaluation of a single cylinder water-cooled diesel engine by adopting various proportions of ethanol and diethyl ether blends in order to improve performance and emission characteristics of B20 blend. Besides employing different amounts of ethanol and diethyl ether, simultaneous influence of injector nozzle hole size and fuel injection pressure are also investigated to arrive at an optimum configuration. Brake specific fuel consumption and hydrocarbon emissions values are lower with B20 and DEE 5 whereas B20 with DEE15 yielded lower NOx emissions. It is observed that addition of oxygenates have improved the combustion process and lower emissions are obtained. The present investigation revealed that blends with oxygenated additives having higher Cetane rating are superior to neat blend.

  17. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  18. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Adriano Arruda Henrard

    2014-01-01

    Full Text Available The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1 and generating biomass (2.89 g L−1 were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1 was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate.

  19. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  20. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    Oener, Cengiz; Altun, Sehmus

    2009-01-01

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO x ), sulphur dioxide (SO 2 ) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO x emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  1. Performance and exhaust emissions of a biodiesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa [Kocaeli University, Technical Education Faculty, 41380 Kocaeli (Turkey); Erdil, Ahmet [Kocaeli University, Engineering Faculty, 41040 Kocaeli (Turkey); Arcaklioglu, Erol [Kirikkale University, Engineering Faculty, 71450 Kirikkale (Turkey)

    2006-06-15

    In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R{sup 2} values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R{sup 2} values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model. sing the ANN model. (author)

  2. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  3. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  4. Experimental and regression analysis for multi cylinder diesel engine operated with hybrid fuel blends

    Directory of Open Access Journals (Sweden)

    Gopal Rajendiran

    2014-01-01

    Full Text Available The purpose of this research work is to build a multiple linear regression model for the characteristics of multicylinder diesel engine using multicomponent blends (diesel- pungamia methyl ester-ethanol as fuel. Nine blends were tested by varying diesel (100 to 10% by Vol., biodiesel (80 to 10% by vol. and keeping ethanol as 10% constant. The brake thermal efficiency, smoke, oxides of nitrogen, carbon dioxide, maximum cylinder pressure, angle of maximum pressure, angle of 5% and 90% mass burning were predicted based on load, speed, diesel and biodiesel percentage. To validate this regression model another multi component fuel comprising diesel-palm methyl ester-ethanol was used in same engine. Statistical analysis was carried out between predicted and experimental data for both fuel. The performance, emission and combustion characteristics of multi cylinder diesel engine using similar fuel blends can be predicted without any expenses for experimentation.

  5. Experimental investigation review of biodiesel usage in bus diesel engine

    Directory of Open Access Journals (Sweden)

    Kegl Breda

    2017-01-01

    Full Text Available This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions, with special emphasis on the influence of low temperature on fueling. Furthermore, for each tested fuel the optimal injection pump timing is determined. The obtained optimal injection pump timings for individual fuels are then used to determine and discuss the most important injection and combustion characteristics, engine performance, as well as the emission, economy, and tribology characteristics of the engine at all modes of emission test cycles test. The results show that for each tested fuel it is possible to find the optimized injection pump timing, which enables acceptable engine characteristics at all modes of the emission test cycles test.

  6. Fueling an D.I. agricultural diesel engine with waste oil biodiesel: Effects over injection, combustion and engine characteristics

    International Nuclear Information System (INIS)

    Radu, Rosca; Petru, Carlescu; Edward, Rakosi; Gheorghe, Manolache

    2009-01-01

    The paper presents the results of a research concerning the use of a biodiesel type fuel in D.I. Diesel engine; the fuel injection system and the engine were tested. The results indicated that the injection characteristics are affected when a blend containing 50% methyl ester and 50% petrodiesel is used as fuel (injection duration, pressure wave propagation time, average injection rate, peak injection pressure). As a result, the engine characteristics are also affected, the use of the biodiesel blend leading to lower output power and torque; the lower autoignition delay and pressure wave propagation time led to changes of the cylinder pressure and heat release traces and to lower peak combustion pressures.

  7. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.

    Science.gov (United States)

    García, Manuel; Gonzalo, Alberto; Sánchez, José Luis; Arauzo, Jesús; Peña, José Angel

    2010-06-01

    A continuous process for biodiesel production has been simulated using Aspen HYSYS V7.0 software. As fresh feed, feedstocks with a mild acid content have been used. The process flowsheet follows a traditional alkaline transesterification scheme constituted by esterification, transesterification and purification stages. Kinetic models taking into account the concentration of the different species have been employed in order to simulate the behavior of the CSTR reactors and the product distribution within the process. The comparison between experimental data found in literature and the predicted normalized properties, has been discussed. Additionally, a comparison between different thermodynamic packages has been performed. NRTL activity model has been selected as the most reliable of them. The combination of these models allows the prediction of 13 out of 25 parameters included in standard EN-14214:2003, and confers simulators a great value as predictive as well as optimization tool. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Comparative study on effect of blending, thermal barrier coating ...

    African Journals Online (AJOL)

    The brake thermal efficiency, specific fuel consumption, carbon monoxide, unburned hydrocarbon and oxides of nitrogen emissions of both diesel and UOME and its blends were measured before and after coating and the results are compared. B20 fuelled biodiesel and PSZ coated engine provides almost comparable ...

  9. The emergence of the biodiesel industry in Brazil: Current figures and future prospects

    International Nuclear Information System (INIS)

    Domingos Padula, Antonio; Silveira Santos, Manoela; Ferreira, Luciano; Borenstein, Denis

    2012-01-01

    The aim of the present paper is to characterize and analyze the emergence of the biodiesel industry in Brazil, and provide an assessment of the extent to which the goals established by the National Biodiesel Production and Usage Program have been reached. In relation to the goal of including biodiesel within the Brazilian energy matrix, the program can be seen to be responding dynamically and ahead of schedule. In 2010, the B5 blend was already part of the diesel consumed in Brazil, with 81% of the biodiesel coming from soybean oil and 14% from beef tallow. By contrast, the plans to diversify the feedstocks used to produce biodiesel and improve production in the poorest regions of Brazil have failed to prosper. Regarding the goal of fostering social inclusion by encouraging the participation of family-based farming, this has been partially achieved. Finally, the goal of cost-efficiently producing biodiesel is far from being achieved. The economic feasibility of the production and use of biodiesel in Brazil can be questioned since it is still strongly supported by tax incentives and production and marketing subsidies. - Highlights: ► This paper examines the emergence of the biodiesel industry in Brazil. ► Biodiesel produced from soybean in large plants represents 80% of total production. ► Soybean-based biodiesel costs 30% more than the most economical alternatives. ► The production and trade of biodiesel in Brazil are highly subsidized. ► Feedstock diversification and family farming integration goals have so far failed.

  10. Experimental Analysis of DI Diesel Engine Performance with Blend Fuels of Oxygenated Additive and COME Biodiesel

    OpenAIRE

    P. Venkateswara Rao; B.V. Appa Rao; D. Radhakrishna

    2012-01-01

    An experimental investigation was carried out to evaluate the effect of using Triacetin (T) as an additive with biodiesel on direct injection diesel engine for performance and combustion characteristics. Normally in the